
NUREG/CR-5964
EGG-2692

SAPHIRE Technical
Reference Manual:
IRRAS/SARA Version 4.0

"9
Prepared by ^ ^
K. D. Russell, C. L. Atwood, M. B. Sattison, D. M. Rasmuson /<\ f^

o v^^
Idaho National Engineering Laboratory 0 . ^ O
EG&G Idaho, Inc.

Prepared for
U.S. Nuclear Regulatory Commission

D;aTRiZ^^ON OF T H ; . DOCL^..^T ^ U^U..T.O

NUREG/CR—5964

{ j TI93 006910

SAPHIRE Technical
Reference Manual:
IRRAS/SARA Version 4.0

Manuscript Completed: December 1992
Date Published: January 1993

Prepared by
K. D. Russell, C. L. Atwood, M. B. Sattison, D. M. Rasmuson*

Idaho National Engineering Laboratoiy
Managed by the U.S. Department of Energf

EG&G Idaho, Inc.
Idaho Falls, ID 83415

Prepared for
Division of Safety Issue Resolution
Office of Nuclear Regulatory Research
VS. Nuclear Regulatory Commission
Washington, DC 20555
NRC FIN L1429
Under DOE Contract No. DE-AC07-76ID0157CI

*U.S. Nuclear Regulatory Commission
Washington, DC 20555

MAIIABILITY NOTICE

Avrilabllity of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW.. Lower Level, Washington, DC 20555

2. The Superintendent of Documents, U.S. Government Printing Office. P.O. Box 37082, Washington,
DC 20013-7082

3. The National Technical Information Service. Springfield, VA 22161

Althouoh the listing that follows represents the malority of documents cited In NRC publications. It Is not
intended to be exhaustive.

Referenced documents available for inspection and copying lor a fee from the NRC Public Document Room
Include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices.
Inspection and investigation notices; licensee ©vent reports; vendor reports and correspondence; Commis­
sion papers; and applicant and licensee documents and correspondence.

The following documents In the NUREG series are available for purchase from the GPO Sales Program:
formal NRC staff and contractor reports, NRC-sponsored conference proceedings, International agreement
reports, grant publications, and NRC booklets and brochures. Also available are regulatory guides, NRC
regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission lssuar}ce$.

Documents available from the National Technical Information Service include NUREG-series reports and
technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commis­
sion, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as
books. Journal articles, and transactions. Federal Register notices, Federal and State legislation, and con­
gressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro­
ceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the
Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission,
Washington, DC 20555.

Copies of Industry codes and standards used In a substantive manner in the NRC regulatory process are
maintained at the NRC Library, 7920 Norfolk Avenue. Bethesda, Maryland, for use by the public. Codes and
standards are usually copyrighted and may be purchased from the originating organization or, if they are
American National Standards, from the American t«Jational Standards Institute, 1430 Broadway, New York,
NY 10018.

DISCLAIMER NOTICE

This re^rt was prepared as an account of work sponsored by an agency of the United States Government.
Neither the Unit^ States Government nor any agency thereof, or any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of
such use, of any information, apparatus, product or process disclosed in this report, or represents that its use
by such third party would not infringe privately owned rights.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

ABSTRACT

This report provides information on the principles used in the
construction and operation of Version 4.0 of the Integrated Reliability and Risk
Analysis System (IIRAS) and the System Analysis and Risk Assessment (SARA)
system. It summarizes the fimdamental mathematical concepts of sets and logic,
fault trees, and probability. The report then describes the algoriflims that these
programs use to construct a fault tree and to obtain the minimal cut sets. It gives
the formulas used to obtain the probability of the top event from the minimal cut
sets, and the formulas for probabilities that are appropriate under various
assumptions concerning repairability and mission time. It defines the measures
of basic event importance that these programs can calculate. The report gives
an overview of uncertainty analysis using simple Monte Carlo sampling or Latin
Hypercube sampling, and states flie algorithms used by th«e programs to
generate random basic event probabilities from various distributions. Further
references are given, and a detailed example of flie reduction and quantification
of a simple fault tree is provided in an appendix.

I
December 1992 i i i NUREG/CR-5964

CONTENTS

ABSTRACT i i i

EXECUTIVE SUMMARY ' . xi

FOREWORD xiii

ACKNOWLEDGMENTS xv

1. INTRODUCTION 1

2. SET THEORETIC AND LOGICAL CONCEPTS . 5

2.1 Set Theoretic Concepts 5

2.2 Operations on Sete 5

2.2.1 Union 6
2.2.2 Intersection . 6
2.2.3 Complement 7
2.2.4 Set Difference 7
2.2.5 Mutually Exclusive 7
2.2.6 Exhaustive Sets 8

2.3 Summary of UseM'Identities 8

2.4 Concepts of Statement Logic 10

2.5 Relations between Set Theory and Statement Logic 11

3. REVIEW OF FAULT TREE CONCEPTS 13

3.1 IRRAS Fault Tree Approach 13

3.2 IRRAS Fault Tree Symbols 14

4. PROBABILITY CONCEPTS . 25

4.1 Definition of Probability 25

4.2 Rules of Probability 25

4.3 Law of Total Probability 26

4.4 Basic Probability Relations 26

December 1992 V NUREG/CR-5964

4.5 Bayes' Law 27

4.6 Independent Events 28

4.7 Additional Probability Relations 28

5. DETERMINATION OF MINIMAL CUT SETS 29

5.1 Recursive Algorliims , 30

5.2 Loading and Restructuring 30

5.3 N/M Gate Expansion 31

5.4 TOP Gate Determination 31

5.5 Loop Error Detection . 32

5.6 Complementai Gate Conversion 33

5.7 House Event Pruning 34

5.8 CoalMcing Like Gates 36

5.9 Modules versus Independent Subtrees . 37

5.10 Module Determination and Creation 38

5.11 Independent Event Determination 42

5.12 Independent Gate and Subtree Determination 42

5.13 Determining Gate Levels 42

5.14 Fault Tree Raiuction 43

5.15 Cut Set Truncation 43

5.16 Intermediate Result Caching 43

5.17 Fault Tree Cache Initialization 44

5.18 Fault Tree Gate Expansion 45

5.19 Cut Set Absorption 46

5.20 Boolean Absorption 47

NUREG/CR-5964 vi December 1992

5.21 Data Storage Considerations . 47

5.22 Sequence Cut Set Generation 47

6. QUANTIFICATION TOOLS FOR PROBABILITIES AND FREQUENCIES 51

6.1 Quantifying Minimal Cut Sets 51

6.2 Quantifying Fault Trees 51

6.2.1 Rare Event Approximation 51

6.2.2 Minimal Cut Set Upper Bound . 52

6.3 Quantifying Sequences 52

7. EVENT PROBABILITY CALCULATION TYPES 55

8. IMPORTANCE MEASURES 59

8.1 Types of Importance Measures 59

8.2 Calculational Details 59

8.2.1 Fussell-Vesely Importance 60
8.2.2 Risk Reduction 60
8.2.3 Risk Increase 61
8.2.4 Birnbaum Importance 61

9. UNCERTAINTY AND MONTE CARLO 63

9.1 Basic Uncertainty Ou^ut 63

9.2 Uncertainty Analysis Input Data 64

9.3 Supported Continuous Distributions 65

9.3.1 Lognormal Distribution 66
9.3.2 Normal Distribution 67
9.3.3 Beta Distribution . 68
9.3.4 Gamma Distribution 68
9.3.5 CM-Squared Distribution 69
9.3.6 Exponential Distribution 69
9.3.7 Uniform Distribution 70

9.4 Histograms 70

9.5 Correlation Cteses 70

(
December 1992 vii NUREG/CR-5964

9.6 Overview of Simple Monte Carlo Sampling 73

9.7 Overview of Latin Hypercube Sampling 76

9.8 Comparison of Simple Monte Carlo and Latin Hypercube Sampling 79

10. REFERENCES . . . 81

Appendix A - Fault Tree Quantification Example A-1

INDEX I-l

NUREG/CR-5964 viil
I

December 1992

LIST OF FIGURES

Figure 1. Venn diagram of proper subsets . 5
Figure 2. Union of two sets. 6
Figure 3. Intersection of two sets 6
Figure 4. Complement of a set 7
Figure 5. Mutually exclusive sets. 7
Figure 6. Graphical fault tree model input. 13
Figure 7. Alphanumeric fault tree model input 14
Figure 8. IRRAS fault tree symbols 15
Figure 9. Example of a logical loop. 15
Figure 10. Example AND gate. . 17
Figure 11. Example OR gate. 18
Figure 12. Example N/M gate 18
Figure 13. Example TRANSFER gate. 19
Figure 14. Example INHIBIT gate. 20
Figure 15. Example NOT AND gate 21
Figure 16. Example NOT OR gate. 21
Figure 17. Examples of connecting lines. 23
Figure 18. Independent subtree and module fault tree. 39
Figure 19. IRRAS event tree 48
Figure 20. Uncertainty distribution for an accident sequence. . 73
Figure 21. Uncertainty distribution for Component A . 74
Figure 22. Uncertainty distribution for Component B 75
Figure 23. Latin hypercube sample for Component A 76
Figure 24. Latin hypercube sample for Component B 77
Figure 25. Cells sampled in LHS example 78
Figure 26. Cumulative distribution plots for example using Monte Carlo and LHS. 80

LIST OF TABLES

Table 1. IRRAS calculation types 55
Table 2. Uncertainty distributions . 66
Table 3. Monte Carlo samples 75
Table 4. Comparison of Monte Carlo and LHS for sample problem 79

I
December 1992 ix NUREG/CR-5964

(I EXECUTIVE SUMMARY

The System Analysis Programs for Hands^n Integrated Reliability
Evaluations (SAPHIRE) refers to a set of several computer programs that were
develop^ to create and analyze a probabilistic risk Msessment (PRA) of a
nuclear power plant. A summary of the four programs that currently comprise
SAPHIRE is given in the Foreword. This report provides information on the
principles used in the comtraction and operation of tiie two major programs: the
Integrated Reliability and Risk Analysis System piRAS) and the System
Analysis and Risk Assessment (SARA) system. Other relate documents include
the IRRAS and the SARA reference manuals (Russell et al. 1992a, 1992b),
explaining each command; and the IRRAS (VanHom et al. 1992) and SARA
(Sattison et al. 1992) tutorials, providing a series of lessons that guide ttie user
flirough the basic procedures necKsary to perform analyses wiii these programs.
Many of the concepts in this manual apply to both SARA and IRRAS. Since
SARA is a tool designed primarily for review of a PRA, it do« not have flie
fault tree and event tree construction and solution concepts found in IRRAS.
This manual will focus primarily on the concepts found in IRRAS, but where
thMe same features exist in SARA the technical information provided is
applicable.

This report differs from the related documents by concentrating on
principles and algorithms rather than on the interface between the program and
the user. The first few sections of the report contain mathematical background.
Set thwretic operations and relations are summarized, and their relation to
Boolean logic is explained. Fault trees are reviewed, including all of the gate
types allowrf by IRRAS. Finally, the rules of probability are summarized.

The next section outlines the procedure by which IRRAS builds a fault
tree from the user inputs, simplifies and truncates it according to the user's
specifications, and determines the minimal cut sets. IRRAS is written in a
recursive language, and performs many operations by recursive procedures. It
initially takes the user's input and builds a simplified internal representation of
the tree. This involves several steps:

• linking portions that were connected by transfer gates,
• expanding N/M gates as combinations of OR and AND gates,
• determining the unique TOP gate,
• checking for logical loops,
• pruning portions of the tree having house events,
• coalescing like gates.

To obtain the minimal cut sete in an efficient way, IRRAS searches for
independent subtrees and for modules, both of which are treated as single tokens
until very late in the procMS. It then determines the optimal order for processing
the tree, basrf on Ae levels of the gates, and begins making a list of cut sets.
Based on the basic event probabilities or siz« (and the user's truncation

December 1992 XI NUREG/CR-5964

specifications), it eliminate some cut sete early in the process. It also eliminates
nonminimal cut sete, those that can be absorbed by other simpler cut sets, and
finally obtains a list of minimal cut sete that the user has specifial should not be
truncate. Hie last step is to combine the fault trees for failures of different
systems, to obtain the fault tree for an accident sequence involving the failure of
certain systems and the success of others.

Selected formulas are given in the next several sections of the report.
One section giv« the formula for the probability of a cut set, approximations for
the probability of a union of cut sete, and the formula for tfie frequency of an
accident sequence. The next section gives formulas for reliability and
unavailability of repairable and nonrepairable components, corr«pondliig to the
probabilitiM of various basic evente. Finally, a section gives formulas for
different measures of importance of a basic event.

Uncertainty analyses are performed by Monte Carlo simulation, with the
basic event probabilities drawn from user-specified distributions. Two types of
simulation are possible in IRRAS, simple Monte Carlo sampling and Latin
Hypercube sampling. The final section of this report presente the sampling
distributions that are supported by IRRAS, and documente the algorithms u s ^
for generating random numbers from these distributions. Correlation class«,
allowing the user to state that certain basic event probabiliti« are equal although
both are uncertain, are also explained. A simple example illustrates the two
types of simulation.

The list of references refers the reader to more information on topics that
could only be briefly summarized in this report. The appendix contains an
example showing how IRRAS finds the minimal cut sets of a fairly simple fault
tree, and how IRRAS finds the probability of the TOP event and the importances
of the basic events.

NUREG/CR-5964 xii December 1992

I I FOREWORD

Hie U. S. Nuclear Regulatory Commission has developed a powerM
suite of personal computer programs for the performance of probabilistic risk
assessments (PRAs). This suite of programs, known as the System Analysis
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), allows an
analyst to perform many of the fimctions necessary to create, quantify, and
evaluate the risk associated with a facility or process being analyzed. These
programs include software to define the database structure, to create, analyze,
and quantify the data, and to display results and perform sensitivity analyses.
The programs included in this suite are as follows: Models And Results
Database (MAR-D) software, Integrated Reliability and Risk Analysis System
(IRRAS) software. System Analysis and Risk Assessment (SARA) software, and
Fault tree, Event tree, and P&ID (FEP) graphical editor software. Each of these
programs performs a specific fimction in taking a PRA from the conceptual state
all the way to publication.

MAR-D is a program that is used primarily for PRA data loading. This
program defines a common relational database structure that is used by the entire
suite of programs. This structure allows all of the software to access and
manipulate data created by other software in the system without performing a
lengthy conversion. Tlierefore, data created by IRRAS is immediately available
to SARA for sensitivity analysis. The MAR-D program also provides the
faciliti« for loading and unloading of PRA data from the relational database
structore used to store the data. A simple ASCII data format is used for
interchange with other PRA software not included in NRC's suite of programs.
This feature allows for compatibility with previously developed software systems
and allows for maximum data interchange. Elements of Ais software are
included with both IRRAS and SARA to allow these programs to load and unload
data in the MAR-D format. Normally, the entire MAR-D software is used only
by those performing a data loading fimction and is not required by the end user.
Documentation for MAR-D, Version 4.0 is available as NUREG/CR-5301
(Branham-Haar et al. 1992). It should be noted that whenever the MAR-D
database structure is changed, it necMsitates changes in the remaining codes (i.e.,
IRRAS, SARA, and FEP). Therefore, the code version numbers are changed in
unison. Each version set must be used together to maintain compatibility.

IRRAS is a program developed for the purpose of performing those
fimctions necessary to create and analyze a complete PRA. This program
includes fimctions to allow the user to create event trees and fault trees, to define
accident sequences and basic event failure data, to solve system and accident
sequence fault trees, to quantify cut sets, and to perform uncertainty analysis on
the results. Also included in this program are features to allow the analyst to
generate reports and displays that can be used to document the results of an
analysis. Since this software is a very detailed technical tool, the user of this
program should be familiar with PRA concepts and the methods used to perform
these analyses. Although IRRAS has been designed to be user friendly and

I
December 1992 xiii NUREG/CR-5964

makes the proc«s of performing a PRA e^ier, the complexity of this type of
analysis requirra a user with a more detailed understanding of PRA concepts than
is requirrf by other tools in this suite. The IRRAS 4.0 reference manual is
available as NUREG/CR-5813, Volume 1 (Russell et al. 1992a) and the IRRAS
4.0 tutorial is available as NUREG/CR-5813, Volume 2 (VanHom et al. 1992).
In addition, a technical document that provides information on the principte and
algorithms used in the construction and operation of IRRAS and SARA is
available as NUREG/CR-5964.

SARA is a program that allows the user to review the results of a PRA
and to perform limited sensitivity analysis on these results. It is limited primarily
to the extent that changes in the plant model can be accommodated by using the
cut set editor. If other than simple change are being simulated, ttien IRRAS
should be used so that new cut sete can be accurately generated. This tool is
intended to be usrf by a less technically-oriented user and does not require the
level of understanding of PRA concepts required by IRRAS. With this program
a user can review the information generated by a PRA analyst and compare the
results to those generated by making limited modifications to the data in the
PRA. Also included in this program is the ability to graphical display the
information stored in the MAR-D database. This information includes event
trees, fault trees, P&IDs and uncertainty distributions. The user of tfiis program
can gain a better understanding of the resulte of a PRA without getting into the
details of the construction and analysis work behind the PRA. The SARA
reference manual (Russell et al. 1992b) and tutorial (Sattison et al. 1992) are
available as NUREG/CR-5303, Volumes 1 and 2, respectively.

FEP is a program developed to provide a common access to the suite of
graphical tools developed for performing risk assessment. These tools include
the graphical fault tree, event tree, and P&ID editors. The fault tree and event
tree editors are available through IRRAS; however, the P&ID editor is only
accessible through FEP. The fault tree editor allows the user to construct and
modify graphical fault trees. The event tree editor allows the analyst to construct
and modify graphical event trees. The P&ID editor allows the user to construct
and modify plant drawings. These drawings can then be used to document tiie
modeling usal in a PRA. These editors are an integral part of a PRA. With liie
FEP tool, tfie user need not be concerned with the complexity of the IRRAS
program if the need is only to generate one of these graphical displays.
Documentation for FEP, Version 4.0 is available as NUREG/CR-5866 (McKay
et al. 1992).

(
NUREG/CR-5964 xiv December 1992

ACKNOWLEDGMENTS

The authors wish to acknowledge the significant contribution of Nancy
L. Skinner to the successfiil completion of this document. Her patience and
tireless efforte in reviewing and Siting the many revisions to this document were
unquestionably a major contribution to this work. We also wish to acknowledge
the contribution of flie many Individuals who have provided their management
guidance, technical expertise, and software development talents to the SAPHIRE
project.

December 1992 xv NUlEG/CR-5964

SAPHIRE Technical Reference Manual
IRRAS/SARA Version 4.0

1. INTRODUCTION

The Integrate Reliability and Risk Analysis System (IRRAS) software development project was
started as a rrault of a rMognized need for microcomputer-bMed software to aid the probabilistic risk
«sKsment (PRA) analyst. The initial scope of tiie project was to provide a software package that could
demomtrate the femibility of using the microcomputer as a workstation for performing PRA analyses.
This package did not necessarily need to perform all of the fimctions required; however, it did need to
provide certain essential fimctions such as fault tree construction, failure data input, cut set generation,
and cut set quantification.

At about the same time, the need for a simple tool that used the resulte of a PRA to perform
limits review and sensitivity analyses was identified. This tool need not be able to create and solve fault
trees and event trees, but should be able to perform limited modifications to failure data and cut sete and
compare th^e changM to a base CMC set of data. This need resulted in another software development
project, ttie System Analysis and Risk Assessment (SARA) system. The IRRAS and SARA system soon
became complementary tools for flie performance of PRAs. For each release of the IRRAS system there
was a corresponding SARA system. The first version of th«e software package was released in
February of 1987 and containrf only the essential concepts mentioned above.

Version 1.0 of IRRAS/SARA was an immediate SUCCMS and clearly demonstrated not only the
tremendous nerf but also the feasibility of performing this work on a microcomputer. As a result of this
success. Version 2.0 development was begun. This package was designed to be a comprehensive PRA
analysis package and includrf all the fimctions necessary for a PRA analyst to perform his or her work.
The areas that were not treated in version 1.0 were addressed, and a complete, integrated package was
developed. Because Version 2.0 was a complete rewrite from version 1.0, a thorough test plan was
necessary. The major features of Version 2.0 along with an Alpha test were completed in early March
of 1988. Following the Alpha test, approximately 15 sites were selected from among the sites currently
using Version 1.0. and were sent a Beta t«t Version 2.0. In May of 1988, tiie Beta test was completed
and work began on fixing any bugs found. In addition, any desired new features that could reasonably
be incorporate into version 2.0 were included. Version 2.0 was releffied in June 1990 and work began
on the development of Version 2.5.

Version 2.5 was an integrated PEA software tool that gave the user an enhanced ability to create
and analyze fault trees and event tre« using a personal computer (PC). This program provided fimctions
for fault tree and event tree construction and analysis. The fault tree functions ranged from graphical
fault tree construction to fault tree cut set generation and quantification. The event tree fimctions included
graphical event tree construction, tiie linking of fault tre«, defining accident sequences, generating
accident sequence cut sete, and quantifying them.

Version 4.0 contains many significant enhancemente over previous versions. This version
providM much more powerfiil cut set generation algorithms. These algorithms are more than a thousand
times faster than previous versions. Problems that took hours to solve can now be solved in seconds
using Version 4.0. Other enhancements provided in this version include the ability to use the system fault

December 1992 1 NUREG/CR-5964

Introduction

tree logic to solve accident sequenc« and the addition of iag sete to automatically prune the sequence
logic. Many of the operatiom in IIRAS and SARA have also been streamlined and simplifiM to provide
an even more powerfiil tool for the PRA analyst. This version has undergone a rigorous t«ting program
to emure reliability and useability. Overall, Version 4.0 continu« to provide more powerfiil tools for
the PRA analyst.

IRRAS automates the model creation, manipulation, modification, and quantification proc«ses.
Designed for the IBM-PC and compatibte, IRRAS is readily acc«siMe and portable. Taking advantage
of new state-of-tiie-art algorifliins, IRRAS is quite fast and powerfiil.

IRRAS simplifies the analysis process and automates the construction of input to the analysis
software. TTie analyst can graphically construct and modify fault trees. IIRAS gives tfie users better
visualization of the fault tree and simplifies the construction and maintenance. The program supporte all
of the basic constmcte involved in fault tree construction, including NOT gata. Once the fault tree is
constructed, the program automatically generatM the alphanumeric input for the analysis software. The
component reliability information is then easily input into the IRRAS data base using specially designed
menus and screens.

IRRAS 4.0 IncludM fault tree, event tree and cut set editors to improve the analysis capabilities
without requiring complete regeneration and reduction of the fault trees. Basic event or initiating event
frequencies are easily changed. Cut sets are easily modified with the cut set editor to add recovery
actions, or cut sete may be deleted if desired. These chang« can be saved in the data base and quantifial
as d«ired.

This report provida the IRRAS 4.0 user with a basic understanding of the mathematical and
probabilistic concepte nerfed to understand flie basic principte used in IRRAS. In addition, it gives an
overview of the algorithms used in the program. Tlis report is not intended to provide all of tie details
some readers may d«ire. Therefore, references are provided that contain more detail for flie interestoi
reader.

The report contains the following topics:

• Section 2 is an introduction to sete and set operations and to the corresponding logical
operations

• Section 3 contains a review of fault tree construction principles and the philosophy used in
IRRAS

• Section 4 is an overview of probability flieory

• Section 5 contains an overview of the cut set algorithms used in IRRAS

• Section 6 reviews tfie quantification techniques used in IRRAS

• Section 7 provid« a summary of the calculation types used for the basic evente

• Section 8 contains an overview of importance measures

NUREG/CR-5964 2 December 1992

Introduction

• Section 9 discusses the uncertainty analysis and provide an introduction to Monte Carlo
sampling and Latin Hypercube sampling

• Section 10 contains a list of applicable reference

• Appendix A presents an example of the details of an IRRAS application to a simple fault tree.

December 1992 3 NUREG/CR-5964

2. SET THEORETIC AND LOGICAL CONCEPTS

TTiis section presente basic definitions of sete and a summary of usefiil identities. The reader can
obtain more information from Vesely et al. (1981), Mood et al. (1974), or Hahn and Shapiro (1967).

2.1 Set Theoretic Concepts

A set is a collection of objects or elemente with some characteristics or distinguishing features
in common. An example of a set is all possible states of tiie componente in a nuclear power plant. The
set of all elemente is called Ae population, the reference set, the universal set, or the identity set. It is
denoted by the Greek letter capital 0 or by I. The set not containing any elements is called the null set,
tie empty set, and sometimes the zero set. It is denoted by 0 .

Let A and B be sete of 0 in the following discussion. B is said to be a subset of A, if and only
if every element in B is also an element of ^ . It is denoted hy B Q A. If A contains an element not in
B, then Bis called a pro|>ersiitael of bandit is denoted by BCi4. A md B MQ equal, denoted by J = 5 ,
if and only if .4 cfi and B&A; then A and B have the same elemente and neither is a proper subset of the
other.

A usefiil tool to illustrate set relations
pictorially is the Venn diagram. Figure 1 shows the
Venn diagram for two sete, A and B, where B is a
proper subset of ^ .

For IRRAS, we are interested in what could
occur at a nuclear power plant. Therefore, when set
theory is used for IRRAS applications, we usually let
the population 0 consist of all possible conditions of
the plant. Any one element of this set consiste of a
detailed specification of the condition of every part of
flie plant. Consequently, 0 has a huge number of
elemente.

Events are subsete of this population. For example, an event such as "AFW pump PAFWTl fails
to start" is a subset, consisting of all conditions of the pump and ite supporting equipment that rault in
failure to start, together with all possible conditions of the rest of the plant. The event "core melt" is also
a subset of the population, containing all the detailed plant conditions that result in core melt.

2.2 Operations on Sets

Three basic operations exist for sete. They are union, intersection, and complementation. A
fourth operation, called set difference, is sometimes considered; it is expressed as a combination of the
other set operations.

Figure 1. Venn diagram of proper subsete.

December 1992 5 NUMEG/CR-5964

Set Concepts

2.2.1 Union

The union of two sete is a set consisting of all the distinct elemente in A or all of the elemente
in B or both. It is denoted by C=AUB.

The union operation is also called an OR operation, and is sometimes denote by C=A+B.
Inexperienced analyste are wise always to use the symbol U to combine sete and the symbol + to
combine numbers, but adept symbol jugglers learn to use 4- safely in both contexte. Computer programs
that use only the 128 ASCII characters or the characters on a line printer are forced to use -I- instead of
U. The union of two sete is shown in Figure 2.

Figure 2. Union of two sete. Figure 3. Intersection of two sete.

The union of any number of sete Aj, A2, ... is the set of all elements that are in any of the A/s.
It can be written with notation analogous to summation notation:

for n sete and

i - l

for infinitely many sete.

2.2.2 Intersection

The intersection of two sete is the set consisting of all the elemente common to both 4̂ and B.
That is, the elemente belong to A and to B. It is also called the AND operation. It is denoted by
C=AnB or sometimes C—A*B or simply C=AB. The intersection of two sete is shown as the
crosshatched region in Figure 3.

NUREG/CR-5964 December 1992

Set Concepts

The intersection of ^ j , A2, ... is the set of all elemente that are in all the A/s. The intersection
of n sete can be written m:

or, using product notation, as AjA2...A„.

2.2.3 Complement

The complement of a set A is the set consisting of all elemente in the population that are not
contain^ in i4. It is sometime called the NOT operation. Itisdenotedbyi4',i4^, orii. A complement
of a set is shown in Figure 4.

2.2.4 Set Difference

The set of all elemente in A and not in tie set B is called the set difference. It is denote by ̂ 4-^.
It can also be written as Af\B'. The clear portion of set A (shown in Figure 3) repr^ente tfie set
difference A-B.

2.2.5 Mutually Exciusiwe

Two sete are said to be mutually exclusive or disjoint if and only if they contain no elemente in
common. That is, their intersection is the null set, J n B = 0 . Mutudly exclusive sete are shown in
Figure 5. The sete Aj, Aj, ... are mutually exclusive if each pair is mutually exclusive, ttiat is, no
element of 0 is in more than one Aj. The term "mutually exclusive" can therefore refer even to an
infinite collection of sete.

Figure 4. Complement of a set. Figure 5. Mutually exclusive sete.

(I
_ December 1992 7 NUREG/CR-5964

Set Concepts

2.2.6 Exhaustlwe Sets

A collection of sete Aj, A2, ... is exhaustive if tie union of the sete is the population 0, that is,
every element of 0 is in at least one A/. In most applications, exhaustive sete are also chosen to be
mutually exclusive. When the sete 4̂̂ , A2, ... are both mutually exclusive and exhaustive, they form a
partition of 0: every element of 0 is in one and only one of the Af's.

2.3 Symmarf of Useful Identities

The following are usefiil identities in working with sete:

Commutative laws

AUB = BUA

ApiB = ̂ n^

Associative Laws

AUiBUQ = (^Ufi)Uc

Af](Bf]Q = (Amnc

Distributive laws

AfliBUQ = (^nB)U(^nQ

AijiBOQ = (^u^)n(^UQ

liempjtent Laws

^n^ = A

A{jA = A

Laws of Absorption

i4n(AUB) = A

NUREG/CR-5964 8
I I

December 1992

Set Concepte

[i
AUiAflB) = A

Complementation

A[]A' = ̂ n^ = ^ n ^ ' = 0

A\JA' = AUA = A{]A' = 0

(̂ 0̂ = (AJ = A

Operations Involving Null Set and Population

0f>4 = 0

0134 =.4

1 Qf]A=A

QLM = 0

0' = 0 = 0" = Q

Q/ = ii = (r = 0

DeMorgan's laws

(AflBy = ̂ ^u^'

(AUBY = A'f\B'

I I
- December 1992 9 NUREG/CR-5964

Set Concepts

Other Heiititi«

2.4 Concepts of Statement Logic

A statement is defmrf here as a sentence that can be declared either true or false. Exampte are
"Generator DGl falls to start" and "Safety injection is initiated." English statements tiiat are not clearly
true or false, such as "This is a nice looking control room," are not considered. Mathematically, a
statement is an object that can take one of two ¥alues, either TRUE or FALSE. Use flie letters p , q, r,
etc. to denote statements.

New statements can be built by combining simpler statements using AND, OR, and NOT, defined
as follows:

(p AND q) is TRUE if both|7 and q are TRUE, and it is FALSE ifp is FALSE, q is FALSE,
or both are FALSE.

(p OR q) is TRUE if j? is TRUE, q is TRUE, or both are TRUE. It is FALSE if bothp and q
are FALSE.

(NOTp) is TRUE ifp is FALSE, and FALSE if^ is TRUE.

Tlie symbols of mathematical logic (A for AND, v for OR, -« for NOT) will not be used here.
However, for ease of input from a computer terminal, IRRAS uses the notation / for NOT. That is /X
is the notation for NOT X in IRRAS input.

Working from the above b^ic definitions, one can prove many simple facts about statements,
similar to those listed for sets in Section 2.3. For example, one distributive law says

p AND (q ORr) = (p AND q) OR (p AND r)

and one of DeMorgan's laws says

NOT (p AND q) = (NOTp) OR (NOT q).

These equations mean that the statement on the left-hand side is TRUE if and only if flie statement on
the right-hand side is TRUE. There are many such equations not listed here.

Mathematics that uses the formal manipulation of liiese logical relations is sometimes called
Boolean, after the mathematician George Boole.

NUREG/CR-5964 10
I

December 1992

Set Concepts

2.5 Relations between Set Theorf and Statement Logic

H e above sections have hinted about parallel structures for sets and for statemente: the terms
AND, OR, and NOT were usrf for both, and similar rate such as the distributive laws and DeMorgan's
laws applied to both. The relation is made explicit here.

Let 0 be the population, and consider statements about the elemente of 0. Any statement has a
corresponding truth set, definrf as the set of all elements for which the statement is true. An element
is in the truth set if and only if the statement is true for that element. For example, the statement "core
melt occurs" corresponds to the set of all possible plant conditions that rMult in core melt. Suppose that

A is the set of elements for which p is TRUE
B is the set of elemente for which q is TRUE.

Then the rute for combining sets and for combining statements are relatoi as follows:

^UB is the set of elemente for which (p OR q) is TRUE
^OB is the set of elemente for which (p AND q) is TRUE
A' is the set of elements for which (NOT^) is TRUE .

Because the correspondence is so direct, we sometime interchange the languages and say, for example,
^ OR B instead of ^ U A

For lERAS applications, the statements of inter«t describe events. For example, Ae event
"AFW pump PAFWTl fails to start" may be thought of as a statement|? that can be combined with other
statements as d^cribed in Section 2.4. The event occurs if the statement defining the event is TRUE.
This defines an event as a statement. Alternatively, the event can be ihought of as naming the set A of
all plant condition that result in failure of the pump to start. Similarly, the statement "MOV134 fails
to open" can be thought of as corr«ponding to a set B of plant conditions. TTie statement that both Aese
evente occur, "MOV134 fails to open AND AFW pump PAFWTl fails to start," corresponds to the
intersection Bflii.

The relation between statements and sets is so direct that most people switch back and forth
between the two without even realizing it. This is why Ae terms AND, OR, and NOT were introduced
in Section 2.2 as alternative terms for intersection, union, and complementation. The rest of this report
allows for this back-and-forth thinking, not careftilly distinguishing between statement logic and set
theory.

One re^on we did not list all the facts about statements in Section 2.4 is Aat they are simply
reexpressions of the facts ia Section 2.3. Any fact about sets in Section 2.3 can be translated to a fact
about statement logic by replacing sete ̂ 4, B, and C by statements p, q, and r and replacing U, n , and
' by OR, AND, and NOT. The population 0 must be replaced by a statement that is always true, and
the null set 0 must be replacrf by a statement that is always false.

December 1992 H NUREG/CR-59M

3. REVIEW OF FAULT TREE CONCEPTS

This section provides the reader with an overview of the concepts used by IRRAS in the creation
of fault tree models. More information can be found in Vesely et al. (1981).

3.1 IRRAS Fault Tree Approach

IRRAS allows the user to input fault tree models in either of two ways: graphically (Figure 6)
or alphanumerically (Figure 7). Both methods produce equivalent resulte and use the same basic
approach to modeling.

Fifure 6. Graphical fault tree model input.

A fault tree model consists of a top event (usually defined by a heading in an event tree) and a
connecting logic structure that models the combinations of events that must take place to result in the
undesired top event. A fault tree Is a failure model. Thus, all tfie elements in the fault tree generally
represent failures, whether they be equipment failures, human errors, or adverse conditions that can

December 1992 13 NUREG/CR-5964

Fault Tree Concepts

1 TOPGAIE
1 GATE-1
1 GATE-2
1 GATE-3

OR
OR
AND
AND

EVENT-A
GATE-3
EVENT-D
EVENT-E

GAlE-2
EVENT-B
EVENT-C
EVENT-G

GATE-1

EVBNT-F

Figure 7. Alphanumeric fault tree model input.

contribute to failure of tie modeled event. SUCCMSM events (those tilings that should happen) tiiat can
contribute to failure of ttie top event can be included in the fault tree also, but special care must be
exercised.

The logic structure must contain only one top event. IRRAS will provide an error message if
more than one top event is discovert. A simple way to guarantee only one top event per fault tree is
to develop the fault tree model from the top down and complete each level of the fault tree model before
proceeding to the next level.

The fault tree logic structure can consist of any combination of the logic symbols shown in
Figure 8 that do not result in a logical loop. A logical loop is a chain of events that comes back on itself.
For example, a service water system can fail due to a loss of electrical power. Part of the electric power
model contains failure of the emergency diesel generators. The emergency diesel generators can fail due
to a loss of cooling water supplied by the service water system. The combination of events rwulting in
flie loss of service water due to a loss of electrical power caused by failure of the di^el generators that
was due to the loss of service water is a logical loop. This is shown in Figure 9. This type of circular
logic is ambiguous and is not allowed by IRRAS. If such a logic pattern is detected, IRRAS will provide
an error message and will display the sequence of logic gat« that are in the loop.

3.2 IRRAS Fault Tree Symbols

The fault tree model consists of simple faulte calM b^ic events and logical operators that dictate
how the basic events must combine to result in failure of the fault tree top event. Basic events are the
building blocks of the model. When the model Is processed, the results will be all the minimal
combinations of basic events sufficient to cause failure of the top event. Three combinations are called
minimal cut sets, and are defined in Section 5. Minimal cut sets contain only basic events.

Figure 8 shows the various fault tree symbols used in IRRAS. These have been grouprf into
b^ic events, logic gates, and other symbols. There are six different b^ic event symbols to indicate
different conditions, but all basic events are treats the same in IRRAS. The different basic events are:

• BASIC EVENT. This represente a simple failure or fault. It may be a hardware failure, a
human error, or an adverse condition. Hardware failures are usually expressed in terms of
a specific component and a failure mode, such as "Service Water Pump IA fails to start on
demand." Human errors can be failure to carry out a desired task (failure to open a valve),
failure to perform a specific recovery action (failure to start a backup system), or execution
of a wrong action that has adverse effects on flie fault tree top event (isolated the source of

NUREG/CR-5964 14 December 1992

Fault Tree Concepts

BASIC EVENTS

6 u o Ci ^ ^

iVBlT M S I € EVBITS WBMT

LOGIC GATES

r;r ^y TZ^ ^ ^ v^^ ^i ^
AND G A n 0 1 C A n H/H GATE

GATE GATE

OTIEH STMBOLS

ZV -A
BIOHT M f T HOBBOMTAl ¥1BTICM COBMKTWC

iox ma.

Figyre 8= IRRAS fault tree symbols.

S
I ^ ^ I S L a

" ^

A V-4 fAttoiia m

1 OWMOMJ

biss m <m»jm 1
A ^ TO M ^ £
1 O i !«MT«iT

J ^
•

lots w w w i d '

/ ^

Figyre 9. Example of a logical loop.

December 1992 15 NUlEG/CR-5964

Fault Tree Concepte

water for a cooling system). An adverse condition is not necessarily a failure but in
combination witii other events can lead to faiure. For example, the temperature being below
32 °F is an adverse condition necessary for the failure of flow rrfuction due to a frozen pipe.
Even though a basic event does not necessarily describe a failure, the vast majority of basic
events are failure. This leads to loose but understandable language such as "tie event is in
the failed state" instead of tiie more correct "tiie event occurs."

Basic events are always assumed to be independent of each other, in the statistical sense
definol in Section 4.6. This means that the occurrence of one basic event does not influence
the probability of occurrence of any other basic event. For example, suppose that there are
two diesel generators, and the failure of either to start on demand is a basic event.
Independence of the basic events says ttiat if one diesel generator fails to start on demand, this
does not alter the probability that the second diesel generator will fail to start. A common
cause event, such as "two diesel generators fail to start because of unusually cold weather,"
must be modeM as its own basic event, and be assigned ite own failure probability or failure
rate. Tlis event is then regarded as statistically independent of all other basic events.

• BOXED BASIC EVENT. This event is Ihe same as a basic event except the box provides
room to add descriptive text to the event. This does not influence the logic of the fault tree,
but adds clarity to tiie model for those using and reviewing it.

• TABLE OF BASIC EVENTS. This symbol is a convenience for the modeler. If there are
many basic event inputs to a particular logic gate, the events can be listed in a table rather than
trying to connect many basic event symbols to the logic gate. This can be done for any logic
gate that can receive more than one input. IRRAS proc«ses the list of basic events as if they
were shown separately. The tradeoff is the inability to add descriptive text to each basic event
in the table.

• UNDEVELOPED EVENT. This symbol is usrf to denote a b»ic event that is actually a
more complex event that has not been farther developed by fault tree logic either because the
event is of insufficient consequence or because information relevant to the event is unavailable.
This event is used by IRRAS just like any other basic event.

• HOUSE EVENT. A house event is used to denote a failure that is guarantee to always occur
for the given modeling conditions or is guaranteed to never occur for the given modeling
conditions. This has unique implications in the procMsing of the logic model. (See Section
5 for a discussion of how house events impact the logic of the fault tree.) In the IRRAS
graphic displays, the house symbol is used mainly for clarity of the model. The determination
of whether an event is a house event or not is established when flie calculation type is assigned
to the basic event (see Section 7). Thus, any basic event in IRRAS can be made into a house
event.

• UNDEVELOPED TRANSFER. This symbol indicate that the event is complex enough to
have ite own fault tree logic developed elsewhere; however, to simplify the present fault tree,
the event will be treated as a basic event. Usually the complex event is processed as a
separate event tree and the resulte are used as the failure probability for the representative
basic event. This can greatly simplify a large fault tree, speeding up processing time.
However, with the current capabilities of IRRAS, there is little advantage to this technique.

NUREG/CR-5964 16 December 1992

Fault Tree Concepts

It is pr«ented in IRRAS because many existing models being transferred from other software
into IRRAS use It.

Logic gates are usal to indicate how the basic evente must combine to result in failure of the top
event. Every logic gate has one or more inputs at the bottom and an output at the top. Inputs may be
basic events or otiier logic g&tes. The output must serve as the input to another logic gate or result in
the top event. Each logic gate derivo ite name from tfie manner in which the inpute must combine to
pass through it to the next level. The input to a logic gate is a set of evente. TTie output is a single
event, formed by using the set operations AND and OR on the input events. The logic gates in IRRAS
(Figure 8) are:

• AND GATE. Hits gate states Aat the output event is the simultanwus occurrence of Ml the
input events, as shown in Figure 10. In set language, ttie output set is the intersection of the
input sete. In terms of statement logic, the output is a compound statement (X AND F AND
Z),

Output X Y Z

AND Gate

D
GATE

Input
Figure 10. Example AND gate.

OR GATE. This gate combines the inpute by the OR operation. In Figure 11, Ae ou^ut set
is the union of the three input sete. Alternatively, the output statement is X OR F OR Z.

N/M GATE. This gate states that N of the M input evente occur. It is sometimes called an
N-out-of-M gate or a combination gate. For a 2/3 gate, illustrated in Figure 12, 2 of the 3
input evente must occur. The output statement is (X AND ¥) OR (X AND Z) OR (Y AND Z).

TRANSFER GATE. This gate does not require any special logic to r«ult in an output, rather
it is usai to link logic structure together without introducing any new logic of ite own. This
is used primarily as a convenience for the modeler. All but the simplest of fault trees take up

December 1992 17 NUREG/CR-5964

m
s
M

I

1—H

^
^

^ ri-

• c ^
1 /—"̂ k>
C \ rO

ro

G3

^
\

Q

O
c
r^

^

X

+

N

i

HH

^
t3
f̂ ri-

"Q
O
O

o
<»°\

Q

(D

o
c
ri-

^

X

+

N

1 I

Fault Tree Concepte

more Aan one page. The TRANSFER GATE indicate where the logic on a given page is
continued on another page. A TRANSFER GATE may also be used to indicate where the
logic is continurf on the same page. This is shown in Figure 13, where GATE-3 is an input
both to GATE-1 and to GATE-2. In IRRAS, tfie following rales apply when using a
TRANSFER GATE:

T ^ E

IT
G A T ' - 1 &j\ :-2

EVENT-A

WT\ :-3

TIANSFER
GATE

TT
^T i : -4

Figure 13. Example TRANSFER gate.

The TRANSFER GATE name must be flie same as the name of the gate where tie logic
continues.

December 1992 19 NUMEG/CR-5964

Fault Tree Concepte

- When transferring on the same page, the gate being transferred to can be anywhere on flie
page, except where it would create a logic loop.

- When transferring to another page, the gate being transferrwl to must be tfie top gate on the
page.

- When transferring to another page, the transfer gate name, the file name for the page being
transferred to and flie name of the gate being transferrM to must all be the same. For
example, if Ae TIANSFER GATE is called TRANS 1, then the page being transferred to
must be calM TRANS 1 and tfie top gate on that page must be called TRANS 1.

• INHIBIT GATE. This gate, as ite name implies, has ite output inhibited unl«s a certain
condition is met. The output event occurs if the single input fault occurs in the presence of
an enabling condition. The input event is connected to the bottom of the gate and tfie
conditioning event is drawn to tiie right of flie gate. An INHIBIT GATE is shown in
Figure 14. Event X cannot occur unlMS Conditioning Event Y is present. The output is the
combination of evente X and Y. Thus, flie INHIBIT GATE is a special type of AND GATE
and IRRAS proc«s^ it as such. The Conditioning Event is treated as any other basic event
with a probability of occurrence calculated and usrf in the processing.

Output X Y

Inpu t

Condit ioning
Event

Figure 14. Example INHIBIT gate.

• NOT AND GATE. This gate is also called a NAND GATE. It can be thought of as flie
negation of an AND GATE. TTie output occurs if any one of the inpute does not occur. This
is best explained flirough an example. The left side of Figure 15 shows a NOT AND GATE
with inpute X, Y, and Z. If any one of the inpute does not occur, then an output occurs. Any
of three possibilities satisfy this condition: 1) X doM not occur, 2) Y does not occur, or 3)
Z does not occur. Since any event (X) and ite complement (/X) are mutually exclusive, we
can say that

NUREG/CR-5964 20 December 1992

Fault Tree Concepte

X does not occur = IX occurs.

Therefore, the output of the NOT AND GATE in Figure 15 is IX (read not X), or 17, or /Z.

OUTPUT /X + / ¥ + /Z

1

IMPUTsT J fj fj
I f i

EQUALS

/X + /T + /Z

6011)
M n M

Figure 15. Example NOT AND gate.

Another way of looking at flie problem is lie way IRRAS actually process^ a NOT AND
GATE. The gate is transform^ into an OR GATE with all of the inpute transformed into
their complemente. This is shown on the right side of Figure 15. Any single complement
event occurring resulte in an output.

NOT OR GATE. This gate is also called a NOR GATE. It is the negation of an OR GATE.
The output occurs if none of the inpute occur. This is shown in Figure 16. There is only one
combination of evente where none of the inpute occur; X does not occur and 7 does not occur
and Z does not occur. In terms of complemented evente this is IX and IT and /Z.

OUTPUT /X / I /Z
1

imma () fj (j
I f 1

EQUALS

/X / ¥ /I

1

y
0 0 0

M M M

Figyre 16. Example NOT OR gate.

IRRAS processes a NOT OR GATE by transforming it into an AND GATE wifli all of flie
inpute transformed into their complemente. All of the not evente must occur for the output
event to occur. This is the same as none of the original evente occurring. The other symbols
in a fault tree are used to add clarity to the diagram and to connect the various gata and
evente together properly.

I
December 1992 21 NUMEG/CR-5964

Fault Tree Concepte

• MGHT (LEFT) TRANSFER. These symbols are used to indicate where a transfer hm taken
place. At the place where flie original line of logic left off is a "mANSFER GATE. At flie
place where iie logic picfa up again, a RIGHT or LEFT TRANSFER symbol is placed. This
mak« it easier for a reader or reviewer to follow the logic through a large fault tree taking
up several pages. Typically, the TRANSFER GATE and ite corresponding TRANSFER
symbol are given the same label, as shown in Figure 13.

The RIGHT (LEFT) TRANSFER symbol is strictly for reader convenience and is not needrf
by IRRAS to have a correct model. IRRAS has all flie information it meeds from the
TRANSFER GATE name and fault tree page file name to generate tfie proper logic. The
presence or Asence of a transfer symbol Is ignored by IRRAS.

• HORIZONTAL (VERTICAL) BOX. These boxes are also provided for the convenience of
the reader/reviewer. They allow ftirflier descriptive information to be placrf In flie diagram
tfian that contalnM in the boxes attached to the various gat« and evente. IRRAS ignores these
boxes when procwsing the fault tree.

• CONNECTING LINES. Three line typ« are providM in IRRAS. As shown in Figure 8,
these are a solid line, a dashai line, and a dotted/dashed line. The different line typ« can be
used to highlight or differentiate various portions of the fault tree model. All three line types
are treated the same by IRRAS. Lines are usM to connect the gat« and b»ic evente together
to form flie logic of Ae fault tree. A single input can be attach^ to a gate directly wifliout
using any line. If there is more than one input to a gate, then a line or table of events must
be used to make the coenection. Lines may be drawn at any angle. Connecting lina must
actually touch flie symbols being connected and must do so at the input or output stems on flie
symbols. Evente or gates left dangling will not be part of the fault tree logic. LinM always
connect outpute to inpute, never input to input or output to output. Figure 17 shows examples
of correct and incorrect use of lines.

NUREG/CR-5964 22 December 1992

'•,

Fault Tree Concepte

r-
^ ~

0
mmm

A
1

6 06
CORRECT

1 1

* , — 1 j

1

0 0

IMCORRECT

Figure 17. Exampte of connecting lines.

I
December 1992 23 NUREG/CR-5964

4. PROBABILITY CONCEPTS

This section provides flie reader with an overview of the concepte of probability associate wifli
the uncertainty analysis usM in PRA. This discussion will not be inclusive, but it will present the bfeic
conc^te and principte. For a more detailed discussion of these topics, flie reader can obtain more
information from Press (1989), Lindley (1985) and Singpurwalla (1988).

4.1 Definition of Probability

Probability is the only satisfactory way to quantify our uncertainty about an uncertain event E,
Probability is always conditional; it is condition^ on all of the background ieformation we have at the
time we are quantifying our uncertainty. This background informatioa is denoted by H and the
probability of E conditional on H is denoted by P(E|H). To make the notation less cumbersome, we
write this simply as P(E); neverflieless, the conditioning H should be understood.

The range of a probability is between 0 and 1. P(E) = 0 means E will never occur, and P(E)
= 1 means E will always occur. From now on, msume fliat a probabEity is definrf for all evente in the
population.

4.2 Rules of Probability

The rales of probability tell us how to relate our uncertainty about evente. Specifically, they tell
us how various probabllitiw combine or cohere. These rules are motivated by preferences between evente
and a scoring rale argument. The scoring rale approach can be used to show that tiie following three
rate of probability hold for discrete cases.

For any event,

0 ^ P{E) ^ 1, and F(0) = 1 . <^1)

For any mutually exclusive events Ej, Ej, ...

(«) Û .-i - l
= EP(E) •

i - l

The conditional probability of an event F given an event E Is

P(F\E) = P(FOE)IP{E) C4-3)

which is equivalent to the multiplication rule

December 1992 25 NUREG/CR-5964

Probability Concepte

P(Ff]E) = P(F\E)P(E) . '

These are the basic rales of probability, from which all others can be derived. One logical
development of probability, due to Kolmogorov (Press 1989), takes Equations (4-1) and (4-2) m axioms,
and Equation (4-3) as a definition. A more recent approach by Renyi (PrMS 1989) us« conditional
probability as tfie fimdamental concept, rewritM every unconditional probability above as a conditional
one, and us« the rewritten Equations (4-1), (4-2) and (4-3) as axioms. These mathematical fine pointe
are not important to this r^ort. It is enough to note iiat every treatment of probability uses flie rate
given above, and the rate tiiat follow as consequences in the sections below.

Equation (4-2) says fliat the probability of the union of disjoint evente Is flie sum of the
probabilities. This fact motivated the use of + as an alternate notation for U in Section 2.2.1.

4.3 Law of Total Probability

For any evente E and F,

P(E) = P(Ef\F) + P(Ef\F') = P(E\F)P(F) + P(E\F')P(F') .

This law can be extended to a set of n mutually exclusive and exhaustive evente F ,̂ Fj, . . . , F^ as
follows: —

! I
P(£) = ip(E\F,)P(F,) . (4-4)

t-i

4.4 Basic Probability Relations

no) = 1

P(0) = 0

P(A) = P(A^ = l~PiA)

P(AUA) = P(A{jA') = P(0) = 1

NUREG/CR-5964 26 December 1992

Probability Conc^te

I

P(^n^) = P{Af\A') = P(0) = 0

If E and F are two evente and E is a subset of F, tfien P(E) ̂ P(F).

4.5 Bayes^ Law

Consider any two evente E and F. By the multiplication law

PiEflF) = P{E\F)P(F) = P(F\E)PiE)

so

P(E\F) = P(P\^P(^ . (4-5)
^ ' P(F)

We use Equation (4-5) to change our uncertainty about E given background information H to our
uncertainty about E given F and H. We can think of F M new data.

For example, suppose that turbine-driven pumps fail to start with some frequency p. We quantify
our background knowledge about turbine-driven pumps through a probability distribution onp. (For ease
of explanation, suppose that fliis distribution is discrete, a list of possible values p-,, each with a
probability reflecting our degree of belief.)

To continue tfiis example, let E be flie event "p - 0.01". Let F be tiie event "3 failures in ICX)
attempte to start." We know P(E) from the probability distribution that quantifies our background
knowledge. How should ttiis probability be changed to account for the new information? That is, what
isP(E|F)?

This question is answered using Bayes' Law. The theory of binomial random variables shows
fliat

PiFlp) im
3

P\l-P) lCK-3

is the probability of the event F given some value of p. Therefore PP' |E) is P(Fy) with flie value 0,01
substituted for p. The value of P(F) is obtained from the law of total probability. Equation (4-4):

PiF) = I [P(F;p)P(p = p)}

summed over all the possible values p^. Then finally, P(E |F) is obtained by substituting the values for
P(E), P(F|E), and P^) into Equation (4-5).

In summary, we used Equation (4-5) to change a belief about E given the background information

December 1992 27 NUKEG/CR-5964

Probability Concepte

to a belief about E given both the background information and F. The belief was updated b»ed on new
data.

4.6 Independent Ewents

We say an event E is independent of another event F if the probability of E, P(E), is unaltered
by any information concerning event F. We write

P{E\F} = F(£|FO = P{E) .

This is also called statistical independence. From this definition we obtain the following relationship for
independent evente

P(Em = PiE\F)PiF) = P{E)PiF) .

4.7 Additional Probability Relations

The probability of the union of n evente is

P(A,{jA,U-UAJ = IP(A) - IP(AA) * ... + (-irP(A^A,-AJ . (4^6)

The probability of the intersection of n evente is

P(A,A,-AJ = P(AJA,-A^J-P(A,\AJP{AJ . (4-7)

The probability of the intersection of n evente when the evente are statistically independent is

P(A^A,...AJ = P(A,)P(A,hP(Aj . (4-8)

For any n evente (dependent or independent), we have

P(A,A^-AJ < min[n^,),i'(^^,...,F(^J . (4-9)

For independent evente, the probability of the intersection equals the product of tie probabilities. This
fact motivated the product notation that was introduced as an alternate to n in Section 2.2.2. Because
of its compactness, the product notation has been used for intersections in Equations (4-6) through (4-9).

NUREG/CR-5964 28 December 1992

5. DETERMINATION OF MINIMAL CUT SETS

When considering flie development of a fault tree minimal cut set algorithm, it is good to review
flie general process^ involvrf. First, we have the definition of tfie fault tree logic. Typically, die logic
is defined using an alphanumeric file containing names of gates and basic evente. Gate and event nam«
vary in lengii, but 16 characters seem to be a typical size. Along wiA the logic file is another
alphanumeric file containing basic event names and a failure probability associated with each event.
These failure probabilities are used during the fault tree solution process to simplify the tree by
truncation. Additional proc«sing information may be used, but this is typically the minimum information
required.

The above information is loadrf into memory and converted into a format that is easier to
process. Nam« are usually converted to numbers for smaller size and ease of manipulation. Certain
optimization fimctions are also performed on the logic before it is process^. Next, the logic for each
gate starting with tie TOP is recursively replaced wifli ite inpute until the resulting logic is in terms of
basic evente only. This results in a list of event intersections. Each event intersection is a cM set of the
fault tree and identifi« a set of evente that will cause the fiinction modeled by the fault tree to occur.
The list of cut sete identifies all the logical combinations of evente that will cause the top event to occur.

The cut sete d«cribed above may need farther rrfuction due to rules defined for Boolean
rrfuction. These reductions are applied to obtain a simpler collection of cut sete. For example, the cut
sete generated should be minimal, fliat is, tie list should not be simplifiable. For example, if A n S n C
causes flie top event to occur, then AOBnC is a cut set. If A n i is also a cut set, ttien A n m C is
not minimal, and it is discarded from the list. If neither A alone nor B alone causes the top event to
occur, AOB is a minimal cut set, and it is retainM in the list. This is an application of the absorption
identity: (Ani) U (AOBnC) = A n i .

The event probabilities are Aen used to calculate a probability for each cut set using Equation
(4-7). This value is tie probability that the given set of evente will occur. Any cut set whose probability
falls below a user-defined value is then eliminated. The remaining cut sete are the minimal cut sete for
the fault tree and are the dMlrM end product of the fault tree solution. In IRRAS, Ae minimal cut sete
are always in terms of basic evente unless the analyst specifically indicates that certain gatK are to be
treated as basic events.

Once the minimal cut sete have been determined, the quantification routines must be employed
to determined a point estimate for the probabilities of the cut sete. The routines that find importance
measures would then be used to calculate the Importance of each basic event in the cut sete, and the
uncertainty routines would be used to perform uncertainty analysis on tiie cut sets.

The steps describe above need not be applied in the order indicated, but each step is usually
pr«ent in any fault tree software. We will now present a more detailed overview of each of these steps
as fliey relate to IRRAS.

In order to solve a fault tree, there are a number of operations that must be performed on the tree
before it can be solvrf. Some of these operations relate to converting the tree into a format that is ready
to solve, while others involve optimizing the tree to make flie processing of iie tree more efficient.

December 1992 29 NUREG/CR-5964

Determination of Cut Sete

5.1 Recursive Algorithms

Many of the processes associated with fault tree roiuction and quantification can be implemented
easily using recursive proc«iures. A simple definition of a recursive procedure is "a procrfure that calls
iteelf." An example of where a recursive procedure might be u&ed Is in checking a gate for "valid"
inpute. A recursive implementation of this procrfure has as an argument, tfie gate to be checkrf. This
procedure checks each input to the gate passed as an argument. If an input is a basic event, then it
checks to see if it is valid. If the input is a gate, however, it calls iteelf to see if ttie inpute to tils gate
are valid. When all flie inpute to a gate iave been processed, the procedure exite and continues
processing flie gate it was checking before the recursive call. The algorithm stops when all inpute to all
gates have been checked. Many computer languages do not support recursive procedures, but in those
languages recursion can be simulated by using arrays to keep track of the argumente passed to the
procedure. IRRAS tak« advantage of recursive procedures in many areas.

5.2 Loading and Restructuring

IRRAS was d«ignrf to allow the user to structure very large fault trees into smaller pieces or
pages. The concept of pages comes from the graphical fault tree editor. One page represented the
portion of a fault tree that could be easily displayed on a graphical screen or printed on a standard sheet
of paper. This idea expanded to allow tie pages of the fault tree to be connected together with transfer
gates. IRRAS stores fault trees by pages, in a relational data base. The name of each system is flie key
to locate the system (fault tree) in the data base. Tramfer gat« are stored « subsystems. Again, the
name of the transfer gate is tie name of the subsystem. During the load process, these nam« are usrf
to connect the fault tree logic.

Because IRRAS stores lie logic of tii^e fault trees as physically separate pag«, connected by
transfer gates, the first task is to load these pages into memory and combine them into one connected fault
tree. Tbis is done by reading in lie logic for the first page of the tree, then recursively scanning the
loaded logic for a transfer gate that has not been processed. IRRAS allows the user to specify wheflier
a transfer gate is to be expanded or not. The gates that are flagged (identified as not to be expanded) are
converted to basic evente at tfiis time.

During the load process, IRRAS connecte gates to the tree by name. The gates are maintained
in a sorted list that is searched using a binary search, when required. When a new gate is encountered,
it is inserted into the gate list in sortrf order. As the tree is loaded, transfer gat^ are replaced by gates
with developed logic beneath fliem. During Ms process, if IRRAS encounters a gate that is not a trmsfer
and has the same name as another gate, it checks to see if it is an identical gate (i.e., it is flie same type
and has the same inpute). If flie gates are not identical, IRRAS displays an error message and terminates
tfie process after the tree is loadrf.

When all transfer gates iave been processed, any transfer gates remaining are consider^ to be
unresolved transfer gates. The user is notified of tfi«e and they are converted to b»ic events with the
same name as tie transfer gate. This allows IRRAS to continue processing the fault tree. Tiese
unresolved transfers will appear as basic evente in the cut sete.

NUREG/CR-5964 30 December 1992

Determination of Cut Sete

If the tree is successfiilly loaded, lERAS checks to see if Ae user has specified a gate name to
be u s ^ as tie top gate. If so, then the tree is pmnrf to eliminate any logic that is not coimectai beneath
this gate. This process simplifiK the tree and fre« any memory usrf by the exc«s logic. At this point,
flie tree is ready for farther procMsing,

5.3 N/M Gate Expansion

Tie next step is to convert N/M gates to their representative logic in tenm of AND and OR
gates. This type of gate is used in IRRAS to simplify the definition of flie logic for situations where the
user neais to define a structure representing flie combination of M things taken ^ at a time. The user
may specify any combination where N and M range from 2 to 9 and N<M. IRRAS automatically
converts these gate structure by first generating a number of intermrfiate AND gat« containing as inpute
tfie combinations of inpute represent^, then fliese gates are input to the original N/M gate. Once this
is complete, the N/M gate type is changed to an OR gate. The number of AND gates under the OR gates
is determinol by the total number of combinations of N failures out of a population of M evente. The
equation for this number of combinations is

'Ml ^ Ml
Nj m(M-N)l

An example of this proc«s can be illustrated with the following "2/3" gate.

GATEl 2/3 INPUTl INPUT2 INPUT3

is converted to flie following structure:

GATEl OR N/M-1 N/M-2 N/M-3
N/M-1 AND INPUTl INPUT2
N/M-2 AND INPUTl INPUTS
N/M-3 AND INPUT2 INPUTS

Thus, for 2 out of 3 gates, there are 3 unique combinations of 2 failure. This generates 3 AND gates
under tiie OR gate. If the number of inpute to the gate does not equal M, then a fatal error message is
generated. In this case, IRRAS will not try to solve the fault tree.

5.4 TOP Gate Determination

If the user has not specified tie gate to be used as flie top gate of tie fault tree, tie next step in
solving the fault tree is to determine which gate is the "TOP" gate. This is done by counting the
references to each gate, A gate is referenced if it appears M input to any other gate. The top gate is the
only gate fliat will not be reference by any other gate. If IRRAS detecte more than one gate that
quMifies as flie TOP gate, then the user is notified and given tie opportunity to select flie gate to be used
as flie TOP gate. If no gate is selected, IRRAS will not try to solve flie fault tree. If, however, the user

December 1992 31 NUREG/CR-5964

Determination of Cut Sete

selecte one of the gates, IRRAS will prune all other logic not connect^ to this gate and continue with
the solution.

5.5 Loop Error Detection

Now that the TOP gate of the fault tree has been determined, IRRAS can proceed to check for
loops in the fault tree. A loop is a situation where a gate either directly or indirectly referencra iteelf.
A simple example of a loop is represented by the following fault tree logic:

TOP
GATEl
GATEl
GATE3

AND
OR
OR
AND

GATEl
GATE2
EVENT3
GATEl

EVENT!
GATE3
E¥ENT4
EVENTS

EVENT2

In this example, GATEl indirectly references iteelf since GATEl references GATE3, and GATE3
references GATEl.

To determine if there is a loop in flie fault tree logic, IRRAS defines a Boolean array containing
one element for each gate in the fault tree. This list is then initialized to FALSE. During processing of
a gate, the Boolean variable for tiiat gate is TRUE when proc«sing that gate or any of ite inpute,
otherwise it is FALSE. Starting wifli the TOP gate, IRRAS traverses flie fault tree by following tiie gates
defined in the inpute to each gate. As a gate is encounterM, its Boolean variable is testM. If flie value
of this variable is TRUE, then a previous reference to this gate must have occurrrf indicating a loop
existe in the fault tree at fliis point. If Boolean variable is FALSE, flien it is set to TRUE to indicate fliat
this gate is currently being processed and the inpute for this gate are traversed. When all flie Inpute to
a gate have been checked, tie Boolean variable for the gate is set to FALSE before exiting. Using die
previous loop example, the processing proceeds as follows:

(1) Initialize Boolean array.

(2) Start processing flie TOP gate.
Set flag for TOP gate.

(3) Process the first input to the TOP gate.
First input is GATEl.
Set flag for GATEl and continue.

1 TOP 1

1 FALSE 1

GATEl1

FALSE 1

6ATE2

FALSE 1

GATB

FALSE 1

1 TOP

1 TRUE

1 TOP

1 TRUE

GATEl

FALSE 1

1 GATEl

1 TRUE

GATE

FALSE 1

1 GATE!

1 FALSE

GATB

FALSE 1

1 GATB

1 FALSE

NUREG/CR-5964 32 December 1992

Determination of Cut Sete

(4)

(5)

(6)

(7)

Process the first input to GATEl.
First input is GATE2.
Set flag for GATE2 and continue.

No gates input to GATE2.
Reset flag for GATE2 and exit.

Continue processing inpute to GATEl.
Next input is GATE3.
Set flag for GATE3 and continue.

1 TOP

1 TRUE

GATEl

TRUE

GATE!

TRUE

GATD

FALSE

TOP

1 TRUE

GATEl

TRUE

GATEl

FALSE

GATB

FALSE

TOP

TRUE

GATEl

TRUE

GATE

FALSE

GATE 1

TRUE 1

TOP

TRUE

GATEl

TEUE

GATEl

FALSE

GATB 1

TRUE 1

Process inpute to GATE3.
First input is GATEl,
Set flag for GATEl.
Flag is already set.
Loop detected!

Two pointe of optimization can be considered in this approach. First, each gate only neais to be
processed once. If it is referenced several times in tie fault tree, repeated proc«sing can be time
consuming. IRRAS maintains a list of those gatM that have been procased and only traverses those that
have not been previously processed. Second, tills algorithm is quite repetitive and can be implemented
quite nicely as a recursive procedure (see Section 5.1),

If IRRAS detecte a loop in ttie fault tree, a fatal error is generated along with a traceback. This
traceback defines exactly the gate reference list that causrf the loop. IRRAS will not process a fault tree
that has loops. The user must modify the logic to remove the loop before IRRAS will solve the fault
tree.

5.6 Complemented Gate Conwerslon

Once IRRAS has ensured that the fault tree logic does not contain any loops, the complemented
gates in the fault tree are processol. Two typ« of complemented gates are allowed in IRRAS. The user
may indicate a complemented gate by using either the NAND or the NOR gate or by putting a forward
slash (/) in front of a gate name. If the complemented gate types are used, then all reference to the gate
name will use tie complement^ logic. If the user wants to complement only a specific reference to a
gate, then tie slash character may be used in front of the gate name where it is referenced.

IRRAS processes complemented gates by first complementing the gate type, then complementing

December 1992 33 NUREG/CR-5964

Determination of Cut Sete

tie inpute to tie gate. The following example demonstrates tiis procws:

TOP
GATEl
GATE2
GATE3

AND
NAND
AND
NOR

GA'lEl
GATE3
GATES
EVENT3

GA'I'R2
EVENTl
EVENT2
EVENT4

becomes

TOP
GATEl
GA1E2
GATES

AND
OR
AND
AND

where the "/" character repress

GATEl
/GATE3
GATE3

/EVENT4

ente the compl

GATE2
/EVENTl
EVENT2
/EVENTS

,ement of the

Notice that GATE3 is referenced as both a complemented gate and a noncomplemented gate. To
iandle this, IRRAS generates a new gate called N0T3 that contains the complementai version of GATE3.
Now, the new fault tree is as follows:

TOP AND GATEl GATE2
GATEl OR N0T3 /EVENTl
GATE2 AND GATE3 EVENT2
GATE3 AND /EVENT4 /EVENTS
N0T3 OR EVENT4 EVENTS

If every gate in the tree is referencai in the fault tree as both complement^ and
noncomplemented, then this approach to procKsing tfie complemented gates can result in a fault tree with
twice flie number of gates as in the original tree. This, however, is not usually tie case and the number
of additional gates is substantially smaller. Wien IRRAS first encounters a reference to a complement^
gate in the fault tree, it assumes that this will be the only reference to the gate, therefore, it complemente
the original gate. If later on it encounters a reference to the noncomplementrf version of the gate, it then
generates a new gate that is identical to the original uncomplemented gate.

5.7 House Ewent Pruning

IRRAS allows the user to modify tiie logic structure of a fault tree by using "house" evente.
House evente are evente fliat can be set to logical TRUE (T) or FALSE (F). This forc« flie event to
occur with house event TRUE, or forces it not to occur with house event FALSE. IRRAS also allows
the user to specify that an event is to be ignored with house event IGNORE (I) which says to remove the
event from the fault tree logic. An event set to house event IGNORE will be treatrf as if it did not exist
in the fault tree.

Normally, house evente are treated as special evente tfiat must be designated as house evente.
In IRRAS, however, tiie user may treat any event as a house event. Since IRRAS creat« an event for
each transfer gate in the tree, house evente may also be used to prune subsystems from a fault tree. At

NUREG/CR-5964 34 December 1992

Detenninatlon of Cut Sets

various times, IRRAS will use house events to simplify or optimize the processing of the fault tree.
Here are two of lliese situations. First, If the user is truncating on probability and the probability of an
event is below the truncation value, then we know that this event has negligible probability of occurring.
To prune the fault tree, we set th«e events to house event FALSE. This same technique could be usai
for other truncation criteria that can be determined before the fault tree is solved to farther simplify tfie
tree.

Second, IRRAS us« house events when solving sequence cut sets. In IRRAS, accident sequencK
are defined using an event t r« to indicate the failure or success of top events. Each top event in the
event tree is associatal witfi a system fault tree (see Section 5.22). To solve the accident sequence,
IRRAS constructe a fault tree for those systems that are defined to be faErf in the sequence logic by
creating a dummy AND gate witfi fliese systems as inputs. IRMAS tfien solves this fault tree using the
specific truncation valu«. This process results in a list of cut sets for the faiW systems in the accident
sequence. IRRAS then uses the "cut set matching" technique to ftirther reduce this list of faiW system
cut sets. This technique uses the cut sets determinrf from solving Ae successM system fault tre« in the
accident sequence logic to eliminate cut sets from the list of failed system cut sets. To do tiiis, IRRAS
first scans the list of faiW-system cut sets and assigns a value of FALSE to any event in IRRAS that dora
not appear in this list. Once flils is done, the fault tree representing the successM systems in the accident
sequence logic is construct^, pnm^ by the house events, and solvai. TTie evente that are set to FALSE
in the previous step r^ult in a significantly reduced succ^s system fault tree. We can do this since we
know Aat for any successM-system cut set to eliminate a failed-system cut set, it must contain only
events in the list of failed-system cut sets. Setting these events to house event FALSE will ensure tiiat
the cut sets with these events in them will be eliminated at ttie fault tree r^tmcturing step. This process
greatly sperfs up the solution of flie success&l system fault tree. For example, let the following cut sete
represent the failed systeim cut sets for the accident sequence.

El * E2 * E3
E2 * E5 * E7
El * E2 * E5

Let the following fault tree represent the succasM-systems fault tree.

TOP OR SYSl SYS2 SYS3
SYSl AND El E6
SYS2 AND El E5
SYS3 AND E3 E4

Since events E4 and E6 do not appear in the list of faiM-systems cut sets, we can set tiiem to house
event FALSE and prune the fault tree, resulting in the following fault tree.

TOP OR S ¥ » SYS2 S¥&
S¥»™^N»—B4 FAfeSE
SYS2 AND El E5
S¥S*-ANB-^3 FAfeSE

Pruning this tree gives the following reduced fault tree.

December 1992 35 NUREG/CR-5964

Determination of Cut Sete

TOP AND El E5

Solving this fault tree results in the following single cut set

El *E5

This cut set is used to reduce the failed-systems cut sete as follows.

El * E2 * E3
E2 * E5 * E7

Whether specific externally by the user or internally by IRRAS, before the fault tree is solvrf,
it is pruned depending on the structure of flie tree and the house event setting. In order to do Ais,
IRRAS again traverse the fault tree checking for house events. At each gate the algorithm checks each
of the inputs to the gate to see if it has been set to any one of the tfiree house event settings, "T," "F,"
or "I," If so then the logic for that gate is modified as follows. If the gate is an AND gate, then an input
set to T or I is removrf from the gate input list, while an input set to F causM the gate to be set to F.
If the gate is an OR gate, then an input set to F or I is removrf from tiie gate input list, while an input
set to T causes flie gate to be set to T.

The routine to check for house events and prune the logic of the fault tree is a recursive routine.
Using the fault tree logic deflnrf previously, along with tfie house event information and starting at the
top gate in the fault tree, IRRAS checks each of the inputs to flie current gate. If the input is a gate and
the gate has not been previously checked, then the recursive routine calls itself to check this gate. H e
recursive routine returns a value of T, F, or I for each gate that is processed and it procMses each gate
only once. If a house event value is returned for the top gate, then there is no need to solve Ae fault tree
and a message is displayed. If the value returned is T, the message "The TOP event has occurred
(TRUE)!" will be display^. If the value is F, then the message "TTie TOP event cannot occur
(FALSE)!" will be displayed. If the value return^ is I, then the message "No logic to solve!" will be
displayed.

5.8 Coalescing Like Gates

The next step in tfie fault tree solution is to coalesce like gates. This procas combines those
gates that are input to other gat« of the same type. Specifically, AND gata tfiat are input to AND gates
are combing and OR gates fliat are Input to OR gates are combined. The following fault tree is an
example of the coalescing of both an AND gate and an OR gate.

TOP AND GATEl GATE2
GATEl OR GATES E¥ENT1
GATE2 AND EVENT2 EVENTS
GATE3 OR EVENT4 EVENTS

Atter coal«cing, GATE2 is consumed by flie TOP gate and GATE3 is combined with GATEl.
The following fault tree is the result of fliese modifications.

NUREG/CR-5964 36 December 1992

Determination of Cut Sets

TOP AND GATEl EVENT2 EVENTS
GATEl OR EVENTl EVENT4 EVENTS

In flie above example, bofli gates that were coalesced were referenced only by gates of the same
type. This resulted in the removal of botfi of these gat« from tiie logic. The following example shows
a case where the coalesce gate is not removed.

TOP AND GATEl GATE2
GATEl OR GATE2 EVENTl
GATE2 AND EVENT2 EVENTS

After coalKcing, the following tree is generated:

TOP AND GATEl EVENT2 EVENTS
GATEl OR GATE2 EVENTl
GATEl AND EVENT2 EVENTS

By coalescing the fault tree, the number of gates is raiucrf and the number of inputs to a gate
is maximizrf. This process can substantially reduce the processing time as well as provide for better
optimization later in the fault tree r«tructuring process. Note, however, that the total amount of space
require to store the inputs to the fault tree can grow significantly as a result of coalescing the tree. The
amount of additional space required depends on the number of gates that can be coalesced, ttie number
of times a coalesced gate is referenced in the tree, and the number of inputs to the coalesce gate. This
increM«i space requirement will usually be recovered during module and independent subtree procMsing
later.

To perform the coalKcing step, IRRAS starts with the TOP gate of the fault tree and recursively
checks the list of inputs to flie current gate. Any duplicate inputs in tfie list are removed. If flie Input
is a gate and it is the same type as the current gate, then the list of inputs to this gate is added to flie
current gate input list. Tie gate reference is then removed from the list. If the input is a gate wifli a
single input then the gate reference is replaced by ite input. Once all inputs to all gates have been
process^, then lERAS makes a pass through flie current gate list and eliminates any gates fliat are no
longer needed due to any of flie previous restructuring steps.

5.9 Modules wersus Independent Subtrees

IRRAS us« two methods of optimization that are similar and should be clarified. Hiae
optimization methods are independent subtrees and modules. Before solving a fault tree, IRRAS converts
all tile logic into a logically equivalent form in terms of AND gates, OR gates, and bmic evente. TTie
following discussion assum« this form of fault tree logic. In IRRAS, an independent event is defined
as an event that is input to only one gate. An independent gate is a gate that is input to only one oflier
gate and contains as inputs only independent events.

An independent subtree is a gate that has as inpute only independent events or independent gates.
The inpute to an independent subtree can occur only once in a fault tree, however, an independent
subtree may be input to many other gates. Note, the independence defined here is logical Independence.

December 1992 37 NUREG/CR-5964

Determination of Cut Sete

In IRRAS a set of events M={El,E2,...,En} is defined to be a module of a fault tree if die
following two conditions are met. (1) For every occurrence of E as input to a gate, flie other everts in
M also occur as input to tiie same gate. (2) Every occurrence of M is an input to the same gate type,
eitfier an AND or an OR gate. These events can be combined under a single gate calW a module. All
referencK to these events are converted to reference the module. Once a module is created, all of flie
events input to it occur only as inpute to a single gate. Since a module may appear multiple times in a
fault tree, it is usually not an independent gate, however, it is always an ind^endent subtree. A gate fliat
has a module as one of its inputs is only an independent subtree if the module is an independent gate.

In the fault tree reduction process, independent subtrees need not be expandrf until flie very end
of the process. Once a fault tree is solved in terms of independent subtrees, it is a simple expansion
process to convert ttie minimal cut sets to tfieir bmic event representation. Since a reducrf number of
tokens needs to be analyzrf in the fault tree solution process, independent subtrees save large amounts
of processing time. Figure 18 shows an example fault tree with a module and an independent subtree.
In the example, Gate-3 also happens to be an independent gate.

5.10 Module Determination and Creation

The next step in the restructuring process is to find all modules in the fault tree. To perform this
step, IRRAS uses a temporary bit vector. The bit vector contains one bit for each event in flie fault tree.
The first of these bit vectors keeps track of the events that are usrf In the fault tree. If complement^
events are used, then a second bit vector is allocated for the complemented events.

A vector is also created for each gate currently defined. These vectors will contain, in bit format,
the events used by each gate. We also define two vectors, TMPl and TMP2, which hold interm^iate
results. Finally, we define an array containing one number for each event. This number is a count of
the number of times each event is usrf in the fault tree.

Once flie data arrays are created, we initialize flie TMPl vector and the event count array by
traversing the input list. For each input, we check to see if it is an event, and if so, we set its bit in the
TMPl vector and increment the count for this event. If the event is complemented, then its bit is set In
the complement^ vector. When all inputs have been process^, we eliminate any event that occurs as
both a complement^ and a non-complemented event from the event vector list. These events cannot be
included in modules. Next, we process each gate and set the appropriate bits in each gate's bit vector
to reflect the events used by that gate. When this process is complete, we are ready to find the modules
in flie fault tree. Using the fault tree shown in Figure 18, the following initializal data structures would
be definai.

Used?

Event-1

1

Event-2

1

Eveiit-3

1

Event-4

1

Event-5

1

Event-6

1

Event-7

1

Event-8

1

NUREG/CR-5964 38 December 1992

I)

Sample Fault

1

i Cte^l

^̂___________3̂̂̂^̂
t ' - 1

i r« i» t - l j • • • n t - 8

T) XT
/

Module^
^

6«t«-4

o
Ev«mt-4 0»te-7

T7 ^
_ _ _ _ _ _ _ _ _

J

B»«at-1 Ev*iit-8

X) TT

T 9 Oatt

^
1

G

Iw@nt--§

0
1 iv«nt-S

0

Tree

6mt«-5

T^
lv«nt -4

0
Bv««t-«

0

< — . J
6»t*-3 {

G 1
1 • • • i i t -3 6*t«-t {

C) ^ 1
1 Event -7 | | Ew«Bt-t I

'

Independent Sub-Tree

Determination of Cut Sete

TopGate

Gate-1

j Gate-2

ij Gate-3

Gate-4

Gate-5

Gate-6

1 Gate-7

Event-1

1

1

Event-2

1

1

Event-3

1

Event-4

1

1

Eveal-5

1

1

Event-6

1

Event-7

1

Event-8

1

TMPl

1 TMP2

Event-1

1

Eveiit-2

1

Event-3

1

Event-4

1

Event-5

1

Eveiit-6

1

Event-7

1

Evait-8

1

Count

Event-1

2

Event-2

2

Event-3

1

Event-4

2

Evenl-5

2

Event-6

1

Event-?

1

Event-g

1

Using the TMPl bit vector and the maximum number of events to be processed, we check to see
if an event's bit is set. If the bit is set in the TMPl vector for this event, thee we look at all USM of this
event to see if it occurs in combination with ottier evente. We do this by initialfeing the TMK vector
to the current list of evente to process, TMPl. We then loop over the gate vectors checking to see if the
current event is usrf by flie gate. If It is used, then we perform a bit "AND" operation using the gate
vector and the TMPl vector. The result of the operation is storrf in the TMP2 vector. We continue tiiis
process for each gate ttiat uses tfie basic event. If at any time we find a gate that uses flie event and is
a different type than the other gates that use the event or the TMPl vector has no events set, we exit flie
processing and continue with the next event. Using our data structure, the steps for Event-1 are as
follows.

(1) Initialize TMP2 vector.

TMPl

TMP2

Event-1

1

1

Eveiit-2

1

1

Event-3

1

1

Eveiit-4

1

1

Event-5

1

1

Event-6

1

1

Event-?

1

1

Event-8

1

1

NUREG/CR-5964 40 December 1992

Determination of Cut Sets

(2) The first gate to use Event-1 is Gate-1, tiierefore, perform bit "AND' operation on Gate-1 and
TMP2 storing r«ulte in TMP2.

TMPl

1MP2

Event-1

1

1

Ev«t-2

1

1

Eveiit-3

1

Event-4

1

Event-5

1

Evait-6

1

Event-7

1

Event-8

1

(3) The next gate to use Event-1 is Gate-7, therefore, perform bit "AND" operation on Gate-7 and
TMPl storing r«ults in TMPl.

TMPl

TMP2

Evenl-1

1

1

Evait-2

1

1

Event-3

1

Evml-4

1

Evait-5

1

Event-6

1

Evenl-7

1

Event-8

1

1
No more gates me Event-1, therefore, the result of die alwve proc«s is a bit vector, TMPl,

containing those evente fliat are always referenced together. We need to fiirtier check tills list to eiBure
that none of these events are usai elsewhere in the fault tree. We achieve this by checking flie count of
the number of timM flie event is referenced in the fault tree. If this count does not match the current
event's count, flien the event is removed from the list. In our example we see that Event-1 and Event-1
are in the TMPl vector. Checking the count vector, we see that both evente are used the same number
of times (twice) in tfie fault tree.

If flie remaining list is greater than one event, we create a new gate containing the events in tie
list and change all gates that reference tiie current event so they reference this new gate imtead. The
other evente in the new gate are also deleted from any modified gate. Once this is done, we update our
TMPl vector containing flie current list of evente to process. TMs is done by complementing Ihe TMPl
vector and performing a bit "AND" operation with flie TMPl vector. This effectively removes any
evente that we have put in a module from the list of evente to be processed. In our example, we create
a module using Event-1 and Event-2, then update the fault tree to use this module. The temporary bit
vectors are updatai as shown. Notice that bofli Event-1 and Event-1 are removed from the list of evente
to be processed.

j TMPl

TMPl

£vent-l

1

Event-2

1

Event-3

1

Event-4

1

Event-5

1

Event-6

1

Event-7

1

Event-8

1

The above operations continue until all evente have been process^ and no fiirther r«tructuring
is possible. When IRRAS hm completed this st^, one more loop through the tree is made to combine
any gates that had all their inpute convert^ to a gate. This eliminates any single-input gates from flie
fault tree.

December 1992 41 NUREG/CR-5964

Determination of Cut Sete

5 J 1 Independent Ewent Determination

The next step in the fault tree restructuring proc«s is to determine which events are ind^endent.
For fliis purpose IIMAS deiaes "independenf as only occurring once in iie fault tree. His s t^ is
performai by defining two bit vectors. Each time an event is encounter^, a bit Is set in flie first v«tor.
If the bit is already set, then flie corresponding bit in the second veOot is also set. When complete, the
second bit vector represente the list of b^ic evente that occur more tfian once. The events not in iiis list
are independent.

5.12 Independent Gate and Subtree Determination

The next step In flie restructuring of the fault tree is to determine the independent gat« and
subtrees in the fault tree. Ind^endent subtrees are much cMler to solve since tfiey generate only minimal
cut sete. IREAS processM independent subtree separately from the rest of the fault t r« .

To find the independent gatM and subtre«, IRRAS again us« a recursive routine to traverse the
fault tree, IRRAS usa flie data structures definrf previously to check the inputs to each gate. If all flie
inpute to the gate are ind^endent evente and the gate occurs only once, then it is markM as an
independent gate. If the input is a gate and has not been process^, then flie routine calls Iteelf to check
this gate. If all inpute to the gate are independent evente or gates, then flie gate is iaggrf « an
Independent subtree. TTiis resulte in a fault tree that has all independent subtre« identified.

5.13 Determlnliig Gate Lewels

The last s t ^ in flie fault tree restructuring proc«s is to determine the gate levels. TTie TOP gate
is definai to have level 0. Ite inpute have level 1, tfie inputs to those gat« have level 2, and so forth.
The level of a gate is the number of gates one encounters after the TOP in going from the TOP to the
gate of interest. If a gate appears more than once in a tree, define tfie gate's level m iie larg«t of flie
levels corresponding to the various places where tfie gate occurs. To determine flie level of each gate,
a recursive routine is us^ . This routine keeps track of the level for each gate. Each time flie gate is
encounterrf in the traversal of tiie fault tree, ite level is checkrf against ttie current level. If the current
level is greater than the gate's assignM level, flien the gate's level is set to tfie current level. Hie routine
exite early if a gate's level is greater flian or equal to the current level. This proc«s continue untE ttie
entire tree has been processai.

This information is usrf later in determining the expansion path for the fault tree. The expansion
path for a fault tree is the order in which the gates for a fault tree are solvrf. This expansion path can
significantly affect the time it tak« to solve a fault tree. IRRAS attempte to determine the optimal
expansion path.

NUREG/CR-5964 42 December 1992

Determination of Cut Sete

5.14 Fault Tree Reduction

Once the fault tree Is loadal and restructure, it is ready to be solv^. This process consiste of
a number of steps that convert the Boolean logic representing tiie fault tree to ite expanded form
reprraenting the d«irrf minimal cut sete for the tree. In IRRAS, a fault tree may represent either a
system equation or a sequence equation. In either case, Ae same algorithm is usrf to solve the tree.

5.15 Cut Set Truncation

The exact solution of many large fault tre« can prove to be prohibitive; therefore, various
mefliods have been developed to rrfuce the time required to solve a fault tree. IRRAS allows the user
to specify that a number of th«e methods be used in the fault tree solution. The first and most common
method is to eliminate any cut set whose probability falls below a specified truncation value. The second
metiiod is to eliminate any cut set that has more flian a specific number of unique evente in it. The third
meliiod is to eliminate any cut set that has more than a specified number of zone flagged evente in it.
A zone flagged event is an event that has been marked as representing a zone (location or area). In a
facility, a fire zone may represent a room with fire barriers around it. A security zone may represent
an area with certain security characteristics. This method is usai in location analysis to allow for the
truncation on the number of zone evente in a cut set. The last method provided in IRRAS for cut set
truncation is typically usrf in seismic analysis and allows the user to combine the first truncation method
with another criterion that checks to see if any event in the cut set is below a specifiai probability before
it is truncated.

All of the above truncation methods are supportwl by IRRAS. The user may also choose to solve
the fault tree exactly. No matter which methods are used, IRRAS attempte to take advantage of whatever
it can to simplify and reduce the amount of work required to solve a tree. The ways each of th«e
truncation methods is implemented will be discussed in detail m, the process for the fault tree solution is
dMcribed.

5.16 Internnediate Result Caching

Fault tree solutions can e^ily generate enough intermediate cut sete to fill up all available
computer memory. Therefore, a method is required to allow this data to be written out to a secondary
data storage area. IRRAS uses a disk caching technique to store the intermaliate data. This allows for
the processing of large amounte of intermediate data. The limit is the amount of available disk space on
the computer being usai. This also allows IRRAS to be run on a minimal computer without memory
beyond the 640K available to standard DOS applications. IIRAS does, however, allow the user with a
more power&l computer and additional extendai memory to create a virtual disk and direct the
intermrfiate information ttiat would have resided on tiie hard disk to the virtual disk. This will improve
the performance of IRRAS on large problems by a factor of 3 to 5 times. This overview will not attempt
to describe in detail how the cache software works. The performance of any fault tree reduction software
is quite dependent on the methods u s ^ to handle the large amounte of intermwiiate data; therefore, the
user should ensure that an efficient method is used.

December 1992 43 NUREG/CR-5964

Determination of Cut Sets

5.17 Fay It Tree Cache Initialization

The first step in the fault tree reduction process is to take the fault tree logic that has been loadrf
and r«tructured and store this logic In a format for efficient use and retrieval by the fault tree rMuctlon
software. This process includes the creation and initialization of certain data structures containing
information that is used during the solution process to simplify and sperf up the fault tree rwluction
process. By including this data in a data structure and updating it as the fault tree is solved, MRAS is
able to avoid many additional calculations.

Using the gate level information determined previously, IRRAS creates an orderrf table such ttiat
all gates for a given level appear before any gat« for the next larger level. Any independent subtrees
appear after all nonindependent gates for the fault tree. This ordering define the expansion path to be
used for solving the fault tree. As mentioned previously, the IRRAS algorithm is essentially a top-down
approach, but strictly speaking, tiie algorithm proc«ses the fault tree first from ttie bottom up, then from
ttie top down. Hie algorltiim is bottom up because we treat each OR gate as a mini fault tree and solve
them starting with the last gate or the bottom of the fault tree. When all OR gates up to the TOP gate
have been solvai, IRRAS expands the TOP gate from the top down.

As the fault tree logic table is being created, IRRAS generates some information to be uscrf during
the expansion process to help in cut set truncation. A bound can be calculated on tiie contribution of ttie
independent subtrees to the cut set probabilities. If the user has specified truncation on probability, tiiis
bound can be used to eliminate cut sete earlier than otherwise possible. For now, let BPC denote this
Bound on the Probability Contribution. Calculate tfie BPC for any gate as follows. The BPC for a basic
event is ite probability. The BPC for an AND gate is the product of the BPC's of tfie inpute. The BPC
for an OR gate is the largest BPC of the inpute. Since the gate table is ordered by level, these
calculations can be performed one gate at a time, starting with the tet gate and proceMing to tiie top of
each independent subtree.

To see how this works, suppose first that S is an independent subtree witti only two inpute, A and
B, both basic events. Because S is independent, as definai in Sections 5.9 and 5.12, each of ite basic
evente appears only once, so A and B do not appear in any other part of the fault tree. Because basic
evente are assumed to be independent in ihe statistical sense of Section 4.6, A and B are statistically
independent of each other and of the rest of the tree.

Any cut set that S contributes to will have the form (S AND otiier terms). If S is an AND gate,
fliis form is (A AND B AND other terms), and the probability of tiie cut set Is P(A)P(S)P(otka terms),
by independence. This equals BPC(S)xP(otiier terms), by tfie definition of BPC for an AND gate. If
instead S is an OR gate, any cut set that S contributes to will have the form (A and other terms) or else
(B and other terms). TTie cut set probabilities are bounded by

max[F(^), F(^)]xF(otiier terms)

which equals BPC® xP(other terms), by tiie definition of BPC for an OR gate.

In either case, any cut set tfiat S contributes to has probability bounded by the value of BPC for
S. The same idea is true if S has more than two inpute, and if they are not necessarily basic evente but
may be independent gates instead. Therefore, if BPC for S is less than the truncation value, S can be

NUREG/CR-5964 44 December 1992

Determination of Cut Sete

eliminated from the tree. In any case, the BPC is calculate and stored so Aat it can be used to eliminate
cut sets earlier than otherwise possible.

If die user has chosen to truncate on size or zones a similar calculation can be performed on
independent subtrees to get a size contribution of the subtree to each cut set it appears in. If size
truncation is selected, then all basic evente are counted. If zone truncation is select^, then only evente
that are zone flagged are countrf. At each AND gate, the size contributions of the inpute are added
together. For a qualifirf basic event the size is one. For a gate, however, the size may be larger than
one. At each OR gate, the size contribution of the smaltet input is usrf as the size contribution of the
gate. Once these values are calculated, they are stored in the gate table for fiiture use. The fault tree
is now ready to be expand^.

5.18 Fault Tree Gate Expansion

The proc«s of solving a fault tree involves three basic steps. These steps are gate expansion,
Boolean absorption, and cut set truncation. In the first step, the gates of the fault tree are expanded by
replacing them witii their inpute. In the second step, the first four of the following identiti« are applirf
to the cut sete:

(1) A*A=A
(2) A + A*B = A
(3) A*B*M = 0
(4) /M =A
(5) A*B + A*m = A (not currently applied).

TTie first identity (idempotent relationship) prevents two identical events from appearing in the same cut
set. H e second one (absorption relationship) is the most computationally difficult to apply. In terms
of set thwry it consists of eliminating subsets, because A*B is a subset of A. Computer programmers,
on the other hand, tend to think of the identity as eliminating supersets; A*B is regarded m a larger entity
than A because it h ^ more tokens to manipulate. Both the subset and superset terminology can be found
in tfie literature, but this document will use only the term "absorption." The absorption identity is used
to eliminate cut sets that are not minimal. The basis for using the Law of Absorption is that the top gate
has become a giant OR gate with tiie cut sets as inputs. If A and A*B are cut sets, tiie top gate contains
A -I- A*B, which can be simplified to A. H e third identity (exclusion relationship) implies that no cut
set will contain botfi tfie failure and tfie success of an event. The fourth identity (double negation
relationship) statM tiiat the complement of a complemented event is the event iteelf. Identity number five
(exhaustion relationship) is not currently performed by IRRAS. It is important to note that IRRAS does
not currently calculate prime implicants (Quine 1959). Complemented events appear in the cut sete with
a "/" in front of the event name.

Tie final step, cut set truncation, involves the elimination of cut sets that fall outside user
specified truncation limite. There have been many different methods applied to performing ih«e three
steps. Some codes use a top-down approach, while others use a bottom-up approach. Botii approaches
have their strong points. IRRAS us« some features from each approach to optimize the fault tree
solution procMS.

December 1992 45 NUREG/CR-5964

Determination of Cut Sets

Using the fault tree logic definition generate previously, IRRAS begins expanding tiie tree.
Since OR gates increase the number of cut sets, tfie algorithm treats all OR gates in the fault tree as mini
fault trees. These trees are solvrf first, starting with the last nonindependent OR gate and procerfing
to tfie TOP gate of the fault tree. All absorption and truncation technique are applied on thae small
trees, eliminating cut sets as soon as possible. When the TOP gate is encountered, it is solved using as
input all the cut sete generated by solving the mini fault trees described above. The result of this
approach is to partition the large fault tree into many smaller subtrees that are easier to solve. The fewer
cut sets generate for the smaller trees will also tend to require less time to apply the absorption identities
and to truncate.

Note that the cut sets generated by the above proc«s are in tenm of independent subtrees. When
the TOP gate has been solved and all absorption h ^ been performed, tiie independent subtree are
expanded. This step r^uires no absorption; independent subtrcM can only generate cut sets ttiat are
minimal.

5 J 9 Cut Set Absorption

As the fault tree expansion occurs, cut sets are checked at each gate to see if they can be
eliminated. There are several ways a cut set may be eliminated during the expansion process. IRRAS
maintains the current bound on the probability contribution (BPC defined in Section 5.17) and size for
each cut set tiiroughout tiie fault tree expansion. These contributions are updated depending on the type
of expansion being performed. By keeping current BPC values, IRRAS does not ne«l to recalculate
three values each time the cut set is modified or expanded. Much computation time is savoi by this
approach.

If the gate to be expanded is an OR gate, then IRRAS also compares the inputs to ttie OR gate
against the inputs of tiie cut set containing the OR gate. If tiiere is a common event, then the reference
to the OR gate can be removrf and the cut set need not be expanded further. The reason for this is that
any cut sete generated from an OR gate of tiiis type will be absorbed later in the proems anyway. The
following example demonstrates tiiis process.

The cut set

GATEl * EVENTl * EVENT2

and the following definition of GATEl as an OR gate with three inputs

GATEl OR EVENTl EVENTS EVENT4

will generate the following cut sets when expanded.

EVENTl * EVENT2
EVENTl * EVENT2 * EVENT3
EVENTl * EVENT2 * EVENT4

Notice that the second and third cut sets are absorb^ by the first.

NUREG/CR-5964 46 December 1992

Determination of Cut Sete

5.20 Boolean Absorption

The proc«s of performing the Boolean absoiption reduction can be a time-consuming operation.
The metiiods usrf in IRRAS are describe in Corynen (1988). This metfiod us« a set of bit tabte to
determine those cut s * iiM can be absorb^ by a given cut set. For a detaiW d«cription of the
process, refer to the indicatal document. TMs meAod is very powerfiil and hm good run-time
characteristics. In order to be most effective witti this algorithm or any other one used for Ae B«)lean
absorption process, tfie number of cut sete comparM must be minimize. The expansion approach
described previously tends to generate smaller numbers of intermrfiate cut sets, minimizing the amount
of time spent on absorption.

5.21 Data Storage Considerations

Given ttie tmk to be performed in solving a fault tree, an optimal format for storage and retrieval
of ttie intermrfiate cut set data must be determined. Two obvious methods were considerol in IRRAS.
First, since a large amount of time can be spent in the determination of sete to be absorbed, one option
is to store the intermediate data in a format that can be directly used by the absorption routine. This
format would be an array of bit vectors with each row of the array representing an event and each column
r^resenting a cut set. TMs format was used in the first version of IRRAS and worked well for small
problems because the bit vector arrays could be easily contained in the computer's fast memory. As
problem size increased and it became necessary to shift these arrays to disk, this method of storage
became difficult to manage efficiently.

The second alternative is to store the cut sete as an array of numbers representing the evente in
each cut set. The first number is a count repr«enting the number of evente in ttie cut set. This number
would be foUowrf by a probability value, a size value, and a list of numbers repr«enting the gates or
evente contained in ttie cut srt. The list is terminated by a zero count number. This format is the one
usrf in the current version of IRRAS. It is simple and easy to store and retrieve from intermrfiate
storage. The process of gate expansion is also easily handled with ttiis format. When absorption is
performai, IRRAS creat« the array of bit vectors. As problem size increasK, this format has proven
to be much more flexible and easy to manage tiian the first.

5.22 Sequence Cut Set Generation

Anoflier area that must be considered when developing a risk assessment code is the accident
sequence analysis. Accident sequences are defined in IRRAS by developing event trea. IRRAS provide
a graphical rfitor to use in developing event tre«. Figure 19 shows an example of an event tree
develop^ in IRRAS. Once the user has develop^ the event tree, IRRAS automatically generates the
sequence logic fi-om the graphical event tree. The sequence logic is the list of systems ttiat succeai or
fail during this accident sequence. Th«e system failures and successes are top evente of fault trees. This
logic is used by IRRAS to generate tiie cut sete for the sequence.

There are two metiiods that can be used to generate sequence cut sete. First, the cut sets generated
by solving the system fault tr«s can be used as input to the accident sequence algorithm. This method
simply combines the cut sets for each system as defined by the sequence logic. The second method is

December 1992 47 NUREG/CR-5964

Determination of Cut Sete

P
S § § H n H H

o o o o
o o o O

^
<

-4 N CT ' t « « r«

s

c
>

Figyre 19. IRRAS event tree

NUlEG/CR-5964 48 December 1992

Determination of Cut Sete

to create a fault tree for a sequence by combining the fault trees corresponding to system failures and
succases for Ae sequence. H e fault tree rrfuction algorithms can then be used to solve the accident
sequence. IRRAS allows the user to select eitiier method, but only the latter method will be discussrf
here.

In IREAS, accident sequenca are defined using an event tree to indicate the failure or success
of top evente. Each top event in the event tree is associated with a system fault tree. To solve the
accident sequence, IRRAS constructe a fault tree for tiiose systeim that are defined to be failed in the
sequence logic by creating a dummy AND gate with these systems as inpute. In Figure 19, the accident
sequence logic for sequence 9 is

LOSP * /EPS * AFW * /HPI * /PRV * CCS * LPR

Therefore, IRRAS creates the following failed systems fault tree

FAILED AND AFW CCS LPR
AFW TRAN
CCS TRAN
LPR TRAN

where AFW, CCS, and LPR represent the fault tree logic for Auxiliary Feedwater System, Containment
Spray System, and Low Pr«sure Recirculation system, r«pectively, and TRAN denotes a transfer to the
system fault tree.

IRRAS then solves Ms fault tree using tiie specified truncation values. This process resulte in
a list of cut sete for flie failed systems in the accident sequence. IRRAS then uses the "cut set matching"
technique to farther rrfuce this list of failed-system cut sete. This technique uses the cut sete determinai
from solving ttie success&l-system fault trees in tiie accident sequence logic to eliminate cut sete from
tfie list of faiW-system cut sete. To do this, IIRAS first scans iie list of failed-system cut sete and
assigns a value of FALSE to any basic event tiiat does not appear in this list. Once this is done, the fault
tree repr«enting the successfiil systenK in the accident sequence logic is constructed, pruned by the house
evente, and solvrf. H e successM systems fault tree for accident sequence 9 is

SUCCESS OR RPS HPI PRV
RPS TRAN
HPI TRAN
PRV TRAN

where RPS, HPI, and PRV represent the fault tree logic for the Reactor Protection System, High Prwsure
Injection system, and the PrMsure Relief Valves, respectively. This fault tree models failure of the RPS
system, the HPI system, or the PRV system. The top event of the tree does not occur as part of accident
sequence 9, That is, none of the cut sets in the tree occur.

The minimal cut sete for the sequence remain after the successM-system cut sete are deleted.
TTiere are a couple of pointe to note in ttiis process. First, each sequence has an initiating event
frequency associated witfi it. If tiie user specifies a probability truncation value, IRRAS divides tfiis value
by the initiating event frequency. This eliminates tiie need to handle the initiating event during die fault

December 1992 49 NUREG/CR-5964

Determination of Cut Sets

tree reduction phase. Second, during the processing of an accident sequence, certain piec« of equipment
or trains of a system may nerf to be either falM or ignored. IRIAS allows the user to specify a srt of
house event flags to be associatal with a particular sequence. These flags allow the Bser to automatically
prune the fault tree logic before it is solvrf by setting basic evente to house evente and rrfucing as
described in Section 5.7. The result is a fault tree with the specified componente in the specific state
required by the sequence.

NUREG/CR-5964 50 December 1992

6. QUANTIFICATION TOOLS FOR PROBABILITIES AND FREQUENCIES

This section provide an overview of fault tree and accident sequence quantification using minimal
cut sete. Vesely et al. (1981) and Fussell (1975) contain additional drtails and references for the
Interested reader. The section is written in terms of failure probabilities, but is also correct if the term
"probability" or "failure probability" is replacrf everywhere by "unavailability."

6 J Quantifying Minimal Cut Sets

The individual cut set probabilities are determined by multiplying the probabiliti« of the
applicable basic events.

where

C, = probability of cut set I, and

q^ - probability of the fc-th basic event in the ith cut set.

This follows from Equation (4-8) and the assumed statistical independence of the basic evente.

6.2 Qoantifylng Faolt Trees

The fault tree quantification process is performed in two steps: (1) calculation of individual cut
set probabilities, which was describe above in Section 6.1, and (2) combining tiie cut set probabiliti«.
The exact probability of the union of the cut sete can be found, in principle, by Equation (4-6), where
each Ai is a cut set. This is normally much too cumbersome. Therefore, two approximatiom are often
us«i, the rare event approximation and the minimal cut set upper bound. Each of t i«e approaches will
be discussed below. Examples are calculated in Sections A4 and A5 of Appendix A.

6.2 J Rare Event Approximation

A common approach to calculate tiie probability for a top event is to add together the probabilities
for the cut sete, where the cut set probability is given by Equation (6-1). Thus, the rare event
approximation is

S = ^C. . (^2)

His approximation is a good approximation when Ae cut set probabilities are small. In screening
analysM, when relatively large screening values are usrf to bound the component failure probabiliti«,
tiie rare event approximation can excerf 1.

December 1992 51 NUREG/CR-5964

Quantification Concepte

6.2.2 Minimal Cut Set Upper Bound

TTie minimal cut srt upper tound calculation is an approximation to the probability of the union
of the minimal cut sete for the fault tree. The equation for the minimal cut set upper bound is

S = 1-5(1-Q (^3)

where

S = minimal cut set upper bound for ttie system unavailability,

Q = probability of tiie Itii cut set, and

m = number of minimal cut sete in the fault tree.

The minimal cut set upper bound is always tes than or equal to 1. The input values for the
minimal cut set upper bound are probabilities. Barlow and Proschan (1981) show that Equation (6-3)
gives an upper bound on the exact probability of the top event.

The minimal cut set upper bound works well with fault trees containing only AND and OR gates
without complemented evente or NOT gates. Witti noncoherent fault trees, that is, Uoes tfiat contain NOT
gates and/or complemented evente, the minimal cut set upper bound can produce resulte tiiat are overly
conservative. The magnitude of tiie overwtimation will depend upon the structure of the tree. In such
cases, other calculational technique should be used such as the SIGPI algorltiim (Patenaude 1987). In
most cases, the minimal cut set upper bound will produce reliable resulte.

Warning: When Cj is very small (on tiie order of lE-15), 1 - Q is roundai off to LO. If tills
happens for most or all of tiie Q's, tiie product in Equation (6-3) will be too large, and the bound
S will be too small. Although S is an upper bound in theory, in practice it is not compute to
sufficient accuracy when the Q's are extremely small. In such a case the rare event
approximation, given by Equation (6-2), is better.

6.3 Quantifying Sequences

An accident sequence begins with an initiating event, which has a frequency/. The unite of the
frequency are 1/time, and there is no theoretical upper bound on ite possible value. TTiis distinguishes
a frequency from a probability, which is unitless and bounded by 1.0.

After the initiating event, various systems in the plant are suppose to fimction in sequence.
Depending on whether they function or not, the sequence can proceed to different possible plant states.
Consider one of tiiese systems. Given the assumrf initiating event and the SUCCMS or failure of the
systems that were invoM earlier in the sequence, tiie probability of the system's failure is quantifirt by
a fault tree for the system. For each such sequence of interest, IRRAS constructe and simplifia the fault
tree for the entire sequence, by combining the fault trees for the faiM systems and the negation of the
fault trees for the successM systems, as described in Section 5.22.

NUREG/CR-5964 52 December 1992

Quantification Concepte

Let S be the probability of ttie sequence fault tree, evaluate using the minimal cut set upper
bound or the rare event ^proximation. Then, the frequency of tiie sequence is the product^. In this
way, sequence frequencia are found.

December 1992 53 NUREG/CR-5964

7. EVENT PROBABILITY CALCULATION TYPES

The calculation type specific the method to be used to calculate Ae basic event probability.
Thirteen types are available in IRIAS, and tiiey are summarized in Table 1. The resulting probability
for TypM 1 tiirough 7 will be the mean used in the uncertainty analysis d«cribrf in Section 9. Typ«
2, 4, and 6 are approximation of the exact formulas given by Types 3, 5, and 7.

Table 1. IRRAS calculation types

Ijm Calculation Method

1 Probability
2 Lambda * Mission Time
3 1 - Exp(-Lambda * Mission Time)
4 Lambda * Min(Mission Time, Tau)
5 Operating Component with Repair (Full Eq)
6 Lambda * Tau / 2.0
7 1 + (Exp(-Lambda*Tau)-1.0) / (Lambda * Tau)
8 Base Probability + Probability
9 Base Probability * Probability
T Set to House Event (Failed, Prob =1.0)
F Set to House Event (Succ«sfiil, Prob=0.0)
I Ignore this Event (Remove it from logic)
S Set to System Min Cut Upper Bound

A description of each calculation type follows.

Calculation Type 1 takes the number specific by the user in the Probability field M tiie bmic
event failure probability. This is the type used for demand probabilities.

Calculation Type 2 uses the number provided for X as the basic event failure rate per hour and
multiplies it by the basic event mission time expr^sed in hours. If the basic event mission type,
expr«sed in hours, is not input then the global or system mission time is usrf. The global
mission time is set by the user in the Utility Options module (Define Constante) or tiie Fault Tree
Analysis or Analyze Sequences module. A default mission time of 24 hours is provide by
IRRAS until it is changrf by the user. TTiis calculation is ttie rare event approximation to the
actual failure probability for an operating component without repair during the mission time.
This approximation is relatively good for failure probabiliti« less than 0.1.

Calculation Type 3 uses tfie actual equation for failure probability for an operating component
without repair,

q=l-e -x<

December 1992 55 NUREG/CR-5964

Calculation Types

where

q = failure probability of the basic event,

X = failure rate per hour, input as X, and

t = mission time express^ in hours.

Calculation Type 4 Is a rare event approximation for tiie failure of an operating component witti
repair. The approximation is X times T. It uses X as the per hour failure rate and T as a
user-specifi«l time to r^air in hours. If the mission time I is less tiian r, then *t is a better
approximation of ttie event probability; therefore, IRRAS uses X times the minimum of r and
mission time.

Calculation Type 5 is ttie actual equation for the failure probability of an operating component
with repair. The equation Is

q = . ^ (l ^ e ^)
1-<-XT

where

q = failure probability of the b^ic event,

X = failure rate per hour, input as X,

t = mission time expressed in hours, input as a default, and

T = average time to repair express^ in hours, input as T.

Calculation Type 6 Is tiie rare event approximation for ttie failure probability of a standby
component witti a surveillance t « interval. The equation used is

a = —
^ 2

where

q = failure probability of ttie basic event,

X = standby failure rate per hour, input M X, and

T = surveillance tot interval in hours, input as r.

Calculation Type 7 is the actual equation for the failure probability of a standby component with
a surveillance test interval. The equation is

NUlEG/CR-5964 56 December 1992

Calculation Typa

q = 1*1 i
^ xr

where

q = failure probability of the basic event,

X = standby failure rate per hour, input as X, and

r = surveillance test interval in hours, input as T.

Calculation Types 8 and 9 are usrf for sensitivity analyses. Type 8 allows the user to specify
a current c^e probability that differs from the base case by an exact amount. The amount to
change the base case probability by is entered in the probability field. Type 9 lete the user create
a current case probability that is a specified percentage of tfie base case. The percentage is
enterrf in the probability field.

Calculation Types T. F. and I are usrf to set basic evente to house evente. Calculation Type T
turns the basic event into a house event that always occurs (probability 1.0). Type F turm the
basic event into a house event that never occurs probability 0.0). If the event stata that a
component fails, T forces ttie component to fail while F forces it to succerf. Type I indicates
that the basic event is to be treats as if it did not exist in tie logic for the fault tree. Setting an
event to a house event actually changes the logic of ttie fault tree, pruning appropriate branches
and evente from the fault tree. Therefore, tiie flags on the affectrf fault trees will indicate a n e ^
to generate new cut sete rather than just requantifying existing cut sete. See Section 5.7 for
details on tie processing of house evente.

Calculation Type S indicates fliat flie probability of the basic event is to be determine by finding
a system with ttie same name as the hm.c event. Then, use the minimal cut set upper bound for
this system as the failure probability for the basic event.

IRRAS will accept numbers in scientific or decimal format. For example, LE-4 and 0 . ^ 1 are
both valid inpute.

NOTE: When using the short-hand scientific notation, a decimal point must precaie ttie
"E", ttius lE-2 will not be accept^ but l.E-2 or l.OE-2 will. IRRAS will accept
an upper-case E or a lower-case e. Also, note that l.OE-020 is not the same as
l.OE-02. This has caused con&sion in the past.

December 1992 57 NUlEG/CR-5964

I
I

8. IMPORTANCE MEASURES

8.1 Types of Importance Measures

IIMAS calculata seven different bKic event importance measur«. These are the Fussell-Vesely
Importance, risk rrfuction ratio, risk increase ratio, Bimbaum or first derivative importance, risk
rrfuction difference, risk increase difference, and tfie structural importance. These importance measura
are calculate for each bwic event for iie respective fault tree or accident sequence.

The ratio importance measurra are dimensionlas and consider only relative changes. H e
difference definition account for the actual risk levels lliat exist and are more appropriate when actual
risk levels are of concern, such as comparisons or prioritizations across different plante. For purely
relative evaluations, such as prioritizations within a plant, Ae ratios sometime give more graphic resulte.

The main importance mcMures are

• Fussell-Vesely importance, an indication of the percentage of tiie minimal cut set upper bound
contributed by the cut sete containing the basic event

• Risk rrfuction. an indication of how much the minimal cut set upper bound would decre»e
if the basic event never occurred (typically, if the corresponding component never faiW)

• Risk increase, an indiotion of how much the minimal cut set upper bound would go up if the
basic event always occurrrf (typically, if ttie corresponding component always faiM)

• Structural importance, the number of cut sete that contain ttie basic event.

In IRRAS, the BMIC Event Importance display liste the basic event name, ite failure probability,
the number of cut sete in which the bmic event occurs, and ttiree of ttie six importance measures. The
user can choose to display either ratios or differences by setting a user constant. If the user selecte ratios
tiien the Fussell-Vaely importance, risk reduction ratio, and risk increase ratio are displayed together.
Otherwise, tiie Bimbaum importance, risk reduction difference, and risk increase difference are displayed
together. The list can be sortrf on any column in the display.

The exposition below is written in terms of fault trees and event probabilities. However, IRRAS
also can calculate importance for evente in sequences. Recall that a sequence is simply a fault tree
precwied by an initiating event with frequency/ where/has unite 1/time. The frequency of any event
in the fault tree is/times the probability of the event. Therefore, the ratio importances are unchanged
whether the event is part of a fault tree or a sequence. A difference importance for an event in a
sequence is / times the importance of the event in the fault tree. The maximum possible value of a
difference importance is 1.0 if the event is in a fault tree and/if the event is in a sequence. This
alternative formulation is indicate below by phrases in parenthraes.

8.2 Calculational Details

This section contains the calculational definition of the Importance measures. Examples are given

December 1992 59 NUREG/CR-5964

Importance Measures

in Section A6 of Appendix A. Both the ratio and Ae difference are discuss^ in Ae appropriate swtlons.
For the basic event under consideration, several notations are used repotrfly.

F(x) — minimal cut set upper bound (sequence frequency) evaluated with fte basic event
probability at its mean value.

F(0) = minimal cut set upper bound (sequence frequency) evaluate with flie basic event
probability set to zero.

F(l) = minimal cut set upper bound (sequence frequency) evaluate with the basic event
failure probability set to 1.0.

8.2 J Fussell-Veself Importance

The Fussell-V«ely importance is an indication of the fraction of tiie minimal cut set upper bound
(or sequence frequency) that involves the cut sets containing the basic event of concern. It is calculate
by finding flie minimal cut set upper bound of those cut sete containing the basic event of concern and
dividing it by the minimal cut set upper bound of the top event (or of the sequence). In IRRAS, this
calculation is perform^ by determining the minimal cut set upper bound (sequence frequency) with Ae
basic event failure probability at its mean value and again witfi the basic event failure probability set to
zero. The difference between t i a e two results is dividrf by flie hwe minimal cut set upper bound to
obtain the Fussell-Vesely importance. In equation form^ flie Fussell-Vesely importance FV is

FV = [Fix) - F(0)]/F(x) .

8.2.2 Risk Reduction

The risk reduction importance measure is an indication of how much the r«ults would be raiuced
if Ae specific event probability equalrf zero, normally corresponding to a totally reliable piece of
equipment. The risk rrfuction ratio is determine by evaluating the fault tree minimal cut set upper
bound (or tie sequence frequency) with the b»ic event probability set to ite true value and dividing it by
the minimal cut set upper bound (sequence frequency) calculate with the basic event probability set to
zero. In equation form, the risk reduction ratio RRR is

Sm = Fix)iF(Q) .

The risk reduction difference indicates the same characteristic as iie ratio, but it reflects flie actual
minimal cut set upper bound (sequence frequency) levels instead of a ratio. This is the amount by which
the failure probability or sequence frequency would be rrfuced if the basic event never faiM.

The risk r^uction difference (RID) is calculate by taking the difference between the mean value and
the fimction evaluated at 0. In equation form, the risk reduction difference MRD is

NUREG/CR-5964 m
I

December 1992

Importance Measura

SSD = F{x) - F(0) .

8.2.3 Risk increase

The risk incre^e ratio is an indication of how much the top event probability (frequency) would
go up if the specific event had probability equal to 1.0, normally corresponding to totally unreliable
equipment. The risk increase ratio is determined by evaluating the minimal cut set upper bound
(sequence frequency) with the basic event probability set to 1.0 and dividing it by the minimal cut set
upper bound evaluate with the basic event probability set to its true value. In equation form, flie risk
increase ratio MR is

MIR = F(l)iF(x} .

The risk increase difference MID is calculate by taking the difference between the fimction evaluatol at
1.0 and the nominal value. In equation form, flie risk increase difference WD is

RID = F(l) - F(x) .

8.2.4 Birnbaum importance

The Birnbaum importance measure is calculate in place of the Fussell-V«ely importance
measure when differenc« are select^ instead of ratios. The Bimbaum importance is an indication of
the sensitivity of the minimal cut set upper bound (or sequence frequency) with respect to flie bMic event
of concern. It is calculated by determining flie minimal cut set upper bound (or sequence frequency) with
the basic event probability of concern set to 1.0 and again with flie basic event probability set to 0.0.
The difference between thrae two values is the Birnbaum importance. In equation form, tie Bimbaum
importance B is

B = F{1) " F(Q) .

December 1992 61 NUREG/CR-5964

9. UNCERTAINTY AND MONTE CARLO

The uncertainty analysis allows the user to calculate the uncertainty in the top event probability
resulting from uncertainties in the basic event probabilities. To use fliis option, die user must have
previously loaded or generatoi flie cut sets and loadrf the component reliability information and
distribution data. Bohn et al. (1988) contains an excellent discussion of uncertainty analysis. A very
brief overview is given here, with elaborations in the subsequent sections.

In an uncertainty analysis, IRRAS already has the top event expr«sed in terms of minimal cut
sets, either generate earlier or loadrf from some other source. These cut sets depend on many basic
evente, each of which has a probability described in terms of some parameter(s). For definiteness in this
explanation, suppose that a basic event probability depends on the parameter X. The value of X for Mch
basic event is not known exactly, but is estimated bMrf on data or on expert opinion. The uncertainty
in X is quantified by a probability distribution: the mean of the distribution is the b«t estimate of X, and
ttie dispersion of the distribution measures the uncertainty in X, with a large or small dispersion reflecting
large or small uncertainty, respectively, in tie true value of X. This distribution is tie uncertainty
disiribuiion of X.

For all lie b^ic evente, IRRAS randomly samples the parameters from their uncertainty
distributions, and us« these parameter values to calculate the probability of the top event. IWs sampling
and calculation are repeated many times, and the uncertainty distribution for flie probability of flie top
event is thus found empirically. The mean of the distribution is the best estimate of the probability of
the top event, and the dispersion quantifies the uncertainty in this probability. For an accident sequence
the process is the same, except the sequence fault tree is preceded by an initiating event, whose frequency
is also quantified by an uncertainty distribution. The term Monte Carlo is used to describe this analysis
by repeated random sampling. Two kinds of Monte Carlo sampling are simple Monte Carlo sampling
and Latin Hypercube sampling; fliey are described and compared in Sectiom 9.6 tfirough 9,8.

9.1 Basic Uncertainty Output

The Monte Carlo procedure computes flie probability distribution of a fault tree top event or
accident sequence using the assigned probability distributions for rach basic event contain^ in the
minimal cut sets. By using the probability distributions for the hask events, the uncertainty in die system
unavailability can be calculate.

The first step ia the process of computing tfie uncertainty in the minimal cut set upper bound is
to provide a me^ure of the uncertainty for each basic event containM in ttie minimal cut sets. IRRAS
then computes flie minimal cut set upper bound for a set of random samples from tie uncertainty
distributions of the basic events. After calculating flie minimal cut set upper bound, IRRAS comput«
tie first four moments of the distribution and the 5th, 5(Mi, mean, and 95tfi percentile values.

The moments are calculated as a basis for comparison of the calculated distribution with other
distributions (McGratii and Irving 1975). From flie first four moments, the sample mean, sample
variance, coefficient of skewness, and coefficient of kurtosis can be calculated. To «tablish some
standard notation, the following symbols are used:

December 1992 63 NUlEG/CR-5964

Uncertainty and Monte Carlo

n = the number of samples calculatai.

Xi — ith data value for i = 1, 2, 3, ... n.

The sample mon, given m x, can be defined as

and the sample variance, given m,

" X

1 n

2 A (xrW

The k-th sample moment about the mean is next defined in general as

m. = J — .
* ^ «-l

Thus, from tfie third moment, the coefficient of skewness, jS/'^, is

and from the fourth moment, the coefficient of kurtosis, jSj, is

where s = the square root of / .

Tie coefficient of skewness and the coefficient of kurtosis are generally used as measures for
comparison with flie normal distribution. If the skewness is close to zero while the kurtosis is
approximately three, the normal distribution is a good approximation. A zero skewness value indicates
a symmetric distribution; a negative skewness indicate a long left tail, while a positive value indicates
a long right tail. If the kurtosis is greater than three, the distribution is more peaked than the normal
distribution, and hm more weight in the tails. However, if the value is less than three, the distribution
is iatter than the normal, and has less weight in the tails.

9.2 Uncertainty Analysis Input Data

From the Failure Data area, we moval to the Uncertainty Data area using the arrow keys or the
tab key. The fields in this area that can be accessed from this menu are the current case distribution type,
a distribution parameter value, and a correlation class.

NUREG/CR-5964 64 December 1992

Uncertainty and Monte Carlo

Currently, IRRAS supports lognormal, normal, beta, gamma, chi-squared, exponential, uniform,
and histogram distributions for the Monte Carlo uncertainty analyses. The default distribution type is the
lognormal.

Most distributions can be defined witii two statistical parameters, alfliough some take more. Tie
first parameter is the mean failure probability and the second parameter is specific to flie particular
uncertainty distribution. The mean failure probability is calculated from the data input in the Failure Data
area just discussed. For more clarity, IRRAS allows the user to input the parameters of the distribution
direcfly. It will check them for consistency with tfie mean.

Correlation classes, as explained in Section 9.5, are used to identify basic events whose failure
data are derived from the same data source. This information is us«l in the uncertainty analysis.
Correlation classes consist of four upper-case values. A blank correlation class indicates that fliere are
no data dependencies. When running the uncertainty analyses, the same sample value will be u s ^ for
all basic events with tie same correlation ctes.

NOTE; The user must set up a correlation class numbering scheme for flie basic events
in the data base. For example, correlation ctes 1 may be assign^ to
motor-driven pumps fail to start, correlation ctes 2 to motor-driven pumps fail
to continue to run, correlation class 3 to check valves fail to close, and so on.
Currently, this scheme is not saved within IRRAS but may be include in the
fiiture.

IRRAS provides more sophisticated ways of entering failure and uncertainty data that reduce the
amount of data input require and ensure consistency among like b^ic events. These technique are
discussed in the IRRAS Reference Manual (Russell et al. 1992a).

9.3 Supported Continuous Distributions

At tie present time, flie following uncertainty distributions are supported: lognormal, normal,
beta, gamma, chi-squarrf, exponential, uniform, and histogram. The histogram distribution requires
detailed information to be fiilly specified. Each of flie other distributions is d«cribed by its mean and
typically one additional parameter. Table 2 summarizes this information for each of the support^
distributions except for lie histogram distribution, wbich is explained separately in Section 9.4. The
distributions in Table 2 are described in Sections 9.3.1 flirough 9.3.7. More detail about these
distributions can be found in Mood et al. (1974) and Hahn and Shapiro (1967).

One method for generating random numbers, calM the inverse c.d.f. method, is usrf for several
distributions below, and therefore is describoi here. Let X denote a random variable, let x denote a
number, and let F denote the cumulative distribution fimction (c.d.f.) of X. It follows directly from flie
definition

Fix) = PiX ^ X)

fliat F(X) is a uniformly distributed random variable between 0 and 1. Therefore, generate U from a

uniform distribution between 0 and 1, and solve F(I) = U for X = F'\U).

December 1992 65 NUREG/CR-5964

Uncertainty and Monte Carlo

TaWe 2. Uncertainty distributions

Distribution

lognormal
normal
beta
gamma
chi-squaroi
exponential
uniform

Cede

L
N
B
G
C
E
U

Parameter

95% error factor
standard deviation
b in beta(a, b)
r in gamma(r)
degrees of freedom

-
upper end point

For example, if X is exponentially distributa! wifli mean n, the c.d.f. is

F{x) = I - e""'' .

Therefore, to generate an exponentially distributed random variable X, generate a uniformly distributed

random variable U and let X = F~\U) = - | i l i i(l-I^. Actually ln(U) can be used instead of In(l-O),
because if U is uniformly distributed between 0 and 1, then so is l-U.

The inverse c.d.f. mefliod is only one of many methods of generating random numbers from a
specified distribution. For some distributions it is natural and f«t, and for oflier distributions a different
method may be quicker. If the inverse c.d.f is hard to compute, for example if it must be found at any
point by numerical iteration on the (non-inverse) c.d.f., then the inverse c.d.f. method is not a fast way
to generate random numbers.

There is one application where the inverse c.d.f. method is very natural. This is in Latin
Hypercube Sampling (LHS), where stratified portions of the distribution must be sampled. For example,
if 20 points are to be sampW, one point must be below the 5th percentile, one must be between the 5A
and the 10th percentiles, one between the lOfli and iSth, and so forth. It is easy to sample in this way
from a uniform distribution: For example, to sample a uniform (0, 1) distribution between its 10th and
15fli percentite, we must sample it and obtain a number between 0.10 and 0.15. Do this by letting U
be uniform between 0 and 1. Then let F equal 0.10 + O.OSU, which is between 0.10 and 0.15. Then

X = F'\Y) is between the 10th and 15th percentiles of F, as required. For fliis reason, all Latin
Hypercube samples are generatoi in IRRAS using the inverse c.d.f. method.

9.3.1 Lognormal Distribution

X has a lognormal distribution if InZhas a normal distribution. The parameters usal in IRRAS
to d«cribe the lognormal distribution are the mean of the lognormal distribution and the upper 95% error
factor. Tie mean value of the lognormal distribution, m, can be expressed as:

NUREG/CR-5964 66 December 1992

Uncertainty and Monte Carlo

, . ^ (M)
m = e ^

where n is the mean and a is tie standard deviation of the underlying normal distribution. Likewise, flie
95% error factor ief) for tie lognormal distribution is given by

ef = gtms. (9-2)

where 1.645 is the 95ti percentile of the standard normal distribution. The density of the lognormal
distribution is

Ax) = -~l=e-««)-rf^'*

for X > 0.

In IRRAS, a random variable X is sampled from the lognormal distribution as follows. Equations
(9-1) and (9-2) are first solved for n and a. A random variable Fis generate from a norma! distribution
wifli mean n and standard deviation o, as explained in Section 9.3.2. Then X is definrf as X = exp(l).
This is the procedure for simple Monte Carlo sampling and for Latin Hypercube sampling.

9.3.2 Normal Distribution

Tie additional parameter to describe the normal distribution in IRRAS is the standard deviation
of the distribution, o. H e density fimction is given by

where - w < x < + » .

IRRAS uses the Marsaglia-Bray algoriflim, described on p. 203 of KennMy and Gentle (1980),
to generate a normal(0, 1) random variable Z. Then X, a normal random variable witii mean n and
standard deviation a, is definrf as X = |i + oZ.

For LHS sampling from a normal distribution, the inverse c.d.f, mefliod is usai, wifli the inverse

of flie normal c.d.f. p-XU) computed as follows. For 0.1 ^ U ^ 0.9, F'^ is found by die algoriflim

of Beasley and Springer (1977). For C/ < 0.1 or C/ > 0.9, P'^ is approximated by Algoriflim 5.10.1
of Thisted (1988), due to Wichura. The approximation is then refined by one application of Equation
(5.9.2) of Tiisted.

December 1992 67 NUREG/CR-5964

Uncertainty and Monte Carlo

9.3.3 Beta Distribution

The parameters of tie beta distribution are a and b. The probability density fimction is given by

for 0 < X < 1, where B(a,ft) is tiie beta fanction. In IRRAS, flie value in flie uncertainty distribution
is b. The parameter a is calculate from the mean value by the formula

a = n * biil-n)

where n = alia+b) is the mean of the Beta distribution. Note tiiat tie mean of the Beta distribution is
between 0 and 1.

IRRAS generates a beta random variable using the fact that if X is x^(2a) and F is xX^b) and X
and F are independent tfien X/(X -F f) has a beta(a, b) distribution. See Section 24.2 of Johnson and
Kotz (1970).

For LHS sampling, the inverse c.d.f. method is used, with flie inverse of the c.d.f. computai by
numerical iteration (with the method of false position) on the beta c.d.f. The beta c.d.f. is evaluated
using flie BETAI fimction of Press et al. (1986). Note, this way of generating flie LHS sample is not
fast, and simple Monte Carlo sampling wifli a larger sample may be more efficient than LHS sampling
when many beta distributions must be sampled. Comparative tests have not been run.

9.3.4 Gamma Distribution

The parameters of the Gamma distribution are X and r. The probability density function is given
by

J{x) = ^x'-'e-^
Tir)

for X > 0, where T(r) is the Gamma fimction. In IRRAS, the value in the uncertainty distribution is r.
The parameter X is calculate from the mean value by the formula X = rin, since the mean is /x = r/X.

IRRAS generates a gamma random variable in two stages. First it generates a random variable
F from a gamma distribution with the desired r and with X = 1. A rather inefficient algorithm is now
used, which will be changal in the next rele^e of IRRAS, and described in the next revision of this
report. Once Fhas been generated, the gamma random variable with parameter r and witii the desired
mean n is defined as X = F/X, with X = r!ii.

For LHS sampling, IRRAS uses the fact that the gamma and the chi-squaral distributions are
different parameterizations of the same distribution. IRRAS us« the inverse c.d.f. mefliod described in
Section 9.3.5 to generate LHS sampte from a gamma distribution.

NUREG/CR-5964 68 December 1992

Uncertainty and Monte Carlo

9.3.5 Chl-Squared Distribution

The chi-squarrf distribution is directly related to the gamma distribution, as follows. Let X have
a gamma(X, r) distribution. Tbm 2XXhas a chi-squared distribution witti 2r degrees of freedom, denotrf
X (̂2r). For this re»on, the chi-squared distribution is an option in IRRAS only as a convenience to flie
user. Anything that requires a chi-squared distribution can be accomplisirf using a gamma distribution.

The mean of a xXk) distribution equals *: and the variance equals 2fc, for degrees of freedom k
> 0. Note that tie mean of a chi-squared distribution determine the variance. Tiis is not flexible
enough for most uncertainty analyses. Tierefore, when IRRAS is askrf for a chi-squaroi random
variable with k degre« of frerfom and mean fi, it generates a multiple of a chi-squared random variable,
F = aX, where X is x\^) and a = nik. This rraults in a random variable with mean n and variance
lii^ik. Exactly the same distribution would be obtained by specifying a gamma distribution with mean
H and r = k/2.

IRRAS generates the chi-squared random variable X by the inverse c.d.f method dMcribrf at tie
begiraiing of Section 8.3. The inverse fanction is found with a refinement of tiie Wilson-Hilferty
approximation. (See Section 5.10.2 and Eq. 5.9.2 of Thisted 1988.) Tiis mefliod may fail in flie left
tail for small degrees of freedom. In that case, tiie inverse is found by numerical iteration (the method
of false position) on F, with F evaluated by the Peizer-Pratt approximation (Section 5.10.2 of IMsted
1988). IRRAS flien multipte X by n/k, where ^ is the desirrf mean and k is the number of degrees of
freedom. This inverse c.d.f. method is used for both simple Monte Carlo and LHS samples.

9.3.6 Exponential Distribution

The exponential distribution is commonly usrf for modeling a time to failure, but it is not very
useful for modeling uncertaintiw, and may some day be dropped as an option in this part of IRRAS. One
reason for its use in modeling failures and its disuse in modeling uncertaintl« is that it has only one
parameter. Therefore the mean determines the variance. The exponential density is

where the parameter X and the mean n are related by /t = 1/X. Note fliat the exponential density is a
special c^e of the gamma density, with the gamma parameter r = 1. Alternatively, if Fis x^(2), flien
X = F/(2X) has a gamma distribution with r — I and mean p, = 1/X, i.e. an exponential(X) distribution.
Therefore, anything that can be simulated with an exponential distribution can also be simulatal with a
gamma or chi-squared distribution.

An exponential(X) random variable is generated by the inverse c.d.f. mefliod, as explained at flie
beginning of Section 9.3. Tiis mefliod is recommendal in Section 6.5.2 of Kennedy and Gertie (1980)
for the gamma distribution with r = 1.

December 1992 69 NUREG/CR-5964

Uncertainty and Monte Carlo

9.3.7 Uniform Distribution

The mean of this distribution is M = (a+6)/2. The value in the uncertainty distribution in
IRRAS is ft, tie rigit (upper) endpoint of ttie distribution. The value for a is calculated by the equation
a = 2*M - b. The density fanction for this distribution is

h-a

for a ^ X ^ b.

IRRAS generate a uniformly distributed random number using the prime modulus multiplicative
linear congruential generator advocated by Park and Miller (1988). TTie modulus m is 2''-l =
2,147,483,647 and tfie multiplier is 16807. This generates a sequence of w - 1 distinct integers before
repeating, in an order that appears random. To obtain real numbers between 0 and 1, the integer
obtainai in this way is divided by m.

Having generated a random variable F uniform between 0 and 1, IRRAS obtains a random
number uniform between a and 6 as X = a + (b-a)Y. This is used for both simple Monte Carlo
sampling and for LHS sampling.

9.4 Histograms

IRRAS allows for either a discrete or a continuous distribution under this option. The modeled
quantity is a probability Xl or Xr, or a frequency^ o r^ r . When the PERCENT option is selected, the
distribution is discrete on up to 20 values; the percents, giving the degree of belief for each value, must
sum to ITO. If ttie RANGE or AREA option is selected, the density is a step fanction covering up to 20
adjacent intervals. The fanction is constant within each interval, and the area under the entire fanction
must equal 1.0.

9.5 Correlation Classes

The practice of using the same uncertainty distribution for a group of similar components has
been common since ttie Reactor Safety Study (NRC 1975). The PRA Procedures Guide (Hickman 1983)
recommends this practice m well. Philosophical arguments have been given to support tfiis practice or
usrf to give it credence. Apostolakis and Kaplan (1981) discuss this issue from a Bayesian perspective,
and they call it a "lack of knowWge" dependency. However, this dependency is broader than just a lack
of knowledge. It is present whenever the same data set is used for several componente. It is not a
Bayesian or classical statistical phenomenon, but it is induced because of the way lie data are usrf.

For example, suppose that a plant has two motor-driven AFW pumps. These pumps are virtually
identical, and therefore are modeled as having the same unavailability, q. The uncertainty distribution
for q is taken from some data base, and describes our best belief about the true value of q. Because the
two components have uncertainty distributions taken from tie same source, if our estimate of q is too
high (say) for one pump, it will be also be too high for the other pump, by the same amount. Similarly,

NUREG/CR-5964 70 December 1992

Uncertainty and Monte Carlo

if our estimate is too low for one, it will be too low for the ottier by the same amount. TTie uncertainty
distributions for flie two unavailabilities are perfectly correlate.

This correlation of flie uncertainties must be distinguish^ from flie independence of die basic
evente. The two basic events (failures of the pumps to be available) are independent; tiiat is, the
probability that one pump is unavailable is some number q, unaffectrf by whether Ae other pump is
available or not. However, our uncertainty about tfie value of q is totally correlated for the two bMc
events.

The user tells IIRAS of this uncertainty correlation by putting the two b^ic evente in a single
correlation class. When q is sampled from its uncertainty distribution, that one value of q is assignoi
to all tie basic events in tfie correlation class. After the probability of the top event has been calculate,
on the next Monte Carlo pass a new (presumably different) value of q is drawn from the uncertainty
distribution, and is assign^ to all tiie b^ic events in flie class.

Let us now examine the effect of total correlation in accident sequence analysis. Consider a
simple example involving a cut set with two componente. Let f; and 2̂ denote tie unavailability of flie
two componente in the cut set. If the components are independent, flien

Q = «A <̂ "̂)

is the cut set unavailability.

As we begin the analysis, we can make one of two ^sumptions. First, we can assume that the
unavailability of each component is estimated from independent data sources. For example, if ttie first
basic event is failure of a pump and the second b»ic event is failure of a valve, flie probabilitiM of tti«e
basic events will be estimated from independent sources, and therefore tfie two probabilities have
independent uncertainty distributions. H e expectrf value and variance of Q are given by

EiQ) = Eiq,)Eiq^) (M)

and

variQ) = Eiql)E{(i)-[Eiq)Eiq^] . (^5)

These equations follow from tfie independence of tie uncertainty distributions.

If instead, flie components are identical, then f j = f2 = €? and Equations (9-4) and (9-5) rrfuce
to

EiQ) = E{q)Eiq.) = [E{q)] (̂ ^6)

and

var(0 = [£(f2)J - [£(^)f . (9̂ 7)

December 1992 71 NUREG/Cl-5964

Uncertainty and Monte Carlo

However, when the components are identical. Equations (9-6) and (9-7) are probably not correct. TTie
same source would prammably be used to obtain flie uncertainty distribution for both unavailabilities.
Tierefore, any value q that is usM for one bmic event should also be usal for the ofliers. Equation (9-3)
reduces to

so we have

EiQ) = Eiq^ (M)

and

variQ) = Eiq*) - [Eiq^^ . <̂ "̂)

A standard identity from statistics says that

Eiq^ = [Eiq)f * variq) > [Eiq)f .

Therefore, Equation (9-8), ttie correct one, is larger than Equation (9-6), the incorrect one. This is why
the point estimate and the mean of the uncertainty distribution are not equal in PRAs. The point estimate
for the example cut set is the product of the basic event means, given by Equation (9-6), wlier«s the
mean of the cut set uncertainty distribution is given by the larger value in Equation (9-8). Simiarly, the
variance should be calculate from Equation (9-9), not Equation (9-7). In typical cases, including any
case in which q is lognormally distributed, Equation (9-9) gives a larger value than Equation (9-7). The
effects are most pronouncrf when the distributions are highly skewed.

Ericson et al. (1990, page 12-8) suggeste the following steps for grouping basic evente into
correlation classes:

• Group all basic events by component type (e.g., MOV, AOV, MDP),

• Within each component group, organize evente into subgroups by failure mode
(e.g., fail-to-start, fail-to-run),

• For time related basic events, group all events from each component failure mode
group into sete according to the time parameter value usrf to quantify the event
probability (e.g., 6 hours, 720 hours), and

• For demand related failure, no farttier grouping is necessary beyond flie
component failure model level.

If different estimates are developrf for components witiiin the same component group (e.g., Service
Water Motor-Driven Pump, Residual Heat Removal Motor-Driven Pump), then iiese should be treatrf
as separate component groups.

NUREG/CR-5964 72 December 1992

Uncertainty and Monte Carlo

9.6 Owerwiew of Simple Monte Carlo Sampling

The Monte Carlo ^proach is the most fandamental approach to uncertainty analysis. Simple
Monte Carlo simulation consists of making repeated quantifications of the top event value using values
selected at random from flie uncertainty distributions of tie basic events. For each iteration of the Monte
Carlo run, each basic event uncertainty distribution is sampled using a random number generator to select
the failure probability of flie basic event. The top event probability or accident sequence frequency is
calculated. When this procrfure has been repeated a predetermine number of timm, flie top event or
accident sequence results are sorted to obtain empirical estimate of the dwiroi top event attributes such
m tie mean, median, 5th percentile, and 95th percentile, A plot of the empirical uncertainty disttibution
is often obtained. Figure 20 contains an example of an uncertainty distribution for an accident sequence.
For more information about the Monte Carlo technique tie reader is referr^ to Hahn and Siapiro (1967).

1.0

0.8

0.6

1 1

o
0.4

0.2

0.0
OX.

1991/09/12

Sequence A-D5 Cumulative Distribution 1

, Kifrent

/

• /

-

•

400 i.a:-05 2.(1

Probabi ity
-05

1
Figure 20. Uncertainty distribution for an accident sequence.

To illustrate the Monte Carlo technique, consider a system with two components in series. Let
A denote failure of ttie first component and B failure of ttie second. The cut sets for the system are A
and B, so flie equation for ttie top event (system) is

December 1992 73 NUREG/CR-5964

Uncertainty and Monte Carlo

S = A * B

Let ̂ and fi have mean failure probabilities of O.TOl and 0.CMI5, r«pectively. Also assume fliat
the uncertainty distribution for A is uniform from 0 to 0.CX)2 and the distribution for B is normal with
standard deviation of O.CWl. These distributions are shown in Figure 21 and Figure 22.

8W'

400

^

2m

1W

o.doi "ate

Figure 2 1 . Uncertainty distribution for Component A

The point estimate for S is O.CXM. Table 3 contains a random sample of size 10 for this example.
Column 1 contains the sample for component A which has a uniform uncertainty distribution. Column
2 contains the sample for failure of component B, and column 3 contains tie sum of columns 1 and 2
which is the minimum cut set upper bound for the probability of failure of the system. The bottom row
is ttie average of the columns.

NUREG/CR-5964 74 December 1992

Uncertainty and Monte Carlo

450-

4 I»-

3W-

3 » -

250-

^ -

150-

1 » -

50-

0-

A
/ \

/ \

/ \

/ \

/ \

/ \

J V
) o . » i o - t e o . t o 0 . W o.»5 o . » o.»7 o . » o . t o o.5i

Failure Probabll%

Figure 22. Uncertainty distribution for Component B

Table 3. Monte Carlo samples

h 1 A±i_
0.00042 0.00500 0.00542
0.00086 0.00661 0.00747
0.00149 0.00570 0.00719
0.00109 0.00605 0.00714
0.00066 0.00420 0.00487
0.00024 0.00609 0.00633
0.00066 0.00396 0.00462
0.00075 0.00293 O.OOSM
0.00037 0.00500 0.00537
0.00127 0.00597 0.00724

0.00078 0.00515 0.00593

December 1992 75 NUREG/CR-5964

Uncertainty and Monte Carlo

9.7 Owerwiew of Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) selects n different values from each of the k variabte XI,...,Xk
in flie following manner. The range of each variable is divided into m nonoverlapping intervals on the
basis of equal probabilities for the intervals. The n values thus obtained for XI are pairM in a random
manner with the n values of X2. Thrae n pairs are combing in a random manner with the n valuM of
X3 to form n triplete, and so on, until n fc-tuplets are formed. This is tie Latin Hypercube sample. It
is convenient to think of the LHS, or a random sample of size n, as forming an n*k matrix of inputs
where the Ith row contains specific values for each of the k input variables to be used on the ith
evaluation of the cut sets.

To help clarify how intervals are determine in tie LHS, consider tfie simple example usM in
fte previous section. We want to generate an LHS sample of size 5. TTie first step is to divide the
uncertainty distributions of ^ and B into 5 equal probability areas each containing an area of 0.2. For
A fliis is easy since it has a uniform uncertainty distribution. The pointe are 0.TO04, 0.CXW8, 0.0)12, and
0.TO16. The areas are shown in Figure 23. The uncertainty distribution for fi is a normal distribution;
it is harder to find the points that divide the areas into equal probability areas. Probability tabte or a
calculator with an inverse normal calculation routine is needed. The four points which define ttie 5 equal
probability areas are 4.158E-3, 4.747E-3, 5.253E-3, and 5.842E-3. These are shown in Figure 24.

mm

mm

3M

m)

i » -

1
0.0W4 0 . ^ o.roi2

Fdure Probability
o.c»ie 0.»2

Figure 23 . Latin hypercube sample for Component A

NUREG/CR-5964 76 December 1992

Uncertainty and Monte Carlo

Figure 24. Latin hypercube sample for Component B

The next step Is to generate a random permutation of tiie integers 1, 2, 3, 4, and 5 for each
component. For ^ we get (3 4 1 5 2}, and for B we obtain { 4 1 3 2 5 } . We then combine these two
together to obtain:

1 Computer Run

1 1

1 ^
1 3

4

1

Interval for A

3

4

1

5

2

Interval for B j

4

1

3

2

' 1
These five cells are shown in Figure 25. The next step is to obtain random values for A and B

for each of the intervals. The first value for A lies in interval 3; thus, tie value must be between 0 . ^ 8
and 0.0012. 4̂ is generate as described in Section 9.3.7: A random number U is generate from a
uniform distribution between 0 and 1. Then A is defined M 0.(TO8 + 0.00041/. The corresponding
value for B l i« in interval 4; thus the value for B must lie between the ^ h and SOtii percentite of the
normal distribution. This is generated as described in Section 9.3.2: A new random number U is
generated from a uniform distribution between 0 and 1, and F = 0.6 + 0.2U is flierefore uniform
between 0.6 and 0.8. Let F denote the standard normal c.d.f. Then Y = F\V) is sampW from between
tiie mA and 8(Mi percentiles of flie standard normal c.d.f. Finally B = 0.TO5 + O.WlFis sampW from

December 1992 77 NUREG/CR-5964

Uncertainty and Monte Carlo

between the 60tii and 80th percentiles of a normal distribution witfi mean 0.W5 and standard deviation
O.CWl. The following table summarized tie random numbers in this case.

1 Computer Run

1

2

3

4

5

1 Mean

Value for A

9.454E-4

i.512E-3

6.102E-5

1.827E-3

7.068E-4

LOlOE-3

Value for B

5.398E-3

3.862E-3

4.898E-3

4.504E-3

6.684E-3

5.069E-3

Value for A+B

6.343E-3

5.374E-3 1

4.959E-3 j

6.331E-3

7.391E-3

6.080E-3 1

2.0E^

1.6E-4.

1.2E-4.

8.0E-4.

4.0E-4.

0.0

X

X

X

1

2.0E-3 4.16E-3 4.75E-3 5.25E-3 SME-S 8.0E-3

Component B

Figure 25. Cells sampW in LHS example.

NUlEG/CR-5964 78 December 1992

Uncertainty and Monte Carlo

9.8 Comparison of Simple Monte Carlo and Latin Hypercube Sampling

The following information is a comparison of Simple Monte Carlo simulation and Latin
Hypercube Sampling ^HS). TTie table contains output from IRRAS for tfie sample problem in tie
previous section. Figure 26 contains a plot of the cumulative distribution fimction for rach sample. Tie
results are very similar for these two mefliods. Notice the size of flie sampte for each. The LHS
method requires only a quarter of tie sample size of ordinary Monte Carlo, for similar accuracy. This
must be balanced against ttie fact that for some distributions it takes longer to generate a random number
for an LHS sample than for a simple Monte Carlo sample. Neverthetos, LHS sampling can often
substantially reduce the time required for an analysis, while obtaining similar accuracy.

Table 4. Comparison of Monte Carlo and LHS for sample problem

Random Seed
Sanple Size
Point estimate
Mean Value
5th Percent i le Value
Median Value
95th Percent i le Value
M i n i i u i Sanple Value
Naxinui Soiple Value
Stanlard Deviatfwi
Skewness
Kurtosis
Elapsed T i w

Monte Carlo
51530

200
5.995E-003
6.008E-003
3.890E-003
6.103E-003
7.783E-003
2.TO8E-003
8.944E-003
1.163E-003
-1.973E-001
2.M0E+000

00:00:02.530

iHS
27290

50
5.99iE-003
5.994E-003
3.876E-003
6.320E-003
7.81tt-003
2.78«-003
8.605E-003
1.245E-003
-3.071E-001
2.747Ef000

00100:00.650

December 1992 79 NUREG/CR-5964

Uncertainty and Monte Carlo

1.0

0.8

^ 0.6

£ 0-*

0.2

0.0
0.C 102

1

Monte Carlo

COM

yy

f/

is

/ ^ / ^
/ •^ If

/

O.dO.6

System Una¥ailablllty

o.cto8

•

•

"

0.0 »

Figure 26. Cumulative distribution plots for example using Monte Carlo and LHS.

NUREG/CR-5964 80 December 1992

10. REFERENCES

Apostolakis, G. and S. K^Ian, 19R1, "Pitfalls in Risk Calculations," Rettability Engineering, 2, pp OS-
MS.

Barlow, R. P. and F. Proschan, 1981, Statistical Theory of Reliability and Life Testing, Silver Springs,
MD:To Begin Wifli, p. 32.

Beasley, J. D. and S. G. Springer, 1977, Algoriflim AS 111, The Percentage Points of flie Normal
Distribution," Applied Statistics, 26, pp. 118-120.

Bohn, M. P., T. A. Wheeler, G. W. Parry, 1988, Approaches to Uncertainty in Probabilistic Risk
Assessment, NUREG/CR-4836, January 1988.

Branham-Haar, K. A. et a!., 1992, Models and Result Database (MAR~D) Version 4.0 Reference Manual,
NUREG/CR-5301, May 1992.

Corynen, G. C , 1988, A Fast Bottom up Algorithm for Computing the Cutsets of Non-Coherent Fault
Trees, NUREG/CR-5242, October 1988.

Ericson, D. M., Jr. et al., 1990, Analysis of Core Damage Frequency: Internal Events Methodology,
NUREG/CR-4550, Vol. 1, Rev. 1, January 1990.

Fussell, J. B., 1975, "How to Hand Calculate System Reliability and Safety Characteristics," IEEE
Transaaions on Reliability, R-24, 3, August 1975.

Hain, G. J. and S. S. Shapiro, 1967, Statistical Models in Engineering, New York: John Wiley & Sons.

Hickman, J. W., 1983, PSA Procedures Guide: A Guide to the Performance of Probabilistic Risk
Assessments for Nuclear Power Plants, American Nuclear Society and Institute of Electricd and
Electronic Engineers, NUREG\CR-23TO, Volumes 1 and 2, January.

Johnson, Norman L. and Samuel Kotz, 1970, Continuous Distributions - 2, New York: John Wiley &
Sons.

Kennedy, William I., Jr. and James E. Gentle, 1980, Statistical Computing, New York: Marcel Dekker,
Inc.

Lindley, D. V., 1985, MaMng Decisions, New York: Wiley.

McGrafli, E. J. and D. C. Irving, 1975, "Variance Reduction," Techniques for Efficient Monte Carlo
Simulation, III, ORNL-RSIC-38, April.

McKay, M. K, N. L. Skinner, S. T. Wood, 1992, Faidt Tree, Event Tree, and Piping <t Instrumentation
Diagram (FEP) Editors Version 4.0 Reference Manual, NUREG/CR-5866, May 1992.

December 1992 81 NUREG/CR-5964

References

Mood, A. M., F. A. Graybill, D. C. Boes, 1974, Imroduction to the Theory of Statistics, Third Edition,
New York: McGraw-Hill.

NRC (U. S. Nuclear Regulatory Commission), 1975, Reactor Safety Study-An Assessment of Accident
Risks in U.S. ammercial Nuclear Power Plants, WASH-14W (NUlEG/75-014), October 1975.

Park, St^hen K. and Keifli W. Miller, 1988, "Random Number Generators: Good On« Are Hard to
Find," Communications of the ACM, 31, October 1988, pp. 1192-1201.

Patenaude, C. J., 1987, SIGPI- A User's Manual for Fmt Confutation of Probabilistic Petformmce of
Complex Systems, NU1EG/CR-48TO, Lawrence Livermore National Laboratory, May 1987.

Pras, S., 1989, Bayesian Statistics: Principles, Models, and Applications, New York: John Wttey &
Sons.

Press, William H. et al., 1986, Numerical Recipes: The Art of Scientific Confuting, Cambridge, UK:
Cambridge University PFMS.

Quine, W. V., 1959, "On Cores and Prime Implicants of Trufli Functions," American Mathematical
Monthly, 66, Nov. 1959, pp. 755-7«.

Russell, K. D. et al., 1992a, Integrated Reliability and Risk Analysis System (IRRAS) Version 4,0
Reference Manual, NUREG/CR-5813, Vol. 1, January 1992.

Russell, K. D. et al., 1992b, System Analysis and Risk Assessment (SARA) System Version 4.0Reference
Manual, NUREG/CR-5303, Vol. 1, February 1992.

Sattison, M. B, K. D. Russell, N. L. Skinner, 1992, System Analysts and Risk Assessment (SARA) System
Version 4.0 Tutorial, NUEEG/CR-5303, Vol. 2, January 1992.

Singpurwalla, N., 1988, Foundational Issues in Reliability and Risk Analysis, Slam Review, Volume 30,
No. 2, June, pp. 264-282.

Thisted, Ronald A., 1988, Elements of Statistical Computing, New York: Chapman and Hall.

VanHorn, R. L., K. D. Russell, N. L. Skinner, 1992, Integrated Reliability and Risk Analysis System
(IRRAS) Version 4.0 Tutorial, NUREG/CR-5813, Vol. 2, October 1992.

V«ely, W. E. et al., 1981, Fault Tree Handbook, NUlEG-0492, January 1981.

I
NUREG/CR-5964 g2 December 1992

Appendix A

Fault Tree Quantification Example

December 1992 A-1 NUREG/CR-5964

Appendix A

Fault Tree Quantification Example

A 1 . INTRODUCTION

His appendix contains a worked example of the rrfuction and quantification of a simple fault
tree. TTie minimal cut sete are obtained using a cut set algorithm and also using Boolean equations.
The minimal cut sets are then quantified using the rare event approximation, tfie minimal cut set
upper bound, and the inclusion-exclusion rule to obtain the exact solution. These quantification steps
are worked out in detail. Finally, basic event importance measures are calculated to show how the
calculations are done.

This appendix uses the notation + for U and * for n .

A2. FAULT TREE INPUT

The fault tree for this example is shown in Figure A-1. It contains a 2/3 combination gate.
The alphanumeric input for the fault tree is shown in the following:

Alphanumeric Fault Tree (Shown in Figure A-1)

TOP AMD GATE1 GATE2
GATE1 2/3 GATE3 GATE4 B1
GATE2 m B1 B3 B4
GATE3 OR B2 B4
GATE4 AMD B3 B5

Each row corresponds to a gate in the fault tree. The first entry is the gate name. The next entry is
the gate type. The remaining entries are the inputs to the gate.

Figure A-2 contains the fault tree with the 2/3 combination gate (GATEl) expandwi into
AND and OR gates. Tlie new gates are FT-N/M-1, FT-N/M-2, and FT-N/M-3. The alphanumeric
coding of the fault tree is shown below:

Alphanumeric Fault Tree with Expanded Gates (Shown in Figure A-2)

TOP
GATEl
GATE2
GATE3
FT-M/M-1
FT-N/M-2
FT-N/M-3

AND
m
m
m
AND
AND
AMD

SATE1
FT-N/«-1
B1
B2
GATE3
GATE3
B3

GATE2
FT-i/H-2
B3
B4
B3
B1
B5

CUT SET GENERATION (Top-down approach)

In this section the minimal cut sets are obtained using a top-down approach. The steps are illustrated
in detail so that the reader can understand all of the calculational details. In practice, several of the
steps caE be performed together.

I
December 1992 A-3 NUREG/CR-5964

Quantification Example

Figure A-1. Example fault tree.

NUREG/CR-5964 A-4 December 1992

Quantification Example

Figure A-2. Example fault tree with 2/3 gate expanded.

December 1992 A-5 NUREG/CR-5964

Quantification Example

Step 1 (TOP)

To start the algorithm the TOP gate is replaced by its inputs. If the TOP gate is an OR gate,
then each Input becomes a row. If tie TOP gate is an AND gate, tiie inputs are placai in the same
row. Thus, Ae first step is the following:

GATEl GATE2

Step 2 (GATEl)

In this step, GATEl is replaced by ite three inputs. Since GATEl is an OR gate each Input
becomes a row. This results in the following:

FT-N/M-I GATE2
FT-M/i-2 GATE2
FT-ll/M-3 GATE2

Stg) 3 (FT-N/M-1).

In this step, FT-N/M-1 is replaced by its inputs GATE3, B3 and 15. Only the first row was
modified since the gate is an AND gate. The r«ults are:

B3 85 GATE2 GATES
FT-M/i-2 GATE2
FT-M/M-3 GATE2

SlaJiFT-N/M-2)

Next, FT-N/M-2 is expandM. It is m AND gate so it is replacoi by its inputs in every row
that contains it. The resulte of this step are:

B3 B5 GATE2 GATE3
B1 GATE2 GATE3
FT-i/M-3 GATE2

Step 5 (FT-N/M-3)

Gate FT-N/M-3 is selected to procMS. It is also an AND gate and appears in only one row of
the table in step 4. Thus, no rows are added in tfiis step. The gate is replace by ite inpute. Hie
TMults are:

B3 B5 GATE2 GATES
B1 GATE2 GATE3
B1 B3 B5 GATE2

Step 6 (GATE3)

GATE3 is selected to be expanded next. GATES is an OR gate with two inpute. For the first
row in the table in step 5, GATE3 is replace by one of ite inpute. TTie row is then Treated and the
gate name replacrf by its other inpute. The resulte of this step are:

B2
B1
B3

B3
B2
B4

B5 GATE2
GATE2
B5 GATE2

CReplace GATE3 by B2.)
CReplace GATE3 by B2.)
CReplace GATE3 by B4.>

NUEEG/CR-5964 A-6 December 1992

Quantification Example

B1 B4 GATE2
B1 B3 B5 GATE2

CReplace GATE3 by B4.)
CDoes not involve GATE3.)

Notice that two new rows were added in fliis step.

In this step, GATE2 is proc«sed. Notice that GATE2 apprars in every row of the table in
step 6. GATE2 is an OR gate with 3 inpute. Thus, tfie number of rows will increase, but flie
number of entries in each row will remain Ae same. The number of rows will be three times the
number in the table of step 6. That is, the table for this step will consist of 15 rows. The table for
tills step is the following:

B2 B3 B5 B1
B1 B2 B1
B3 B4 B5 B1
B4 B1 B1
B1 B3 B5 B1

B2 B3 B5 B3
B1 B2 B3
B3 B4 B5 B3
B1 B4 B3
B1 B3 B5 B3

B2 B3 B5 B4
B1 B2 B4
B3 B4 B5 B4
B1 B4 B4
B1 B3 B5 B4

CReplace GATE2 by B1.)

(Replace GATE2 by i3.)

(Replace GATE2 by B4.)

Step 8 (Idempotence A*A=A)

At this point, all of the gates have been resolved so tfiat only basic evente occur in the table.
The next step is to i^ply tfie Law of Idempotence, A*A = A. The r«ulte are:

B2 B3 B5 B1 =
B1 B2 B1
B3 B4 B5 B1 =
B4 B1 B1
B1 B3 B5 B1 ••
B2 B3 BS B3 :
B1 B2 B3
13 B4 B5 B3 =
B1 B4 B3
B1 B3 B5 B3 =
B2 B3 B5 B4 •-
B1 B2 B4
B3 B4 BS B4 -
B1 B4 B4
B1 B3 B5 B4 =

Steo 9 f Absorotion.

: B1 B2 13 B5
= B1 12
: B1 B3 B4 B5
: B1 B4
= B1 B3 BS
= B2 B3 BS
= B1 B2 B3
: B3 B4 B5
= B1 B3 §4
= B1 B3 B5
= B2 B3 B4 Bi
= BI B2 B4
: B3 B4 BS
: B1 B4
= BI B3 B4 B5

4 + (A*B)=A)

The next step is the absorption step. That is, nonminimal cut sete must be eliminated, as well
as duplicate rows. In the following table, the rows that are eliminate have a line through them and
the re^on it is eliminated' is providrf to the left. The resulte are:

December 1992 A-7 NUREG/CR-5964

Quantification Example

EliBfnated ^ BI B2
Eliminated by BI B2
Elimnated by BI B2
Elininat^ by B1 B4
BliBinatrf by BI B4
Elinfnated by B1 B4

Repeated cut set

Repeated cut set
Eliminated by B2 B3 B5

Repeated cut set

Step 10 (Final minimal cut sets)

The remaining 5 sete are the minimal cut sete for this example. TTiey are:

BI B2
BI B4
BI B3 BS
B2 B3 B5
B3 B4 B5

A3. BOOLEAN EQUATION FOR THE FAULT TREE

In this section the Boolean equation form of the fault tree is used to obtain the minimal cut
sete. The steps below are not the only way flie equations can be combined and reduced. Many of lie
steps illustrate below can be combined and performed simultanwusly. These steps are presented to
illustrate the various concepte and show how they parallel the cut set algorithm illustrated in the
previous section.

The equation form of the fault tree is:

TOP = GATEl * GATE2
GATEl = FT-M/i-1 + FT-i/M-2 + FT-N/M-3
GATE2 = BI + B3 + 14
GATES = B2 + B4
FT-N/i-1 = GATES • B3 * B5
FT-M/i-2 = GATE3 * i1
FT-N/M-3 - BI * B3 * B5

Stffil

The first step is to start with the TOP equation:

TOP = GATE1 * GAT62.

StfflJ

In this step GATEl and GATE2 are replaced by their inpute. This taults in the following
equation:

TOP = (FT-i/i-1 + FT-N/M-2 + FT-i/M-3) * CBl + B3 + B4K

BI B2

§4-83—U-SS
84—B2—B4
ft4-^S-B4
g4-*J-E4-»
g4-as-i4-«
B1 i3 B5
M—83—85
BI B4

m-m-m-as-
B2 B3 BS
B3 B4 B5
BS—§4—BS

NUREG/CR-5964 A-8 December 1992

Quantification Example

In this step the three expanded gates (FT-N/M-1, FT-N/M-2, and FT-N/M-3) are replacrf by
their inpute to yield

lOP = CGATE3 • B3 * B5 * GATE3 * BI + BI * B3 * B5) * CB1 + B3 ••• B4).

Stffil

Next GATES is replac«l by ite inpute to obtain

TW - CBl + B3 + B4) * I(B2 + B4KB3*B5> + CB2 + B4) * BI + BFB3*B5].

At this point all gates have been replaced by their inpute, and the equation consiste of basic
evente only.

Step 5

The next step is to expand and combine the terms In the square brackete. This yields

im =.m + B3 + B4) * CB2*B3^B5 + B3*B4*B5 + B1*B2 + BrB4 + B1*B3*B55.

StffiJ

The terms in Ae first set of parentheses are distributed across the second set to yield

I TOP = SI * CB2^B3*B5 + B3*B4*B5 + B1^B2 + g1*B4 + BFB3'»B5)
' + B3 • CB2*B3*B5 • B3*B4*B5 + EI^BZ • B1*'B4 + B1*B3'^B5)

+ B4 ̂ CB2®B3*B5 + B3*B4*B5 + B1*B2 + B1*B4 + i1*B3*B5).

Step?

Each term is now expanded to yield

TW = B1*B2*B3%5 + B1*B3*B4*B5 + B1*B1*B2 * B1*B1*B4 + B1*B1*B3*B5
• B3*B2*B3*i5 + B3*B3*B4*B5 + B1*B2*B3 + B1*B3*i4 * B1*B3*B3®B5
+ B2*B3*B4*S5 + B3*B4*'B4'̂ B5 + B1*B2*B4 + B1*B4*B4 + B1*B3*B4*B5.

§ tg 8 (Idempotencel

The Law of Idempotence {A*A=A) Is now applied. This produces

TOP - B1*B2*B3*B5 + BFB3*B4*B5 + BFB2 + B1*B4 + B1*B3*B5
+ B2*B3*B5 + B3*B4*B5 * B1*B2*B3 + B1*B3*B4 + B1*'B3'»B5
+ B2*B3*B4*B5 + B3*B4*BS + B1*B2^B4 + B1*B4 + B1*B3*B4*'B5.

Stg 9 (Absorption)

Finally, the nonminimal cut sete are eliminated. The terms that are eliminated are shown with
a line Arough them.

TW = e4*«3»«*» + M»B*g4*8i + B1*i2 + B1*B4 • B1*B3*B5
+ B2*B3*B5 + B3*B4'»B5 + i 4 * M * B + M^SS^* • »t*iS»lS

December 1992 A-9 NUREG/CR-5964

Quantification Example

••• S2*BJ*g4*» + M*i4*S» + g4*B3*S4 + M*B4 + M*SS*S4*»

Minimal Cut Set Equation

The final minimal cut set equation is

T » = B1*B2 + B1*B4 + i1*B3*B5 -t- B2*B3*B5 + B3*B4*B5.

These are exactly the same minimal cut sete that were obtained in Section A2.

A4. CUT SET QUANTIFICATION

In this section the different ways of quantifying the minimal cut sete are compared.
Numerical resulte are treatai in the next section. The objective is to illustrate the complexity of the
exact solution and also the Boolean algebra requirai in calculating it.

The minimal cut set equation is the starting point for the calculations. From Section A2 or
A3, we have

P[TOP] = P[B1*B2 * B1*B4 + B1*B3*B5 + B2*B3*B5 + B3*B4*'B5]

Exact Solution

The inclusion-exclusion rule, Equation (4-6) in the body of this report, is used to calculate the
exact solution. Basically, it is the sum of the probability of the Individual sete, minus the sum of the
probability of all possible pairs, plus the sum of the probabilities of all possible combinations of three,
minus the probabilities of all possible combinations of four, plus the probability of intersection of all
five minimal cut sete. This calculation is shown in Table A-1.

From Table A-1 we see that the intersection of most of the sete contain common terms, e.g.,
BI B2 and BI B4 have BI in common. TTie intersections must be reduced to simplest form by use of
the Law of Idempotence {A*A=A}. The resulte of this are shown in Table A-2.

In most situations, the basic evente are assumed to be statistically independent. That is,
P[M]=P[A]P[B]. The resulte of this step are shown in Table A-3.

Rare Event Approximation

The first term of the inclusion-exclusion rale is an upper bound for the probability of the TOP
event. For our example the rare event approximation is

P[TOP] = PtB1*B2] + P[B1*B4] + PtB1*'B3*B5] + P[B2*B3*B5]
+ P[B3*B4*B5].

NUREG/CR-5964 A-10 December 1992

Quantification Example

TaWe A - 1 . Exact solution. Step 1

PCTOP] = p
+ p
+ p
+ p
+ p

- p
- p
- p
- p
- p
- p
- p
- p
- p
- p

- p
- p
- p
- p
- p

:€B1^B2>]
:€B1*'B4}]
: iBrB3*15>l
I:B2^B3*B5>]
€B3*B4*i5>l

:€BFB2>
:€BrB2>
;€BFB2>
:CB1^B2>
€B1*B4>
fBl^B4>
CB1*B4>
CB1*B3*i5>

€B1*B4>]
CB1*B3*B5>1
CB2*B3*B5}]
€B3*B4®B5}]
€B1*B3*'B5>]
CB2*B3*B5>]
«3*B4*B5M

Ci2*B3*B5}]
CB1*B3*B5> ^ CB3*B4*B5}1
:CB2*B3*i5> • €B3^B4*B5}]

CBFBZl
a F B 2 >
€B1^B2>
«1*B2>
€B1*B2>
,CB1*B2>
:€BFB4>
:€B1*B4>
€BFB4>
•CBFB3*B5>

CB1*B2>
: « r B 2 >
:«1*B2>
:€BFB2>
:CBFB4}

€B1*14> * €B1^B3'»B5>]
CB1*B4> * CB2^B3*B5>1
CS1'*i4> * €B3*B4^B5>]
€Sl*B3*Bi> * CB2*B3^B5>]

• {B1*B3*B5>
«2^B3*B5>
CBrB3*B5>
€BrB3^B5>
€B2^B3^B5>

CB3*B4^B5>]
CB3*B4^B5>]
CB2^B3*B5>]
CB3^B4*B5>]
{B3^B4*B5>]

* €B2^B3*B5> * iB3*B4^BiM

«1^B4> * CBrB3*B5> * CB2*B3*B5>]
{B1*S4> '̂ CB1*B3*B5> * {B3*B4*B5>]
CBrB4> * Ci2*B3^B5> • 1B3*B4*B5>]
CB1*B3 B5> * €B2^B3^B5> • CB3*B4^B5>]
CB1*B3*B51 * €i2^B3*B5> ^ €B3*B4^B5M

+ P[CBrB2> * «1*B4> * €B1*B3^B5> * €B2*B3*B5> * «3*B4^B5}]

December 1992 A-11 NUREG/CR-5964

Quantification Example

Table A-2. Exact solution after applying Law of Idempotence

P[TOP] = P[B1*B2]
+ P[B1*B4]
+ P[B1^B3*B5]
+ P[B2*B3*i5]
+ P[B3*B4^B51

- P[B1*B2*B4]
- P[B1*B2«'B3*BS]
- P[81*B2*B3*B5]
- P[B1*B2*'B3*B4'»S5]
- PIB1*B3*B4*B5]
- PtB1*B2*B3*B4*B5]
- P[B1*B3^B4^B5]
- P[B1*B2*B3®i5]
- P[B1*B3'*B4*B5]
- P[B2*B3*B4*B51

+ P[B1*B2*B3*B4*B5]
+ P[B1*B2*B3*i4*BS]
+ P[81*82*83*84*85]
+ P[B1*B2*B3*B4*15]
+ P[B1*B2*B3*B4«'B5]
+ P[B1*B2*B3*B4*B5]
* PtB1<»B2*B3*B4*B5]
+ P[B1*B2*B3^B4*B5]
* P[B1*B2*'B3*B4'^B5]
4- PtB1*B2*B3*B4*B5]

- P[B1*B2^B3*B4«'B5]
- P[B1*B2*B3*B4*B5]
- P[B1*B2'»B3^B4*BS]
- PtB1*B2*B3*B4*B5]
- P[B1*B2®B3«'B4'̂ B5]

+ P[B1*B2*B3*B4'*B5]

NUREG/CR-5964 A-12 December 1992

Quantification Example

Table A-3. Exact solution, using assumai stat

PUVl = P[B1]
+ P[B1]
+ P [i i i
+ PtB2]
+ P[B3]

- PCB1]
- PtBI]
- P[B1]
- P[B1]
- P[B11
- P B 1]
- P[B1]
- PtBI]
- PtBI]
- P[B2]

+ PtBI]
+ PtBI]
+ PtBI]
* P B 1]
+ PtBI]
+ PtBI]
* PtBI]
+ PIB1]
+ PtBI]
+ PIB1]

- PtBIl
- PtBI]
- PtBI]
- PCB1]
- PtBI]

* PtB2]
* PtB4]
* P[B3] *
* P[B3] *
* PIB4] *

• PtB2] *
* PIB2] *
* PIB2] *
* PtB2] <
• PtB3J «
* P[B2] x
* PIB3] *
* PIB2] «
* PtB3] <
* PIB3] *

* P[B2] <
* PIB21 <
* PIB2] *
* PtB2] <
* PtB2] *
^ PIB21 *
* PtB2] *
* PtB2] *
* PtB2] *
* PIB2] *

* PIB2] 1
* PtB2] *
* P[B2] 1
* PtB21 *
* PtB2] *

' P I i5]
» PBS]
* P[i5]

" PIB4]
» PtB3]
* PIB3] >
» P[B3] '
* PCB41 «
• P[B3] '
• PIB4] '
» PtB3] '
* PIS4]
» PtB4]

' P B 3]
' PtB3] '
> PtB3]
» PtB3] '
• PtB3]
* PtB3]
» PIB3]
* PIB3]
» PIB3]
» P[83] '

* PB3] '
• PIB3]
» PtB3]
* PtB3]
» PtB3]

» PIB5]
» PIB5]
» PtB4]
» PtB5]
» PtB4]
» PISS]
" PtB5]
^ PtB5]
» PIB5]

» PIB4]
* PIB4]
» PtB4]
» PIB4]
» PtB4]
» PtB4]
* PtB4]
* PIB4]
» PtB4]
» PIB4]

<• PIB4]
* PIB4]
* PtB4]
» PIB4]
» PIB4]

* PtB5]

® PIBS]

* PtB5]
* PIBS]
* PtB5]
* PIBS]
* PIBS]
* PtBS]
* PtBS]
*> PtBS]
* PIBS]
® PtBS]

^ PtBS]
* PB5I
* PtBS]
• PIBS]
" PtBS]

+ PIB1] • PIB2] * PtB3] * PB41 * PtBSl

Minimal Cut Set Upper Borod

The minimal cut set upper bound is discussed in Section 6.2.2. For our example the minimal
cut set upper bound is shown in Table A-4.

December 1992 A-13 NUREG/CR-5964

Quantification Example

Table A-4. Minimal cut set upper bound calculations for example

PITOP] s 1 - CI - Pt€B1*B2>]) • CI - P [CBr i4>]) * Cl - PICB1*B3^B5>]) * C1
PICB2*B3*B5>]) * Cl - PtCB3*B4*B5>])

Pt«1'^B2>]
+ P K : B 1 * B 4 >]
+ P[{ i1*B*B5:
+ Pt€B2*B3*B5:
* PtCB3*B4*'B5:

- Pt€B1*B2>]
- P K B 1 * B 2 >]
- Pt€B1*B2>]
- PICP1* 'B2>]
- PtCB1<'B4>]
- Pt€B1*B4>]
- Pt«1*B4>]
- PtCB1*B3*BS
- PKBI^BS^BS
• PCCB2®B3*'B5,

PtCB1*B2>]
PICB1*B2>]
P[«1'»B2>]
PC€B1*B2>]
PI€B1*i2>]
P[€B1«'B2>]
Pt€B1*B4>]
PI€B1*B4>]
PC€B1*B4>]
Pt€B1*B3*B5

PtCB1*B2>]
PtCB1*B2>]
Pt€B1*B2>]
Pt€B1*B2>]
PI»1*B4>]

PtCB1*B4>]
Pt»1*B3*B5>]
PI»2*B3*B5>]
PtCBS'-BA^ESl]
PI€B1*B3*B5>]
Pt€B2*B3*B5>]
PIiB3*B4*15>]

,] • p[CB2*B3*B5J]
1 • PICB3*B4*B5>]
1 * PI€B3*B4*BS>]

Pt€B1*'B4>]
P « : B 1 * B 4 1]
PI€B1*B4>]
PtCB1*B3*B5}]
P[€B1®S3*B5>]
P[€B2*B3*B5>]
PtCB1*B3*B5>]
PI€B1*B3*B5>]
P[€B2*B3*B5>]

Pt€B1*B3*B5>]
PtCB2*B3*B5>]
PI€B3*B4*B5>]

* Pt€B2%3*B5>]
* PI€B3*B4*B5>]
* Pt{B3*B4*BS>]
* Pt€B2*B3*B5>]
* P[€B3*B4*B5>]

PI€B3*B4*B5>]
.] * PKBl^BS^BSl] * Pt€B3*B4*B5>]

P[€B1'^B4}] * Ptai*B3*B5>] * Pt«2*B3*B5>]
Pt€B1*B4j] * Pt{Bl*B3*B5>] * PICE3*B4*B5>]
Pt€B1*B4}] * PtCB2*B3*B5>] * PI€B3*B4*B51]
PI€B1*B3 BS>] * P[€B2*B3'«'BS>] * P [€B3*B4*B5>]
PI€B1*B3*B5M * P I€B2*B3*e5>] * P I€B3*B4*B5>]

+ Pt€B1*B2>] * PI€B1*B4>] * PI€B1*B3*B5M * P I€B2*B3«'B5>1 * P II:B3*B4*B5>]

NUREG/CR-5964 A-14 December 1992

Quantification Example

m. NUMERICAL CALCULATIONS

Hiis section contains numerical calculations illustrating the formulas developed in the previous
section. The basic event probabilities for our example problem are the following:

pcen - q, = 0.01
PCB2) != % = 0.02
P<B3) ̂ % = 0.03
PCB4) = % - 0.04
PCB5) = % ^ 0.05

The cut set unavai!abiliti«, denoted by Q, are calculated below:

C, = PCB1*B2) = PCB15*PCB2I - q,q2 = 0.01 * 0.02 - 2.0E-4
Cg = PCB1*B4) = P<B1)*PCS4) = q,q4 = 0.01 * 0.04 = 4.0E-4
C3 = PCB1*B3^B5) = PCB1)*PCB3)*PC15) = q^q^^^ = 0-01 * 0.03 * 0.05 = 1.5E-5
C4 - PCB2®B3*B5) = P(K)*PCB3>*PCB5) = q^q^ - 0.02 ^ 0.03 • 0.05 = 3.0E-5
Cg = PCB3*B4^B5) = PCB3)*PCB4)*'P(B5) = ^(^^ = 0.03 * 0.04 • O.OS = 6.0E-5

Using the cut set unavailabilitiM, the rare event ^proximation and the minimal cut set upper bound
can be calculate. The rare event approximation is:

Rare Event Approxinatiwi s C, + Ĉ • C3 + C4 + Cg = 7.050E-4

The minimal cut set upper bound is:

i i n Cut Upper Bowrf = 1 - C1-C,) * C1-Cj) " CI-C3) * O-C^} * d - q)
= 1 - 0.W98 * 0.9996 * 0.999985 ^ 0.99997 •» 0.99994
= 1 - 0.9992951S = 7.0485386E-4

The exact solution calculations are shown in Table A-6. Table A-5 compares the r«ults of the three
calculation formulas.

Table A-7 shows the probabilities of the contributors (listai in Table A-4) for the minimum
cut set upper bound. A line-by-line examination shows that some lines of Table A-7 have certain
basic event probabilltM repeat^ and that this is the only difference between Tables A-6 and A-7. A
corr«ponding comparison can be made of Tables A-3 and A-4.

Table A-5. Comparison of Moults

1 Type of Calculation

1 Min Cut Upper Bound

1 Rare Event Approximation

1 Sum of ist and 2nd order terms"

1 Sum of 1st* 2nd and 3rd order terms'

1 Sum of 1st* 2nd* 3rd* and 4th order terms"

Sum of all terms (Exact answer)̂

Unavailability

7.04854E-4

7.050C»E-4

6.93076E-4

6.93196E-4 1

6.93136E^ 1

6.93148E-4 |

a. See Table A-6 for details.

December 1992 A-15 NUMEG/CR-5964

Quantification Example

Table A-6. Calculations for exact solution

of
of
©f
of
of

Basic Events In Term
+
+
+
4.

+

.
-
-
.
-
-
-
-
.
-

+
+
+
+
+
+
+
+
+
+

.

.
-
-
-

+

all

BI
BI
BI
B2
B3

81
BI
BI
BI
81
11
BI
BI
BI
B2

BI
BI
BI
BI
BI
BI
BI
BI
BI
BI

BI
BI
BI
BI
i1

SI

ter

B2
B4
i3
§3
14

S2
S2
82
12
B3
B2
B3
B2
B3
B3

12
B2
B2
B2
B2
B2
B2
i2
B2
B2

B2
B2
B2
B2
B2

B2

B5
B5
15

14
B3
B3
B3
B4
B3
B4
B3
B4
B4

B3
B3
B3
B3
B3
B3
B3
B3
B3
B3

B3
B3
B3
B3
B3

B3

ts
BS
84
B5
B4
B5
BS
BS
BS

B4
B4
B4
B4
B4
B4
B4
B4
B4
B4

B4
B4
B4
B4
i4

B4

BS

BS

B5
BS
BS
BS
B5
BS
BS
BS
BS
BS

BS
B5
BS
B5
BS

BS

'BB CExact Answer)
l8t Order t
1st
1st
Ist

erms
arrf 2rri order ternB
, 2nd and 3rd order
, 2rri, 3rd,

4th order terns
and

Unavailability
2.000E-04
A.mnf-m
1.500E-05
3.nonF-05
6.000E-05

-8.000E-06
-3.000E-07
-3.000E-07
-1.200E-08
-6.000E-07
-1.200E-08
-6.000E-07
-3,0006-07
-6.000E-07
-1-200E-06

1.200E-08
1.200E-08
1.200E-08
1.200E-08
1.200E-08
1.200E-08
1.200E-08
1.200E-08
1.200E-08
1.200E-08

-1.200E-08
-1.200E-08
-1.200E-08
•1.200E-08
-1.200E-08

1.200E-08

6.9314W-04
7.05000E-04
6.93076E-04
6.93196E-04
6.93136E-04

NUREG/CR-5964 A-16 December 1992

Quantification Example

Table A-7. Probability of contributors to minimal cut set upper bound

+
+
+
+
+

•

+
+
+
+
+
+
+
+
+

+

11
BI
BI
B2
B3

BI
81
BI
BI
BI
BI
BI
B1
BI

Basic Events in Tern
B2
B4
B3 B5
B3 B5
B4 BS

B2 BI B4
B2 BI B3 BS
B2 B2 B3 15
B2 B3 B4 BS
B4 BI B3 BS
B4 B2 B3 BS
B4 B3 B4 B5
B3 B5 B2 B3 BS
B3 BS B3 B4 iS

B2 BS B5 B3 B4 BS

BI
BI
BI
BI
BI
B1
BI
i1
B1
BI

B1
BI
BI
BI
BI

BI

B2 B1 B4 BI B3 B5
B2 BI B4 B2 B3 BS
B2 BI B4 B3 B4 BS
B2 BI B3 BS B2 B3 BS
B2 BI B3 B5 B3 B4 BS
B2 B2 B3 BS B3 B4 BS
14 BI B3 B5 B2 B3 BS
B4 BI B3 B5 B3 B4 BS
B4 B2 B3 B5 B3 B4 BS
B3 BS B2 B3 B5 B3 84 B5

B2 BI B4 BI i3 B5 B2 B3 BS
B2 BI B4 BI B3 B5 B3 B4 B5
B2 BI B4 B2 B3 BS B3 B4 B5
B2 BI B3 BS B2 B3 BS B3 B4 BS
B4 BI B3 BS B2 B3 B5 B3 B4 B5

B2 BI B4 BI B3 BS B2 B3 BS B3 B4 BS

TOTAL

Onavailabilftv
2.000E-04
4.000E-04
1.500E-0S
3.000E-05
6.000E-05

-8.000E-08
-3.000E-09
-6.000E-09
-1.200E-08
-6.000E-09
-1.200E-08
-2.400E-08
-4.S00E-10
-9.000E-10
-1.800E-09

1.200E-12
2.400E-12
4.800E-12
9.000E-14
1.800E-13
3.600E-13
1.800E-13
3.600E-13
7.200E-13
2.700E-14

-3.600E-17
-7.200E-17
-1.440E-16
-5.400E-18
-1.080E-17

2.160E-21

7.048S3ME-04

December 1992 A-17 NUREG/CR-5964

Quantification Example

A6. IMPORTANCE MEASURES

Basic Event Probabilitia

PCB1) = q, = 0.01
P(B2) = q̂ = 0.02
PCB35 = qs = 0.03
PCB4) - q, = 0.04
PCB55 - qs = 0.05

c,
c.
c.
C4
Cs

= PCB1^B25
- PCB1*B45
= P(B1*B3*B5)
= PCB2*B3*B5)
= PCB3*B4*B5)

= PCSn'̂ PCBZ)
= PCBn*PCB4>
= P(B1}*PCB3>*PCB5)
= PCI^)*PCB5)*PCB5)
= PCB3)*PCB45*P<B5)

= %^z
- %%
= q A ^
- q^qs*
= ^nA

= 0.01 * 0.02
= 0.01 * 0.04
= 0.01 •" 0.03 * 0.05
= 0.02 * 0.03 • O.OS
= 0.03 * 0.04 * 0.05

= 2.0E-4
= 4.0E-4
s 1.5i-S
= 3.06-5
= 6.0E-5

Q ^ C, + C2 + C3 + C4 + CB = 7.050E-4

Fussell-Vesely Importance Measure

BI - FVCB1) - CC1 + C2 + C3I/0 = C2,0E-4 + 4.0E-4 + 1.5E-5)/7.05E-4 = 0.8723
B2 - FV(B2) = (Cl + C4)/0 = C2.0E-4 + 3.E-55 / 7.05E-4 = 0.3262
B3 - FVCB3> = CC3+C4+C55/Q - 1.05E-5/7.0SE-5 = 0.1489
B4 - FVCB4? = CC2+C5>/0 = 4.0E-4 ••• 4.6E-4/7.05E-4 = 0.6525
B5 - FV9B5) - CC3+C4+C55/0 = 1.05E-4 / 7.05E-4 = 0.1489

Risk Reduction Importance

For BI, set qi = 0.0. Then we get

C, = P(B1*B25 = PCB1)*PCB2) = q,q2 = 0.01 • 0.02 = 0
Cj = PCB1*'B4) = PCB1)*PCB4) = q,q4 = 0.01 * 0.04 = 0
C3 = PCBI^BS^BS^ = PCB1)*PCB3)*PCB5) = q,q3q4 - 0.01 * 0.03 * 0.05 = 0
C4 = PCB2*B3®B5) = PCb2)*PCB35*PCB55 " qaqg^ = 0.02 * 0.03 * 0.05 = 3.0E-5
Cs = PCB3*B4*B55 = PCB35*PCB4)®PCBi) = q3q4q5 = 0.05 • 0.04 ^ 0.05 - 6.0E-5

Using these results^ the risk reduction ratio is

RRRCB1) = 7.05E-4/C3.0E-5*6.0E-5) = 7.05E-4/9.0E-5 = 7.833,

and the risk reduction difference is

mom) = 7.05E-4 - 9.OE-5 = 6.15e-4.

Risk Increase Importance

For BI, set qi = 1.0. Then we get

C, s PCB1*'B2) = PCB1)*PCB2) = q,q2 = 1 . 0 * 0.02 = 0.02
Cs - PCB1*B45 = PCB1)*PCB4) - q^q^ =1.0 * 0.04 = 0.04
Cg s PCBI^BS^BS) = PCB1)'»PCB3)*PCB5) = ^,^^ s 1.0 « 0.03 * 0.05 = 1.5E-3
C4 = PCB2*B3*'B55 = P(b2)*PCB3)*PCBS5 ^ q^^q^ = 0.02 * 0.03 * 0.05 = 3.0E-5
Cg = PCB3*B4*B55 = PCB3)*PCB45*PCB55 = q3q4% = 0.03 * 0.04 * 0.05 = 6.0E-5

Using three results, the risk increase ratio is

NUREG/CR-5964 A-18 December 1992

Quantification Example

RIRCB1) = 6.159E-2/7.05E-4 = 86.36,

and the risk increase difference is

RIDCBI) = 6.159E-2 - 7.05E-4 = 6.089E-2.

Birnbaum Importance

BCB1) = 6.159E-2 - 9.0E-5 = 6.15E-5.

Structural Importance

BI appears in ttirw cut sets

Table A-8. Ratio importance measures

nmm

BI
B4
B2
B3
BS

i u i .
of

Occ.

3
2
2
3
3

Probab i l i t y
of

Fai lure

1.000E-2
4.000E-2
2.000E-2
3.000E-2
5.000E-2

Fussel l -
Vesely

IiH»rtance

8.723E-1
6.524E-1
3.261E-1
1.489E-1
1.489E-1

Risk
ReAjction

Ratio

7 . B 2
2.877
1.484
1,175
L i r e

Risk
Increase

Ratio

8.611E+1
1.664E+1
1.696E+1
5.809E+0
3.827E+0

Table A-9. Difference importance measures

NatK

BI
B4
B2
B3
B5

Nui .
of

Occ.

3
2
2
3
3

Probab i l i t y
of

Fai lyre

1.000E-2
4.000E-2
2.000E-2
3.000E-2
5.000E-2

Birnbaun
Importance

Measure

6.061E-2
1.148E-2
1.148E-2
3.494E-3
2.097E-3

Risk
R ^ j c t i o n
Dif ference

6.149E-4
4.599E-4
2.299E-4
1.049E-4
1.049E-4

Risk
Increase
Difference

S.999E-2
1.102E-2
1.125E-2
3.389E-3
1.995E-3

December 1992 A-19 NUREG/CR-5964

INDEX

The numbers shown are section numbers rather than page numbers. Terms that are in the
of contents are not necasarily in this index. Section numbers in bold face contain definitions.

absorption 2.3, 5., 5.18, A2
accident sequence See "sequence"
AND 2.2.2, 2 A 2.5, 3.2
basic event 3.2
Boolean 2.4, 5, 5.5
c.d.f. 9.3
combination gate 3.2
complement 2.2.3, 2.5
conditional probability 4.2
circular logic See "loop"
correlation class 9.5
cut set 5.
difference 2.2.4
disjoint 2.2.5

See also "mutually exclusive"
element 2.1
empty set 2.1
equal

for logical statements 2.4
for sets 2.1

event 2.1, 2.5, 3.1, 3.2
event tree 5.7
exclusive See "mutually exclusive"
exhaustive 2.2.6, 4.3
expansion path 5.13
fault tree 3.1, 5., 5.7
gate 3.2
house event 3.2
idempotence 2.3, A2
identity set 2.1
independence

logical 5.9,5.12,5.17
of bMC evente 3.2, 6.1
of uncertainty distributions 9.5
statistical 3.2, 4.6, 5.17, 6.1, 9.5

inhibit 3.2
intersection 2.2.2, 2.5
inverse c.d.f. method 9.3, 9.3.4, 9.3.6, 9.3.7
level 5.13
logical loop 3.1, 5.5

See also "loop"
loop See "circular logic" and

"logical loop"
minimal cut set S., 5.18, A2
mutually exclusive 2.2.5, 2,2.6, 4.2, 4.3, 4.6
NAND 3.2
N/M 3.2
NOR 3.2
NOT 2.23, 2.4, 2.5
NOT AND 3.2
MOTOR 3.2
null set 2.1
occur 2.5, 3.2
OR 2.2.1, 2.4, 2.5, 3.2
partition 2.2.6
population 2.1
probability 4.2
probability contribution 5.17
recursive 5.1 See also "loop"
reference set 2.1
sequence 5.7, 5.22, 6.3, 8.1
set 2.1

See also adjectiv«, such as "empty set",
"universal set"

statement 2.4
statistical independence

See independence
subset 2.1
top event 3.1
transfer 3.2
uncertainty distribution 9., 9.4
undeveloped event 3.2
uncertainty distribution 9, 9.3, 9.4, 9.5
union 2.2.1, 2.5
universal set 2.1
zero set 2.1
zone iagged event 5.15

December 1992 I-l NUREG/CR-5964

