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Feature Discovery in Gray Level Imagery
for One—Class Object Recognition

M. W. Koch and M. M. Moya

Ahstract— Feature extraction transforms
an object’s image representation to an al-
ternate reduced representation. In one—class
object recognition, we would like this alter-
nate representation to give improved discrim-
ination between the object and all possible
non—objects and improved generalization be-
tween different object poses. Feature selec-
tion can be time-consuming and difficult to
optimize so we have investigated unsuper-
vised neural networks for feature discovery.

We first discuss an inherent limitation in
competitive type neural networks for discov-
ering features in gray level images. We then
show how Sanger’s Generalized Hebbian Al-
gorithm (GHA) removes this limitation and
describe a novel GHA application for learn-
ing object features that discriminate the ob-
ject from clutter. Using a specific example,
we show how these features are better at dis-
tinguishing the target object from other non-
target object with Carpenter’s ART 2-A as
the pattern classifier.

I. INTRODUCTION

An imaging sensor can provide a tremendous
amount of data. Taking advantage of this infor-
mation requires correctly interpreting patterns cor-
responding to various objects in the image. To
automate image interpretation, we first compress
the information contained in the large images in-
to a more compact representation. The compression
must preserve not only characteristic object features
but also their relative location. The most popu-
lar and most straightforward compression method
has been extracting hand-crafted features from the
image data. Selecting meaningful discriminating
hand-crafted features frequently requires an empir-
ical search process.

We propose an alternative to selecting hand-
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crafted features. We propose using data—driven dis-
covery algorithms, in a receptive field neural net-
work architecture, to discover relevant discriminat-
ing features. These feature discovery networks rely
less on human intuition and more on real data char-
acteristics to find important data features. Linkser
has shown that adaptive networks can self-organize
to discover features similar to those learned in the
mammalian visual cortex during prenatal develop-
ment [7]. Cooper et. al. [6] have developed a learn-
ing law that explains many visual cortical plasticity
experiments such as monocular and binocular depri-
vation and reverse suture.

The self-organizing multiple layer receptive field
network discovers complex features in raw image da-
ta. After completing self-organization, the network
extracts the learned features from the raw data and
passes the output to the classification stage, which
must decide the class of the input image based on
the feature location and strength information.

To recognize targets with good detection prob-
ability and acceptable false alarm rate, a classifier
must recognize new target examples, and it must re-
Ject all possible non-targets, even those classes ex-
cluded from training. For example, if we train a
person to recognize Greek symbols, we do not have
to show him Chinese characters as negative exam-
ples. We call a classifier that possesses these capa-
bilities a one—class classifier. This paper describes
the proposed feature discovery network and reports
the results of using it with the ART 2-A network
[1] as a one-class classifier [9] for target recognition
in gray scale imagery.

II. COMPETITIVE FEATURE DISCOVERY
NETWORKS LIMITATIONS

Other investigators have used unsupervised compet-
itive neural networks, such as the Neocognitron [4],
to discover features in images. While competitive
feature discovery networks can learn features in bi-
nary data, they have difficulty in learning subtle fea-
tures present in gray level data. Applications that
use the Neocognitron with gray level imagery usu-
ally preprocess the data to produce a binary image
[3, 8]. Other work has focused on training with bi-
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nary data, but recognizing analog images [12].

Competitive neural networks learn prototypes
from the raw image data. If we analyze the range of
the raw data feature types, we find features contain-
ing a constant bias produce stronger outputs than
low frequency features, which produce stronger out-
puts than high frequency features. Self-organized
competition on the raw receptive field data will
learn prototypes for only those features that pro-
duce strong outputs: the constant bias and some low
frequency features. The networks ignores the mid-
dle and high frequency features, which often provide
fine discrimination ability.

We also desire a compact feature set that ade-
quately spans the target receptive field vector space,
T". The competitive process learns by finding clus-
ter prototypes in 7". To adequately span T", the
competition process finds an excessive number of
vectors, since there is no compactness constraint.
If we limit the number of vectors, then the learned
features may not adequately span 7". To prevent
redundancy in gray level feature discovery, we need
the ability to break input signals down into their
basic components.

III. THE GENERALIZED HEBBIAN ALGORITHM

Instead of competition, the Generalized Hebbian
Algorithm (GHA) [11] uses deflation to force the
output nodes to learn unique features. Deflation
removes previously learned receptive field features
from future receptive inputs. This procedure forces
the network to learn new features and decomposes
the receptive field vector spaces into basic compo-
nents. The GHA has the following learning law:

(1)
2

Aw; = B(yiruje — yyw;)

ujr = (X — Elluwi)
i<j

In these equations, k is the iteration number, Aw; is
change in weights for node j, x; is the input vector,
w; is the weight vector for node j, yix=w; - x; is the
output activation for node i, u;; is the deflated in-
put for node j, and g is the learning rate. To form
the deflated input, equation 2 removes previously
learned features, W,={w;,i < j}, from the current
input. The Oja term, y?,w;, forces the weights to
have a magnitude of one [10]. The Hebbian term,
YjkUjk, increases the weight if the output, y;z, and
the deflated input, u;; are correlated [5]. The Heb-
bian term learns the major component present in
the deflated input. The previously learned feature
vectors, Wy, span a subspace V". Removing W,
from the input projects that input onto a subspace
orthogonal to V". The Hebbian learning law pro-

duces a new weight vector consisting of a linear com-
bination of the deflated input vectors. Thus, each
new weight vector is also orthogonal to all previ-
ously learned vectors, and the entire set of learned
weight vectors are mutually orthogonal. In addition
to breaking receptive fields down into their compo-
nents, the generalized Hebbian algorithm will con-
verge to a unique solution independent of the initial
weights [11].

IV. LEARNING FEATURES TO DISCRIMINATE
TARGET OBJECTS FROM CLUTTER

To learn receptive fields that characterize target ob-
jects, we present the feature discovery network with
image chips, which contain a gray level target im-
age on background clutter. The background clutter
might contain grass, bushes, trees, or rocks. When
processing receptive fields from these image chips, a
network can learn not only target features, but also
some clutter features.

To learn features with better target discrimina-
tion capabilities, we have developed a novel GHA
training method. First, we train the GHA with im-
age chips containing only clutter. Here, the GHA
will learn N, features that decompose the clutter
receptive field space into basic components. Then,
we temporarily let the clutter features be the first
N, target features, and start learning with the N.+1
target feature. When learning the N.+1 feature, the
GHA uses deflation to remove tke previous N, clut-
ter features from the inputs that train the N +1 tar-
get feature. When presented with a target chip re-
ceptive field containing mostly clutter, the deflation
procedure removes most of the information. When
the receptive field contains target pixels, the defla-
tion procedure leaves the information that distin-
guishes the target receptive field from the clutter.
The GHA then learns from these deflated inputs.
After learning, we remove the clutter-trained fea-
tures and use only the target-trained features for
feature extraction.

V. RECEPTIVE FIELD ARCHITECTURE

Figure 1 shows a block diagram of the GHA fea-
ture discovery architecture. The receptive field ex-
traction module takes an Nz N image and extracts
(N = M +1)2 Mz M receptive fields at every input
image location. A 2-D Gaussian attenuates the ex-
tracted receptive fields. The Gaussian peaks in the
receptive field’s middle. This attenuation makes the
network more sensitive to the receptive field’s mid-
dle, which discourages the network from learning
shifted feature versions. Shifted versions do not add
any new information, since the feature extraction
process extracts image features at every position.



The GHA then processes the attenuated receptive
fields.

Figure 2 shows the feature extraction architec-
ture. The network correlates the learned weight
vectors with the input image, scales the correlated
outputs, and applies a nonlinear full wave rectifier
to produce the S-layer outputs. The outputs require
scaling because the output amplitudes vary greatly,
a result of the frequency dependence described in
Section II. To scale the outputs, the network com-
putes each output’s average and standard deviation
over the training set. During feature extraction, the
network scales the output by removing the average
and dividing by the standard deviation. The full
wave rectifier allows the local variance estimation
by the second layer.

The C-Layer has similacities to the Neocogni-
tron’s C-Layer. For each spatial position, it com-
putes a root mean square (RMS) average across all
the planes. The C-Layer then compares each S-
Layer output to its spatially corresponding RMS
average. Only those values greater than the av-
erage survive the competition. The C-Layer then
blurs and downsamples the result of this competi-
tion. The Gaussian blurring function provides a lo-
cal variance estimate of the feature correlation out-
put, and a reduced resolution output so that down-
sampling will not discard information. The down-
sampling produces a compressed representation of
the input image.

V1. THE SAR AUTOMATIC TARGET
RECOGNITION PROBLEM

We have applied our feature discovery work to the
problem of automatic target recognition in synthet-
ic aperture radar (SAR) imagery. Specifically, we
have sought to recognize a vehicle, named V;, at ar-
bitrary azimuthal angles while rejecting clutter and
other vehicle returns. See Figure 3 for an exam-
ple of simulated returns of two vehicles at various
azimuthal angles.

Microwave radar has the advantage that it can
penetrate cloud cover and darkness [2], whereas pas-
sive optical sensing cannot. Images formed using
microwave radar look very different than optical im-
ages. For example, man-made surfaces often behave
as microwave inirrors and produce large specular re-
flections. This and other phenomena make SAR im-
ages difficult to interpret.

VII. NEURAL ARCHITECTURE: FEATURE
DisCOVERY AND ONE-CLASS
CLASSIFICATION

Figure 4 gives a block diagram of the two stage self-
organizing network architecture. We assume that

a separate region-of-interest preprocessor searches
large images and finds candidate target image chips.
The first stage extracts features from the image chip.
We have chosen not to extract standard visual im-
age features, such as edges and textures, because
SAR images differ so significantly from visual im-
ages. Instead, we use the GHA and the architec-
ture described in section V to discover features. For
pattern classification, we use the ART 2-A neural
network [1].

VIII. THE DATA FOR CLASSIFIER: TRAINING
AND TESTING

Our training and test data comes from two sources.
The SRIM SAR simulation tool! generated the sim-
ulated vehicle data. The SRIM data set contains
seventy-two Vj vehicles at 5° azimuthal increments
and fifty V; vehicles at various depression and az-
imuthal angles. Figure 3 shows a few selected V;
and V; vehicle image chips at the same orientations.
The figure illustrates the difficulty of distinguishing
the two vehicle types.

MIT Lincoln Laboratories collected the clutter
data using the Advanced Detection Technology Sen-
sor (ADTS). The clutter data set consists of one
hundred image chips extracted at random from the
ADTS images. The clutter data represents images
of trees, grass, bushes, and roadways.

The target training set contains half of the
seventy-two V; target class images. These thirty-
six training images represent azimuth rotations at
every 10° starting at a 0° azimuth. We test the clas-
sifier for the following two types of generalization:
within—class and between~class [9]. For within—class
generalization, the test set contains the thirty-six
target class images not used for training. The fifty
Vs vehicle images comprise the between—class gen-
eralization test set.

IX. REsuLTs

Using the training data described in the previous
section, we trained two feature discovery networks
to learn 24 11x11 feature detectors. A Gaussian
with a 0=4, attenuated the training receptive fields,
and both networks used a learning rate of $=0.001.
The iuput image chips have dimensions of 46x46
or 2116 pixels. The S-Layer has 24 planes, each
with 36x36 pixels. After applying a Gaussian blur
(0=1) and a 4:1 downsample, the output C~Layer
contained 24 8x8 planes for a total of 1536 pixels.
This represents a 25% compression. In the image
chips, the target and non-target vehicles are cen-
tered within £1 pixel. When testing the classifier,
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h shifts of +1. When a false alarm
of the nine shifted non-target ver-
ted it as a false alarm for all nine
a correct detection occurred on one
d target versions, we counted it as
on for all nine shifted versions.

Trained Featlures

feature discovery network with re-
target chips. Figure 5-A shows
scovered by this network. The fea-
a set of orthonormal vectors that
he farget’s receptive field space. Figure 6-
Sperformance results for the ART 2-A
. T& figure shows how a larger vigilance
r cﬁegory size reduces the false alarms,
se#_the detection probability. The vigi-
mabduces the smallest false alarms and
detection probability. At this vigilance, the
arrettly classifies 100% of the V; targets
afthe V2 non-targets. Without feature ex-
m, the ART 2-A would correctly classify 86%
4 wehicles and 91% of the V; vehicles. We
tzained a two layer Neocognitron using the
injng and testing sets. For the Neocogni-
d features, the ART 2-A would cor-
by classify 89% of the V; vehicles and 92% of the
%mhxcles
Serget ud Clutter Features

‘We ttun the second feature discovery network with
3 tocedure described in Section IV. We train the

ght-seceptive fields with only clutter receptive
and the remaining twenty-four with only tar-
% jatter twenty-four features discriminate
men taxget receptive fields and clutter receptive
Siills. ‘After training, we remove the first eight clut-
@Mﬁd features and use the remaining features
for feature extraction. Figure 5-B shows the fea-
tufls:discovared by this second network. Figure 6-B
sows ‘the ART 2-A classifier performance results.
MNofice the range of vigilances where the classifier
‘-hl“iﬂﬁ% pefformance on both vehicles. These new
features greatly enhance the classifier performance.

X. CoNcLUSION

W 3luwe discussed how the competitive neural net-
: ko cannot learn features that break receptive
fislds down into their basic components. This
luéu to redundant features not adequately cover-
iy 3&3 reveptive field vector space. The General-
k- ian algorithm learns orthonormal vectors
W break a receptive field space into basic com-
ponenta. We have developed a novel application of
the Generalised Hebbian algorithm to learn features
"(dm:mnmate target receptive fields from clutter

receptive fields. These new features greatly enhance
the classifier performance in a SAR automatic tar-
get recognition problem.
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Figure 3. Vehicle V; and Vehicle V, simulated returns
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Figure 4. Overall SAR automatic target recognition architecture.

A) Features trained with targets only. . B) The features learned to discriminate tar-
gets from clutter.

Figure 5. Feature extractors learned by the Generalized Hebbian Algorithm.
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Figure 6. Performance results. A) Performance results for features trained with targets only. B)
Performance results for features trained to discriminate targets from clutter.
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