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ABSTRACT

A new nonlinear Sp transport differencing scheme
for slab geometry is presented that is fouith order
accurate for small meshes and is strictly positive. The
new scheme has been coded into the existing ONELD
code and tested. We present numcrical results to
demonstrate the accuracy and positivity of this new
scheme.

1. INTRODUCTION

Since the inception of the discrete ordinates (Sp)
angular treatment of the transport equation, code
developers have tried to develop accurate and positive
spatial differencing schemes to solve the Sp equations.
One of the first differencing scheme used was the simple
step or constant discontinuous methodl. The scheme is
strictly positive but only first order accurate in terms of
spatial errors, and therefore; deemed too inaccurate for
practical use. The diamond difference method! (DD) has
been used for many years because it is second order
accurate for small meshes. However, the DD method
cau result in negative fluxes in one dimensional
problems for meshes thicker than two mean-free-paths,
and in two- and three-dimensional geometries, negative
fluxes can occur for any mesh size. To correct this
problem with DD, set-to-zero, step, and weighted
diamond “fixups” have been applied when negative
fluxes are observed. These are ad hoc remedies which

adversely affect accuracy and interact poorly with linear
acceleration techmiques.

Even the more recently developed numerical
schemes such as Linear DiscontinuousZ (LD), Lumped
Linear Discontinuous3 (LLD), Linear? and Bilinear’
Nodal (LN and BN), and Linear MomentsS (LM)
methods are not strictly positive even though all except
LLD are third order accurate or better for small meshes.
These methods do not require "fixup” because any
negative angular flux values are spatially damped and do
not propagate as they can in the DD method. As a
result, these modem schemes interact well with linear
diffusion synthetic acceleration (DSA) techniques.

In this paper a new nonlinear scheme is outlined
which is fourth order accurate for small meshes and is
strictly positive. The scheme has been implemented,
for the one dimensional slab geometry, into the ONELD
code and tested on a variety of problems. The method is
not limited to one dimensional geometries and work
continues on multi-dimensional implementation.

The remainder of this paper will proceed 2s follows:
in Sec.(II) we derive our new nonlinear Sp method, in
Sec.(Ill) we give numerical results to demonstrate the
accuracy and positivity of our new scheme, and in
Sec.(IV) we give some conclusions and discuss our
plans for future work.




II. THE NEW NONLINEAR METHOD

Using standard notation, the slab geometry Sp
equations are given by

Ha s Va®@+ 0 (a0 =S . @

with appropriate boundary conditions. Here S,(x) is
the neutron source in direction m and can include
scattering, an inhomogeneous source, or fission.

To spatially discretize Eq.(1) we use the spatial
mesh given in Figure 1. Here we have divided the slab
into J cells, each having width Ax; =x;,,; —X;_;;
and center X; =(X,1/2 +X;y/2)/2. Within each cell
we require the material properties to be constant,
allowing interior material boundaries, if any, 10 exist
only on the cell edges. That is, in the j-th cell we
define the total macroscopic cross section G(x) =0, ;.

IGij—H
-
‘l Xj IJ
12 Xj-172 Xj+12 X11n

Figure 1. Slab Geometry Spatial Mesh

We wiil now consider the j-th cell over the interval
Xj-1/2 'O Xj,/2. The solution within the j-th cell to
Eq.(1) for 1., >0 is:
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Clearly the solution of the average flux, the outflow at
Xj+1/2, O any angular flux within the cell is strictly
positive if Sp(x) is strictly positive. We will now
construct a representation of S,,(x) that preserves the

first two spatial moments of S (x) and is strictly
positive.

In the one-dimensional LM method the source in
the j-th cell is expanded in Legendre moments as

X
Sp(x)= Sm,j[Po(X)+ gm" P,(X)] , 3
m,j H
where, Py(x)=1 and P (x)=2(x-x;)/Ax; are the
zeroth and first order Legendre polynomials , Sy, ; is the
average source and Sy, ; is the source slope. The
representation for S (x) can be negative if
F:UI >8p,;- To develop a representation that is strictly
positive, we first define a normalized source distribution
Sm(X) sothat Sp(x)=s,(x) Sy, ;. This is given by:

Here sy =1and s, =S ; /S, ; are the zeroth and first
Legendre moments of the source.

We will now construct a strictly positive
distribution, S;(x), that has the same Legendre
moments as the original distribution s;(x). The
information theory7 prescription for choosing such a
distribution is to choose one that maximizes the entropy
within the j-th cell, H,(x), given only the incomplete
information that the first two moments provide. Here
Hp,(x) is given by
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The two moment constraints are:

J§m(x)Pk(x)dx =0. k=0,
Xtz
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We use the Lagrange multiplicrs, A, ;, at the extremum
given by

Ly ("’*i 2 4 o y=0 ®
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Next, substituting Eq.(6) into Eq.(5) and Eq.(7) and
taking the variation and substituting the result into
Eq.(8), we find

Ao, -1

(x)=¢ eruh® 9

The Lagrange multipliers are determined by
substituting Eq.(9) into the two moments constraints
given by Eq.(7). These are:
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We can eliminate A ; in Eq.(9) using Eq.(10) to obtain:
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Substituting Sp,(x) =8,(x)Sy,; into Eq.(2) and
integrating over the j-th cell, we obtain for p, >0
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Here we bhave defined w(xj,,,3)=V¥j,,, and
E“‘J = O’t‘ijj /u'l!"

Similar steps are taken to find the representation for the
discrete angular fluxes when p <0.

1. NUMERICAL RESULTS

In this section we provide numerical results for two
test problems. For each problem, we compare the new
non-linear (NL) method with the linear moments (LM),
linear-discontinuous (LD), and diamond difference (DD)
with set-to-zero negative flux fixup. The LM and LD
schemes do not have fixup routines for negative fluxes
and the non-linear scheme is positive-definite. The DD
calculations were performed using the ONEDANT code
and the NL, LM and LD calculations were performed
using the ONELD code. The ONELD code is a variant
of ONEDANT that is used for charged particle and
peutron transport. ONELD uses the LD scheme in place
of the DD scheme used in ONEDANT.

The first test problem is an infinite slab iron-water
shield problem and is shown in Figure 2. We use the
S16 Gauss Legendre quadrature set, three group cross-
sections and P scattering. All calculations were
converged to a relative error of 104,

The results for the first test problem are given in
Table 1. Here we give, for each differencing scheme,
the neutron leakage from the right side of the slab. The
90 cm water region is 295 mean-free-paths thick in the
third neutron group. For coarsest mesh refinement each
mesh in this region is 74 mean-free-paths in width. The
LN method is seen to be accurate and strictly positive
for all mesh refinements. Both the LM and LD methods
are accurate and positive for all but the coarsest meshes.
The DD method performs poorest of all the methods
examined and does not even converge at the coarsest
mesh. Note that the NL solution monotonically
converges from above as the mesh size is reduced.

The second test problem, which is even more
difficult than the first, is shown in Figure 3. This
probiem has 11 material zones of various widths, We
use the S1¢ quadrature set, the BUGLE-80 47 neutron

and 20 gamma-ray group cross sections8 with P3



scattering. All calculations were converged to a relative
exror of 104,

The results for the second test problem are given in
Tables 2 and 3. In Table 2 we give, for each
differencing scheme, the neutron leakage from the right
side of the slab. In Table 3 we give, for each
differencing scheme, the gamma-ray l=akage from the
right side of the slab. We see that the new NL method
is very accurate: and positive even for extremely coarse
meshing. This is remarkable since the integrated
neutron flux in this test problem drops by soipe twenty
four orders of magnitude from the reflective boundary to
the vacuum boundary! Both the LM and the LD
methods are much better behaved and more accurate than
the DD method with LM being more accurate than LD
at every mesh. With the exception of the NL method,
none of these methods are strictly positive for coarse
meshing.

IV. CONCLUSIONS AND PLANS FOR FUTURE
WORK

The results of the previous section demonstrate that
the new NL method is strictly positive and in the limit
of small mesh bebaves like the LM method which is
fourth order. The real power of the method however,
will be in its application to two-, and three- dimensional
problems. In multidimensional problems memory and
time limitations restrict the degree of mesh refinement
obtainable. This is not the case in simple one -
dimensional problems.

We plan to use the method of characteristics to
solve the transport equation in two- and three-
dimensions. In two- and three- dimensions not only the
source representation, but also the angular flux
representations on the cell faces must be strictly
positive. The method of Section II can be used to
construct a strictly positive source from the average
source and the source moments in two- and three-
dimensions. The same technique can be used to
construct angular flux representations on the faces using

averages values and moments of the angular flux. We
are cumently working on this extension.

We have recently determined that this new NL
method has the diffusion limit; and hence, can be
applied to optically thick, highly scattering problems.
The ONELD code which was modified to incorporate the
NL scheme uses an S; iteration accelerator which was
constructed for use with the LD method not the NL
method. We are developing a more efficient and
consistent diffusion acceleration scheme for use with the
NL method.
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Figure 2. Geometry for Test Problem One.
Table 1: Neutron Leakages (s-1) for Test Problem One
Number of Cells | New NL Method LM Method ONELD ONEDANT
1+1+4 6.177-7 -1.167-4 -6.191-4 aNC
2+2+8 5.052-7 2.991-7 5.484-8 5.776-11
4+4+16 4.297-7 3.909-7 3.431-7 2.994-6
4+8+32 4.055-7 3.972-7 3.900-7 4 291-7
4+8+64 3.992-7 3.978-7 3.968-7 3.714-7
8+ 16+ 128 3.979-7 3.977-7 3976-7 3.910-7
8 + 16 + 256 3.977-7 3.977-7 3.977-7 3.961-7

4Could not converge problem
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Figure 3. Geometry for Test Problem Two.
Table 2: Neutron Leakages (s 1) for Test Problem Two
Number of Cells | New NL Method LM Method ONELD ONEDANT
4 1.780 4375 -501.9 2.090 x 104
51 2.571 -1.016 2.090 6.308
100 2.440 2.201 1.308 0.0375
198 2.396 2.372 2.172 0.9090
394 2.390 2.388 2.358 1.881
788 2.390 2.390 2386 2.252
1576 2.390 2.390 2.389 2.355
Table 3: Gamma-Ray Leakages (102 s-1) for Test Problem Two
Number of Cells | New NI Method LM Method ONELD ONEDANT
34 5.569 4482 -1.450 x 104 5.175 x 103
s1 5.543 2.503 -14.04 2.747
100 5.486 5.196 3.484 0.2900
198 5.413 5.336 5.057 2.533
394 5.339 5.335 5.294 4.421
788 5.325 5.324 5.319 5.080
1576 5.322 5.322 5.321 5.260
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