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A'_stract _ Feature extraction transforms crafted features. We propose using data-driven dis-
an object's image representation to an al- covery algorithms, in a receptive field neural net-
ternate reduced representation- In one-class work architecture, to discover relevant discrindnat-

object recognition, we would llke this alter- ing features. These feature discovery networks rely
hate representation to give improved discrim- less on human intuition and more on real data char-
ination between the object and all possible acteristics to find important data features. Linkser

non-objects and improved generalization be- has shown that adaptive networks can self-organize
tween different object poses. Feature selec- to discover features similar to those learned in the

tion can be time-consuming and difficult to mammalian visual cortex during prenatal develop-
optimize so we have investigated unsuper- ment [7]. Cooper et. al. [6] have developed a learn-
vised neural networks for feature discovery, ing law that explains many visual cortical plasticity

We first discuss an inherent limitation in experiments such as monocular and binocular depri-
competitive type neural networks for discov- vation and reverse suture.

ering features in gray level images. We then The self-organizing multiple layer receptive field
show how Sanger's Generalized Hebbian AI- network discovers complex features in raw image da-
gorithm (GHA) removes this limitation and ta. After completing self-organization, the network
describe a novel GHA application for learn- extracts the learned features from the raw data and
ins object features that dlscriminate the ob- passes the output to the classification stage, which
ject from clutter. Using a specific example, must decide the class of the input image based on
we show how these features are be_tter at dis- the feature location and strength information.
tinguishing the target object from other non- To recognize targets with good detection prob-
target object with Carpenter's ART 2-A as ability and acceptable false alarm rate, a classifier
the pattern classifier, must recognize new target examples, and it must re-

ject all possible non-targets, even those classes ex-

]. INTRODUCTION cluded from training. For example, if we train a
person to recognize Greek symbols, we do not have

An imaging sensor can provide a tremendous
to show him Chinese characters as negative exam-

amount of data. Taking advantage of this infor- pies. We call a classifier that possesses these capa-
mation requires correctly interpreting patterns cor- bilities a one-class classifier. This paper describes
responding to various objects in the image. To the proposed feature discovery network and reports
automate image interpretation, we first compress the results of using it with the ART 2-A network
the information contained in the large images in- [1] as a one-class classifier [9] for target recognition
to a more compact representation. The compression in gray scale imagery.must preserve not only characteristic object features
but also their relative location. The most popu- II. COMPETITIVE FEATURE DISCOVERY

lar and most straightforward compression method NETWORKS LIMITATIONS

has been extracting hand--crafted features from the Other investigators have used unsupervised compet-
image data. Selecting meaningful discriminating itive neural networks, such as the Neocognitron [4],
hand-crafted features frequently requires an empir- to discover features in images. While competitive
ical search process, feature discovery networks can learn features in hi-

We propose an alternative to selecting hand- nary data, they have difficulty in learning subtle fea-
tures present in gray level data. Applications thatThis work performed at Sandia Nations] Laboratories sup-

ported by the U.S. Department of Energy under contract DE- use the Neocognitron with gray level imagery USU-
AC04-94AL85000. The authors are with Department 9133: Ira- ally preprocess the data to produce a binary imageage and Signal Processing, Sandia National Laboratories, Albu-
querque, NM 87185--0355 [3, 8]. Other work has focused on training with bi-
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nary data, but recognizing analog images [12]. duces a new weight vector consisting of a linear corn-
Competitive neural networks learn prototypes bination of the deflated input vectors. Thus, each

from the raw image data. If we analyze the range of new weight vector is also orthogonal to all previ-
the raw data feature types, we find features contain- ously learned vectors, and the entire set of learned
ing a constant bias produce stronger outputs than weight vectors are mutually orthogonal. In addition
low frequency features, which produce stronger out- to breaking receptive fields down into their compo-
puts than high frequency features. Self-organized nents, the generalized Hebbian algorithm will con-
competition on the raw receptive field data will verge to a unique solution independent of the initial
learn prototypes for only those features that pro- weights [11].
duce strong outputs: the constant bias and some low
frequency features. The networks ignores the mid- IV. LEARNIN(] FEATURES TO DISCRIMINATE
die and high frequency features, which often provide TARGET OBJECTS FROM CLUTTER

fine discrimination ability. To learn receptive fields that characterize target oh-
We also desire a compact feature set that ade- jects, we present the feature discovery network with

quately spans the target receptive field vector space, image chips, which contain a gray level target im-
T n. The competitive proce_ learns by finding clus- age on background clutter. The background clutter
ter prototypes in T n. To adequately span T n, the might contain grass, bushes, trees, or rocks. When
competition process finds an excessive number of processing receptive fields from these image chips, a
vectors, since there is no compactness constraint, network can learn not only target features, but also
If we limit the number of vectors, then the learned some clutter features.

features may not adequately span T n. To prevent To learn features with better target discrimina-
redundancy in gray level feature discovery, we need tion capabilities, we have developed a novel GHA
the ability to break input signals down into their training method. First, we train the GHA with im-

basic components, age chips containing only clutter. Here, the GHA

III. THE GENERALIZED HEBBIAN ALGORITHM will learn Nc features that decompose the clutter
receptive field space into basic components. Then,

Instead of competition, the Generalized Hebbian we temporarily let the clutter features be the first
Algorithm (GHA) [11] uses deflation to force the Nc target features, and start learning with the Nc+l
output nodes to learn unique features. Deflation target feature. When learning the No-t-1 feature, the
removes previously learned receptive field features GHA uses deflation to remove the previous Nc clut-
from future receptive inputs. This procedure forces ter features from the inputs that train the Nc . 1 tar-

the network to learn new features and decomposes get feature. When presented with a target chip re-
the receptive field vector spaces into basic compo- ceptive field containing mostly clutter, the deflation
nents. The GHA has the following learning law: procedure removes most of the information. When

the receptive field contains target pixels, the defla-
Awj = _(yjkujk- y_kwj) (1) tion procedure leaves the information that distin-

guishes the target receptive field from the clutter.
ujk = (xh - _ yikwi) (2) The GHA then learns from these deflated inputs.

_<J After learning, we remove the clutter-trained fea-

In these equations,/_ is the iteration number, Awj is tures and use only the target-trained features for
change in weights for node j, xh is the input vector, feature extraction.
wj is the weight vector for node j, y_k-w_ "xk is the V. RECEPTIVE FIELD ARCHITECTURE
output activation for node i, uj_ is the deflated in-
put for node j, and _ is the learning rate. To form Figure 1 shows a block diagram of the GHA fea-
the deflated input, equation 2 removes previously ture discovery architecture. The receptive field ex-
learned features, Wp=_wi, i < j), from the current traction module takes an NzN image and extracts

input. The Oja term, y_kwj, forces the weights to (N - M + 1) 2 MzM receptive fields at every input
have a magnitude of one [10]. The Hebbian term, image location. A 2-D Gaussian attenuates the ex-
YjkUjk, increases the weight if the output, Yjk, and tracted receptive fields. The Gaussian peaks in the
the deflated input, ujk are correlated [5]. The Heb- receptive field's middle. This attenuation makes the
bian term learns the major component vresent in network more sensitive to the receptive field's mid-

the deflated input. The previously learned feature die, which discourages the network from learning
vectors, Wp, span a subspace _n. Removing W_ shifted feature versions. Shifted versions do not add
from the input projects that input onto a subspace any new information, since the feature extraction
orthogonal to _n. The Hebbian learning law pro- process extracts image features at every position.



The GHA then processes the attenuated receptive a separate region-of-interest preprocessor searches
fields, large images and finds candidate target image chips.

Figure 2 shows the feature extraction architec- The first stage extracts features from the image chip.
ture. The network correlates the learned weight We have chosen not to extract standard visual im-
vectors with the input image, scales the correlated age features, such as edges and textures, because
outputs_ and applies a nonlinear full wave rectifier SAR images differ so significantly from visual im-
to produce the S-layer outputs. The outputs require ages. Instead, we use the GHA and the architec-
scaling because the output amplitudes vary greatly, ture described in section V to discover features. For
a result of the frequency dependence described in pattern classification, we use the ART 2-A neural

Section II. To scale the outputs, the network corn- network [I].
putes each output's average and standard deviation
over the training set. During feature extraction, the VIII. THE DATA FOR CLASSIFIER: TaAININ_

network scales the output by removing the average AND TESTING
and dividing by the standard deviation. The full Our training and test data comes from two sources.
wave rectifier allows the local variance estimation The SKIM SAR simulation tool I generated the aim-
by the second layer, ulated vehicle data. The SKIM data set contains

The C-Layer has similscities to the Neocogni- seventy-two Y1 vehicles at 5° azimuthal increments
tron's C-Layer. For each spatial position, it corn- and fifty Y2 vehicles at various depression and az-
putes a root mean square (RMS) average across all imuthai angles. Figure 3 shows a few selected _'1
the planes. The C-Layer then compares each S- and Y2 vehicle image chips at the same orientations.

Layer output to its spatially corresponding ItMS The figure illustrates the difficulty of distinguishing
average. Only those values greater than the av- the two vehicle types.
erage survive the competition. The C-Layer then MIT Lincoln Laboratories collected the clutter

blurs and downsamples the result of this competi- data using the Advanced Detection Technology Sen-
tion. The Ganssian blurring function provides a 1o- sor (ADTS). The clutter data set consists of one
cai variance estimate of the feature correlation out- hundred image chips extracted at random from the

put, and a reduced resolution output so that down- ADTS images. The clutter data represents images
sampling will not discard information. The down- of trees, grass, bushes, and roadways.
sampling produces a compressed representation of The target training set contains half of the
the input image, seventy-two VI target class images. These thirty-

six training images represent azimuth rotations at
Vl. THE SAR AUTOMATICTARGET

every 10° starting at a 0 ° azimuth. We test the clas-
P_COGNITION PROBLEM sifter for the following two types of generalization:

We have applied our feature discovery work to the within-class and between-class [9]. For within-class

problem of automatic target recognition in synthet- generalization, the test set contains the thirty-six
ic aperture radar (SAR) imagery. Specifically, we target class images not used for training. The fifty
have sought to recognize a vehicle, named V1, at ar- V2 vehicle images comprise the between-class gen-
bitrary azimuthal angles while rejecting clutter and eralization test set.

other vehicle returns. See Figure 3 for an exam- IX. RESULTS
pie of simulated returns of two vehicles at various

azimuthal angles. Using the training data described in the previous

Microwave radar has the advantage that it can section, we trained two feature discovery networks
penetrate cloud cover and darkness [2], whereas pas- to learn 24 11xll feature detectors. A Gaussian
sive optical sensing cannot. Images formed using with a _--4, attenuated the training receptive fields,
microwave radar look very different than optical im- and both networks used a learning rate of _-0.001.
ages. For example, man-made surfaces often behave The iuput image chips have dimensions of 46x46
as microwave mirrors and produce large specular re- or 2116 pixels. The S-Layer has 24 planes, each
flections. This and other phenomena make SAR im- with 36x36 pixels. After applying a Gaussian blur
ages difficult to interpret. (_=1) and a 4:1 downsample, the output C-Layer

contained 24 8x8 planes for a total of 1536 pixels.

VII. NEURAL ARCHITECTURE: FEATURE This represents a 25% compression. In the image
DISCOVERYAND ONE-CLAsS chips, the target and non-target vehicles are cen-

CLASSIFICATION tered within +1 pixel. When testing the classifier,

Figure 4 gives a block diagram of the two stage self- _Developedbythe Environmental Research Institute of Michi-
organizing network architecture. We assume that gan in Ann Arbor, MI.
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Figure2. Featureextractionarchitecture.
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Figure 3. Vehicle V1 and Vehicle V2 simulated returns
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Figure 4. Overall SAR automatic target recognition architecture.

A) Features trained with targets only. B) The features learned to discriminate tar-
gets from clutter.

Figure 5. Feature extractors le_'ned by the Generalized Hebbian Algorithm.
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Figure 6. Performance results. A) Performance results for features trained with targets only. B)
Performance results for features trained to discriminate targets from clutter.
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