
**Cover Sheet for a Hanford
Historical Document
Released for Public Availability**

Released 1994

**Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

DECLASSIFIED

(CLASSIFICATION)

DOUGLAS / UNITED NUCLEAR, INC.
RICHLAND, WASHINGTON

DOCUMENT NO.

DUN-6999

Hanford Category C-44
SERIES AND COPY NO.

DATE

June 3, 1970

54-5100-166 (10-65)
AKC-RLOO RICHLAND, WASH.

(CLASSIFICATION)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

~~DECLASSIFIED~~

DUN-6999

Hanford Category C-44

This document consists of 3
pages. [REDACTED]

PRODUCTION OF MEDICAL-GRADE Pu-238

R. K. Robinson

Classification Cancelled and Changed To

~~DECLASSIFIED~~

By Authority of D S Lewis
CG-NMP-1 (CGW-5) 8-26-94

By J E Squealy 10-7-94
Verified By Genie Molley 10-11-94

DISTRIBUTION

- 1-3. W. Devine, Jr., AEC-RL
4. R. E. Burns, BNW
5. M. J. Szulinski, ARHCO
6. J. R. Bolliger
7. G. C. Fullmer
8. C. W. Kuhlman
9. J. W. Riches
10. R. K. Robinson
11. W. K. Woods
12. DUN Record
13. DUN File

This document contains restricted data as defined in the Atomic Energy Act. Its transmission or the disclosure of its contents in any manner to an unauthorized person is prohibited.

MASTER

~~DECLASSIFIED~~

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PNR

POST OFFICE BOX 490
RICHLAND, WASHINGTON 99352 - TELEPHONE AREA CODE 509 -- 942-1111

[REDACTED] DUN-6999

June 3, 1970

U. S. Atomic Energy Commission
Richland Operations Office
Richland, Washington

Attention: W. Devine, Jr., Director
Production Reactor Division

Gentlemen:

PRODUCTION OF MEDICAL-GRADE Pu-238

References: (1) DUN-6812, "PT-209, Improved Neptunium-237 Target Element Configurations," HA McDonald, May 5, 1970 (Secret)

(2) DUN-5113, "PT-163, Clean Pu-238," AF Kupinski, HA McDonald, June 3, 1969 (Secret)

(3) DUN-6339, "PT-194, NpO_2 -Graphite Wafer Growth Analysis," HA McDonald, December 18, 1969 (Secret)

This letter is to advise you that on May 10, 1970, we loaded 697 grams of neptunium into four KE Reactor tubes (2x2 array) for a planned 3-month irradiation (reference 1). The targets are all of the thin-shell annular geometry. Half contain a removable graphite core and the other half have process cooling water flowing through the target center. After discharge from the reactor, an additional 3 months of cooling time will be required before the targets will be processed for recovery of the neptunium and Pu-238. Hence, by November 1970, we expect to have demonstrated our ability to produce Pu-238 containing only about 0.2 ppm of Pu-236, as specified for a medical-grade product.

An earlier attempt to demonstrate our capability to produce medical-grade Pu-238 was discontinued because of unanticipated growth of the neptunium oxide-graphite matrix targets (reference 2). It has since been established through a subsequent test (reference 3) discharged in February that the graphite matrix targets failed because of inadequate provisions for target expansion and not because of inadequacies in the graphite fabrication process. We therefore feel confident that graphite matrix targets could be used successfully to produce low impurity plutonium. A report on the graphite matrix growth analysis test will be completed by mid-June 1970.

[REDACTED] DECLASSIFIED

U. S. Atomic Energy Commission

-2-

June 3, 1970

With the successful completion of the thin-shell annular target test, we will have established the technology for these elements, as well as for graphite matrix elements. In addition, as you will recall, we have earlier established technology using aluminum matrix elements (at 0.5 ppm of Pu-236). Of these three types, the thin-shell annular targets are preferred because of the ease with which they can be processed by ARHCO and since they produce a low impurity product.

We would like to encourage a continuing and expanded program for production of high quality medical-grade Pu-238. In this regard, if you have any questions or wish to discuss this subject further at this time, please let us know and we will be happy to accommodate you.

Very truly yours,

R. K. Robinson, Manager
Technology Section

RKR:bmp

DECLASSIFIED