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Design and fabrication of a diamond-turned hybrid diffractive/refractive singlet for
visible applications at ORNL

B. E. Bernacki, A. C. Miller, and L. C. Maxey
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

Abstract

Hybrid diffractive/refractive optics can be fabricated using traditional lithographic methods
involving masks or holographic techniques as well as direct-write approaches that include electron-beam
lithography, single-point diamond turning, and laser beam lithography. Only the direct-write methods
have proven to be practical in producing continuous-form diffractive surfaces, or kinoforms, and among
these methods, only diamond turning can easily produce large kinoforms on curved base surfaces. In this
paper, we describe design and fabrication issues for a hybrid singlet produced by single-point diamond
turning that functions in the visible portion of the spectrum and takes advantage of all of the degrees of
freedom available from diamond turning: aspheric front surface to control spherical aberration, curved
rear surface for elimination of coma, and kinoform surface placed on either curved base surface for
control of primary chromatic aberration.

1. Introduction

Design of hybrid diffractive/refractive optics is typically treated analytically in the literature,
and while single-point diamond turning is acknowledged as a promising method of fabrication,
construction details for these devices are often ignored or dismissed as an exercise for the reader, with the
exception of a few authors»2. In practice, lens design is usually done with commercially-available
software to take advantage of sophisticated optimization methods rather than resorting to the few special
cases treated analytically in the literature. With recourse to commercial lens design software, the
fabrication of a hybrid singlet is significantly more challenging than its design. In undertaking a project
at ORNL to design, fabricate, and test a hybrid singlet for use in the visible, it was necessary to review
the open literature to assess the state of the art in hybrid optical design and fabrication, and this paper
summarizes that search. We review the main points necessary to design and fabricate a hybrid singlet,
including the first-order predesign of a hybrid singlet, present the results of the first order design
calculations using a commercial lens design program”, present an approach for converting the diffractive
phase function into a form amenable to diamond turning, and also review important fabrication issues,
such as tool selection and feed rate for optimum surface finish.

2. Hybrid Singlet Predesign

Practical optical design is usually done with commercial software based on optimization
methods, since closed form solutions are often unattainable. However, it is still instructive (and provides
a good starting point for the lens design software) to perform a first order predesign so that one can have
confidence in the design found by the computer software.

The classical design of an achromat requires the combination of two lenses made of glasses with
different dispersive qualities and opposite powers to achieve acceptable performance over a specified
band of wavelengths. The key to hybrid optics lies in the complementary dispersive properties of
refractive and diffractive optics: in diffractive optics, the focal length varies directly with wavelength,
while a refractive optic's focal length varies inversely with wavelength. Using a single glass type, the
focal lengths of the refractive and diffractive elements can be made to coincide only at the design
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wavelength. For both the traditional and hybrid approach, the achromat has a common focus for the two
extreme wavelengths that define the band edges, with the center wavelength slightly out of focus. This
residual chromatic aberration is termed secondary spectrum4. Due to the nature of optical glasses, this
residual chromatic aberration with shift the focus about 1/2400 of the design focal length, but secondary
spectrum can be several orders of magnitude greater for a hybrid lens, as will be shown later.

The long, short, and middle design wavelengths are defined as A1, Ag, and Apj, respectively.
The reciprocal dispersive power for the refractive portion of the hybrid lens, or Abbe number, is defined
as:

Ny -1
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and the subscripts denote the short, middle and long wavelengths at which the index of refraction was
measured. Similarly, an effective Abbe number for the diffractive surface can be expressed as6
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Traditionally the F (hydrogen), d (helium), and C (hydrogen) spectroscopic lines have been used for
measuring the index of refraction of glasses at the short (0.48613 pim), middle (0.58756 pm), and long
(0.65627 um) wavelengths. Acrylic will be used for fabrication of this hybrid singlet, and the value for
the index of refraction for acrylic is 1.491 at the middle wavelength. The refractive and diffractive Abbe
numbers are 57.2 and -3.45, respectively. The smaller the Abbe number, the more dispersive the
material, while the sign denotes the sense of the dispersion. The thin-lens design equations the lenses-in-
contact achromat are found in numerous optics texts’, and are listed below. The result is two equations
in two unknowns.

(I)total = q)D +q)R
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Expressed in focal lengths rather than power these equations become
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Note that the focal length of each surface is positive, and larger than the overall focal length of the lens.
In particular, the diffractive portion will have a fairly long focal length, which reduces the number of
annular zones that will eventually have to be machined. Our singlet will be an F/3.6 optic having a 25
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mm diameter. This sets the design focal length at 90 mm for the thin lens solution. Using the
expressions above, refractive and diffractive focal lengths of 95.4 mm and 1582.2 mm are found. By
making use of the paraxial expression for focal length, the radius of curvature for the refractive portion of
the hybrid lens is found to be:

(6) R=(n,-1)fs =(1.491-1)-95.4 mm=46.8 mm.

In the next section, we introduce the diffractive phase function and the concept of equivalent
parent refractive surface and show how the calculation for the Fresnel zone locations allows us to
determine the radius of the parent refractive surface as a function of the design focal length of the
kinoform.

2.1 Diffractive Phase Function

Most modern lens design software permits the use of diffractive or binary surfaces, and can
calculate the required form of the phase function produced by the diffractive surface using the facilities
of the programs' optimization function. This phase function is typically expressed as

™ 0=2L.3 q,p?

for a rotationally symmetric diffractive surface. The designer typically has the choice of how many
terms to specify. For an F/3.6 hybrid optic, the first term will suffice for achromatization since most of
the optical power is concentrated in the refractive element. To see how the ¢ terms map into more
familiar optical parameters, it is instructive to review the origin of the phase function, since it will
eventually help us to determine how the optic should actually be fabricated by diamond turning.

At infinite conjugates, the difference in phase produced by a Fresnel zone plate having design
focal length f;, and formed on a plane base surface can be expressed as:

® 20(0)=3(fo~13+07)

where p is the radial coordinate, and Aq is the design wavelength. The geometry leading to this

Fresnel Zone Plate

T T f

Figure 1. Conversion of a plane wave into a converging
spherical wave by a kinoform formed on a plane surface.

expression is shown in Fig. 1.

This expression can be expanded into a Taylor series about p =0 to yie]d:8
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One is not restricted to spherical phase functions, and the typical lens design program calculates
the optimum o's to minimize the error function. However, to choose a good starting point, one or two
coefficients should be calculated using the focal length for the diffraction portion of the hybrid found in
the first order pre-design to provide some confidence that the automated design is proceeding correctly.

2.2 Location of Fresnel Zones for Planar Kinoforms

Once the designer and the program produce an optical design that sets the focal length of the
diffractive optic, one needs to calculate the location of each zone, its optical depth, and optimum profile.
We first examine the calculation of zone location for a diffractive optic placed on a plane surface. To
constructively add to the image intensity with contributions from each Fresnel zone, the optical path
difference between each zone must equal one (or integer multiples of one) wavelength. One must solve
the following equation for the correct zone radii locations:

2 (Jra+o -1 )=ke2n
Ao
2khofp +k*NG =20 fp =py VK

where the approximations may be used when p << f;,, Note that the zone spacing varies as the square
root of the index. The width of the first zone for our F/3.6 lens is 1.36 mm. To find the maximum
number of zones needed for the diffractive surface, we let py equal the radius of the optic and solve for
kynayx- This becomes

L ="’fD+‘\/fD2+pr2nax - P,znax

11
an max Ao A

(10)

where once again the approximation is quite close to the exact calculation when p << fp. Our F/3.6 optic
will require 84 zones for achieve the focal length of 1582.2 mm. One critical parameter that is necessary
for tool selection and evaluating a potential design for suitability for diamond turning is the spacing of
the outermost zone. It is found by calculating the integer k,,,,, and then subtracting one to derive an
expression for the index of the outermost zone minus one. This expression is then substituted into the
expression for the zone radius found earlier. By subtracting this final expression from the maximum
radius of the optic, we arrive at the minimum zone spacing required at the outermost diffractive zone:

(12) AP min = Pmax _'\/}“%) _2}"0 \l fl.% +pr2nax +pr2nax .

However, an estimate for the minimum zone spacing for slow optics can be expressed as:?

A +k_ A
(13) AP in = 0 (fp Koy °)=zxop/#.

P max




Therefore, the faster the diffractive lens needed for the hybrid optic, the smaller the minimum zone
spacing for the diffracting grooves at the extreme edge of the optic. Since the phase shift between
adjacent zones must be 2x to form an image point, it can be seen that the maximum phase depth for each
groove must be

a4 Ayope =——

where it is assumed that the optic will be in air and constructed of material with index of refraction n.
For the design in this paper, the diffractive portion has an F/# of F/63, so the minimum zone spacing at a
design wavelength of 0.58756 um is approximately 74.03 pm. By contrast, an F/10 diffractive optic at
this wavelength would have a minimum outer zone spacing of 11.75 um. In either case the maximum

zone depth is 1.2 pm for acrylic.
2.3 Location of Fresnel Zones for Kinoforms on Arbitrary Surfaces
To exploit diamond turning (and optical design) to the fullest, one should not be restricted to

placing kinoform optics on planar base surfaces. Since the optical path calculation is different for each
kind of base surface, however, a general approach is needed to calculating the zone locations prior to the

Figure 2. Diagr.am showing relationship between the focal length
of the kinoform and the sag of an arbitrary base surface.

diamond machining operation. Figure 2 depicts the general case for computing zone location for
kinoforms with arbitrary base surfaces. The phase difference as a function of radial coordinate with
respect to the center of the optic may be written as

(15) A¢(P)=i—:-(f-\/(f+AZ)2 +? )

and where the sag (deformation of the surface along the optical axis in the Z-direction) of a general
rotationally-symmetric aspheric surface may be expressed as

2
Az= cp
1+,/1—(1+1c)c2p2

Here, C is the curvature (reciprocal of radius of curvature) to the best-fit sphere, x is the conic constant,
and the a; are the coefficients for the aspheric deformation terms. Note that this general asphere form is
slightly different from that typically found in the literature10 since a quadratic phase term is included
with the aspheric deformation terms. If we now solve for the zone location as was done before for a
planar base surface (for infinite conjugates) the result is:

(16) *ap? +a,p* +a3p® +agp® -,
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17) Pr =2 Fokhg +k*AE —2 frAz— AZ?

When the sag is zero in the case of a plane surface, the zone location expression reduces to the form
found earlier. Hazra et alll further simplified the expression above for the case of a spherical base
surface obtaining

1)
(18) Pr =\/2kx0f,, +k203 -2kx°1e[1+—§--\/1-2(f,, —R)%}

and it can be shown that in the limit as R approaches infinity .(a plane surface), the above expression
becomes that previously found for a planar base surface.
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Figure 3. Ray fan plot of the tangential section showing ray heights
in microns versus normalized exit pupil coordinates. Middle
wavelength (d) shown as a solid line, the short wavelength (F) as the
small dashed line, and the long wavelength (C) as the long dashed
line.

3. Translation of Optimized Design for Diamond Turning

With the design parameters determined by the first order pre-design, a hybrid singlet can be
designed with the aid of most commercial lens design programs using a binary optic or computer
generated hologram surface. The basic lens design caveats using automatic design programs should be
observed!2, In practical designs that incorporate hybrid elements, the diffractive surface is intended only
to achromatize the optic, and indiscriminate use of the phase function as a variable during the
optimization process may lead to spherochromatism. Following Wood's approach13, we design the
singlet with an aspheric front surface for correction of spherical aberration, and determine the optimum
shape of the rear surface for coma correction, leaving the diffractive surface to correct primary
longitudinal chromatic aberration. We first describe the results of the automated design and summarize
its performance. The approach to translating the optical parameters found from the lens design program
into a form amenable to diamond turning is then described.
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Figure 4. Longitudinal aberration plot of the hybrid singlet showing
secondary spectrum. The solid line depicts center wavelength (d)
performance, the short dashed line shows the short wavelength (F)
image plane location, while the long dashed line showing the
normalized exit pupil coordinates versus optical axis location of the
image plane in units of pm for long wavelength light (C).

3.1 Hybrid Singlet Design

The hybrid lens was designed using a commercial lens design program. It has an F/# of 3.6 with
an element diameter of 25 mm, and was optimized only for on-axis performance. The final shape was
that of a positive meniscus lens having 5 mm thickness, with the aspheric first surface facing the object
having radius of curvature +43.14 mm, and a conic constant of -0.5338. No significant improvement
could be found by allowing higher-order aspheric terms to vary. An angle solve was used at the second
surface to maintain the design F/#, which resulted in a spherical second surface with radius of curvature
+463.54 mm. A marginal ray height solve was used to find the paraxial image plane, §7.12 mm from the
second surface of the lens. A single coefficient was retained for the binary phase surface used in the
design of the diffractive surface of the hybrid lens, and was found to be -3.4524 x 104 mm-1. Although
the marginal ray height solve does not result in the "best focus," it illustrates the secondary spectrum
more vividly in the ray fan plot (Fig. 3), seen to amount to approximately 20 um of transverse error.

Secondary spectrum can be approximated to first order using the relationship 4.

o __AP
(19) F

where P is the partial dispersion of the element, and v is its relative reciprocal dispersion (Abbe Number).
For acrylic, the partial dispersion and Abbe number are 0.3070 and 57.2, respectively, while the
diffractive surface has partial dispersion and Abbe number of 0.4038 and -3.45. The focal length-
normalized longitudinal shift in focus is calculated to be about 1.596 X 10‘3, which is confirmed in the

longitudinal aberration plot shown in Fig. 4.

3.2 Interpreting Optical Design Parameters for Diamond Turning

3.2.1 Calculation of the Equivalent Phase Surface for the Kinoform




Based on the speed of our designed lens, only the quadratic coefficient from the binary phase
function is required to adequately achromatize the hybrid singlet. The first coefficient is then used to
calculate the focal length of the diffractive surface as found by the lens design program. To begin for the
general case, we simply equate the phase function coefficient found from the lens design program with
the first term found in the expansion of the spherical wave:

ool
(19) 2fp
fD = —20L1 .

This diffractive focal length can now be used to compute the zone locations for the kinoform optic on an
arbitrary base surface using the expressions found earlier.

Once the kinoform zone locations are determined, the form of the refractive "parent” surface
necessary to produce the equivalent phase shift as the diffractive phase function must be calculated.
Another way of viewing the refractive properties of a lens is to appeal to the wave nature of light and to
consider the lens as a phase structure using an approach similar to Goodmanl3. A plane wave incident
upon a refractive lens will undergo a differential phase shift as a function of radial coordinate, which
depends on the sag of the optical surface. For a spherical surface, the sag can be expressed as:

(20) Az=R—JR2 —p?

where R is the radius of curvature of the surface and p is the radial coordinate. The phase shift for an air-
incident lens having index of refraction n can be written:

0(p) =2 [n(Ao - &2)-+ 2]
1) 0 )
= 2T 1) Ap 4 2

= » (n-1) Az+?\’0 A,

where A is the optical path length of the lens at its center. This term is neglected since it is constant. As
was done for the phase function produced by the diffractive surface, the sag for a spherical surface may
be expanded into a Taylor series and combined with the result found above to compute the phase
transformation brought about by the refractive surface:

4 6 8

2n p> ot p P
22 20(p)=—2E(n-1 N oo .
@2) 2(p) (n )[ZRD 8RS 16R3  128R}

If the quadratic terms in the refractive and diffractive phase functions are equated, the necessary radius
for the parent refractive optic can be found to achieve the correct diffractive focal length:

( )p =—p"‘=_0‘192
o3 2R, 21, -
n—
Rp=(n-1)-fp=- T

For the first order predesign for the F/3.6 hybrid singlet, the radius of the parent refractive surface is
found to be 776.9 mm, while the radius due to the automated design is 711.1 mm. However, Eq. (23) is
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valid only for a kinoform placed on a plane surface. In general, one must find the equivalent refractive
surface that maps the kinoform on a curved base surface into the phase function found from the lens
design program. That is, one needs to solve the following equation:

(24) _(n—l)'Azbase 'I'CI)=(x1p2

where @ is the phase function that must be provided by the equivalent refractive or parent surface. It was
shown that the parent surface for the kinoform portion of the hybrid optic is simply (n - 1) Azkinoform-
The equation to be solved for the parent diffractive surface on a base surface with arbitrary curvature is:

alpz = —(n—l)(Azbase - Azkinoform )
(25) o>
p
Azkinofonn =— + Azbase
n-1
where the propagation constant £ has been eliminated from both sides of the equation. If the paraxial
expression for the sag is substituted for the base and kinoform terms, the equation becomes:

2
26) op? =—(n-1)-p—(L- ! ]

This equation can be solved for the radius of the parent surface of the kinoform, yielding:

Rb
@) Fiuom = o R
et |

n-1

Note that in the limit, as the base radius approaches infinity, the radius of the kinoform parent surface
reduces to that found earlier in Eq. ( 23). Londofio and Clark16 present a practical method for finding
the radius of this surface using commercial lens design software by freezing all other variables in the
design and changing the surface type to a Fresnel lens having an arbitrary base surface. The radius of the
Fresnel lens found by the lens design software will be essentially the same as that found by Eq. (26). If
one does not access to optical design software that permits the design of Fresnel lenses on arbitrary base
curves, simply adding another thin element made of the same optical material and letting the
optimization function find the best radius of curvature and conic constant will have the same effect. For
the general case, suppose that the second surface is a conic section having the form:

2
(29) Az= Cp

- 1+,/1—(1+1<)czp2

where C is the curvature and, p is the radial coordinate, and x is the conic constant. Equating the phase
function of the general conic for the equivalent phase surface with the phase function for the base surface
plus the kinoform phase function, one can expand both sides into a Taylor Series and equate terms to find
the curvature needed for the equivalent refractive surface for the actual kinoform as well as its conic
constant. The equations that result are:




20,
Cdiﬁ"ractive = n—1 + Cba.\'e

(30) c 3
Kdl:ﬁ'mctive = (ﬂ} (1+ Kpase )"'1-

Cdiﬁ’ractive

Note that in the limiting case of a planar base surface, the curvature necessary for the diffractive portion
reduces to that found earlier, and its conic constant is equal to -1, a parabola, as it must.

3.2.2 Zone Locations for the Designed Kinoform

Sag (microns)
) N = =) R

2 -1 0 1 2

Lens Coordinate (mm)

Figure 5. Shape and base curvature for the first four zones of the
designed kinoform on the second surface of the hybrid optic. The
base curve is depicted with dashed line and the image is in the
positive direction (up) in this graph.

Using the expression defined in Eq. (15), one can calculate the zone locations of the kinoform
surface for the infinite conjugate solution. Since a spherical surface was sufficient for the second surface
of the hybrid, the radius for the parent surface of the diffractive optic is found to be 1331.53 mm. The
conic constant term can be ignored since the denominator approaches one as this is an F/53 surface, and
the paraxial expression of Eq. (27) is adequate. This will usually be the case when the kinoform
diffractive surface is used solely for achromatization. To calculate the shape of kinoform, one can use
the expression published by Londofio in Ref. 2 and superimpose on it the profile of the base curve, with
the results shown in Fig. 5 for the first four zones. Figure 6 shows the details of the last four zones,
showing the 68.2 pm spacing at the outermost zone. The maximum number of zones is found by using
the expression in Eq. (18) and setting it equal to the full radius, 12.5 mm. The maximum number of
zones is almost 92 (91.8), which is somewhat greater than the 84 calculated for the first order design.
The mechanics of how this design may be diamond turned is treated in the next section.

3.3. Diamond Turning Issues

Examining Figs. 5 and 6, the approach to cutting the optic is straightforward. The second
surface is machined to establish the base curvature for the kinoform. The tool path generator is then set
for the radius of curvature for the parent optic of the kinoform, 1331.53 mm. These coordinates are
added to those of the base curve, and at each zone index, the tool is withdrawn one phase depth (1.2 pm)




that is calculated using Eq. (14), and the process repeated at each zone transition until the center of the
optic is reached. The cutting tool has a finite radius, which makes the machined optic deviate from its
ideal form. In the next section, the issues of tool selection as they impact surface finish, cutting time and
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Figure 6. Last four zones of the hybrid optic with base curve
superimposed using the dashed line. Note the spacing at the
outermost zone is 68.2 pum.

diffraction efficiency are examined so that the fabrication of the optic may be realized.
3.3.1. Optimum Tool Selection

Proper tool selection is driven by the minimum feature to be machined, the required surface
finish, diffraction efficiency, feed rate, spindle speed, and the allowable time for machining based on
throughput requirements and dimensional stability of the cutting platform.

To machine the aspheric first surface and spherical rear surface, a controlled-radius single-point
diamond cutting tool will be used. The theoretical finish equation is17:

f2
(31 PVquetace finish = m

where fis the feed per revolution and R, is the tool radius. The focus here will be on the cutting of the
kinoform surface since this is the most challenging part of the project and drives the maximum tool
radius based on the outermost zone width and phase depth. Figure 7 shows the progression of a 25 pm
full radius tool as it cuts the kinoform shape on the base curve of the second surface. For this design, it
appears that the 25 pm tool will work well. One can help the situation by using a 25 um half-radius tool
that will vastly improve the fidelity with which the phase step can be cut at the zone transition. Should
further improvement be necessary, the transition areas can be touched up with a 2 pm-wide flat-surfaced

tool.
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Figure 7. Machining of kinoform on the base curve showing the
tool clearance at the phase step for the outermost zone of the hybrid
optic and the progression of three tool positions. The tool shown has
a 25 pm radius and is drawn to the same scale as the kinoform.
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Figure 8. Log-log plot of cutting time in minutes versus the spindle
speed in revolutions per minute.

3.3.2. Feed Rate, Spindle Speed and Cutting Time

Since instrumental errors will swamp the theoretical surface finish, a goal of 1 A peak-to-valley
is used to calculate the feed rate required, now that the tool radius has been selected, resulting in a feed of
0.14 pum per revolution of the spindle. The radius of the optic is 12.5 mm, and Fig. 8 plots cutting time
versus spindle speed so that a proper choice can be made, based on throughput requirements and material
limitations, i.e. glass temperature, cutting fluids permitted, and the thermal stability of the diamond
turning platform. For the feed rate calculated above, 90 minutes is required to cut the kinoform surface
at 1000 spindle revolutions per minute.

3.3.3. Impact of Tool Radius on Diffraction Efficiency




Reidl18 has addressed the issues involved in diamond-turning hybrid optics for the infrared, and
uses a figure of merit called energy blockage. Examination of Fig. 7 shows that a fillet will occur at the
zone transition due to the finite radius of the diamond tool. Since the phase step that is cut is not abrupt
and hence imperfect, light is not diffracted efficiently into the correct order at the design wavelength,
This effect is separate from the theoretical efficiency possible from a diffractive surface as a function of
wavelength, groove spacing and blaze profile that is treated in Ref. 16. Riedl calculates the area in the
annulus formed at each zone transition, sums the areas for all zones, and finds the ratio of the area due to
the summed annuli to the total area of the lens, using this as the blocked energy figure of merit. Using a
half-radiused tool should nearly eliminate this reduction in diffraction efficiency, especially if the zones
are cleaned up with a so-called dead sharp tool. However, even if the full-radiused tool were used having
a radius of 25 pm, an energy blockage of only 7.3 % would result.

4. Conclusion

The progress of an effort at Oak Ridge National Laboratory has been presented summarizing
efforts at fabricating a hybrid refractive/diffractive singlet using single-point diamond turning that is
designed to function in the visible portion of the spectrum. The aim is to push the state-of-the art in
deterministic fabrication of hybrid optical elements by exploiting all of the degrees of freedom available
in the design and possible using diamond turning: aspheric surfaces, along with the kinoform surface (as
opposed to a binary approximation) formed on a base surface having arbitrary shape. The attempt here is
to summarize the considerable quantity of information available in the literature on the design (and to a
lesser extent fabrication) of hybrid lenses while concentrating on practical approaches of design and
fabrication of these devices.

Although the limitations of diamond-turning are well documented, the ability to fabricate hybrid
optical elements using deterministic methods that have adequate quality for a broad spectrum of
consumer and military applications in the visible and near infrared will have far-reaching consequences.
Mass replication using diamond-turned molds will be more attractive due to the ability to achromatize
optical elements or systems made of a single optical material. Although one usually thinks in terms of
optical plastics for mass replication, including the limitations inherent in these materials, recent advances
in the bulk casting of sol-gel glass give the optical designer and manufacturer a high-quality optical
material (silica glass) to mate with the emerging technology of hybrid optics.
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