A Conp F#OSZ /=7
LAUR- 35~ 754

Title: | OFF-SPECULAR SCATTERING IN NEUTRON REFLECTOMETRY

Author(s): | R. Pynn, S. M. Baker, G. S. Smith, M. Fitzsimmons

RECEIVED
"MAR 10 1995
OSTI

Submittedrto: | Invited talk at "Workshop on Neutron Applications
in Materials Science and Engineering,” Chalk River,
Canada, 17 Aug 94 ‘ '

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to atiow others to do sg, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

’ Form No. 836 R5.

JISTRABUTION OF Trin DOCUMENT IS uhdimilcD ST 2628 10/91




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




PLEASE NOTE: Some figures are on the end sheets, not in the text itself.




Off-Specular Scattering in Neutron Reflectometry

by
Roger Pynn, Shenda M. Baker, Greg Smith and Mike Fitzsimmons

Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory,
Los Alamos, NM 87545, U.S.A. '

Abstract

When neutrons are scattered at small angles from planar, laterally homogeneous, stratified
media, only specular (mirror like) reflection is observed. Sample inhomogeneities, such as
interfacial roughness or voids, give rise to off-specular scattering which has been observed
in many experiments with neutrons and x-rays. The easiest way to describe this scattering
theoretically is based on the distorted-wave Born approximation (DWBA), which uses the
neutron wavefunctions that describe reflection from a smooth surface as the basis functions
for perturbation theory. From the DWBA one may obtain a number of qualitative results
which are supported by experiment. Examples include the Yoneda fringes observed in
reflection experiments with microscopically rough surfaces and the constant-q, fringes
observed for multilayers with correlated, rough interfaces. One must, however, use the
DWBA with care. When the correlation range within the reflecting interfaces is large — for
example, when a surface is composed of misoriented facets — the approximation breaks
down. Some authors have also reported a lack of quantitative agreement between versions
of the DWBA calculations and the scattering observed with microscopically rough surfaces.
A remarkable feature of neutron (or x-ray) reflectometry is the length scales that are probed
within reflecting surfaces. These range from a few hundred Angstrgms up to several
microns, allowing neutron scattering to probe objects of a size normally visible by optical
microscopy! The intent of this paper is to provide a simple description of scattering from
rough surfaces that is accessible to a wide audience. Mathematical completeness is
sacrificed in favor of intuitive arguments and experimental examples.

Introduction

Let us consider the simple reflectometry experiment depicted in Figure 1. Incident neutrons
of wavevector k) are specularly reflected to wavevector k. In this case, the grazing angle

of incidence, 81, is equal to the grazing angle of reflection, 62. Provided k1 sin 01 is large
enough (i.e. greater than the critical wavevector for the reflecting material), some of the
beam is transmitted as wavevector kt;. Because the surface is rough, however, there is

diffuse (i.e. off-specular) scattering both above and below the horizon (i.e. for 82 > 0 and
62 < 0).

Although it is not depicted in Figure 1, off-specular scattering can also result from
imperfections within the scattering medium. In this case, the transmitted beam is scattered
through small angles and may be observed either above or below the horizon. We will not
consider this case in detail here, although it is important, for example, in experiments
where the medium below the surface is a complex fluid which is ordered when it flows past
a solid material above the interface [1].

QSTHBULON GF £HiS DOCUMENT 1S UNLIMITED %kd?\ |




Figure 1: A neutron reflection experiment with a rough sample. The bold arrows represent the incident,
specularly reflected and transmitted neutrons. The dashed arrows show diffuse scattering from the rough
surface. The region between the rough surface and an average, smooth surface (referred to as the ideal
surface) is shaded.

The mathematical description of the diffuse scattering from one or more rough interfaces is
fairly complex. Indeed, in the case of radar waves reflected from rough terrain, it has been
the subject of a fairly long book by Beckmann and Spizzichino [2], many of whose ideas
are applicable to the problem of neutron (or x-ray) reflectometry. Rather than present
detailed derivations of scattering theory in this paper, we will try motivate equations in a
more heuristic fashion and present examples.

The Distorted Wave Born Approximation

The traditional way of calculating the scattering of neutrons in diffraction experiments is to
use the Born approximation in conjunction with the Fermi pseudopotential, parametrised by
the atomic scattering length. In this approximation, one imagines a plane wave incident on
a weak scatterer and uses simple perturbation theory — Fermi's golden rule — to calculate
the scattered intensity. The method gives very accurate answers when it is applied to
neutron diffraction or small angle scattering, but we might imagine that it would not work
well for reflection geometry, especially close to the critical wavevector. In the latter case,
most of the incident beam is specularly reflected and only a small fraction transmitted — in
contrast to situations in which the Born approximation is adequate, where most of the
neutrons are not deviated by the scattering potential.

A better way of doing perturbation theory for a reflecting surface is to use as a basis the
wavefunctions for a perfectly smooth surface, under the assumption that surface roughness
will only cause small corrections to specular scattering. The wave functions in question are
the incident and specularly reflected plane waves above the reflecting surface (for z > 0)
and the transmitted plane wave below the surface. We can write these as:

i) = expli(kixx + kiyy)llexp(-iki,2) + Ritki,) exp(ikz2)] forz >0 W
wiD) = explilkixx + kiyy)] Tilki,) exp(-ik$,z) forz<0 -
where R; and Tj are the reflection and transmission coefficients of the ideal (i.e. smooth)

surface which are given by the usual Fresnel expressions discussed by Majkrzak at this
school [3].




An important fact that we will make use of shortly is that the wavefunction in eqn (1) and
its first derivative are continuous at the reflecting surface (i.e. at z=0). This means that,

close to the surface and above it, we can replace the wavefunction on the first line of eqn

(1) with that from the second line without making much error.

To calculate the diffuse scattering due to surface roughness, we do a perturbation
calculation using the wavefunctions in eqn (1) and a potential that corresponds to the
difference between a sample with an ideal flat surface and one with a rough surface. This
is shown by the shaded region in Figure 1. Where the rough surface is above the ideal
surface we add the potential of the scattering medium and where the rough surface is below

we subitract that potential. The scattering potential in question is just (h2 N b) / (2 & m),
where Nb is the scattering length density of the medium, h is Plank's constant and m the
neutron mass. Making use of the continuity of the wavefunction at the ideal surface, we
can then write the perturbation term as:

(W3 1VIv) =D I dx dy dz 4@+ &9 Tk Tyky) ik +kz  (2)

where the integral extends over the shaded region of Figure 1. Note that this expression
differs from the normal Born approximation by the inclusion of the two transmission
functions and by the fact that the z-dependent exponential involves wavevectors evaluated
within the reflecting medium. These are defined by:

)1/2

K, =k}, - k)" = (i3, - 4nND 3)

In the traditional Born approxunauon refractive corrections such as those embodied in eqn
(3) are omitted.

The diffuse scattering cross section is proportional to the modulus of eqn (2) squared and
can be written as:

40) = N2HPLy Ly P kol Sy @
d€Q/giffuse
where
S(ax.qy,9%) = é}; e @ +a")0%2 f dx dy eitax +ay) (da’Cixy) - 1) (5)
@ =ky, -k, 6)
and
C(x.y) ={z(x,y) (0,0) ) @

Eqn (7) is just the height-height correlation function for the surface, whose roughness is

assumed to be Gaussian with a standard deviation 6. Thus, the qualitative conclusion of
the DWBA calculation is that the diffuse scattering provides a measure of C(x,y), the
height-height correlation function within the rough surface.




It is worth noting that we would have reached the same qualitative conclusion within the

Born approximation . In this case, however, g, in eqn (5) would have been replaced by g
because refractive corrections are ignored in the Born approximation. The first factor in
egn (5) would then have been recognisable as the standard Debye-Waller factor. If the
roughness amplitude were small enough to justify a first order expansion of the exponential
term in the integrand of eqn (5), S(q) would have, in the Born approximation, the
traditional form we are all familiar with in neutron diffraction or small angle scattering.

Although one can think of a variety of different expressions to describe the height-height
correlation function of a rough surface, C(x,y), all of them have the property of falling off
with distance in the reflecting plane in a fairly monotonic fashion. This means that the
structure factor, S(q), is a bell-shaped curve in both gx and gy. In most reflectometry
experiments, an integral of the diffuse scattering over gy (the coordinate into the plane of
the paper in Figure 1) is performed automatically by the detector system and one only
records the variation of the scattering as a function of qx and q.
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Figure 2a: Diffuse scattering for a rough sapphire surface with ¢ = 50 A at a scattering angle (61 + 62) of
1°. The solid and dashed lines, which are essentially indistinguishable, are obtained when the transmission
functions in eqn (4) are evaluated for smooth and rough surfaces respectively. The model for C(x,y) used is
that proposed by Sinha et al {4] with h = 0.4 and x = 3000 A.
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Figure 2b: Same as Figure 2a except that the scattering angle is 0.4°. In this Figure the difference between
results obtained with transmission functions for rough (dashed line) and smooth surfaces (solid line) is
much clearer.

Even though S(q) is bell-shaped, the measured intensity is not, as the solid lines in both
parts of Figure 2 demonstrate. The two cusps in these Figures are a result of the structure
of the Fresnel transmission functions Tj(k) that appear in eqn (4) — these functions rise
from a value of zero atk =0, to a peak value of 2 at the critical wavevector, and then
decrease to an asymptotic value of unity at large values of k. The cusps in the figure are
referred to as Yoneda scattering or angels' wings. Figure 2 also demonstrates that the
observed shape of the diffuse scattering depends on qz: at small values of this parameter (cf
Figure 2b), there may be no peak in the diffuse scattering at the specular condition qx =0

(i.e. for 1 = 82) whereas, at larger values of g, (corresponding to larger values of

01+ 62) such a peak is evident. (cf Figure 2a). Once again, this results from the
structure of the Fresnel transmission function.

It is clear that if we are to extract meaningful results for the height-height correlations from
experimental data we need to be sure that eqn (4) is an accurate representation.
Unfortunately, we are not as sure as we would like to be, for several reasons. It turns out
that the heuristic version of the DWBA presented above is not the preferred version [5,6].
Instead of using wavefunctions for the ideal surface to evaluate the matrix element in egn
(2), one ought to replace one of the wavefunctions by that for the rough surface. This is
easy to fix as far as the notation is concerned — we simply change the subscript i on one
of the transmission functions to an r, implying that it is to be evaluated for the rough
surface. Unfortunately, this leads to a result which violates time reversal symmetry [6].
Another version of the DWBA [7] replaces both of the transmission functions in eqn (4)
by rough surface versions. However, as the dashed curves in Figure 2b shows, this can
give significantly different results from egn (4) even when the same form for S(q) is used.
Detlef Bahr [8] has fitted several of the suggested forms of the cross section to x-ray data



obtained by Weber and Lengeler [7] and has reached the conclusion that eqn (4) gives the
best result. However, it is still somewhat disquieting that extraction of quantitative values
of S(q) from diffuse scattering data has such an uncertain theoretical basis.

- Displaying Diffuse Scattering Data

The most straightforward way to measure neutron reflectivity, including the diffuse
“scattering, is to use the time-of-flight (TOF) method with a linear position-sensitive detector
either at a reactor or a pulsed spallation source. This method keeps the sample geometry
constant and accumulates data for the entire reflection curve at the same time — low-q;
reflectivity is measured with longwavelength neutrons while high-q; reflectivity is
measured with short wavelengths. Because the decrease of reflectivity at high values of g,
is compensated to some extent by the increase of incident neutron intensity at short
wavelengths, the entire reflectivity curve is measured with similar statistical accuracy. The
natural way to present the data from such TOF reflectometers is as a plot spanned by the

scattering angle 0 and the neutron wavelength, A. Such a plot is shown in Figure 3a.

Many of our colleagues oppose the use of (A,082) plots, pointing out, quite correctly, that
information about S(q) is more naturally displayed in the (qx,qz) coordinate system.
However, this argument ignores the fact that in eqn (4) the Fresnel transmission functions
depend either on ky, or ky; and that structure related to these functions (such as Yoneda

scattering) appears as straight fringes in a (A,02) plot (because kp; =2 wsin 62/ A =

2m02/A). Of course, (A,07) plots are easily transformed to (qx,qz) plots, as Figure 3b
shows, but the two types of plot often highlight different physics.

Diffuse Scattering from Films and Multilavers

The data displayed in Figure 3 was obtained with a thin film of titanium on a sapphire
substrate. In Figure 3a, we can easily distinguish the fringe due to the Yoneda scattering as
the one that extrapolates to the origin of the plot. The other fringes in Figure 3a (the ones

closer to the left side of the figure), which extrapolate to 82 = - 67 at A = 0, transform into
fringes at constant qz in Figure 3b. These fringes arise because the roughness at the
titanium/sapphire interface is correlated with that at the air/titanium interface [6] — that is,
mountains at the titanium/air interface occur above mountains in the sapphire/titanium
interface and valleys occur above valleys. The correlation does not have to be perfect —
i.e. the two interfaces do not need to be conformal — to generate such constant-q fringes,
but some degree of correlation must exist for these fringes to appear.

Figure 3: Total scattering from a thin layer of titanium on sapphire; Part (a) is plotted in a coordinate
system spanned by A (abscissa) and 82 (ordinate) while in part (b) the scattering has been transformed into




the gx - gz coordinate system. In part (a) specular scattering occurs along a horizontal line at 6 = 87 ~ 1°
while in part (b) specular scattering corresponds to qx = 0. These data were recorded with the SPEAR
reflectometer at LANSCE.

While it is straightforward to write down a closed expression for the diffuse scattering from
a single monolayer on a substrate [6], there are no such compact expressions for
multilayers. Nevertheless, calculations of this type can be done and, indeed, often
successfully reproduce the qualitative features of experimental data [9]. In principal, one
should be able to fit models to such data and deduce both the in-plane height-height
correlation function and the way in which roughness correlations propagate from one layer
to the next. However, to the knowledge of the authors, no such detailed study has yet been
undertaken for multilayers.

Limitations of the DWBA

There are several situations in which one might expect the DWBA to give incorrect results.
Since the calculation is based on second order perturbation theory, it will be inadequate
when the perturbative term becomes so large that the third order term needs to be
considered. De Boer [10] has considered this situation and finds that the DWBA will
break down when

s, -
k| >> 1 &)

where € is the characteristic distance over which C(x,y) decays in the x-y plane. Since 61

is typically abut 1°, eqn (8) implies that the DWBA will break down when & is much greater
than about 500 times the neutron wavelength used for an experiment. This means that the x
or y dimension of a "typical" rough feature will have to be a micron or more for the DWBA
to break down because second-order perturbation theory becomes inadequate. Of course,

there may well be rough features that are smaller, but such a large value of & can only be
obtained if large features are present over the entire surface. Figure 4 illustrates what we
have in mind. Even though the surface is rough on the Angstrgm scale, height correlations
exist over micron distances because the surface seems to be composed of a series of rough
facets whose smooth counterparts are the dashed lines in Figure 4.

Figure 4: Sketch of a rough faceted surface. In addition to the high-frequency roughness, much larger facets,
represented by the dashed lines, are also visible. The DWBA may fail for such surfaces.

In addition to the inherent limitation of the DWBA as a perturbation theory, the equations
given above also make use of the continuity of the wavefunctions at the reflecting surface.
In egn (2), for example, the wavefunction above the surface has been replaced by an
analytic continuation of the subsurface wavefunction. This replacement is adequate




provided the amplitude of the surface roughness is not too great i.e. provide the subsurface
wavefunction does not need to be extrapolated over too large a distance in the z-direction.

It is straightforward to show that this means in practice that ¢ should be less than about
1/(10VNb), where Nb is the scattering length density of the reflecting medium. For most

materials, this means that ¢ must be less than about 50 A for the DWBA to work.

Length scales probed by surface diffuse scattering

It is instructive to think about the length scales within a reflecting surface that are probed by
diffuse scattering. gy is given by

gx = T"(cosel - cosez) = f(e% - 9%) 9)

For reasonable parameter values (e.g. 61 =0.02, A =4 A and 61 - 87 = 0.001), this means

that gy can be as small as 10-5 A-1, corresponding to a length scale in the x-y plane of 10
um or more. This, of course, is a length scale that can easily be probed by optical
microscopy. Thus, diffuse reflection from surfaces is one of the rare cases in which
neutrons "see" the same length scales as light.

One can follow up on this observation and try to measure the diffuse neutron reflection
from an optical grating (an experiment that was first done with x-rays early in this century).
Figure 5 shows the result of such an experiment conducted with a holographic grating
composed of a patterned polymer film on a glass substrate. The grating used had 2800
lines per mm or a wavelength of 3571 A. When we first did this experiment we did not
think too hard and positioned the grating in the traditional orientation with the rulings
perpendicular to the incident beam. We saw nothing! A little thought shows that the
reason for this was that the rulings are too close together to produce a pattern at values of
gx which were on our detector. Only by turning the grating so that the rulings were almost
parallel to the neutron beam (the rulings made an angle of 1.7° to the neutron beam) were
we able to obtain the pattern shown in Figure 5.

Figure 5: Total neutron scattering from a hblographic grating with an inter-line spacing of 3571 A. Part (a)
 is a lambda-theta plot while part (b) shows the same data transformed to qx - qz.

Figure 5b shows that the principal features of the diffuse scattering do indeed occur at

gx =+ 0.000035 A-1 as would be expected for a grating of period 3571 A at an angle of
1.7° to the neutron beam. It is also clear from Figure 5 that the peaks in the diffuse
scattering occur at a value of gz of about 0.013 A-1 and that there is a fringe in the specular
scattering at this same value of q;. Detailed examination of the specular scattering reveals
that it derives from a layer about 600 A thick on the glass substrate — the polymethyl




methacrylate coating on which the holographic pattern is written. The fact that the diffuse
and specular scattering both show oscillating dependence on ( is another manifestation of
the fact that the diffuse scattering involves products of transmission functions (cf eqn 4) in
addition to the fluctuation spectrum of the rough surface. In this case, the transmission
functions are those for a film on a substrate rather than for the rough surface alone [11].
Like the corresponding reflectivities, such transmission functions display oscillating
structure due to the interference between scattering from the two film surfaces.

An example of the range of surface length scales that can be probed by diffuse neutron
reflection is shown in Figure 6. The first part of this Figure is a density plot of the total
scattering from a thick multi-bilayer of dimyristoyl phosphatidylcholine (DMPC) spun on
to a silicon substrate and maintained in a humid DO atmosphere at room temperature.
There is a fringe of diffuse scattering which passes through the Bragg peak from the multi-
bilayer structure that is seen on the far left of the picture at theta = 0.5°. The fact that this

fringe extrapolates to 67 = - 8 at A = 0 indicates that it is one of the constant-g; fringes
described earlier that result from correlated roughness of the interfaces within the multi-
bilayer structure.

Figure 6: Part (a) shows the total scattering from a DMPC mulii-bilayer structure. Part (b) is the profile of
the scattering along the diffuse fringe,rplotted as a function of gy.

Unfortunately, our position-sensitive detector was not long enough to record the entire
fringe in Figure 6a (in fact, we would have needed a (.8 metre long detector to do so!).
However, the SPEAR reflectometer at LANSCE is built so that the distance between the

- sample and the detector can be changed continuously from about 50 cm to more than 5 m.
The height of the detector above the reflecting plane can also be continuously varied over a
50 cm range. This flexibility allowed us to follow the fringe in Figure 6a out to a scattering
angle of about 12.5°. The variation of the scattered intensity along the fringe is shown in
Figure 6b. A remarkable thing about this figure is the range of qx probed — from about
0.0002 A-1 to about 0.011 A-1 — corresponding to length scales ranging from about 500 A
to over 3 um. Figure 6b is also quite different from the usual bell-shaped form of S(q) that
peaks at gx = 0. A detailed analysis of this profile and its implications for the structure of
lipid layers is still in progress.

Diffuse scattering from faceted surfaces

Figure 6a is also interesting because it displays a feature that we have not yet encountered.
In addition to the standard Yoneda fringe that extends from the critical wavelength in the
specular scattering towards the origin of Figure 6a, there also appears to be another fringe
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which extrapolates to a negative value of 8 at A = 0. A similar phenomenon is evident in
Figure 7b which shows scattering from a planar grain boundary between nickel and a null-

matrix 8ONi-enriched material [12]. Figure 7a shows a case in which the "extra" fringe
occurs in the absence of Yoneda scattering for silicon wafer sample. In both parts of

Figure 7 it is fairly clear that the extra fringe extrapolates to ) =- 0 at A =0 and is
therefore characterised by qz = constant. With a little imagination, one can postulate that

the "extra" fringe in Figure 6a also extrapolates to - 6.

Figure 7: Grey scale plots of specular plus diffuse scattering as a function of 87 and A. Part (a): a polished

silicon wafer; part (b) a planar grain boundary between natural nickel and a null-matrix 60Ni-enriched
material. )

For a long time we were very puzzled by these extra, constant-q, fringes. Even more
puzzling was the fact that in some case we observed the extra fringe in the absence of
Yoneda scattering, in spite of the fact that the DWBA tells us that we must always see
Yoneda wings with any rough surface. We wondered whether the constancy of q, along
the extra fringe might indicate the presence of some length scale perpendicular to the
surface. If this were the case, the controlling parameter ought to be the value of q, within
the reflecting medium, which takes a complex value along the entire fringe except at gx = 0.
We were unable to imagine what the corresponding length scale might be. Clearly, since
we do not have multiple interfaces in the systems that gave rise to the patterns in Figure 7,
it is impossible to attribute the extra fringe to correlated roughness as we asserted for
Figure 3.

The resolution of the paradox turns out to be contained in Figure 4. Imagine for a moment
that the surface is described by the dashed line in Figure 4, i.e. that the surface is composed
of an assembly of smooth facets. If these facets are large enough, the neutron
wavefunction close to the surface will not look much like that for the average surface.
Rather, we might expect that each facet would reflect specularly and more or less
independently of the other facets. It is fairly straightforward to evaluate what the scattering
would look like in such a case [13]. It is even easier to understand qualitatively how such a
surface may yield an apparent fringe at constant g, that extends from the critical edge in the
specular scattering.
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Figure 8: Scattering from a faceted surface.

As shown in Figure 8, the angles of incidence and reflection measured with respect to the
reflecting facet are equal because the scattering is assumed to be specular. The apparent
value of g, obtained by measuring the angles of incidence and reflection with respect to the
average surface is given by:

q%ppa.rent = Zf— (sin(e - OL) + Sin{e + OC)) = %— 2 sin® (10)

i.e. the apparent value of qg is just twice the component of the neutron wavevector
perpendicular to the facet. This means that any feature of the specular scattering — the
critical edge, for example — will map to an apparently constant value of q;. The extra
fringe we see in Figures 6 and 7 is just the locus of the critical edge for radiation specularly
reflected by the surface facets.

This explanation is made even more plausible by the results presented in Figure 9, which

shows cuts through the data of Figure 7a for various values of 6, as a function of q;. Each

of the cuts has the same shape as the specular scattering, as one would expect if the
explanation described above were correct.

Figure 9: Cuts through the data of Figure 7a at 82 = 0.6° (specular), 0.45°, 0.39° and 0.23° as a function of
Gz. ‘

In light of the explanation presented above for the extra fringe, it is not surprising that it is
observed in Figure 6a, since we already know from Figure 6b that the interfaces between
lipid bilayers are rough on length scales up to several microns i.e. that these interfaces have
facet-like features. One problem that this brings is that high-frequency and low-frequency
(facets) roughness have different effects on the specular scattering. In a seminal paper,
Nevot and Croce [14] showed that the specular reflectivity of a rough surface is related to
that for a smooth surface by the equation:




R, = R, exp(-q,q0%/2) (11)

This equation was derived under the assumption of high frequency roughness and can also
be obtained from the DWBA if one is careful [6]. The expression has been verified
numerous times in the past decade and is now used almost universally to fit specular
reflectivities both in neutron and x-ray reflectivity experiments.

For surfaces with smooth facets, the reduction of the average-surface reflectivity caused by
the facets depends very much on the facet size. If this size is larger than the distance on the
surface over which the radiation averages, one obtains the Debye Waller form given by
Beckmann and Spizzichino [2] for the reflection of radar waves from rough terrain:

R; = R; exp(-q36%/2) (12)

To the authors' knowledge, the detailed effect of the spatial frequency of the roughness on
the neutron or x-ray reflectivity of a surface has not yet been investigated in detail, although
this is a prerequisite for obtaining accurate information about surface roughness from
reflectivity experiments.

Conclusion

“In this paper, we have given a brief introduction to the current state of knowledge about the
effect of surface and interface roughness on neutron reflectivity experiments. In some
cases, notably where the roughness has a high spatial frequency and is of small amplitude,
a detailed theoretical description of the diffuse scattering and the effect of roughness on
specular scattering can be obtained from the distorted wave Born approximation. In these
cases, experimental data can be analysed to provide a quantitative description of the
fluctuation spectrum of surface roughness. When the spatial frequency of the roughness is
smaller, or when both high and low frequencies are present, the situation is less clear and
present theory only permits qualitative deductions from the experimental data.
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