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Abstract
Studies of Interfaces and Vapors
with Optical Second Harmonic Generation
by
Christopher Shane Mullin
Doctor of Philosophy in Physics
University of California at Berkeley

Professor Yuen Ron Shen, Chair

Optical Second Harmonic Generation (5.1G) has been applied to the study
of soap-like molecules adsorbed to the water-air interface. By calibrating the
signal from a soluble monolayer with that of an insoluble homolog, absolute
measurements of the surface density could be obtained and related to the bulk
concertration and surface tension. We could then demonstrate that the soluble
surfactant forms a single monolayer at the interface. Furthermore, it deviates
significantly from the ideal case in that its activity coefficients are far from 1, yet
those coefficients remain constant over a broad range of surface pressures. We
present evidence of a first-order phase transition taking place during the
adsorption of this soluble monolayer. We consider the effects of .ne non-ideal
behavicr and the phase transition on the microscopic model of adsorption, and
formulate an alternative to the Langmuir picture of adsorption which is just as
simple, yet it can more easily allow for non-ideal behavior.

The second half of this thesis considers the problem of SHG in bulk metal
vapors. The symmetry of the vapor forbids SHG, yet it has been observed. We
consider several models whereby the symmetry of the vapor is broken by the
presence of the laser and compare their predictions to new observations we have

made using a few-picosecond laser pulse. The two-lobed output beam profile



shows that it is the vapor-plus-beam combination whose symmetry is important.
The dependence on vapor pressure demonstrates the coherent nature of the
radiation, while the dependence on buffer gas pressure hints at a change of the
symmetry in time. The time-dependence is measured directly with a preliminary
pump-probe measurement. The magnitude and intensity dependence of the
signal are also measured. All but one of the models are eliminated by this
comparison. The remaining model, involving ionization of the vapor,
subsequent cl.arge separation, and the generation of a macroscopic electric field,

is treated in more detail and used to make | ‘edictions of future results.
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Chapter 1 - Introduction and Background

I. __Historical Perspective

Optical Second Harmonic Generation (SHG) was first applied to the
study of interfaces in 1981.12 Since 1981, SHG has found a respectable niche
in surface science and interface studies.3 Many surface probes are "surface-
selective” only because their in-going or out-going radiation has a limited
penetration depth. In contrast, SHG relies on the broken symmetry near the
interface for its surface specificity, and thus it probes only the region that can
be properly called the interface. Most surface science too's rely on the
absorption or emission of massive particles, and are thus limited to operation
in a vacuum chamber.? SHG makes use only of light, and can be used to
study any interface accessible to light, including liquid interfaces and buried
interfaces.

These additional interfaces are important in many fields of physics and
chemistry. Electrodes in an electrochemical cell were among the first studied
with SHG.! In another case, SHG was used to study phase transitions in
monolayers of pentadecanoic acid floating on the water surface.” Retinal
molecules have also been detected in a membrane, which can be thought of as
a “water-water” interface.® SHG and the closely related process of sum-
frequency generation also have advantages as spectroscopic tools. Tuning
their frequencies to electronic or vibrational resonances allows them to
selectively probe specific molecular species at the interface. Co-adsorbed
systems that have been studied include liquid crystals on chemically



modified surfaces.”

Two types of information are typically gained from SHG experiments:
population and orientation. Population is determined through the strength
of the signal, and orientation through the relative strengths of different
polarization components of the signal.

However, SHG does have some limitations. If both the orientation
and population of interfacial molecules are changing, it may be difficult to
separate their effects on the SHG signal. Such a difficulty is not uncommon
in complex interfaces. SHG is a second-order effect with signal strengths
typically measured in photons or fractions of photons per laser shot. Such
signal levels require several seconds or minutes to determine accurately, and
thus may limit the type and time resolution of a given experiment. In
Appendix A, I analyze the uncertainties in low-level light measurement and
discuss methods of optimizing the efficiency of each experiment. The weak
response also limits the molecules that can be studied effectively to those
displaying adequate nonlinearity. This includes molecules with delocalized
electronic states, as exist in phenyl groups, or where delocalized electrons are
affected, as in molecular adsorption onto a metal surface. Finally, SHG
requires the high intensities only found with a laser, which is often a costly
and difficult tool to maintain. The intensity used in an experiment is often
limited by the damage that the laser can inflict on the interface.

These difficulties, if properly navigated, can provide a tool with rich
applications. Ron Shen and his collaborators have pioneered many
applications of surface SHG.8? The first half of this thesis discusses studies of
amphiphilic molecules at the air-water interface, where SHG was used to

determine the structure, density, and thermodynamics of slightly soluble
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mclecules. Attempts at studying the adsorption dynamics of the molecules
were largely unsuccessful due to the iow time resolution of SHG.

The second half of this thesis concerns the problem of observed SHG in
the bulk of alkali or alkali-earth vapors. Previous experiments in the field
have generally relied on nanosecond lasers tuned to a two-photon resonance
of the vapor (s to s, p or d states), although a few have used picosecond
nonresonant pulses of much higher intensity. Since the bulk symmetry
forbids SHG in an unperturbed vapor, the laser itself must be breaking the
symmetry of the vapor. We probed this problem with a pump-probe
technique using picosecond pulses tuned to a two-photon resonance. One
pulse breaks the symmetry of the medium, and a second, delayed pulse probes
the broken symmetry.

The remainder of this chapter is an introduction to the theory of
second-harmonic generation. Chapter 2 describes our experiments on
adsorption at the water interface. Chapter 3 delves into the many processes
that could generate second-harmonic light in a vapor, while Chapter 4

summarizes the results obtained in that experiment.

Il. _Framework of ical SHG Th

Since this thesis includes the use of SHG in several disparate problems,
I will confine this chapter to the general theory of the generation of nonlinear
polarization in materials and the subsequent radiation as SHG.10 The
theoretical background associated with each individual problem I will leave
to the theory sections of the individual chapters. In the following treatment, I
will take a molecular view of the materials generating the second harmonic.

Since the response at optical frequencies is dominated by the electronic
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response, I will define "molecule” as that unit to which an electron is
confined. In the atomic vapor considered at the end of this thesis, that unit is
a single atom. In the composite molecule used to study surface adsorption,
we found that the response is dominated by the delocalized electrons in the
head group of the molecules, so the unit can be thought of as simply the head
group of the molecule. Weak interactions with other molecules will be
considered insofar as they affect the polarizability of the primary molecule.

A. Generation of a nonlinear polarization
A molecule experiencing an electric field will respond by becoming
polarized. Since the polarization is dominated by the electronic response, it
can be described by the evolution of the electronic state. For simplicity, we
consider only the independent electron model, so that only one-electron
wave functions must be considered. Electronic excitation energies are
generally much larger than the thermal energies at room temperature, so the
initial equilibrium state of the electron is simply its ground state yz. An
electric field with frequency ® will then mix the ground state with all the
excited states of the electron to varying degrees, depending on the strength of
the dipole matrix element between the states, and the detuning between fiw
and the excitation energy. Quadrupole (and higher) moment excitations can
be described using the full expression of the Hamiltonian of the
electromagnetic field.
The polarization moments of the molecule are then found by
evaluating the expectation value of the corresponding moment operator:
P=<y(® | eT | y®> 0
Q=<y® | eTT I y(®> etc. @



If the dispersion of the electronic response is negligible across the laser
linewidth, then polarization response is immediate, and can be written

PO=pD-E®+B@:EQE®+.. ®
in which only the dipole terms are used. In frequency space, one can say that
the spectral width of E) (and hence I—”(t)) is as wide as the laser linewidth, so
the duration in time of the polarization is as short as that of the laser.

On the other hand, if the spectral width of E is narrower than the laser
linewidth, then the duration in time of the response is necessarily longer
than that of the laser. This fact will be critical in the analysis of a short-pulse
excitation of a narrow resonance in potassium vapor.

Much of the molecule's electronic response is dictated by its symmetry.
Optical SHG relies on ([;)(2) for generating a macroscopic electric field, and E)Q)
as a material property must obey the same symmetry relations as the
molecule it describes. Since E)(Z) is a second-rank tensor, it must vanish for
molecules with inversion symmetry, such as the isolated potassium atoms
used in the bulk vapor experiment described in Chapter 4. However, even a
centrosymmetric molecule may acquire a significant 6[.’?(2) if its environment
is asymmetric, a phenomenon known as microscopic symmetry-breaking.
Examples include a potassium atom in an electric field or collision, and any

centrosymmetric molecule adsorbed to an interface.

B. Radiation of the nonlinear polarization

Once the molecules have become polarized, they radiate in a totally
linear fashion, even though their polarization was a consequence of a
nonlinear interaction. However, the radiation from this polarization is quite

unintuitive. In linear optics, the field due to the polarization is a small




perturbation on the incident field. In SHG, it is the only field present at the
SHG frequency. This unique situation gives rise to the problems of phase
matching, N2 dependence of the radiated intensity, N dependence of the
radiated power, etc.

To determine the macroscop.c polarization of a medium, one must

sum the polarizations of the individua! molecules:

« « o - -
PO=Zp®)=Z(BD:EDEW)=EPD):E®ME®M) = :EE. @)
The macroscopic polarizability is then
XO=EFD-NpDs )

where the « » brackets denote an average over the molecular orientations. In
any centrosymmetric bulk medium, this average will necessarily be zero. At
any interface, it may be non-zero, giving SHG its surface specificity.
Furthermore, it reveals that SHG is specific to only the region of material
whose electronic potentials are influenced by the surface. Because of its
surface specificity, SHG remains an unequaled tool in the surface scientists’

arsenal.
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Chapter 2 - Studies of Soluble Surfactants at the Air/Water
Interface

I.__Motivation

Soluble surface-active molecules enjoy widespread use in today's
industrial world. From common household items such as soap and paint to
high-technology products that require special surface treatments, these
amphiphilic molecules are required to produce specific properties at liquid-
air, liguid-liquid, and liquid-solid interfaces.! Yet the details of the molecules'
actions and interactions near the surface remain unknown because of the
paucity of tools that can be used to study these interfaces in detail. The
specific problem of adsorption of amphiphilic molecules to the air/water
interface is of great interest because of its wide applicability.z'3'4'5

The molecules are also interesting from a physics standpoint because of
the unique environment in which they are situated. Insoluble amphiphilic
molecules will be trapped at the interface in an essentially two-dimensional
space forming Langmuir films. The large amount of work done on these
films attests to their continuing fascination to researchers. Soluble
amphiphilic molecules undergo transfer between the surface and bulk of the
solution. Less is known about soluble surfactants because their surface
density cannot be directly controlled as it can in the case of insoluble
molecules.® Models for these interfaces are often borrowed from the more
intensely studied vacuum-solid interface, but the obvious physical differences

that make up a fluid interface leave such analogies in doubt.
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To understand the adsorption as well as the nature of the adsorbed
molecular layer, it is important to know the adsorption isotherm and the
isotherm of surface pressure vs. area per adsorbed molecule (n1-A). While the
bulk concentration of the adsorbates and the surface pressure can be easily
measured, the surface density of the excess adsorbate molecules and the
activity coefficients in the bulk and at the interface are not readily measurable
Various techniques have been developed to probe tiic surface density directly.
Among them, the microtome’ and the radio tracer technique38 have been
most successful. However, neither one has enough spatial resolution to
differentiate the signal from a surface monolayer and the signal from the
subsurface layer. Furthermore, they cannot provide information about the
polar orientation of the adsorbed molecules.

Recently it has been demonstrated that optical second-harmonic
generation (SHG) is an effective and versatile probe. for studies of molecular
adsorbates at air/liquid interfaces®. It allows a direct measure of the surface
density of molecules as well as providing information about their polar
orientation. The technique can be used to study adsorption of soluble
molecules from a solution to the air/liquid surface!®1112, This chapter
addresses four problems relating to the adsorption of soluble surfactants: the
structure of the adsorbed layer!3, its equilibrium relationship with bulk

14

concentration and surface tension'®, its approach to that equilibrium, and the

effects of a phase transition on the layer's dynamics and equilibrium.

il. Th f Surf A rption

In this section, I detail the theoretical relationships between

microscopic parameters and the macroscopic, measurable quantities we
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determine from experiment. The first subsection considers an equilibrium
between the surface and bulk parameters, and the second considers the
approach to that equilibrium. An important part of these treatments is the
presence of non-trivial interactions between solute molecules. The first
subsection combines the interactions into the activity coefficients f; and fp,
while the second uses a microscopic picture of the interactions because it
affects the dynamic adsorption. The last subsection examines the effect of
that a first-order phase transition would have on both the dynamic and

equilibrium adsorption.

A. In equilibrium
In considering a liquid system of a solute and a solvent in equilibrium,
the chemical potentials of the solute in the bulk and at the air/water interface

must be equal and can be written as

K = Hpulk = ug + kT In ap 4]

K = Hinterface + TA = u? +TA +kTIn o @
where ppyik and interface are the internal chemical potentials of the solute in
the bulk volume and at the interface, respectively, with ug and p.? being the
corresponding reference potentials independent of the solute densities. The
activities of the solute in the bulk and at the interface are denoted by ap and
a;. One often writes o = f; Xj and ap = fp, Xp with X and X}, referring to the
surface concentration (in occupied area fraction) and bulk concentration
(mole fraction) of the solute, respectively, and fj and fp the corresponding
activity coefficients. The surface pressure = is defined as the change of surface
tension due to the presence of the solute molecules, and A" is the surface area

occupied by a solute molecule. Equations (1) and (2) lead to
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x=——ln-;———Au0, 3)

with Au0 = p.? - ug.

The Gibbs' equation, derived from the second law of thermodynamics
relates the variation in surface pressure to the variation of the chemical
potential duy of the adsorbed solute molecules!:

on lt=njopnlt @)
where nj = X; /A™ is the surface density of solute molecules. With the help of

Equation (1), we can write
( on
dln op

)p= KTn; (5)

Combining equations (3) and (5) by eliminating = yields

0 Inqj o Au° A1/AD)
Ly s ey XA
dinap o dln ap

1
— (1- = nj, ©
A

This is a general expression for the adsorption isotherm, X; versus Xp,
knowing that aj = f; Xj and ap = fp Xp. Unfortunately, the activity coefficients
fi and fp, as functions of Xj and Xp, respectively, and also A" are not known a
priori. Only with some assumptions can Equation (6) be simplified.

We can assume, for example, a surface site model, i. e. the actual
surface area occupied by a solute molecule A™ is constant and independent of

the surface coverage. This gives
A® -1 dIn aj
nj =1- :
! dlnoap

@

If in a certain density regime, f; can be regarded as a constant independent of
the bulk concentration, Equation (7) is further simplified to
ap 9 Xi

Xi = l—xi m

®)

which can be integrated to yield

11



Xj= B ©)
aj/2+ 0h

where aj/> is the solute bulk activity leading to the half coverage, Xj (x1/2) =
1/2, of the surface by the solute molecules. This is in the form of the well
known Langmuir adsorption isotherm.

Elimination of ap between Equations (3) and (9) gives the n-A (or n-Xj)

isotherm:
kT i Auo
x:——f;{ln(l-xi)+ln;—'—+-l:%—. (10)
A 1/2
For n versus ap, we have
kT f; Aol
r=-—{lna+ —2)_ jp -Tf—;.—. (11)
A~ a1/2 ai/2

B. Dynamics of Adsorption

The initial conditions of the adsorption process consist of a bulk liquid
with a constant concentration Xp, of surfactant filling one half space (z<0), and
air filling the other half space (z>0). We neglect any exchange of molecules
with the air. The equilibrium condition is identical, except an excess of
surfactant molecules now resides at the interface. To proceed from the initial
condition to the equilibrium condition, two processes must occur: molecules
in the bulk must adsorb to the interface, and the molecules within the bulk
must redistribute themselves to replace the molecules now adsorbed to the
interface. If one process dominates the approach to equilibrium, the approach
is called barrier-limited or diffusion-limited adsorption, respectively.

Adsorption models are constrained by ideal equilibrium relations
between &, n; and Xp, derived from the thermodynamics above in equations

(9)-(11). A consistent model must predict the form of these equilibrium
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relations in the ideal case of noninteracting molecules. The ideal case refers
tofi=fp=1and A” remaining a constant.

The presence of non-ideal interactions can be easily seen as deviations
from equation (10)!6. Since optical SHG can measure n; without reference to
Xp, it can directly observe such deviations. These deviations should be
accounted for in the adsorption model. One of the simplest models to
describe barrier-limited adsorption17 is due to Langmuir and is commonly
used to describe adsorption of gases to the metal-vacuum interface. The only
interaction acknowledged between adsorbing molecules is that a molecule
adsorbed at a site blocks other molecules from adsorbing to that site. It is
unable to cover cases where n(X;) deviates from the ideal.

With these assumptions, the net adsorption rate can then be written as:

dX;
(_d—t—) adsorption — ki Xp (1-X;) (12)

where k is a rate constant that includes both an attempt frequency and a
success rate.

The Langmuir model further assumes that a molecule adsorbed to the
interface desorbs with a probability independent of the surfactant

concentration, so the net desorption rate is written:

dX;
(—a_;) desorption — —k2 Xi. (13)

Langmuir desorption can be thought of classically as an escape from a
potential well whose depth is independent of surfactant concentration.
If Xp remains constant, then these equations may be easily solved for
Xi(®:
Xi (t) = Ngq (1~ e7kt) (14)

where

13




Xb k2
Neq=m:k=(klxb+k2) anda=k—1. (15)

Neq denotes the equilibrium surface concentration, Xj(e), which was referred
to as simply X; in the first subsection. k characterizes the rate of approach to
equilibrium and @ characterizes the amount of adsorption in equilibrium.
Thus measuring the adsorption curves for different concentrations will yield
k, separately from kj.

Interactions between the adsorbed molecules or different interactions
between adsorbed and adsorbing molecules would change the adsorption and
desorption rate equations given above. There are several ways to account for
the molecular interactions. We can consider the Langmuir process above as
the first terms in a polynomial expansion in n; of the adsorption rate, so
using higher order terms could give a more correct description of the

processes occurring at the surface. With the quadratic term,

X 2
'aT)=k1 Xp(1-Xj)-k2 Xij +k3 X (16)

the form of the adsorption can be solved analytically as

Xi _Bii-e) an
Neq ~ B2- By et

where

q= \f(klkxb +k21)<2 -4 k1 k3 Xp,
B1=—" xg-;: “9 and (18)
_ ki Xp+ko+q
BZ - 2 k3 7

A qualitative check for such a higher order term is to plot the measured
values of dX;/dt as a function of X; to see if it is better fit by a parabola than a
straight line.
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While attempting to fit problematic dynamic adsorption data, we
formulated a new model of the fluid interface. Experimental difficulties
prevent us from publishing our data, but we present the new model here as
an interesting alternative to the Langmuir model. This new model is just as
simple as the Langmuir model, but its different assumptions highlight the
differences between fluid interfaces and solid interfaces. We did not publish
the model nor the results, but I include the model here as one of my most
original contributions to this thesis.

To formaulate a new model, we could change the assumptions of the
Langmuir model; there are three major ones: adsorbing molecules are
"blocked" by adsorbed molecules; the success rate, ki, of the adsorbing
molecules remains constant; and the success rate, kp, of desorbing molecules
remains constant. We propose to modify two of the assumptions: let the

success frequency of the desorbing molecules depend on the surface

18
dXj

pressure’”:
and let adsorbed molecules not block adsorbing molecules:
Xl ’
(ddt )adsorptxon k1Xp (20)

We can test our model with the case of ideal molecules. To be
consistent, the model must arrive at the thermodynamically derived

relations (9) - (11). = for ideal molecules is given by equation (10) with

fi Aud
ln(od /2) XT = =0 (21)
so that
kT
n=— —In(1-X). (22)
A%
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Using this relation, the new model's net ad'sorption rate is given by

=KX - 23)
In equilibrium, % = 0, so we recover the Langmuir adsorption isotherm,
Equation (9). Thus the new model is consistent with the thermodynamic
description of the interface in the case of an ideal monolayer.

Although our model and the Langmuir model predict identical
equilibrium relationships for ideal surfactants, the dynamic approach to
equilibrium will be different. The new model predicts a nonlinear adsorption
equation which must be solved numerically. A comparison of the two
families of adsorption curves is shown in Figure 1.

The two changes in the rate equations above imply two differences in
the microscopic picture of the interface: in desorption, the depth of the
potential well seen by the surfactant depends on the surface tension, and in
adsorption, molecules at or near the water surface are mobile enough not to
block adsorbing molecules. Both changes point out clear differences between
the vacuum-solid interface so well-described by Langmuir kinetics, and the
solution-solution surface interface considered here.

The first change stems from the fact that the molecule is not attracted
to the surface by a constant force, but because it can replace solvent molecules
at the surface which are in a relatively higher energy state. Thus the
surfactant molecules see an effective potential well at the solvent surface.
Reducing the surface tension changes the depth of the potential well, and so
should increase the success rate for molecules to desorb. When a surfactant
leaves the interface, the rest of the surface closes up the hole it leaves behind.
This is plausible for the fluid water surface, but would be impossible on a
solid interface. In the Langmuir picture, the hole is filled with nearby bulk
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molecules, so the energy cost is that of creating clean water surface. Therefore
the potential well depth is independent of the surface tension. Because of this
major distinction between the Langmuir model and our new one, I will call
our model a "variable-depth model".

The fluidity of the surface also accounts for the non-blocking effect of
the adsorbates, since without specific adsorption sites, there may be little
barrier to small lateral movements of the surface molecules.

One great advantage of the variable-depth model is that it easily
accounts for adsorbate interactions. Those interactions are reflected in the
deviation of n(X;) from the ideal. The appearance of x in the desorption rate
equation allows empirical values of = to be inserted directly and the equations
solved numerically. While it is a large simplifying assumption to say that
this is the only effect of interactions on adsorption, it is an effect that can at

least be computed.

C. Effects of a phase transition

First-order phase transitions have often been observed in insoluble
monolayers. The simplest equations that result in such a transition postulate
two distinct phases at the interface with different limiting areas, A7 and AJ
and different reference potentials, ”(1) and ug The latter is equivalent to
assuming two different, constant activity coefficients, so in the equations
below I will assume that the activity coefficients are equal to one. The
chemical potential is givei. by

b OG) =y +x A + kT In(1-Xy) 24)
The equilibrium state will be determined by minimizing the

Helmholtz free energy of the system with respect to interchange of particles
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between the two phases. At low density, only the phase with the lower p.?
will exist, while at high density, only the phase with lower A;” will exist. The
two phases will coexist only in a regime where

Hi(X1) = 2 (X2) = pe, (25)
where p; emphasizes the fact that the chemical potential is constant
throughout the transition, as are X; and X. What changes are the areas, A;,

taken up by the two phases, subject to the constraint

X X
Nave Atot = '_3: A + _i Az (26)
Al A2
At = A1 + A2, (27)

where Njve is the average density of molecules on the surface and Agot is the
total area of the surface. Since = is solely a function of Xj, it is constant during

the transition, and the pressures exerted by each phase must be equal:

kT kT
=2 In(1-Xp) =~ In(1-Xy). 28)
Ay A,

Equations (25) and (28) can be combined into a determining equation for Xj:
0

1—X2)R - 1 H1—Ho
A
whereR= —.
A2

Experimental evidence for such transitions in insoluble monolayers
exploits the different properties of the two phases. They have different
densities, resulting in different ellipsometric or SHG signals, or solubilities
with tracer dyes, as used in fluorescence microscopy.19 If a laser beam is used
to probe an inhomogeneous surface, its signal will fluctuate if the size of the
inhomogeneities is comparable to the laser spot size, and if the

inhomogeneities move around.
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In a soluble monolayer, a phase transition would have a number of
interesting effects. However, it would be difficult to detect. The clear plateau
in the =-N curve visible in insoluble monola};ers would appear as a kink in
the n-In(c) curve. The slope of n-In(c), according to Gibbs' equation, would be
kT N gas below the transition and kT Niiquid above the transition. Such a
kink would be difficult to distinguish by measuring = alone and using Gibbs’
equation. With SHG's ability to directly measure N, a flat n-N relation is
easily measurable. |

In equilibrium, because the chemical potential of the surface adsorbates
remains constant throughout the transition, the bulk chemical potential (and
therefore Xp) also remains constant. Any solute molecules added to the bulk
would adsorb to the surface until the entire surface was in the higher-density
phase It would be nearly impossible to mix a solution whose surface was in
the middle of the transition. Just changing the surface area of the solution
could cause a complete surface phase transition.

In the microscopic picture of adsorption/desorption, the transition can
be accounted for by using different rate constants for the two phases.
However, it requires a lower desorption rate for the higher density phase due
to attractive interactions between the adsorbed molecules. This counters the
picture of oblate molecules pushing on each other to stand up. The effect
would have to be more dramatic in ‘he Langmuir model than in the variable-
depth model to make up for the additional blocking effected by the higher-
density phase that is stipulated by the Langmuir model.
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11l mple Pr ration and Experimental Arrangemen

The NS surfactants used in our experiment were (CpnH(2n+1))-C10Hs-
SO3Na, denoted as CnNS. C6NS is soluble in a 0.35 M NaCl solution of water.
With the same salt concentration, C18NS appears as insoluble monolayers if
spread on water. The C6NS solutions were prepared by first dissolving C6NS
crystals in water of Milli-Q quality. The solution was then stirred and shaken
in an ultrasonic bath for about 20 seconds. Afterwards, salt was added to
provide excess ions (0.35 M NaCl). The accuracy of the bulk surfactant
concentration was ~ 5%. The solution was filled into the trough. The surface
was then swept by a movable barrier and the system was allowed to reach
equilibrium, which happened within 15 -30 minutes. The surface pressure
was measured with respect to that of a surfactant free salt solution with an
absolute accuracy of + 0.5 mN/m. As a calibration for our SHG
measurements, insoluble monolayers of C18NS on salt water were used.
They were prepared by spreading C18NS from a 1/10 methanol/chloroform
solution. The Langmuir trough and all glass vessels used in the experiment
were always washed with sulfuric acid, rinsed repeatedly and cleaned
thoroughly in an ultrasonic bath.

For the SHG experiment, the frequency-doubled Q-switched Nd:YAG
laser beam with 30-35 mJ was focused to a spot of 1 mm in diameter on the
surface with an incidence angle of 58° from the surface normal. Its
polarization was usually set at 45° from the plane of incidence to maximize
the signal-to-noise ratio. Other polarizations were also used to determine the
specific elements of ;22). The SHG in reflection was split by a quartz Rochon
polarizer, passed through two Corning 7-54 filters and a monochromator, and
detected by photo multipliers with gated electronics. Each data point was

20



obtained by accumulating signals over 3000 laser shots. To assure that there
was no laser damage, we exposed a C18NS film on glass to the laser beam and
found that the SH signal did not decay with time.

IV. Experimental Results

A. Surface Structure

To use SHG as a probe of adsorbates, we first need to characterize its
response to the adsorbate. Figure 2 depicts the SH response from a C18NS
monolayer spread on water. The surface susceptibility Xg!)‘ is plotted against
the surface density N of the C18NS molecules, where the subindices p and m
refer to the p-polax;ization of the SH output and a linear polarization at 45°
from the incident plane of the fundamental input, respectively. The data
show that Xg\ is linearly proportional to N for surface pressures from 3
mN/m up to 33 mN/m, where the monolayer is close-packed with a limiting
area of A: =1/ N: = 0.36 nm?2 per molecule. A constant ratio of x;(>2n)1 to Xg‘)
in the linear region shows that the orientation of the adsorbed C18NS
molecules remains unchanged from one-half to a full monolayer. This
indicates that the molecular orientation remains unchanged above the
surface pressure of 3 mN/m. We were not able to quantify the average
orientation of the molecules because in the present case, E of C18NS is not

dominated by a single element as evidenced by Xf;,; / X}(,zz)y =3.2#1. Wedid

2 2 . . TR . . . .
have X;,y)y and X;,z)z negligibly small, indicating an isotropic orientational
distribution in the surface plane. For the work here, however, the
quantitative information about the molecular orientation is not needed.

Below 1.2 molecules/nm?2, X;zn)l show large fluctuations (shown in Figure 3)

and then become vanishingly small. This is presumably due to an
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orientational phase transition into a face-flat position. The above results
have two important implications. First, the local field effect arising from the
interaction between C18NS molecules is negligible since otherwise, y oo
would be nonlinear in N. Second, %@ is a linear measure of the total
number of polar-oriented molecules adsorbed at the interface as denoted in
Chapter 1.

Since the hydrocarbon chain on CnNS contributes negligibly to the
optical second-order nonlinearity, the hyperpolarizability (ﬁ for C6NS is
essentially identical to that for CI8NS. If the chromophore orientation of
C6NS and C18NS at the interface are also the same, then the measured X(Z)
from SHG can directly be used to determine the surface density of the polar-
oriented C6NS molecules in the interfacial layer. This is indeed the case, as
confirmed experimentally. Above 1.2 molecules/nm?, the ratio of Xg!)‘ / X&)
for the C6NS surface layer is the same as that for the C18NS, showing that the
two molecules have the same chromophore orientation. We can therefore
use our C18NS measurements, where the surface density is easily measured,
as a calibration of our C6NS measurements, where the density is unknown.

We have studied SHG from the air/water interface of a C6NS solution.
In Figure 4a, the measured xg,’\ are plotted against the bulk concentration Xp
of C6NS in the solution. It is seen that ng)\ increases with Xp and approaches
saturation. A comparison with Figure 2 reveals that Xgr:\ (C6NYS) at saturation
equals Xgr:‘ (C18NS) of a close-packed monolayer, given by the dotted line in
Figure 4a. This indicates that in both cases, one with soluble and the other
with insoluble molecules, the interfacial layer contains the same number of
polar-ordered naphthalene sulfonate molecules. It is likely that tt-2 polar-

ordered C6NS molecules also appear at the interface as a single close-packed
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monolayer. However, the possibility still exists that the interfacial layer is
composed of a partially polar-ordered C6NS surface monolayer and some
polar-ordered molecules in the subsurface region.

The following experiment was carried out to reject the possibility of
polar-ordering in the subsurface. A monolayer of insoluble C18NS molecules
was spread on top of the C6NS solution. For low surface densities of C18NS,
we should have C6NS and C18NS molecules coadsorbed at the interface.
Reducing the surface area forces the soluble C6NS molecules to submerge
into the water. Eventually, only the C18NS molecules would float on the
surface and form a close-packed, totally polar-oriented monolayer. We found
that whether the close-packed monolayer of C18NS was on salt water or on
the C6NS solution, the nonlinear optical responses X;,z;\ are the same. This
indicates that beneath a polar-ordered C6NS monolayer at the surface of a
C6NS solution, there should not be a subsurface layer of C6NS with partial
polar-ordering.

In a separate experiment, an insoluble monolayer of eicosarol (C20-
OH), CyoHyj - OH, was spread on top of the C6NS solution. The OH head
group has a different polarity than that of the naphthalene sulfonate head
group. Thus the polar-ordering of C6NS in the subsurface layer underneath a
C20-OH monolayer, if present, could be different. Figure 5a depicts the
measured surface tension () versus the mean area per C20-OH molecule (A)
for three different C6NS concentrations in the solution, ¢p = 0 uM, 200 uM
and 600 uM. It is seen that at low surface densities of C20-OH, the surface
tension for the three cases are very different because different numbers of
C6NS molecules are coadsorbed with C20-OH at the interface. Upon

compression to reduce the surface area, however, the curves with cp # 0
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asymptotically approach the one with ¢, = 0. This indicates that the adsorbed
C6NS molecules can be squeezed back into the water eventually leaving only
a close-packed C20-OH monolayer at the interface, and that C6NS molecules
do not form an ordered subsurface layer underneath the C20-OH monolayer.
The process of squeezing coadsorbed soluble molecules back into solution by
monolayer compression of insoluble surface molecules has also been
observed with SHG by Eisenthal and coworkers.2 This conclusion is
supported by the SHG results shown in Figure 5b, where Xg,), is plotted against
A for o = 0 UM, 200 1M and 600 M. Although the values of X, are different
for the C20-OH monolayer on water and on the C6NS solution at large A
[note that ([_3) (C6NS) > B (C20-OH)], they become nearly equal towards the
limiting value of A at which the C20-OH molecules form a close-packed
monolayer. The result shows that as the C6NS molecules are driven back into
water by compression, they do not form any partially polar-ordered subsurface

layer underneath the C20-OH monolayer.

B. The Thermodynamic Equilibrium

It is of fundamental interest for adsorption studies to find the relations
between the surface pressure &, the number of surface molecules n; and the
bulk concentration Xp. We now examine the details of adsorbed C6NS surface
films in the presence of excess ions®21. For soluble surfactants in
equilibrium, the surface density depends on the bulk concentration. We have
measured SHG from the surface of a C6NS solution and obtained Xg:l asa
function of the C6NS bulk mole fraction Xp. Then with Figure 2 relating Xg
and n;, the adsorption isotherm for C6NS can be deduced as shown by circles

in Figure 4a.
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The surface pressure xn versus Xp, for C6NS were measured
simultaneously with SHG. The results are shown as full circles in Figure 4b.
As expected, both & and n; increase with increasing bulk concentration until
the critical micelle concentration (cmc) is reached. The solid lines will be
discussed later.

With these two independent sets of data in Figure 4, i.e. n; versus Xp
and = versus Xy, the adsorption process can now be analyzed quantitatively.
We are particularly interested in testing the simplifying assumptions
discussed in the theory section. Consider first the general equation, Equation
(3), which we express in the fﬁ;m

T=—- —— ln% ~ A% (£, fp, ApO) (30)
A

kT fi
with Azc=—°;ln-f-;;+-l—”Au0.
A A

We now assume A" constant and independent of X; or n; so that Ax would
depend on X; and X}, only through the activity coefficients f; and f. From the
maximum density of an adsorbed full monolayer of C6NS, as calibrated by a
close-packed monolayer of C18NS, we found A™ = 0.36 nm2. For a given Xj,
the measured n and X; allow us to deduce An from Equation (30). This was
actually carried out with the data in Figure 4 and surprisingly Ax was found to
be -154 + 0.8 mN/m independent of Xp. A negative sign for Ax is expected for
surfactants since their surface state is lower in energy than the bulk state. In
Figure 6, we plot the data of n versus Xp, directly from the experiment and

(— % In -;5—; + 154) mN/m versus Xp calculated from the measured X;
versus Xp. It is seen that the two sets of data coincide very well. The result
here not only confirms the assumption of A™ being constant but also
suggests that f; /fp is independent of the bulk as well as the surface
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concentration of the solute in the range covered by our experiment. We find
f;/fp to be constant within the experimental error of 8%. It is possible that
both f; and fp, are independent of X; and Xp.
Consider next the Gibbs' equation, Equation (5). If we assume a
constant f,, then Equation (5) becomes
Xo ()7 = KT (31)

Again, this can be checked by the experimental data. A polynomial best fit of
the experimental of = versus Xp is given in Figure 4b as solid line. From the
slope we can then calculate n; () versus Xp from Equation (31) as given as
solid curve in Figure 4a. The number of surface molecules calculated from
the Gibbs equation agrees well within + 5% with the measured n; (SHG)
versus Xp data at lower bulk mole fractions. As Xp, approaches the cmc, the
inaccuracy in the determination of the slope of © versus Xp is tremendous
and not given in this figure. However, the slope does approach L E‘}; as Xp
approaches the cmc, as expected from Equation (31). The results i&e’reAsuggests
that fp can indeed be regarded as constant in the range of Xp we have covered.
With f; /fp, being constant, this implies that f; is also constant in that range.
Physically, the activity coefficients are measures of the intermolecular
interaction. The bulk fp is independent of Xp presumably because Xy is very
small in our case. It is surprising to see f; constant. This may be due to the
narrow range of Xj probed in our case so that the effect of the variation of
intermolecular interaction on f; is not significant.

With f; and fp, approximately constant, the Langmuir adsorption

isotherm, Equation (9), becomes
oo Xb
DA = XX (32)
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As shown in Figure 4a, Equation (32) describes the data reasonably well with
X1/2= -—x 10 -6 as read from the graph at half the surface coverage. A
Langmuir type adsorption isotherm was also found by others®Z.

With Equation (32), we can express Equation (31) of nt versus X}, in the

form
kT Xb -
R = ) In(1+ x1/2) - Ax, (33)
- kT fi Apo
with An = : E For an ideal system of non-interacting

A” n Xzt A~ A0
adsorbates ( fj = fy, = 1) we can derive X1/2 = exp () from the standard

Langmuir adsorption model and have Arm =0.In that case, Xj/2 would be a
direct measure for the adsorption energy Ap0 of the surfactant molecules (for
Xi1/2=5 x 10 -6, Ap0 = — 8.2 kcal/mole for the ideal system). Generally, we
expect At # 0. In Figure 4b, Equation (33) is plotted with An =0 mN/m and
AT =4.8+ 0.2 mN/m. It is seen that the latter describes the data satisfactorily.
This clearly indicates that our system is non-ideal, i.e. although f;/fp is
constant in the range of Xp covered, it is different from 1. Unfortunately,
without knowing Ap0 separately, we cannot deduce the value of fj/fp from
An. However, if we assume that the relation Xj/2 = exp ( ) is still
approximately true, then we can find -f—; =15 from the values of Am and
X1/2. If we assume fp, = 1 for our diluted system, the surface activity coefficient
fi is larger than one. This is expected if the effect of surface exclusion
dominates attractive interaction among the surface molecules and the result
is in agreement with other experiments23

Finally, the surface pressure/area isotherms are given in Figure 7 for
the soluble C6NS molecules adsorbed to the air/water interface (o) and for the

insoluble CI8NS monolayer on film compression (solid line). The dotted
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curve is \alculated from Equation (33) with Ax= 4.8 mN/m. It is interesting to

note that the isotherms cross.

C. Phase Transition Evidence

We have observed with these optical techniques that a first-order phase
transition occurs in the insoluble homolog of the family, S18NS, in that we
observe fluctuations in SHG signal below an average density of 1.5 mol/nm?
(Figure 3). Furthermore, we observe evidence of a first-order phase
transition in the soluble homolog, C10NS. During very slow adsorption, the
ellipsometry signal fluctuates below the critical density of 1.5 mol/nm?(Figure
8). These fluctuations reach intensities comparable to the signal at the critical
density, and so can be interpreted as coming from regions which are the size
of the laser spot, or larger, and have the critical density of molecules, even
though the average density is much lower. These islands, observed during
dynamic adsorption, imply a first order surface phase transition in this
soluble surfactant molecule.

We would be more confident in the existence of this transition if we
could observe a plateau in the n-N diagram (Figure 9). Unfortunately, in this

case, & is below our experimental resolution of 0.1 mN/m.

V. nclusion

In this chapter, we have investigated many aspects of the adsorption of
surfactant molecules to the water/air interface. We have used SHG's unique
capabilities to prove that the adsorbed surfactant forms a single monolayer at
the water surface. We have measured independently the surface pressure
and the surface density of soluble surfactant molecules as function of the bulk

concentration of these molecules in solution. The system investigated here,

28



hexadecyl naphthalene sulfonate adsorbed to the air /salinated water
interface, behaves as non-ideal gas in the pressure range from 2 mN/m up to
surface saturation. We could show that the ratio of the surface activity
coefficient to the bulk activity coefficient deviates significantly from unity.
Both activity coefficients are approximately constant over the concentration
range probed. This is a very interesting finding. Various models in the
literature®8:1523 that describe adsorption equilibrium do not seem to apply
here. The surface activity coefficient must depend only weakly on the dipole-
dipole or Coulomb forces among surface molecules which should increase
with increasing packing density. For the bulk phase it is known that the bulk
undergoes a phase transition from monomers to the formation of micelles
when the surface density approaches saturation with increasing bulk
concentrations. Discussion, however, exists on the sharpness of this phase
transition?42>. A constant bulk activity coefficient expresses that the
aggregation number for surfactants in the bulk is approximately constant.
Therefore, a gradual change of the aggregation number as direct precursor to
the cmc can be excluded.

We have also seen evidence for a surface phase transition in a soluble
monolayer. We have proposed a new model, based on a variable-depth
potential well at the liquid surface, as an alternative to Langmuir adsorption.
The variable-depth model points out some interesting differences between

liquid and solid surfaces, but it clearly needs to be tested with experiments.
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Figure1: = Comparison of Langmuir (lines) and variable-depth models
(symbols) in dynamic adsorption of ideal molecules for four different
surfactant concentrations.
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SURFACE SUSCEPTIBILITY

NUMBER OF SURFACE MOLECULES [nm'2]

Figure 2:  Second-order surface susceptibility versus the number of surface
molecules for an insoluble monolayer of C18NS at the air/water
interface in the presence of excess counter ions (0.35 M NaCl, 20° C). The
polarization combinations used are p- and s-polarization of the SH
output and a linear polarization at 45° from the incident plane of the
fundamental input.
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Figure 3:  Optical SHG measurements as a function of time for two
different avera~e surface densities of the insoluble C18NS molecule. The
fluctuations indicate an inhomogeneous surface on the scale of the laser

beam diameter.
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Figure 4a: Number of surface molecules versus the bulk mole fraction of
the soluble C6NS molecules (0.35 M NaCl, 20°C). The lines represent the
surface coverage at saturation (- - - - ), the number of surface molecules
calculated from the Gibbs' equation (Equation 5) (——) and the
Langmuir equation (Eq. 32) (—) with X3 /2 = ggx 10 -6, respectively.
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Figure 4b:  Surface pressure versus the bulk mole fraction of the soluble

C6NS molecules (0.35 M NaCl, 20° C). The lines are calculated from
Equation (33), for an ideal system of non-interacting adsorbates with ff—; =
1, Ax =0 mN/m(----), and for % >1, At =48 mN/m (——).
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Figure 5a:  Experimental results of surface pressure versus mean area per
C20-OH molecule for a C20-OH monolayer on plain water (0.35 M NaCl
solution with pH = 5.6 at 20°C) (0) and on solutions with C6NS bulk

concentrations of 200 uM (m ) and 600 uM ().
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Figure 5b: Experimental results of second-order susceptibility versus mean
area per C20-OH molecule for a C20-OH monolayer as in Figure 5a: on
plain water (0) and on solutions with C6NS bulk concentrations of
200 uM (= ) and 600 uM (e). The second-order susceptibility is
normalized with respect to the signal from a close-packed C6NS
adsorbate layer in the absence of C20-OH molecules. The fluctuations in
the nonlinear response from the interface of a C20-OH monolayer spread
on a C6NS solution can presumably be attributed to phase separation of
soluble and insoluble molecules in the surface monolayer.
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Figure 6:  The surface pressure on the left (*) and - —

In -;(—; (o) on the
right ordinate as obtained from the SHG measurement versus the bulk
mole fraction of C6NS molecules. The two data sets coincide very well if
the ordinates are shifted by Ax = -154 mN/m, respectively. The solid line
represents a polynomial fit to the surface pressure data. Its slope reveals
the number of surface molecules (Gibbs' Eq. (5)) and is given in Figure
4a (solid line). At surface saturation the slope approaches 1/ A” with A”
= .36 nm?2 given by the straight dotted line.
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Figure 7:  Surface pressure versus the mean area per molecule for the
insoluble monolayer of C18NS (——) and the soluble C6NS film ()
(0.35 M NaCl, 20° C). The former isotherm is governed on compression
of the insoluble C18NS monolayer, the latter on adsorption of C6NS
molecules tc the air/water interface for various bulk concentrations. In
the adsorption study, the area per molecule is obtained from the SHG
measurement, the dotted curve is calculated from n=- — In(1-X;)-
A with the derivation given in the text. A
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Figure 8 Fluctuations observed with ellipsometry during C6NS dynamic
adsorption, indicating for the first time the presence of a phase transition
in a soluble monolayer.
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Figure 9 ®-N curve measured during dynamic adsorption at several
concentrations: 0.6 jiM - filled diamonds; 1.0 uM - open diamonds; 1.5
MM - filled triangles; 2.0 uM - open triangles. The symbols cluster in a
horizontal line at their maximum pressure because the pressure is more
accurately measured than the SHG signal for any one point. The dotted
curve shows the expected dependence for an ideal surfactant with the
same limiting area, while the solid curve is an empirical functional fit.
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Chapter 3 - Mechanisms for SHG in an Isotropic Vapor

I.__Historical Backgroun

A strong argument for the utility of SHG as a surface probe is the fact
that it is forbidden in a centrosymmetric bulk. However, there have been
observations!?># of appreciable SHG observed in a bulk metal vapor when a
laser is tuned to a second-harmonic resonance in that vapor. We sought to
resolve this disparity using a new tunable amplified picosecond laser system
built by our group. This chapter and the next present cur current
understanding of this problem based on our new experimental results.

Three-wave mixing, of which SHG is but one example, is not allowed
in isotropic vapors in the dipole approximation.” When an external electric
or magnetic field® is used to break the symmetry, three-wave mixing has been
observed and understood. When higher-multipole processes are enhanced by
a noncollinear geometry, sum frequency generation has also been observed
and understood.” But in 1977, Flusberg, et al., reported difference-frequency
mixing in the absence of any external ﬁeld6, and soon thereafter reported
second-harmonic generation at a two-photon resonance. His result was not
understood.

Flusberg’s finding sparked a series of experiments in which SHG was
observed in several alkali®*10-11 and alkali-earth vapors,u'l?"l‘i'15 and at both
one-photon (s-p) and two-photon (s-d, p-p, and s-s) resonances.! The s-s
observation was particularly important because s-s transitions have no

multipole moment. Thus multipole process cannot explain the s-s
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observation.

The presence of SHG in a bulk vapor is a complex problem. The
resonance enhances many nonlinear optical effects, and dipole-allowed effects
of higher order can easily compete with and affect the dipole-disallowed SHG.
More than fifty spectral lines have been observed and their processes
identified!® when a nanosecond laser is tuned to the lowest possible two-
photon transition. The processes involved include energy pooling, dimers,
collision-induced effects, fluorescence, and wave-mixing. However, the most
important effects are the third-order processes of four-wave mixing and three-
photon ionization.

Explanations for SHG must account for symmetry-breaking on two
levels: microscopically, the unperturbed atoms of the vapor are
centrosymmetric, so their individual second-harmonic polarizabilities B are
zero. In other words, SHG involves a two-photon, even-parity transition up
and a one-photon, odd-parity transition down. Thus, SHG cannot connect
two states of definite parity, such as the levels in a spherically symmetric
atom. The second symmetry-breakmg is macroscoplc, even if the atoms did
possess a non-zero B the orientational average of B in Equation (5) of
Chapter 1 will be zero in an isotropic vapor. These considerations eliminate a
pure electric dipole mechanism as the explanation of vapor SHG.

In this chapter, a number of mechanisms are eliminated by comparison
with the picosecond experiment’s results. The remaining modei®1? states
that the ionization of the vapor leads to a macroscopic separation of charges.
The resulting dc electric field breaks the microscopic symmetry of the atoms
by mixing states of different parity. It also breaks the macroscopic symmetry

because it is constant over a region (the beam radius) larger than a wave-
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length of light.

The ionization model was called to question because in several
cases!’1> there appeared to be no correlation between the ionization measured
and the SHG observed. It was assumed that stronger ionization would create
a stronger dc electric field. In Chapter 4 it is shown that the electric field
saturates at the levels of ionization expected in these experiments.

The strongest of the alternative models! involves collisions between
the excited atoms and the buffer gas. The collisions mix the states of the atom
and allow SHG. Evidence for their model includes a similarity between the
variation of SHG efficiencies and the measured collisional cross-sections!® of
an atomic species as the principle quantum number n is varied. Although
this model does account for microscopic symmetry-breaking, it is not clear
how the macroscopic symmetry is broken. I attempted to augment this model
by considering the mechanism of population gradients, but find that the
resulting efficiencies are far below those that are observed.

In this chapter I will detail each proposed mechanism and show how
each would be predicted to behave under different experimental conditions.
These behaviors are then compared to experimental results to determine the
SHG mechanism. The major characteristics that we observe in the
experiment, and which the models should predict are:

¢ Several hundred second-harmonic photons are generated from a
linearly polarized 3 psec laser pulse focused to 400 um beam waist and 2x1010
W/cm? intensity in a 10 cm column of 1016 molecule/cm3 potassium vapor.

* Second-harmonic light appears for both 45-9d and 4s-11s two-photon-
resonant tunings of the laser. Strong light is generated at both the 10p and

11p resonances, and is thought to be due to allowed four-wave-mixing
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processes.

e With a 4s-9d tuning, light is also generated at 11s, 10s, and 8d
resonances, with strengths slightly weaker than that of the second-harmonic.

e The SHG light is collimated, but is split into two lobes oriented along
the polarization direction of the input laser beam.

¢ The SHG iight is emitted within the time resolution of our
photomultiplier tubes, which is 10 nsec.

¢ The SHG light is strongly intensity dependent (I6 or greater), but it
quickly saturates.

¢ The SHG light is polarized primarily in the direction of the input
polarization.

¢ The SHG light decreases with increasing Ar pressure faster than 1/P.

I will examine these results in detail in Chapter 4.

Most of the previous experiments were done using nanosecond
tunable dye lasers tuned into one- or two-photon atomic resonances. Several
experiments have been reported using non-resonant picosecond sources, 120
but these were done at very high intensities where perturbative calculations
break down. All picosecond experiments used the ionization model to
explain their results.

Our experiment bridged the gap between these two types of
experiments by using amplified few-picosecond pulses tuned to two-photon
resonances to test SHG in potassium vapor. Because of the resonant
enhancement, the experiment used much lower intensities than the previous
picosecond experiments. By splitting the pulse into two and délaying one
pulse with respect to the other, we planned to determine the time evolution

of whatever broken symmetry was allowing the SHG. By separating the
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symmetry-breaking from the SHG, we attempted to determine the
mechanism.

In the sections below, I first re-examine the assumption of broad
resonances made in Chapter 1, which is clearly violated in the case of the
narrow atomic resonances of a vapor. Then I outline the mechanisms that
were considered but eliminated based on the experimental results. Finally, I
describe a mechanism by which a dc electric field can allow second-harmonic
radiation in the vapor and the characteristics such radiation would have
assurmning a radial dc electric field. The details of how the dc field should

evolve and their experimental consequences will be covered in Chapter 4.

IL. herent Transien f Nonlinear Interaction

At low pressures, the atomic resonance is narrower in frequency space
than the spectral width of a picosecond laser pulse. This is the opposite of the
assumption in Chapter 1 that the nonlinear polarizability of the molecules
was constant in frequency space. As a result, the atomic response must be
treated as a coherent transient excitation. In other words, the atomic state at
time t is determined by the history of the electric field and not just by the
electric field at time t. The effective potential due to the field can be calculated
from second-order time-dependent perturbation theory. The states are
labeled as follows:

lg > : 4s, the ground state of room temperature atomic potassium.

Im > : intermediate states, typically 4p, which is 4000 cm-! away from
the laser's frequency. To be exact, calculations should be summed over all
intermediate states, but I drop the summing for these rough calculations.

If>: final state, 2k above the ground state. In our experiments we
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tuned to 9d, 10d, 11s, and 12s resonances.

It > : state with which If > must be mixed in order to radiate as a dipole
with the ground state. The most effective |r > states are p-states close to the
excited states, such as 10p and 11p.

These levels are diagrammed in Figure 1. Initially, all atoms are in Ig».
The population of If > is then determined through perturbation with the
electric potential q E -X. To first order,

.t
D) =5 oj q E xfg expl i(wgt - @) t] dt (1)

where o is the laser frequency, and we have assumed a square pulse
approximation for the laser field. For two states of the same parity, x¢g = 0, so

we proceed to second order:

. t
<20 = (7 | @Bt g | xpliotm - o) 11
y
x6[ expl i(dmg - ®) '] dt” @

g E)2 x¢m Xmg_ (exp(i(mgL— 2w0)t) - 1 _ exp(i(wfm — o)t) - 1) 3)

" 12(0mg- o) (cogf - 2a) (@fm ~ ©)
The first term in parentheses is in resonance for our case (20 = wgf), so I will
neglect the second term. For short times t, the first term = i t, so the transition

probability is

(q E)4 Xfm2 xlm’Lz 2

2) 2_
I | a (Oomg - 072

@

It should not be surprising that the probability is proportional to t2 because
the situation is a two-photon Rabi oscillation with an effective potential of
_ (q E)? Xfm Xmg

! fi (Omg — ) '

(5)

The upper state probability is just



1 cf)(8) 12 = sin2 (y—%—t) 6)

For t much less than an oscillation period, Equation (6) reduces to

Equation (4). In this experiment, E = 4500 esu (=1010W/cm?), Xfm = 3.8 pm, Xmg
= 140 pm, Gmg = 2.5 x 1015 sec’], @ = 3.14 x 1015 sec’], t=TL = 3 psec (the laser
pulse length), so 1cf2(t) 12 =1.2x 102, and Equation (4) is a good
approximation.

However, our experiment is concerned with more than just the
transition probability to the excited state. It is the coherent superposition of
that state with the ground state that can give rise to second-harmonic
radiation. We therefore need to examine the evolution of the off-diagonal
elements of the density matrix, peg(t), as well. The initial condition is

pg(0) = 0. In the relaxation approximation,

dpee(t) . . V(@®) f
_%;%— = -10gf Pfg +1 R (ng - pff) — ET_ZE (7)

where T3 is the relaxation time for the off-diagonal element to decay to its
equilibrium value of zero. (pgg - pgf) = 1 at all times, so if we consider a
resonant (2w = wgf), short (TL << Tp), square laser pulse applied as the
perturbation (V1 applied for 0 < t < TL), we get a peak magnitude of

iviT
prg (T =po =4 ®)

at the end of the pulse, and is =0.11 for the experimental values above. After
the laser pulse, V(t) = 0, but psg still evolves according to Equation 7). It
therefore oscillates at wgf (which is the second harmonic of the laser
frequency) as it decays to zero:
Prg(t) = Prg(t) exp(-iwt) 9
For low pressures, the relaxation approximation in Equation (7) does

not hold. Instead, the inhomogeneous Doppler broadening dominates the
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decay, so pfg undergoes a Gaussian decay:
~ -2
Peg(t) =po exP(‘flz')

where T; is the inhomogeneous broadening time

2M¢c2
Tj= 2 -

For potassium at T=350°C and the 4s-9d transition frequency, T = 370

picoseconds.
At higher pressures, collisional dephasing starts to dominate.
Assuming that the dephasing time is independent of velocity,

- -0 -t
pfg(t) =Jde mﬁ J Th)

_ 2t
TR Ti2 T Ta

Th is the homogeneous dephasing time due to collisions:
1

vo N

Th=

(10)

(11)

(12)

(13)

where v is the average speed, © is the cross section, and N is the density of the

colliding partner species. For sodium atoms colliding with argon, 6 has been

measured 8 and reaches a large maximum around n=9. Model decay curves

of this coherent component are drawn in Figure 2 for various Argon

pressures, using a 3500 A2 cross section like that seen in sodium.

These decays are important because they determine the time scale of a

short-pulse experiment. The radiation of the coherence persists for tens or

hundreds of picoseconds after the laser pulse. Thus if the symmetry of the

medium changes with time, the coherence will sample the broken symmetry

throughout its decay.

If the observed second-harmonic light is due to the above second-
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harmonic coherence, then Equation (12) predicts a relationship between the
SHG and the Ar pressure. The detectors are slow compared to the coherence
time of the atoms, so they only measure the signal integrated over the entire
decay. If pg could radiate directly, then Equation (12) predicts that the
observed signal would be proportional to —N% for high Ar pressures (where
Th dominates) and independent of Nz, for low Ar pressures (where T;
dominates). A calculated curve is shown in Figure 3. If pgg cannot radiate
uniformly in time (as would happen for a slowly changing symmetry), then
the shape of this curve would be changed.

fil. Radiation of nd-Harmoni heren

The macroscopic polarization of the medium is determined from the
density matrix in the usual way:5
- -
<P>=Tr(pP)
=—Ne§n<mlp§)lm> (14)

Using a 3x3 density matrix with the g, f, and r states represented, the real X

matrix can be represented as

. 0 0 xgr
x=| 0 0 xf (15)
Xgr Xfr 0
Then the polarization is
—Ne Tr (p X ) = -Ne{2 Re(prg) xgr + 2 Re(prf) xfy). (16)

As expected, pgf does not contribute directly to the dipole moment of
the medium. It can contribute indirectly if it is mixed with prg or prf. prg and
prf can become nonzero through an interaction that breaks the symmetry of

the Hamiltonian:

dpre(t) -
e _ 2L 1) +Einy plrg, a7
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where Hy is the spherically sy;mmetric atomic Hamiltonian and Hjpt is the
symmetry-breaking perturbation. Since p describes the ensemble average of
atomic systems, Hin is the ensemble average of Hamiltonians that act on
those systems.

Once a polarization is established in the medium, the light generated is
calculated from Maxwell’s wave equation. In the case of a beam traveling in

the z-direction, the wave equation takes the form®

2 27i
= E(®,2) =2 P(0, 2) expli Ak 2). (18)

The phase mismatch, Ak, is dominated by the potassium polarizability, and
for N=1016 atoms/cm3, Ak=0.7 cm-1. Integrating Equation (18) for a

polarization constant in z gives maxima of the electric field of
2r o

o P(w). (19)

E(m,zlnax)=

A polarization of 102 esu radiating for 100 psec is required in order to account
for our observed signal.

Next, I will consider effects that could generate second-harmonic light,
either directly or by inducing the above coherence to radiate. Most models
will be eliminated because they cannot produce the observed amount of

polarization.

A. Fluorescence and superradiance

Because several other wavelengths are observed with a 4s-9d tuning,
the mechanism of simple fluorescence must be considered. Individually, the
atoms would radiate as quadrupoles, and their radiation would add
incoherently in all directions. Decays via nearby states would then account
for the other frequencies we observe.

The largest theoretical argument against such an effect is that the states
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are oidy quadrupole-coupled (in the case of 9d) to the ground state. Therefore
their primary decay path will be to dipole-coupled intermediate p-states.
However, we have not looked for 9d-np radiation, so experimentally we
cannot make a direct comparison. Other characteristics of incoherent decay
would be its uniform radiation into all directions, and persistence after the
laser pulse for the excited state lifetime of 9d, which is on the order of
microseconds long. Our observation of a collimated, prompt response refutes
this mechanism as an explanation.

5 occurs when an

The related phenomenon of superfluorescence
inverted population of atoms couple together strongly via the radiation field.
They can then radiate coherently, and if the spatial distribution of excited
atoms is a long cylinder (as in this experiment), the radiation would be
collimated along the cylinder. A single lobe would be emitted in each
direction out of the cylinder. The radiation can also occur in times much
shorter than the normal lifetime of the excited state.

The weak coupling between radiation and the 4s-9d transition makes
this mechanism a hardly credible one. Not only are the couplings stronger
between 9d and np, but the populations between these states will be inverted.
The estimated 1% excitation to the 9d state is not inverted, and therefore
cannot become superradiant. Thus if any superfluorescence were to occur in
this system, it would occur at a different frequency from our cbserved second-

harmonic. Additional experimental inconsistency with this model comes

from the two-lobed structure evident in the SHG.

B. Muitipole contributions
Because the laser is intense and the response is weak, it is natural to
consider whether higher-order multipoles could account for some of the
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observed signal. The 4s-11s transition has no multipole moment in any
order, so this mechanism would not directly account for the 11s response.
The following calculation examines the multipole radiation from the 9d state.

First, the magnetic dipole is easily eliminated because the magnetic
dipole moment will be zero in a linearly polarized beam:

M (2) = xm (E1(@ x E2(@) =0 if E1(e) = E(o). 20)

The electric quadrupole contribution is much harder to eliminate.
There are two types of quadrupolar contributions to SHG. One type concerns
a quadrupolar interaction with the incident radiation, and the other concerns
quadrupolar generation of the outgoing radiation. The first type generates a
polarization in a mediun: proportional to a quadrupole moment of the input
field:

F (20) = X5 :E@) V E) (21)
while the second type generates a quadrupole moment in the medium:

0=%3:E1@ Ex. (22)

Since ‘;Z’g and ;?l are fourth-rank tensors, they are not forbidden by the
centrosymmetry of the vapor. Explicit equations for these tensors are given
by Bethune in terms of sums over the atomic resonances. At the 4s-9d
transition, only ;?l shows a resonant enhancement, as would expected from
the s-d selection rules.

This contribution can also be thought of as the direct radiation of the
off-diagonal element generated in Equation (8). While a d-state is not coupled
with the ground state via dipole radiation, it is coupled via quadrupole
radiation. In effect, the quadrupole moment 8 given in Equation (22) has

summed over the individual quadrupoles. The effective polarization of a
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quadrupole moment is due to its gradient:
— - o - oq 2 -
PRw)=V-Q =V -xq:E1((0) E >(®). 23)
Centrosymmetry places several restrictions on the elements of ‘fg.m
From simple reflections and 90° rotations, it can be seen that there are only

four distinct elements:

9 _oq o9 _oq ©q _oq ©q _oq
Xiiii =X1 Xiijj = X2 Xijij = X3 Xiji=Xg (9
Symmetry for small rotations also gives the relation
X1=23+X3+24- (25)

For second-harmonic generation, ‘fg must be symmetric with respect to an

exchange of input fields, giving

X3 = Xd- 26)

The quadrupolar radiation from a Gaussian cylinder of excited atoms

might well be a collimated, two-lobed beam, similar to the SHG observations.
But as Bethune worked out,?? the gradients of quadrupole moment along the
sides of the cylinder can radiate only weakly. This results from the full
vectorial expression of a linearly polarized Gaussian beam traveling along
the z axis:

- - i@
E = Bov(e- T3 & @

where R is the minimum beam waist, &« and &, are unit vectors in the x- and
z- directions, respectively, and
r2
y(r, z) = L explikz - CE-Z-— imt)

U2) = (1 - %) -

kR2
2

z (the confocal parameter)

2
6 = Tan-1 (ﬁ) (the beam divergence half-angle).
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The usually-neglected z-component of the electric polarization is necessary to
satisfy Gauss’ Law for a divergenceless electric field in free space, which the
above approximation satisfies to order 63. The z-component is quite small for
a loosely focused beam, but it plays an important role in quadrupole radiation
from a centrosymmetric medium. The effective polarization in the
i-direction is then worked out from

Pi= ;gu %’ (Ex Ep- (28)

The algebra shows that both Px and P, are non-zero, with contributions from
all of the distinct elements of ;; however, the polarization can only radiate if

it has a curl. The curl of our calculated P is zero up to order 62 under the

sy.ametry relation defined in Equation (25). The remaining contribution is!?
2L o
PRo) = 320w 522 @) 29)

where

N 4s12219d><9d 1z| 1z14s
X:,Z) (2w) = 21:23 z <4s12219d><9d | zI np><np | z| 4s> 30)
n

(“145,9d -2mp) “Ms,np"ml)

=6 x 1618 csu.
For this experiment, 6 = 104, so this polarization is only 3x10-18esu, nine
orders of magnitude smaller than the observed SHG.

The amplified laser beam is not Gaussian, and is closer in form to a
flat-topped beam due to saturation in the center of the amplifiers. However,
the contribution of higher order transverse modes also cancels out up to
order 62, and the remainder is similar in magnitude to the Gaussian
contribution above. Thus quadrupole contributions cannot account for the

observed signal.



C. Collisional mechanism

A number of authors!0-11:152324 have proposed that atomic collisions
play the part of the symmetry-breaking Hjn¢ in Equation (17). The
experimental evidence from this picosecond study refutes this proposition.
There are two types of collisions: those between distinct partners (K and Ar),
and those between identical partners (K and K). Each type will be treated
below.

Most previous experiments were done in an oven with a central
heating zone. The metai vapor was kept at partial pressures < 1 Torr with a
noble buffer gas of 10-1000 Torr throughout the oven. Thus the primary
collision partner was a noble gas atom. It is clear that a mixed-pair collision
will break the microscopic symmetry of an individual alkali atom; however,
such collisions will not break the macroscopic symmetry of the vapor because
the individual collisions will take place at random orientations. Thus
coherent SHG cannot be explained by simple collisions. Couched in terms of
Equation (17), the Hjnt acting on the entire ensemble of excited atoms is the
average of all the randomly oriented collisions. It has no direction associated
with it, so it is not a vector, and cannot mix terms of opposite parity.
Therefore collisions cannot induce pgg to radiate. |

By considering the effect of the nonuniform laser excitation, the
macroscopic symmetry can be broken. Because more atoms are excited at the
center of the beam that at the edge, there will be a gradient in the excited state
population density from the edge to the center of the beam. But even this
gradient cannot change the scalar quality of Hint, because the noble gas
collision partners are still randomly oriented about any small ensemble of

excited atoms.
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It is possible that an unknown collision mechanism induces the
radiation, but predictions can still be made about its behavior. Any Hijnt
would depend on Ny, so the Nar dependence predicted in Figure 3 would be
altered. An extremely conservative estimate of the upper limit for a
significant impact is the experimentally measured dephasing impact
parameter, 50 Angstroms. At 10 Torr, the noble gas atoms are more than 200
Angstroms apart on average so only 10% of the excited atoms will be
undergoing a collision at a time. Increasing the noble gas density should
therefore increase the number of significant collisions and consequently the
SHG radiation. This increase would slow the decrease in signal expected from
the faster dephasing of the signal at higher pressures.

In our experiments, however, we observe a faster decrease in signal
with Ar pressure than expected from simr »le dephasing (see Figure 16 in
Chapter 4). In addition, we lowered the Ar pressure to less than 1 Torr,
bringing the oven into a heat pipe mode® where the central potassium vapor
pressure equaled the pressure applied by the Ar. In this mode, Ar is excluded
from the center of the oven entirely, since the total pressure throughout the
oven must remain constant. We saw no decrease in signal when we entered
this mode, so clearly the Ar can play no direct part in the SHG radiation.

Collisions between potassium atoms could also generate coherent
SHG. In this case, an individual collision is still centrosymmetric, and the
pair can be considered a quadrupole, because the two atoms are identical.
However, the excitation gradient introduces a gradient of the quadrupole
density, which acts as an effective dipole.

The collisions mix the excited 9d state with other states of the atom:

19d’> = 19d> + Z ¢p(r) In> (31)
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where ¢n(r) is the mixing parameter, and depends strongly on the distance r
between the colliding atoms. As an induced dipole-induced dipole effect, it
wiil be related to the van der Waals interaction and its 1/r6 dependence. The

second-harmonic polarizability of each atom is then

© 4s|;’ln><9dl:lnp><np|;|4s>
<2>()=E €3 4nlD) 32)
P - A (045,94 ~ 201) (@45 np—0L)

and the magnitude of the quadrupole moment of the pair is

© -
QI =rB@r):EE. (33)
The effective polarization is the gradient of this moment across the beam,
L d
F o0 =Th EE. (34)

where 6 is a geometric factor from averaging over quadrupole orientations, R
is the radius of the laser beam, and the angle brackets denote averaging over
all collisions taking place.

A crude estimate of the average assumes ¢(r) to be constant out to an
effective collision radius rmax, and zero beyond rmax. The number of atoms
undergoing such collisions will be (fmax/rave)®. Even by assuming the
maximum possible B of 0.5, and allowing for rmax = 504, the effective
polarization is three orders of magnitude smaller than the experiment
observes. A more realistic estimate for rmax might be five times smaller, and
because the polarization depends on r:mx, the actual polarization will be
much smaller than this crude estimate. Thus collisions between potassium
atoms cannot account for the magnitude of our observed signal by several

orders of magnitude.

D. Free electron nonlinearity

The nonuniform excitation in the vapor will also create a nonuniform
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distribution of free electrons due to photoionization. As Shen calculated in
his introduction,5 a nonuniform plasma will act as a nonlinear medium and
generate a second-harmonic polarization

(V Ne- E) E. (35)

P Qw)= 4m?2 @t

This polarization will only exist while the laser pulse is present because the
free electron nonlinearity does not have the sharp resonance of the atomic
response. With the values of Ne = 1012 cm3, R = 100 pm, and E = 4500 esu,
the calculated amount of polarization is five orders of magnitude too small
to account for the observed signal, so we eliminate this model as well.

Others’ experiments found similar discrepancies.

E. Amplification due to (5

Another interesting possible mechanism is due to a dipole-allowed
13 (20 = 0+0+0+0-20), whose transitions are diagrammed in Figure 4. It
would be a high-order parametric-conversion mechanism since light at 2w is
required to generate the polarization. In this experiment, it would be singly
resonant with the narrow atomic 9d resonance and doubly resonant with
continuum states. However, it is not resonant with the 9d state in the two-
2w-photon transition from the continuum to the ground state. While the 9d
state is at the right energy, it does not obey dipole selection rules, so it cannot
contribute.

It is fairly difficult to estimate the strength of x5 theoretically.
However, this model makes some predictions that are easy to test
experimentally. The clearest difference is in the intensity dependence of the
signal. As a parametric conversion, the signal undergoes exponential gain

within the active medium. The gain is proportional to I4, so the intensity

60



dependence should be exp(I4). This extremely strong dependence would
appear as an upward curvature on a semi-log graph and as a stronger upward
curvature on a log-log graph. The observed signal has a downward
curvature on a log-log graph for all measurable intensities.

The observed output structure also contradicts this mechanism. The
strong intensity deper.dence would indicate a beam strongly peaked in the
center. Instead, the output has two lobes and a low intensity in the center. If
the low center intensity were due to phase mismatch, then the output power
would increase dramatically as the potassium density is lowered. It does not.

Another characteristic of x5 effects would be its output spectrum. It
would have an additional downward resonance with any p-state, so its effect
would be resonantly enhanced at specific frequencies different from 2w. We
already observe very strong signals of =10,000 counts/shot at the 10p-4s
transition (which we attribute to dipole-allowed four-wave mixing,
diagrammed in Figure 1), so the resonant x(5) should generate strong signal
at 40-010p, which corresponds to a wavelength of 2960 Angstroms. We do
see some signal at this wavelength, but it is only 10 counts/shot in spite of the
stronger generating field and the resonantly enhanced %>. The increased
phase mismatch at s-p transition frequencies makes a quantitative
comparison difficult, but this weak signal makes the non-resonant x5 an

unlikely candidate for SHG.

F. Electric Field due to lonization
-
If a dc electric field is present, then we have Hint =€ E4c .X and

Equation (17) becomes

dprg(®) . i i
pcrit = 1 agr prg + @ Edc Xgr (Prr —~ Pgg) — 1 @ Ede Xfr Pgf- (36)
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Pgf will act as the driving force for this oscillator, prg. Because pgf oscillates at
0gf, prg Will also have an oscillatory component at wgf, and Equation (36) can
be solved with:

Prg(t) = A exp(i wgft) +B. 37

where

e Edc X¢r P ()
A=
hi (o0gf ~ @0gy)
_e Edc Xgr (Pgg — prr)
R agf
Because the driving frequency, wgf, is close to the natural oscillator frequency,

B

Qgr, the factor A can be relatively large.
The polarization of the medium at the laser’s second harmonic,
20 = wgf, due to pgg, is then
2 e2 Ege Xfr Xgr P £5(t) Nk
f (0gf - wgy)
The polarization due to prf is identical except that it has the much larger

P(20) = 2Nk €A xgr = (38)

factor wrgin the denominator of A, so it is neglected. For a moderate dc
electric field of 0.1 esu (see the estimates made in Chapter 4) and potassium
density 1016 atoms/cm3, the second-harmonic polarization is 7.8x10? esu.
The result is not exact because it assumes a steady state, whereas in
reality Eqc and pgs both change slowly with time, either growing or decaying
in a time on the order of tens of picoseconds. However, the only effect of
such transients would be some kind of ringing or beating that would not
significantly affect the total integrated radiation. The estimated dc-field-
induced polarization is ten times larger than needed to account for our signal,
but details of the transverse beam structure may account for the discrepancy.
Other characteristics of field-induced radiation also fit the observations.
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It can induce radiation of both s-d and s-s transitions. The emitted light
would be both prompt and collimated. The field is zero on the axis of the
laser, so SHG would be zero there as well. Further details require the more

exact description of the electric field given in the next chapter.

IV, n ion

In this chapter I have described a number of mechanisms that could
generate SHG in an atomic vapor. The restrictions placed on these
mechanisms by the symmetry of the medium have been severe. In most
cases, the effectiveness of the mechanism is far below that which we observe
in experiment. Other characteristics of the mechanisms also differ from those
observed. On the other hand, the mechanism of a moderate dc electric field
fits many of the characteristics of the observations. In the next chapter, I will
examine the details of how this field could arise and make detailed

comparisons with our experimental observations.
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Figure 1 - Level diagram for potassium showing the relevant atomic energy
levels. Typically, the laser is tuned to the two-photon 4s-9d resonance
(two upward arrows). SHG appears as the single downward arrow.
Four-wave mixing, a strong allowed process with output near the SHG is

shown as the two angled downward arrows.
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Results from the SHG in Vapor Experiment

In the remaining model of dc-field-induced SHG, I have not yet
specified how the dc electric field develops from the ionization in the laser
beam. Even in a simplest picture of ionization, the development may have a
number of different characteristics depending on the number, initial
distribution, and environment of the ionized electrons. I discuss these
characteristics below and compare them with our observed results in detail.

._Evolution l ic_Fi

In this sectior, a fairly simple model is used to determine the prime
characteristics of the dc electric field expected from ionization along a
Gaussian beam. Some of the material has been drawn from an excellent
paper by Bethune,! but much of it was deduced for this experiment when the
data demanded more details. For low amounts of ionization, a Gaussian laser
beam will produce a Gaussian cloud of ionized electrons

_ 2
Ne(r, 0) = Np R—fz) (1)

where R; is the radius of the ionization cloud and Ny is the central peak
density of electrons. An equal number and distribution of ions Nj(r, 0) will
also be produced. Since potassium ions at 350° C travel only 1um/nsec, their
movement is negligible for the beam radii (>50 pm) and delay times (<1 nsec)
used in this experiment. They are therefore be assumed to remain fixed. If

R
three photons are required for ionization, then R; = ;/_5' where R is the radius
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of the laser beam. The velocities of the released electrons are assumed to be
spherically symmetric. In the case of three-photon photoionization, their
initial kinetic energy is 2.1 eV, and their speed is 1.0 pm/psec.

An exact treatment uses the Boltzmann transport equation governing
the distribution of electrons, f(?, v , 1), in the phase space, (—; , :),

o o f—f,
§+;(r,w_r))-€vf+:-€rf=——o

(2

where c_; (r, v) is an acceleration vector, fpis the equilibrium distribution in
phase space, and 1. is the phenomenological collision time that brings about
that equilibrium.
The spatial distribution of electrons is calculated at any time by
Ner, 0= | d% 65, v, 9. ®
This then leads to an electric field via Gauss’ Law:

r
4
E(r, 9 = Jor v 0%, 0 - Netr, ) @

where the cylindrical symmetry of the problem has been utilized. Since the
initial electron and ion spatial distributions are equal, they cancel in the
above equation at t=0. The remaining problem is to calculate the change in
electron distribution AN(r, t) = Ne(r, t) - Ne(r, 0), and

—4re
r

r
E(r, t) = d[ dr’ ¥ ANe(T’, t). (5)

A. Ponderamotive potential
The laser beam exerts a force on the electrons due to the
ponderamotive potential. This force was used to account for the SHG

observed in other psec experiments. The depth of this potential is
2 E2
Up =
P” 2m?

(6)
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which is 1<2_T for a tightly focused beam of 1012 W/cm2. The associated force
acting for 2 psec changes the electrons’ velocity by a negligible amount (<10-3
um/psec), so it will be neglected in the following equations.

B. Ballistic electrons

When the electrons are first released from the ions, there is no
macroscopic electric field because the average charge density is zero. As the
electrons are redistributed, the electric field grows and starts to affect the
electron movement. An approximation to the initial electron movement
ignores the effect of the resulting electric field. Ne(;) , t) in Equation (3) may be
expanded in a Taylor series in time. The linear term is

dNe(r, ) (,od = 2
etz 0 _ 43y L2, 7, 0. @

If the electrons do not experience any forces or collisions, then equation
(2) predicts a simple evolution of the Boltzmann distribution:
- - e
f(rlvlt)=f(r -V tl v, 0)- (8)
Then Equation (7) can be evaluated
dNe@, 9 (,od 2

it -‘d3v dtf(r—vtv 0)
e = I d- -
=|d ( K, v, )dt(r—v t) + V f(r v 0) dt(v))
f 5 5 o o o
=Jdv v -V, f(r,v,9)
=0. )

The result is zero because f(?, ;;, 0) and 6’, are isotropic in v. The next term
in the Taylor series involves v ;;, so it does not integrate to zero. Our
monovelocity distribution can be easily integrated to give

ANG(T, )= 3 £ VG2 V2Ne(r, 0) + . (10
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Other isotropic distributions of velocity would have a different coefficient, but
would still redistribute as t2.

C. Diftusive electrons

The initial electron redistribution changes its character after the
electrons start colliding with atoms. They collide after a mean time T¢ = :‘—0,
where L is the mean free path of the electrons. The collisions are very nearly
elastic because me<< Mytom, and it would require more than 1000 collisions to
reduce the electron's energy by 5%. At 100 Torr Ar, the electron undergoes
100 collisions in 1 nsec, so it is assumed the collisions are completely elastic.
They only change the direction of the electron's velocity vector.

Once the electrons undergo collisions, their transport will be diffusive
instead of ballistic, and they will redistribute according to Fick's Law:

el _pvne, o, an

where D = ‘g—L is the diffusion coefficient. The effect of the growing electric
field will be introduced below.

Their mean free path is determined by the densities of their collision
partners Ar (6 =3 A2 at2 eV, N = 35 x 1016 cm-3 at 10 Torr, Lar = 100 pm),?
K (o =200 A2, N = 0.8 x 1016 an-3 at 320°C, L = 60 pum),? and other
electrons (6 = 15,000 A2 to get deflections > 0.1 radian, N < 1012 am3,

Le > 6 mm). These can be combined into a single mean free path by
1 1 1 1
L ik "k "L 42
L and T, are shown in Figure 1 as a function of Ar pressure. They have equal
values in units of um and psec, respectively, since the electron velocity is
1um/psec. D is 1/3 this value in units of pm?2/psec. For all of our

experimental conditions, Tc<T, the decay time of the second-harmonic

73



coherence. Since the experiment integrates signal over T, the dynamics in a
pump-probe experiment will be dominated by the diffusive regime of
electron motion.

It is interesting to note that the constant slope in the diffusive regime
maiches that of the ballistic transport exactly at the collision time T.. A
simple connection between ballistic and diffusive transport is therefore

% vo? V2 Ne(r,p) 12 t< T,

1 (13)
g V02 V2 Ne(r,t) (2Tt - T2 t>Te

ANe(l'; t) =

Examples of the evolution of ANe(r, ) with these simplifying assumptions
are presented in Figure 2. The resulting electric field will have the same time
dependence. Note that increasing the Ar pressure severely dampens the

evolution of ANe.

D. Effects of Eqgc

The complete description of electron movement and distribution must
include the effects of the dc electric field that is created by their separation
from the ions. The movement is known as ambipolar diffusion. The electric
field can be included in the diffusive case above by considering the total
chemical potential of the electrons. The non-thermal velocity distribution of
the electrons will be approximated as a thermal diétribution whose average
speed equals the average electron speed. The total chemical potential
contains contributions from the electric potential (which will be low near the
beam center) and the electron density (which will be high near the beam
center):*

M) = kT m(N,if:)) —e V(). (19)

V(r) is the electric potential and
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m kT '
BN\ 022 cm-3
Ng= (2 b 2)— 1.1x102 cm (15)

is the quantum density that determines where the electron gas stops behaving

classically. The electron number current density (in units of #/cm2/sec) is

given by
- ~DNe =2
Jelr, ) == VT, O
—-D WNetr, & - SO By 1)

From J., the evolution of Ne is determined from the continuity equation,

oN ; - -
2Rt __ ¥ T, (17)

Because E4c involves an integral of Ne(r, t), this set of equations cannot
be worked out analytically. However, it can be treated numerically on a
computer. The resulting radially symmetric electric field is always zero at the
origin and a maximum at approximately the radius of the original electron
distribution. The magnitude of the maximum field is shown in Figure 3 as a
function of time for an ion cloud radius of 100um and five different central
ion densities ranging from 1010 to 1012 jons/cm3. The ionization radius is
smaller than the beam radius because of the nonlinear dependence of
ionization on intensity. Figure 3 shows that the electric field initially grows
linearly in time, but then saicrates. The saturation occurs when the two
terms contributing to J in Equation (16) balance and cancel each other at all
points in space. The system is then in a quasi-equilibrium, and the charge
distribution will not change until the electrons cool many nanoseconds later.
The ions will also experience this field, but even after one microsecond they
will have only moved a few microns.

The electric field does not overshoot its equilibrium value and

therefore does not ring or oscillate. This is implicit in the assumption of
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diffusive behavior in Equation (16). Physically, the electrons are undergoing
collisions every few tens of picoseconds, so they cannot overshoot their
equilibrium position on any longer time scale.

The actual density of ions and electrons released in the experiment can
be estimated from the ionization rate of atoms excited to the 9d state. The
cross section for ionization is 3.7x10-20 cm2,’ so the 3 picosecond shot of
1010W / cm? light will produce about 2x101! ions/cm3, closest to the second
curve from the top in Figure 3 (corresponding to 3x1011 ions/cm3). The
intensities used are not well-measured because of the irregularity of the beam
profile, so the ionization may be significantly different due to its I3
dependence. The electric field is saturating within a couple hundred
picoseconds , so in order to observe the changing field, the experiment needs
time resolution of less than 100 psec. Most of our observations can be
understood with the assumption that the electric field saturates before the
coherence has significantly decayed.

Curves of the final electron distributions for several central ion
densities are shown in Figure4a. At high central densities, the equilibrium
distribution is very close to that of the ions, while at low central densities, it is
significantly different. Equilibrium electric fields as a function of r are shown
in Figure 4b.

Because the electric field is proportional to the integrated difference
between N and Nj, the maximum electric field is seen to saturate as Nj is
increased (Figure 5). This result differs strikingly from Bethune's estimate,!
which calculates the maximum electric field by equating the static field energy
with the total initial kinetic energy of the electrons. Since total energy must

be conserved, such an equation would require all electrons to come to a rest

76



simultaneously so their kinetic energy is zero. This is clearly unphysical. The
above equations describe a diffusing electron gas whose temperature
determines its distribution in a shallow potential well.

For the case of the nanosecond experiments done previously, a rough
estimate of the ionization results in >1013ions/cm3. Indeed, Okada et al,,
observed a saturation of the ionization,® indicating that most of the atoms in
their focal volume were being ionized. They concluded that they produced
1016ions/cm3. In fact, 1013ions/cm3 are enough to create an equilibrium
electric field independent of the ion density. Thus it is not surprising that
many nanosecond experiments did not generate greater SHG when they
created greater numbers of ions.

What does change with Ny is how far the electrons must travel to
reach equilibrium, and thus the time scale of the changing electric field. This
will be an important factor in determining the parameters of pump-probe

experiments used to verify this model.

.  Experimental -

These experiments are done using a tunable amplified picosecond
laser pulse. A continuous-wave mode-locked YLF laser (13 Watts, 100 MHz,
80 psec puises, 1.054 pm wavelength) is doubled to 700-1000 mW of 527 nm
light in a temperature-tuned, noncritically phase-matched LBO crystal. The
green light synchronously pumps a mode-locked dye laser operating with
Rhodamine 6G dye, yielding 50-100 mW of 570-620 nm light in 4 psec pulses.
These pulses are amplified by four stages of Bethune cells pumped at 10 Hz by
a 20 nsec Q-switched YAG laser. The beam is focused through a saturable dye



jet at two points in the chain to eliminate amplified spontaneous
emission(ASE). The ASE is held to below 1uJ/pulse.

The result is =200 pJ laser pulses that have a poor transverse mode
quality due to severe gain saturation in the center of the amplifying cells.
Figure 6 shows a CCD camera picture of the original dye beam after passing
through all of the amplifier stages without being pumped, and Figure 7
shows the same beam with amplification. The horizontal scales are identical,
so the much larger beam radius after amplification shows that the beam edges
have undergone many more factors of amplification than the beam center.
The pulse duration is 3 psec, as shown by the collinear autocorrelation curve
in Figure 8.

The pulse energy also varied significantly from pulse to pulse due to
variable pump laser intensities. Since the pump intensity determines the
exponential gain seen in the amplifiers, the final pulse energy is highly
sensitive to it. The sensitivity is weakened if the laser pulse reaches
saturation (where all excited molecules in the beam path are stimulated to
emit their stored energy), but this only occurs in the beam center. The edges
of the beam, still undergo exponential growth in the final amplifier stage, so
the total beam energy is sensitive to the pump intensity.

The pump laser's energy integrated over its 20 .:s2c duration remains
constant to within a couple per cent. However, the amplifier dye has a
lifetime of only 1 nsec, so the amplification is sensitive to shorter-time-scale
variations. Using an oscilloscope with 600 MHz bandwidth, we observe
osciilations at 500 MHz of about 25% of the average laser intensity. There

could easily be additional structure that is too fast for the scope to reproduce.
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The oscillations shift with each pulse, so the useful pump intensity varies by
at least 25%, and the amplified laser energy varies by much more.

The acquired data was sorted according to the energy measured for each
pulse. Typically, we used five to ten bins with each bin covering about 10% of
the average pulse energy. Thus the input energies are known to within 5%,
even though the laser energy was less well-controlled.

To do pump-probe experiments, the laser was split by a 50/50 dielectric
coating beamsplitter on a Imm glass substrate. The layout of the experiment
is shown in Figure 9. The beams were sent off-axis through metallic
retroreflectors accurate to 5 arcseconds and recombined at a second
beamsplitter. The position and tilt of the pump beam could be controlled
independently of the probe beam. Vibrations moved the retroreflectors by
more than a wavelength, so at positions of overlap, the laser intensity
fluctuated randomly between constructive and destructive interference. The
multi-shot averaging smoothes the interference fringes present in a collinear
autocorrelation. The beams were then focused by a +15cm/-5cm lens pair to a
spot size of 80-400pm, depending on the distance between lenses.

The heat pipe is 45 cm long with a 15 cm zone heated by a 500 W
resistive heat tape and insulated with 4-inch fiberglass insulation. The heat
tape was powered by a Variac to control the oven temperature. Windows on
each end allowed the passage of the laser light. Cooling water circulated in
external pipes wrapped around the oven 15 cm from the oven center. The
outside temperature of the heat pipe was measured with a thermocouple. It
was calibrated with the inside temperature by replacing one window with a

coupler to a 0.6 cm diameter, thin-walled stainless steel tube, inside of which
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was placed a thermocouple. Internal temperatures were typically 10° below
the measured outside temperature.

The 3/4 meter f/7 double monochromator had arn adjustable
resolution. The 9d-11s spectral distance is 3 A, while the distance to the 104
stronger 10p light is 154, so the resolution used was typically 1A. The beam
was focused into the first monochromator slit with a 5 cm quartz lens, giving
an acceptance area of (7mm)2 and an acceptance angle of 2 mrad. A head-on
PMT cdlose-coupled to the monociiromator output assured uniform detection.
The total efficiency at the UV wavelength was calculated to be 1% and
verified at visible wavelengths. The data is given in units of observed
counts/shot and should be multiplied by 100 to obtain actual photons/shot
generated by the vapor.

A window before the oven split off two 4% beams for reference
purposes. One was doubled in a phase-matched LBO crystal that was placed
at the position in the ghost beam equivalent to the oven center in the main
beam. This nonlinear reference arm assured overlap in autocorrelation
measurements and reflected changes in beam profile or duration. The

reference SHG was easily measured with a UV sensitive photodiode.

IV. Results

The spectral character of the generated light is demonstrated by a
monochromator scan of the region 2945-3015A. This covers the 9d resonance
(used for almost all other measurements), its close neighbor, 11s, and the p, s,
and d states on either side of this pair (Figures 10 and 11). Because of the wide
dynamic range of measurement, Figure 10 uses a logarithmic vertical scale,

and it is clear that the second-harmonic light at 2974 A is 30x higher than the
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background. The strongest light at 2989, the 10p resonance, is assumed to be
allowed four-wave-mixing amplification of spontaneous emission. It has not
been measured any more closely than its relative peak height. The light from
the 11p resonance is surprising because it is at a higher energy than the 2
resonance. It may be due to allowed four-wave (x{3)mixing of two ® photons
and an infrared photon generated by the four-wave-mixing with the 10p state,
or by the x(5) process described in Chapter 3.

The distinct signal at the far-off, unallowed transitions 8d and 10s has
not been explained. It may well be related to the second-harmonic in that an
electric field which allows the coherent 9d population to radiate would also
allow a coherent 8d population to radiate. It is unclear how these
nonresonant states would obtain a coherent population. The dc electric field
will cause some coherent transfer to the 8d state, and even the ac light field
might induce a population because it is very strong compared to the atomic
potential of the 9d state. However, even if the coherent 8d population
equaled that of the 9d, the phase mismatch with the produced light beam
would be orders of magnitude greater. These emissions certainly merit
greater attention in the future.

The resonant nature of the SHG is demonstrated in Figure 12, where
the laser frequency is scanned while keeping the monochromator frequency
fixed at the 9d output wavelength. Similar scans with the monochromator
fixed off-resonance showed no signal. We also see signal at the 11s resonance,
which is expected in the ionization model because both resonances are two-
photon allowed and will enhance ionization, and both may be mixed with p-
states by an electric field in order to radiate.
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The coherent nature of the SH light is verified by two experiments: the
collimated nature of the output beam and the observation of phase matching.
We measured the output structure by scanning a 100um slit across the beam.
A vertical slit scanned horizontally gave the single sharp peak in Figure 13a.
By comparing with the simultaneously measured laser structure in
Figure 13b, it is clear that the SHG is even more collimated than the laser.
Also, it is strongly peaked at the point of maximum laser intensity. A
horizontal slit scanned vertically (shown in Figure 14 a&b) gives a strikingly
different result. 1. this direction, the laser is much narrower, and the SHG is
broader and split into two lobes, although it is still a collimated beam. The
information from these scans can be combined into the three-dimensional
surface plots in Figure 15 by assuming that each profile is independent of the
orthogonal direction. Although crude at best, the graphs show that the SHG
is generated on the steepest slopes of the laser light’s intensity profile. The
input laser is vertically polarized by a factor of 105:1, and the output
polarization was measured to be vertical by a factor greater than 20:1. The fact
that the lobes are also oriented along the polarization direction prevents us
from concluding whether it is the gradients or the polarization that
determine their orientation. An experiment with the orthogonal
polarization is planned for the near future.

The phase-matching curve in Figure 16 also demonstrates the
coherence of the SHG. The SHG light grows according to

2 E;Z(Z) = A P3(z) expli Ak z) (18)

where A is a constant, E3(z) is the generated electric field at 2w, and P3(2) is
the medium's polarization at 2w. If Ak is dominated by the potassium, it is
linearly proportional to N, as is P3(z). Thus the final electric field is
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zf

z
E3(z) = Idz Aj A2 N(2) exp (i (A3 oj dz' N(Z'))J (19)
0
Changing variables to
z
N1(2) = J dz' N(z) (20)
lets Equation (19) be integrated:
A1 A
Es@) = 4, (expli A3 Nr(zo) - 11. @

This is independent of the structure within N(z). The signal should then
follow a cos? curve in N, so the exponential dependence of N on the
temperature predicts an oscillatory function of T with increasing frequency.
In Figure 16, the signal rises from zero at 260°C and reaches the first phase-
matching peak at 315°C (outside the oven). Calculations from the known Ak
predict the peak at 295°C assuming a 10 cm uniform vapor. The cooler
temperatures inside the oven than outside, and a shorter actual heated zone
may account for the difference in peak temperatures.

The minimum at 325°C does not reach zero, and there are two
plausible explanations: 1) the signal is averaged over several minutes, so
fluctuations in N with time (due to currents inside the oven) may wash out
the contrast; 2) the laser changes the index of rafraction of the vapor by
exciting the potassium atoms, and the changes are not uniform because the
laser is not uniform. The latter explanation was favored by Mossberg’
because they observed the contrast decrease with increasing laser intensity.
We cannot be more quantitative than this without more detailed

measurements of our oven's temperature profile, but the phase-matching



oscillation clearly demonstrates that SHG is a coherent mixing process
between the laser field and the generated light field.

Signal resulting from the second-harmonic coherence calculated in
Chapter 3 would be proportional to 1/Pa at high pressures if the symmetry-
breaking were constant and independent of PAr. This dependence would
level off at low pressures where inhomogeneous broadening would
dominate. Such curve is compared with experiment in Figure 17. It is clear
that the data drops more quickly than the prediction near the origin. This
could occur for any symmetry-breaking mechanism that either grew with
time or was weakened or slowed by the increased Ar pressure. The ionization
model predicts both effects. The electric field increases initially with time,
and its rate of increase depends on the Ar pressure. At higher pressures, the
electrons diffuse more slowly. These effects alone predict the concave-
upward curve on the same graph.

Once the dc field starts reaching equilibrium during the coherence
decay, the predicted 1/P dependence will weaken. Since the time to reach
equilibrium drops steeply with 1/P, it could soon be much less than the
coherence decay time. Beyond this point the curve would follow the solid
curve predicted by a constantly-broken symmetry. Unfortunately, the onset of
saturation is strongly dependent on the density of electrons released. This
density is difficult to calculate with any confidence because the beam profile is
not Gaussian.

The intensity dependence of the SHG is quite strong, as shown in
Figure 18, where it is plotted against the sixth power of the laser intensity. At
the lower intensities, it is fairly linear, but at higher intensities, the intensity

dependence falls off. Unfortunately, the ionization model predicts a variable
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intensity dependence. With low amounts of ionization, equilibrium is not
approached during the decay of the coherence. The dc electric field depends
linearly on the number of ionized electrons which in turn depends on the
cube of the laser intensity. The second-harmonic intensity will then be
proportional to I8. At the other extreme of high ionization and fast
equilibrium, the dc field is independent of intensity, so the SHG will be
proportional to I2. At even higher intensities, the laser ionizes a significant
fraction of the potassium atoms. This decreases the nonlinearity of the
medium and lowers the intensity dependence even further. Since none of
these effects will happen suddenly, the total dependence should curve from I8
to I2 or below fairly gradually. The measured intensity dependence curves
gradually from about I6 to about I4. This is a poor way to test the ionization
model.

The best way to test the model is to observe the symmetry as it is being
broken using a pump-probe experiment. This requires a careful selection of
experimental parameters because with a constant laser energy, the signal
depends very strongly on the laser beam radius (via the intensity), as dres the
time needed to reach equilibrium. Two effects must then be balanced. A
small radius is needed to obtain a significant or even measurable signal,
while a large radius will slow the time it takes to reach equilibrium. Another
critical parameter is the argon pressure. The time resolution is defined by the
decay of the 2w coherence and rises with Ar pressure, while the signal drops.
An intermediate pressure must be chosen to obtain adequate signal as well as
adequate time resolution.

At low pressures, the coherence time is long and the only delay
dependence present is a sharp autocorrelation peak near t = 0 (Figure 19). At
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high pressures (100 Torr), there is no signal for any delay up to one
nanosecond. At an intermediate pressure of 30 Torr and with fairly tight
focusing to a beam waist of about 80um, we did see the signal increased by
about 3 between short delays and long delays, as shown in Figure 20. The
sum of sigrals from the two beams acting individually was just 0.05
counts/shot, equal to the signal with short delays. The scan is not fine
enough to observe an autocorrelation peak near t = 0. The signal rises with
delay up to about 100 psec and then saturates. The data is not clean enough to
distinguish anything of the shape of the rise. Better measurements in the
near future will allow a more quantitative assessment of the ionization

model.

V. Conclusion

The measurements so far prove that the SHG from a picosecond laser
pulse is the result of a coherent mixing of the laser light. It is qualitatively
consistent with the ionization model of vapor SHG. In evaluating the model,
it is important to include the effects of a slowly decaying second-harmonic
coherence as well as a saturating dc electric field. Continued work on this
project will afford us more quantitative results and a more detailed analysis.
A fuller understanding will lead us to a better picture of a laser's complex
interaction with a simple vapor, and to tantalizing questions about the other
forbidden light emitted by this surprisingly complicated system.
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Figure 1:  Mean free path (Ltotal) and mean time between collisions (T¢)
(both shown as ——, since they have equal numerical values) of
electrons as a function of the inverse argon pressure. The diffusion

constant, D, is numerically 1/3 of these values.
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Figure 3 - Numerical results from ambipolar diffusion: maximum electric
field as a function of time for five different central ion densities
assuming an ion radius of 100um, ranging from 1010 to 1012
electrons/cm3. The initial development is linear as predicted by the
diffusive part of Equation (13).
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Figure 4a:  Equilibrium electron distributions normalized to their 3 central
ion densities of 1010, 1011, and 1012 /cm3. The higher the density, the

lesser the movement, resulting in a saturating electric field.
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1010, 1011, and 1012 /ecm3. The shape is fairly independent of Ny, and the
maximum field is seen to saturate, since the second factor of ten increase

in ion density resulted in only a factor of two increase in field.
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Figure 6 - CCD picture cf the laser beam before amplification.
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Figure 7 - CCD picture of the laser beam after amplification, using the same
scale as Figure 6.
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Figure 8 - Collinear autocorrelation trace in LBO. Signal averaging smoothes
out the interference fringes, and I2 intensity dependence predicts a
contrast of 3:1 between the peak signal and the signal at long delays.
Pulsewidth from this measurement is 2-3 psec. The secondary peak on
the right is a ghost reflection from the beam splitter.
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Figure 9 - Layout of a collinear pump-probe SHG experiment.
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Figure 13 - Horizontal scans of a vertical slit across the SHG (top) and laser
(bottom) output from the oven. The slit was 25 cm from the oven

center, and the laser was unfocused going into the oven.
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Figure 14 - Vertical scans of a horizontal slit, complementary to Figure 13.

The double-hump in the top figure (which was seen in all intensity bins;
only the top bin is shown) shows that the SHG output is in two lobes.
above and below the laser beam.
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Figure 16 - Phase matching peak seen as a function of oven temperature. The
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Figure 17 - Signal dependence on Ar pressure, shown versus 1/P to compare
with the models. Constant symmetry-breaking predicts the solid line,
which is proportional to 1/P at high pressures. If the symmetry changes
with time, as the ionization model predicts (dotted line), then the signal
is proportional to a higher power of 1/P. If the field saturates in time,
(not accounted for in the dotted line), then the signal should curve over

to the constant symmetry-breaking case.
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Figure 19 - Delay dependence curves in low-pressure potassium vapor. The
autocorrelation peak is very narrow on this time scale, which is

primarily meant to show the constant signal with long delays.
107



0.25 ¢

2 o021 .
4 s ]
r- .
g [ ] . - a . .
brd 0.15 4+ g a s
~ " . u” s a® * .
g L . ] .y [ s
L
m 0.1 --. -.- . - |
= = L]
S P
s 0.05 4 ="
> .
0 - + $ $ + {
-100 0 100 200 300 400 500

Pump-probe delay (psec)

Figure 20 - Delay dependence of vapor SHG with 30 Torr Ar pressure. Signal
rises with delay times up to 100 psec, where it appears to saturate. The

scan is not fine enough to discern the autocorrelation peak near t=0.

108



Appendix: Uncertainty in Light Measurement

Many experiments in this thesis use sensitive photon detectors or
measure low levels of light. It is important to know how accurate the
measurements are and how to make them better. Furthermore, fluctuations
in the laser intensity should be taken into account by the use of a reference
arm. This appendix discusses the issues involved in the detection and

normalization of pulsed light sources.

I. _Ways to measure light

When a photon strikes the photocathode of a photomultiplier tube, it
releases a single electrcn with a certain quantum efficiency, typically 25% or
less. This electron is accelerated toward the first of a series of dynodes, which
it strikes, releasing more electrons. These new electrons are then accelerated
toward the next dynode for further amplification. Ten to fifteen stages result
in a net amplification of 106 to 107. The electrons form a current pulse at the
anode. How this pulse is measured depends on the signal strength. Low
signal levels are best measured by counting the proportion of shots which
produce a current pulse, which is called photon counting. High signal levels
are best measured by summing the current of all the pulses that are

measured, which is called integration.

A. Photon counting
Photon counting uses the fact that the photon arrival is a Poisson

process: photons arrive completely independent of each other. Strictly
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speaking, each arrival is binomial, but since they are independent of each
other, the Poisson approximation is exact.

More precisely, the Poisson distribution is valid when the number of
events is much smaller than the number of tests for an event. Then the
probability of an event occurring during a single test must be very small. This
can be applied to photons because the gate time T can be divided up into
many subintervals, with each interval testing for a photon arrival. If the
arrivals are independent, an arrival of a photon in one subinterval will not
affect the probability of arrival in any of other subinterval. Since the
subintervals are arbitrarily small, the number of them is much larger than
the number of photons that arrived during the whole interval T. Then the
probability of an arrival in any one subinterval is very small, and the
binomial probability is exactly approximated by the Poisson distribution.
Thus the number of photons arriving during T will always follow a Poisson
distribution. The goal is to measure the intensity of light, I, in units of the
average number of photons detected per interval. In a Poisson distribution,
the probability of measuring N photons is:

IN
P(N,D =g el )

Photon counting might be better described as "no-photon counting".
During each interval, it is determined whether zero or more-than-zero
photons arrived. Any information about how many photons arrived is
thrown away. 7 is the ratio of more-than-zero photon intervals, A, to the
total number of intervals measured, M. 7 is related to I through the

probability of measuring zero photons:
P@D=el 2
P (Non-zero,) =1-P(0)=1-e"] 3
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v is our measure of P (Non-zero), so I is related to y by:

I(M=-In(1-y @
For small v, this equation can be approximated by:
IM=v+3 5 + ﬁ +. 5

This relation is within 10% of linear up to about y = 0.2.

B. Integration

Photon counting clearly breaks down for high enough intensities,
where one or more photons are detected with each pulse of the laser. In the
integration method the intensity of light is proportional to the sum of current
pulses from the PMT. The intensity at which it becomes advantageous to
integrate the signal instead of count it will be discussed below after a
consideration of the uncertainties associated with each method of data
acquisition.

At very high intensities, the PMT may saturate. Pulsed applications
should use voltage divider networks with capacitors across the last few stages.
Then saturation occurs (according to the Hamamatsu catalog) when

C<100 {Tt (farads) 6)

where I t is the charge in the current pulse and V is the voltage across the
capacitor. For a total voltage of 1000 V across 10 stages, V = 100, and the
capacitance in an E717-21 socket is .02yF, so the current pulse should be less
than .02uCoulomb. This is equivalent to 3x104 detected photons with an
amplification of 107. Reference arms may reach this level, so care must be
taken in using them. Surprisingly, with a 2 psec laser, we have also seen
evidence of PMT saturation at count levels of just a few hundred
photons/shot. With a strong reference arm signal, however, it is perhaps
best to use a photodiode instead of a PMT.
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[[ n inty in ligh remen

A. Photon counting

To determine the uncertainty in a photon counting measurement, we
must examine the measurement process. 7Y is a measure over M intervals,
each of which gives one of two results, either zero photons or more-than-zero
photonc. Thus y will follow a binomial distribution, with the probabilities p
and q defined in equations 2 and 3 as the probabilities of zero and non-zero
photon results. Reif, in Statistical Physics, gives the dispersicn of a binomial

distribution in equation 1.4.9. From that, the uncertainty in y can be written

as a function of the intensity, I, and the number of measurements, M:
P (0,I) * P (Non-zero, I)

Since Y is a measure of P(Non-zero, 1) itself, the uncertainty in y is a function

of .

1-v)*
AYAM) = L—hl;—l @)

The uncertainty in intensity measured is then dI/dy* Ay:

A (Y, M) = *\ ’ —(1-_—:)—*—1& 9

and the relative uncertainty:

MGM 1 / Y
= 10
T “h(i-y) Va-p*M (10)

1
=-—=——=  forsmally (11)
o
= for yclose to 1 (12)
V2*M*(1-v

Thus the relative uncertainty in intensity will be large when either y or (1-y) is
small. Itis graphed in figure 2. It has a minimum at a value of
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approximately 0.8 for vy. It is clear from the above equatibn that averaging
over a greater number of laser shots (increasing M) always decreases the
uncertainty in an intensity measurement, although such an increase

eventually becomes prohibitive.

B. Integration

Integration sums over M*I photons, each of which experiences a gain G
that has an uncertainty AG. The total uncertainty in the intensity
measurement is then the sum of two things: the uncertainty in number of

photons measured and the uncertainty in the gain that each experienced:

» X 2
AL/T = ATV /M = VM I+II\\/I,I*II(AG/G) a3
G/G)2
= }i%;;——)- 149)

M is the total number of photons detected, and each photon contributes a
AG/G uncertainty to the total current pulse that is measured. One can
immediately see that this is a greater uncertainty than that of photon
counting for small signals. Since this is a monotonically decreasing function
with I, it will at some point become more accurate than photon counting as a
measure of intensity. For a typical AG/G value of 0.5, this crossover occurs at
a y value of 0.4. Therefore, using the two methods in their respective
regimes, one will always have greater accuracy with greater signal levels. To
have the greatest dynamic range, one should use both techniques.

The above calculation ignores uncertainty in integration due to
uncertainties in the background measurement. Estimating the RMS of the
background signal at about 1/6 the average photon signal, 100 pulses of
averaging would generate 1.5 "photons-worth" of uncertainty, which will

significantly increase the relative uncertainty at low signal levels (< 0.1
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photons/shot). Thus at low intensities, it becomes even more advantageous
than it appears in Figure 3 to use photon counting instead of integration.
One last point for the curious: where does the uncertainty of gain in a
PMT come from? At each stage, an accelerated electron releases other
electrons in approximately Poisson process, so the end result is a Poisson
process taken to a power of about 10.
If the total gain G is a result of m stages of smaller amplification, each

with gj, i=1 to m, then

m
G=I'_! gi (15)
1=

AG = — Ag; 16
§i 'G:i g,)z (16)
__Ag_. 17)
i-1
’\/ IIni
=1

where Ag is the uncertainty of the gain for a single electron and Ag; is the

with Agi=

uncertainty of the average gain of electrons at stage i. If the electron gain is a
Poisson process, then Ag=\f§ . For PMT's with several stages of equal gain g,
the relative uncertainty is well-approximated by

AG/G=—= a8)

Vgl
For a 10-stage PMT with total ampli‘ication of 107, g=5 and AG/G =0.5. Itis
also interesting to note that since most of the uncertainty comes from the first
stage or two, increasing the gain there would decrease the relative uncertainty

as a whole.

114



The easiest way to calibrate the integrated signal values (i.e.. determine
what G is) is to measure a signal with y about 0.5 with both photon-counting
and integration simultaneously (for instance, with CNTINTMODE in our
FORTH software). This gives both a measured photon number (from the
photon counting) and a corresponding integrated signal.

ill. Referen rm

The uncertainties above are those inherent in the measurement
process itself. Other uncertainties come into experiments in the form of an
unstable laser and drift in alignment. A fixed, strong source of signal that will
characterize the light going into the experiment can be used to account for
some of the uncertainty. It is known as a reference arm.

There are two types of reference arms - linear and SHG. A linear arm
measures a signal that is linear with the laser intensity, while an SHG arm
uses a nonlinear crystal such as quartz and measures the SHG that results.
For nonlinear experiments, an SHG reference arm better reflects the changes
in pulse length, pulse shape, and transverse mode that affect the SHG
efficiency. However, an SHG arm is more difficult to construct, align, and has
a greater measurement uncertainty. Which type of arm is appropriate will

depend on the experiment.

A. Averaging over many pulses

One common use of a reference arm is to average over as many shots
as the signal. Since normalization is done only once every hundred or one
thousand shots, fluctuations in the laser that take place on a shorter time
scale cannot be compensated by this technique. A linear reference arm used

on an SHG experiment should be squared with each shot before being
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summed because the mean of the squares is different from the square of the

mean.

B. Shot-to-shot normalization

A technique which is occasionally mentioned, but rarely used,
normalizes each shot separately. The difficulty is that the uncertainty in
measurement of the signal arm in a single laser shot is very high, and is
uncorrelated with the intensity of the laser. For instance, to be even 10%
accurate, more than 100 photons must be detected in one shot. If the
fluctuations in signal due to uncertainty are greater than those due to the
laser fluctuations, then it is not clear how much information can be gained by
trying to smooth out the laser fluctuations.

As an extreme example, consider the common case where one is
photon counting the signal arm: one occasionally observes a photon in the
signal arm, and one observes a fluctuating value in the reference arm. The
reference arm would have to give a certain weight to the photons seen in the
signal arm, as well as give a weight (or negative weight) to the times when

there were no photons seen. This is difficult to express mathematically.

C. Binning

Probably the best way to account for large shot-to-shot fluctuations in
the laser is to use several data storage areas, perhaps 10. For each shot, the
reference arm value is checked, and according to it, the signal arm data is
processed into one of the storage areas. If the reference is strong, the data is
kept in a higher bin, and if it is weak, it is kept in a lower bin. At the end of
each point, the data in each bin can be weighted by the value of the reference

arm for that bin. The uncertainty in single measurements is avoided because

116



for each reference intensity, many laser shots are accumulated. I have
successfully used this technique. It also provides an automatic measurement

of the signal's dependence on laser intensity.

D. Checking a reference arm

To be effective, the uncertainty in the reference arm measurement
must be less than the laser fluctuations. For an integrated signal, Equation
(13) shows AI/I will be 10% if the total number of photons is about 150. To
achieve 1% accuracy in the pulse-to-pulse referen~e arm measurement would
require 15,000 photons. With care such signals can be generated in phase-
matched nonlinear crystals. A linear reference arm, on the other hand, can
easily achieve such high photon numbers. Both are potentially useful for
shot-to-shot normalization or the binning method described above.

To determine the accuracy of a reference arm, one constructs two such
arms and compares the resulting signals. In the case of SHG arms, the second
arm is typically in place of the sample arm. To compare shot-to-shot signals,
the two measured values can be used as x- and y- values for a point plotted on
the screen, and the correlation between x and y can be calculated over many
shots. It appears on the screen as an elliptical cloud of dots, or a sloping line
of dots, or somewhere in between. The more correlation there is, the more
closely the points adhere to the line.

Two SHG reference arms show good correlation when both use a
phase-matched nonlinear crystal and a photodiode to measure the signal.
Linear arms observing the attenuated laser beam typically have adequate
signal levels. However, car must be taken in aligning the photodiode in
either case. Either a lens or a diffuser should be used. Accurac’es are typically
better than 1%. The "diffuser" can be fogged glass (cut from a microscope
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slide) inserted in a slot c::! in a heavy cardboard tube. The tube is from a FAX
paper roll, cut to about 5 cm, and additional slots can accommodate color
filters or neutral density filters.

For an averaged reference arm, one need simply measure the
correlation of the averages. The measured accuracy is only meaningful when

compared with the expected changes in laser intensity that are anticipated.
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Figure 1:  Intensity versus y for a photon-counting measurement,
according to Equation (4).
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Figure 2: Relative uncertainty in intensity for a photon-counting
measurement, where M is the number of shots over which it is
measured. For example, if ¥ = 0.2, for which the graph reads 2, then
measuring for 100 shots will make the relative uncertainty 20%.
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Figure 3:  Relative uncertainty in intensity measurement for photon
counting (solid line) and integration, assuming AG/G=0.5 (dotted line).
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