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ABSTRACT 

This report provides information on the principles used in the 
construction and operation of Version 4.0 of the Integrated Reliability and Risk 
Analysis System (IIRAS) and the System Analysis and Risk Assessment (SARA) 
system. It summarizes the fimdamental mathematical concepts of sets and logic, 
fault trees, and probability. The report then describes the algoriflims that these 
programs use to construct a fault tree and to obtain the minimal cut sets. It gives 
the formulas used to obtain the probability of the top event from the minimal cut 
sets, and the formulas for probabilities that are appropriate under various 
assumptions concerning repairability and mission time. It defines the measures 
of basic event importance that these programs can calculate. The report gives 
an overview of uncertainty analysis using simple Monte Carlo sampling or Latin 
Hypercube sampling, and states flie algorithms used by th«e programs to 
generate random basic event probabilities from various distributions. Further 
references are given, and a detailed example of flie reduction and quantification 
of a simple fault tree is provided in an appendix. 
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( I EXECUTIVE SUMMARY 

The System Analysis Programs for Hands^n Integrated Reliability 
Evaluations (SAPHIRE) refers to a set of several computer programs that were 
develop^ to create and analyze a probabilistic risk Msessment (PRA) of a 
nuclear power plant. A summary of the four programs that currently comprise 
SAPHIRE is given in the Foreword. This report provides information on the 
principles used in the comtraction and operation of tiie two major programs: the 
Integrated Reliability and Risk Analysis System piRAS) and the System 
Analysis and Risk Assessment (SARA) system. Other relate documents include 
the IRRAS and the SARA reference manuals (Russell et al. 1992a, 1992b), 
explaining each command; and the IRRAS (VanHom et al. 1992) and SARA 
(Sattison et al. 1992) tutorials, providing a series of lessons that guide ttie user 
flirough the basic procedures necKsary to perform analyses wiii these programs. 
Many of the concepts in this manual apply to both SARA and IRRAS. Since 
SARA is a tool designed primarily for review of a PRA, it do« not have flie 
fault tree and event tree construction and solution concepts found in IRRAS. 
This manual will focus primarily on the concepts found in IRRAS, but where 
thMe same features exist in SARA the technical information provided is 
applicable. 

This report differs from the related documents by concentrating on 
principles and algorithms rather than on the interface between the program and 
the user. The first few sections of the report contain mathematical background. 
Set thwretic operations and relations are summarized, and their relation to 
Boolean logic is explained. Fault trees are reviewed, including all of the gate 
types allowrf by IRRAS. Finally, the rules of probability are summarized. 

The next section outlines the procedure by which IRRAS builds a fault 
tree from the user inputs, simplifies and truncates it according to the user's 
specifications, and determines the minimal cut sets. IRRAS is written in a 
recursive language, and performs many operations by recursive procedures. It 
initially takes the user's input and builds a simplified internal representation of 
the tree. This involves several steps: 

• linking portions that were connected by transfer gates, 
• expanding N/M gates as combinations of OR and AND gates, 
• determining the unique TOP gate, 
• checking for logical loops, 
• pruning portions of the tree having house events, 
• coalescing like gates. 

To obtain the minimal cut sete in an efficient way, IRRAS searches for 
independent subtrees and for modules, both of which are treated as single tokens 
until very late in the procMS. It then determines the optimal order for processing 
the tree, basrf on Ae levels of the gates, and begins making a list of cut sets. 
Based on the basic event probabilities or siz« (and the user's truncation 
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specifications), it eliminate some cut sete early in the process. It also eliminates 
nonminimal cut sete, those that can be absorbed by other simpler cut sets, and 
finally obtains a list of minimal cut sete that the user has specifial should not be 
truncate. Hie last step is to combine the fault trees for failures of different 
systems, to obtain the fault tree for an accident sequence involving the failure of 
certain systems and the success of others. 

Selected formulas are given in the next several sections of the report. 
One section giv« the formula for the probability of a cut set, approximations for 
the probability of a union of cut sete, and the formula for tfie frequency of an 
accident sequence. The next section gives formulas for reliability and 
unavailability of repairable and nonrepairable components, corr«pondliig to the 
probabilitiM of various basic evente. Finally, a section gives formulas for 
different measures of importance of a basic event. 

Uncertainty analyses are performed by Monte Carlo simulation, with the 
basic event probabilities drawn from user-specified distributions. Two types of 
simulation are possible in IRRAS, simple Monte Carlo sampling and Latin 
Hypercube sampling. The final section of this report presente the sampling 
distributions that are supported by IRRAS, and documente the algorithms u s ^ 
for generating random numbers from these distributions. Correlation class«, 
allowing the user to state that certain basic event probabiliti« are equal although 
both are uncertain, are also explained. A simple example illustrates the two 
types of simulation. 

The list of references refers the reader to more information on topics that 
could only be briefly summarized in this report. The appendix contains an 
example showing how IRRAS finds the minimal cut sets of a fairly simple fault 
tree, and how IRRAS finds the probability of the TOP event and the importances 
of the basic events. 
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I I FOREWORD 

Hie U. S. Nuclear Regulatory Commission has developed a powerM 
suite of personal computer programs for the performance of probabilistic risk 
assessments (PRAs). This suite of programs, known as the System Analysis 
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), allows an 
analyst to perform many of the fimctions necessary to create, quantify, and 
evaluate the risk associated with a facility or process being analyzed. These 
programs include software to define the database structure, to create, analyze, 
and quantify the data, and to display results and perform sensitivity analyses. 
The programs included in this suite are as follows: Models And Results 
Database (MAR-D) software, Integrated Reliability and Risk Analysis System 
(IRRAS) software. System Analysis and Risk Assessment (SARA) software, and 
Fault tree, Event tree, and P&ID (FEP) graphical editor software. Each of these 
programs performs a specific fimction in taking a PRA from the conceptual state 
all the way to publication. 

MAR-D is a program that is used primarily for PRA data loading. This 
program defines a common relational database structure that is used by the entire 
suite of programs. This structure allows all of the software to access and 
manipulate data created by other software in the system without performing a 
lengthy conversion. Tlierefore, data created by IRRAS is immediately available 
to SARA for sensitivity analysis. The MAR-D program also provides the 
faciliti« for loading and unloading of PRA data from the relational database 
structore used to store the data. A simple ASCII data format is used for 
interchange with other PRA software not included in NRC's suite of programs. 
This feature allows for compatibility with previously developed software systems 
and allows for maximum data interchange. Elements of Ais software are 
included with both IRRAS and SARA to allow these programs to load and unload 
data in the MAR-D format. Normally, the entire MAR-D software is used only 
by those performing a data loading fimction and is not required by the end user. 
Documentation for MAR-D, Version 4.0 is available as NUREG/CR-5301 
(Branham-Haar et al. 1992). It should be noted that whenever the MAR-D 
database structure is changed, it necMsitates changes in the remaining codes (i.e., 
IRRAS, SARA, and FEP). Therefore, the code version numbers are changed in 
unison. Each version set must be used together to maintain compatibility. 

IRRAS is a program developed for the purpose of performing those 
fimctions necessary to create and analyze a complete PRA. This program 
includes fimctions to allow the user to create event trees and fault trees, to define 
accident sequences and basic event failure data, to solve system and accident 
sequence fault trees, to quantify cut sets, and to perform uncertainty analysis on 
the results. Also included in this program are features to allow the analyst to 
generate reports and displays that can be used to document the results of an 
analysis. Since this software is a very detailed technical tool, the user of this 
program should be familiar with PRA concepts and the methods used to perform 
these analyses. Although IRRAS has been designed to be user friendly and 

I 
December 1992 xiii NUREG/CR-5964 



makes the proc«s of performing a PRA e^ier, the complexity of this type of 
analysis requirra a user with a more detailed understanding of PRA concepts than 
is requirrf by other tools in this suite. The IRRAS 4.0 reference manual is 
available as NUREG/CR-5813, Volume 1 (Russell et al. 1992a) and the IRRAS 
4.0 tutorial is available as NUREG/CR-5813, Volume 2 (VanHom et al. 1992). 
In addition, a technical document that provides information on the principte and 
algorithms used in the construction and operation of IRRAS and SARA is 
available as NUREG/CR-5964. 

SARA is a program that allows the user to review the results of a PRA 
and to perform limited sensitivity analysis on these results. It is limited primarily 
to the extent that changes in the plant model can be accommodated by using the 
cut set editor. If other than simple change are being simulated, ttien IRRAS 
should be used so that new cut sete can be accurately generated. This tool is 
intended to be usrf by a less technically-oriented user and does not require the 
level of understanding of PRA concepts required by IRRAS. With this program 
a user can review the information generated by a PRA analyst and compare the 
results to those generated by making limited modifications to the data in the 
PRA. Also included in this program is the ability to graphical display the 
information stored in the MAR-D database. This information includes event 
trees, fault trees, P&IDs and uncertainty distributions. The user of tfiis program 
can gain a better understanding of the resulte of a PRA without getting into the 
details of the construction and analysis work behind the PRA. The SARA 
reference manual (Russell et al. 1992b) and tutorial (Sattison et al. 1992) are 
available as NUREG/CR-5303, Volumes 1 and 2, respectively. 

FEP is a program developed to provide a common access to the suite of 
graphical tools developed for performing risk assessment. These tools include 
the graphical fault tree, event tree, and P&ID editors. The fault tree and event 
tree editors are available through IRRAS; however, the P&ID editor is only 
accessible through FEP. The fault tree editor allows the user to construct and 
modify graphical fault trees. The event tree editor allows the analyst to construct 
and modify graphical event trees. The P&ID editor allows the user to construct 
and modify plant drawings. These drawings can then be used to document tiie 
modeling usal in a PRA. These editors are an integral part of a PRA. With liie 
FEP tool, tfie user need not be concerned with the complexity of the IRRAS 
program if the need is only to generate one of these graphical displays. 
Documentation for FEP, Version 4.0 is available as NUREG/CR-5866 (McKay 
et al. 1992). 
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SAPHIRE Technical Reference Manual 
IRRAS/SARA Version 4.0 

1. INTRODUCTION 

The Integrate Reliability and Risk Analysis System (IRRAS) software development project was 
started as a rrault of a rMognized need for microcomputer-bMed software to aid the probabilistic risk 
«sKsment (PRA) analyst. The initial scope of tiie project was to provide a software package that could 
demomtrate the femibility of using the microcomputer as a workstation for performing PRA analyses. 
This package did not necessarily need to perform all of the fimctions required; however, it did need to 
provide certain essential fimctions such as fault tree construction, failure data input, cut set generation, 
and cut set quantification. 

At about the same time, the need for a simple tool that used the resulte of a PRA to perform 
limits review and sensitivity analyses was identified. This tool need not be able to create and solve fault 
trees and event trees, but should be able to perform limited modifications to failure data and cut sete and 
compare th^e changM to a base CMC set of data. This need resulted in another software development 
project, ttie System Analysis and Risk Assessment (SARA) system. The IRRAS and SARA system soon 
became complementary tools for flie performance of PRAs. For each release of the IRRAS system there 
was a corresponding SARA system. The first version of th«e software package was released in 
February of 1987 and containrf only the essential concepts mentioned above. 

Version 1.0 of IRRAS/SARA was an immediate SUCCMS and clearly demonstrated not only the 
tremendous nerf but also the feasibility of performing this work on a microcomputer. As a result of this 
success. Version 2.0 development was begun. This package was designed to be a comprehensive PRA 
analysis package and includrf all the fimctions necessary for a PRA analyst to perform his or her work. 
The areas that were not treated in version 1.0 were addressed, and a complete, integrated package was 
developed. Because Version 2.0 was a complete rewrite from version 1.0, a thorough test plan was 
necessary. The major features of Version 2.0 along with an Alpha test were completed in early March 
of 1988. Following the Alpha test, approximately 15 sites were selected from among the sites currently 
using Version 1.0. and were sent a Beta t«t Version 2.0. In May of 1988, tiie Beta test was completed 
and work began on fixing any bugs found. In addition, any desired new features that could reasonably 
be incorporate into version 2.0 were included. Version 2.0 was releffied in June 1990 and work began 
on the development of Version 2.5. 

Version 2.5 was an integrated PEA software tool that gave the user an enhanced ability to create 
and analyze fault trees and event tre« using a personal computer (PC). This program provided fimctions 
for fault tree and event tree construction and analysis. The fault tree functions ranged from graphical 
fault tree construction to fault tree cut set generation and quantification. The event tree fimctions included 
graphical event tree construction, tiie linking of fault tre«, defining accident sequences, generating 
accident sequence cut sete, and quantifying them. 

Version 4.0 contains many significant enhancemente over previous versions. This version 
providM much more powerfiil cut set generation algorithms. These algorithms are more than a thousand 
times faster than previous versions. Problems that took hours to solve can now be solved in seconds 
using Version 4.0. Other enhancements provided in this version include the ability to use the system fault 
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Introduction 

tree logic to solve accident sequenc« and the addition of iag sete to automatically prune the sequence 
logic. Many of the operatiom in IIRAS and SARA have also been streamlined and simplifiM to provide 
an even more powerfiil tool for the PRA analyst. This version has undergone a rigorous t«ting program 
to emure reliability and useability. Overall, Version 4.0 continu« to provide more powerfiil tools for 
the PRA analyst. 

IRRAS automates the model creation, manipulation, modification, and quantification proc«ses. 
Designed for the IBM-PC and compatibte, IRRAS is readily acc«siMe and portable. Taking advantage 
of new state-of-tiie-art algorifliins, IRRAS is quite fast and powerfiil. 

IRRAS simplifies the analysis process and automates the construction of input to the analysis 
software. TTie analyst can graphically construct and modify fault trees. IIRAS gives tfie users better 
visualization of the fault tree and simplifies the construction and maintenance. The program supporte all 
of the basic constmcte involved in fault tree construction, including NOT gata. Once the fault tree is 
constructed, the program automatically generatM the alphanumeric input for the analysis software. The 
component reliability information is then easily input into the IRRAS data base using specially designed 
menus and screens. 

IRRAS 4.0 IncludM fault tree, event tree and cut set editors to improve the analysis capabilities 
without requiring complete regeneration and reduction of the fault trees. Basic event or initiating event 
frequencies are easily changed. Cut sets are easily modified with the cut set editor to add recovery 
actions, or cut sete may be deleted if desired. These chang« can be saved in the data base and quantifial 
as d«ired. 

This report provida the IRRAS 4.0 user with a basic understanding of the mathematical and 
probabilistic concepte nerfed to understand flie basic principte used in IRRAS. In addition, it gives an 
overview of the algorithms used in the program. Tlis report is not intended to provide all of tie details 
some readers may d«ire. Therefore, references are provided that contain more detail for flie interestoi 
reader. 

The report contains the following topics: 

• Section 2 is an introduction to sete and set operations and to the corresponding logical 
operations 

• Section 3 contains a review of fault tree construction principles and the philosophy used in 
IRRAS 

• Section 4 is an overview of probability flieory 

• Section 5 contains an overview of the cut set algorithms used in IRRAS 

• Section 6 reviews tfie quantification techniques used in IRRAS 

• Section 7 provid« a summary of the calculation types used for the basic evente 

• Section 8 contains an overview of importance measures 
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Introduction 

• Section 9 discusses the uncertainty analysis and provide an introduction to Monte Carlo 
sampling and Latin Hypercube sampling 

• Section 10 contains a list of applicable reference 

• Appendix A presents an example of the details of an IRRAS application to a simple fault tree. 
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2. SET THEORETIC AND LOGICAL CONCEPTS 

TTiis section presente basic definitions of sete and a summary of usefiil identities. The reader can 
obtain more information from Vesely et al. (1981), Mood et al. (1974), or Hahn and Shapiro (1967). 

2.1 Set Theoretic Concepts 

A set is a collection of objects or elemente with some characteristics or distinguishing features 
in common. An example of a set is all possible states of tiie componente in a nuclear power plant. The 
set of all elemente is called Ae population, the reference set, the universal set, or the identity set. It is 
denoted by the Greek letter capital 0 or by I. The set not containing any elements is called the null set, 
tie empty set, and sometimes the zero set. It is denoted by 0 . 

Let A and B be sete of 0 in the following discussion. B is said to be a subset of A, if and only 
if every element in B is also an element of ^ . It is denoted hy B Q A. If A contains an element not in 
B, then Bis called a pro|>ersiitael of bandit is denoted by BCi4. A md B MQ equal, denoted by J = 5 , 
if and only if .4 cfi and B&A; then A and B have the same elemente and neither is a proper subset of the 
other. 

A usefiil tool to illustrate set relations 
pictorially is the Venn diagram. Figure 1 shows the 
Venn diagram for two sete, A and B, where B is a 
proper subset of ^ . 

For IRRAS, we are interested in what could 
occur at a nuclear power plant. Therefore, when set 
theory is used for IRRAS applications, we usually let 
the population 0 consist of all possible conditions of 
the plant. Any one element of this set consiste of a 
detailed specification of the condition of every part of 
flie plant. Consequently, 0 has a huge number of 
elemente. 

Events are subsete of this population. For example, an event such as "AFW pump PAFWTl fails 
to start" is a subset, consisting of all conditions of the pump and ite supporting equipment that rault in 
failure to start, together with all possible conditions of the rest of the plant. The event "core melt" is also 
a subset of the population, containing all the detailed plant conditions that result in core melt. 

2.2 Operations on Sets 

Three basic operations exist for sete. They are union, intersection, and complementation. A 
fourth operation, called set difference, is sometimes considered; it is expressed as a combination of the 
other set operations. 

Figure 1. Venn diagram of proper subsete. 
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2.2.1 Union 

The union of two sete is a set consisting of all the distinct elemente in A or all of the elemente 
in B or both. It is denoted by C=AUB. 

The union operation is also called an OR operation, and is sometimes denote by C=A+B. 
Inexperienced analyste are wise always to use the symbol U to combine sete and the symbol + to 
combine numbers, but adept symbol jugglers learn to use 4- safely in both contexte. Computer programs 
that use only the 128 ASCII characters or the characters on a line printer are forced to use -I- instead of 
U. The union of two sete is shown in Figure 2. 

Figure 2. Union of two sete. Figure 3. Intersection of two sete. 

The union of any number of sete Aj, A2, ... is the set of all elements that are in any of the A/s. 
It can be written with notation analogous to summation notation: 

for n sete and 

i - l 

for infinitely many sete. 

2.2.2 Intersection 

The intersection of two sete is the set consisting of all the elemente common to both 4̂ and B. 
That is, the elemente belong to A and to B. It is also called the AND operation. It is denoted by 
C=AnB or sometimes C—A*B or simply C=AB. The intersection of two sete is shown as the 
crosshatched region in Figure 3. 
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The intersection of ^ j , A2, ... is the set of all elemente that are in all the A/s. The intersection 
of n sete can be written m: 

or, using product notation, as AjA2...A„. 

2.2.3 Complement 

The complement of a set A is the set consisting of all elemente in the population that are not 
contain^ in i4. It is sometime called the NOT operation. Itisdenotedbyi4',i4^, orii. A complement 
of a set is shown in Figure 4. 

2.2.4 Set Difference 

The set of all elemente in A and not in tie set B is called the set difference. It is denote by ̂ 4-^. 
It can also be written as Af\B'. The clear portion of set A (shown in Figure 3) repr^ente tfie set 
difference A-B. 

2.2.5 Mutually Exciusiwe 

Two sete are said to be mutually exclusive or disjoint if and only if they contain no elemente in 
common. That is, their intersection is the null set, J n B = 0 . Mutudly exclusive sete are shown in 
Figure 5. The sete Aj, Aj, ... are mutually exclusive if each pair is mutually exclusive, ttiat is, no 
element of 0 is in more than one Aj. The term "mutually exclusive" can therefore refer even to an 
infinite collection of sete. 

Figure 4. Complement of a set. Figure 5. Mutually exclusive sete. 

( I 
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2.2.6 Exhaustlwe Sets 

A collection of sete Aj, A2, ... is exhaustive if tie union of the sete is the population 0, that is, 
every element of 0 is in at least one A/. In most applications, exhaustive sete are also chosen to be 
mutually exclusive. When the sete 4̂̂ , A2, ... are both mutually exclusive and exhaustive, they form a 
partition of 0: every element of 0 is in one and only one of the Af's. 

2.3 Symmarf of Useful Identities 

The following are usefiil identities in working with sete: 

Commutative laws 

AUB = BUA 

ApiB = ̂ n^ 

Associative Laws 

AUiBUQ = (^Ufi)Uc 

Af](Bf]Q = (Amnc 

Distributive laws 

AfliBUQ = (^nB)U(^nQ 

AijiBOQ = (^u^)n(^UQ 

liempjtent Laws 

^n^ = A 

A{jA = A 

Laws of Absorption 

i4n(AUB) = A 
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[ i 
AUiAflB) = A 

Complementation 

A[]A' = ̂ n^ = ^ n ^ ' = 0 

A\JA' = AUA = A{]A' = 0 

(̂ 0̂  = (AJ = A 

Operations Involving Null Set and Population 

0f>4 = 0 

0134 =.4 

1 Qf]A=A 

QLM = 0 

0' = 0 = 0" = Q 

Q/ = ii = (r = 0 

DeMorgan's laws 

(AflBy = ̂ ^u^' 

(AUBY = A'f\B' 

I I 
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Other Heiititi« 

2.4 Concepts of Statement Logic 

A statement is defmrf here as a sentence that can be declared either true or false. Exampte are 
"Generator DGl falls to start" and "Safety injection is initiated." English statements tiiat are not clearly 
true or false, such as "This is a nice looking control room," are not considered. Mathematically, a 
statement is an object that can take one of two ¥alues, either TRUE or FALSE. Use flie letters p , q, r, 
etc. to denote statements. 

New statements can be built by combining simpler statements using AND, OR, and NOT, defined 
as follows: 

(p AND q) is TRUE if both|7 and q are TRUE, and it is FALSE ifp is FALSE, q is FALSE, 
or both are FALSE. 

(p OR q) is TRUE if j? is TRUE, q is TRUE, or both are TRUE. It is FALSE if bothp and q 
are FALSE. 

(NOTp) is TRUE ifp is FALSE, and FALSE if^ is TRUE. 

Tlie symbols of mathematical logic (A for AND, v for OR, -« for NOT) will not be used here. 
However, for ease of input from a computer terminal, IRRAS uses the notation / for NOT. That is /X 
is the notation for NOT X in IRRAS input. 

Working from the above b^ic definitions, one can prove many simple facts about statements, 
similar to those listed for sets in Section 2.3. For example, one distributive law says 

p AND (q ORr) = (p AND q) OR (p AND r) 

and one of DeMorgan's laws says 

NOT (p AND q) = (NOTp) OR (NOT q). 

These equations mean that the statement on the left-hand side is TRUE if and only if flie statement on 
the right-hand side is TRUE. There are many such equations not listed here. 

Mathematics that uses the formal manipulation of liiese logical relations is sometimes called 
Boolean, after the mathematician George Boole. 
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2.5 Relations between Set Theorf and Statement Logic 

H e above sections have hinted about parallel structures for sets and for statemente: the terms 
AND, OR, and NOT were usrf for both, and similar rate such as the distributive laws and DeMorgan's 
laws applied to both. The relation is made explicit here. 

Let 0 be the population, and consider statements about the elemente of 0. Any statement has a 
corresponding truth set, definrf as the set of all elements for which the statement is true. An element 
is in the truth set if and only if the statement is true for that element. For example, the statement "core 
melt occurs" corresponds to the set of all possible plant conditions that rMult in core melt. Suppose that 

A is the set of elements for which p is TRUE 
B is the set of elemente for which q is TRUE. 

Then the rute for combining sets and for combining statements are relatoi as follows: 

^UB is the set of elemente for which (p OR q) is TRUE 
^OB is the set of elemente for which (p AND q) is TRUE 
A' is the set of elements for which (NOT^) is TRUE . 

Because the correspondence is so direct, we sometime interchange the languages and say, for example, 
^ OR B instead of ^ U A 

For lERAS applications, the statements of inter«t describe events. For example, Ae event 
"AFW pump PAFWTl fails to start" may be thought of as a statement|? that can be combined with other 
statements as d^cribed in Section 2.4. The event occurs if the statement defining the event is TRUE. 
This defines an event as a statement. Alternatively, the event can be ihought of as naming the set A of 
all plant condition that result in failure of the pump to start. Similarly, the statement "MOV134 fails 
to open" can be thought of as corr«ponding to a set B of plant conditions. TTie statement that both Aese 
evente occur, "MOV134 fails to open AND AFW pump PAFWTl fails to start," corresponds to the 
intersection Bflii. 

The relation between statements and sets is so direct that most people switch back and forth 
between the two without even realizing it. This is why Ae terms AND, OR, and NOT were introduced 
in Section 2.2 as alternative terms for intersection, union, and complementation. The rest of this report 
allows for this back-and-forth thinking, not careftilly distinguishing between statement logic and set 
theory. 

One re^on we did not list all the facts about statements in Section 2.4 is Aat they are simply 
reexpressions of the facts ia Section 2.3. Any fact about sets in Section 2.3 can be translated to a fact 
about statement logic by replacing sete ̂ 4, B, and C by statements p, q, and r and replacing U, n , and 
' by OR, AND, and NOT. The population 0 must be replaced by a statement that is always true, and 
the null set 0 must be replacrf by a statement that is always false. 
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3. REVIEW OF FAULT TREE CONCEPTS 

This section provides the reader with an overview of the concepts used by IRRAS in the creation 
of fault tree models. More information can be found in Vesely et al. (1981). 

3.1 IRRAS Fault Tree Approach 

IRRAS allows the user to input fault tree models in either of two ways: graphically (Figure 6) 
or alphanumerically (Figure 7). Both methods produce equivalent resulte and use the same basic 
approach to modeling. 

Fifure 6. Graphical fault tree model input. 

A fault tree model consists of a top event (usually defined by a heading in an event tree) and a 
connecting logic structure that models the combinations of events that must take place to result in the 
undesired top event. A fault tree Is a failure model. Thus, all tfie elements in the fault tree generally 
represent failures, whether they be equipment failures, human errors, or adverse conditions that can 
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1 TOPGAIE 
1 GATE-1 
1 GATE-2 
1 GATE-3 

OR 
OR 
AND 
AND 

EVENT-A 
GATE-3 
EVENT-D 
EVENT-E 

GAlE-2 
EVENT-B 
EVENT-C 
EVENT-G 

GATE-1 

EVBNT-F 

Figure 7. Alphanumeric fault tree model input. 

contribute to failure of tie modeled event. SUCCMSM events (those tilings that should happen) tiiat can 
contribute to failure of ttie top event can be included in the fault tree also, but special care must be 
exercised. 

The logic structure must contain only one top event. IRRAS will provide an error message if 
more than one top event is discovert. A simple way to guarantee only one top event per fault tree is 
to develop the fault tree model from the top down and complete each level of the fault tree model before 
proceeding to the next level. 

The fault tree logic structure can consist of any combination of the logic symbols shown in 
Figure 8 that do not result in a logical loop. A logical loop is a chain of events that comes back on itself. 
For example, a service water system can fail due to a loss of electrical power. Part of the electric power 
model contains failure of the emergency diesel generators. The emergency diesel generators can fail due 
to a loss of cooling water supplied by the service water system. The combination of events rwulting in 
flie loss of service water due to a loss of electrical power caused by failure of the di^el generators that 
was due to the loss of service water is a logical loop. This is shown in Figure 9. This type of circular 
logic is ambiguous and is not allowed by IRRAS. If such a logic pattern is detected, IRRAS will provide 
an error message and will display the sequence of logic gat« that are in the loop. 

3.2 IRRAS Fault Tree Symbols 

The fault tree model consists of simple faulte calM b^ic events and logical operators that dictate 
how the basic events must combine to result in failure of the fault tree top event. Basic events are the 
building blocks of the model. When the model Is processed, the results will be all the minimal 
combinations of basic events sufficient to cause failure of the top event. Three combinations are called 
minimal cut sets, and are defined in Section 5. Minimal cut sets contain only basic events. 

Figure 8 shows the various fault tree symbols used in IRRAS. These have been grouprf into 
b^ic events, logic gates, and other symbols. There are six different b^ic event symbols to indicate 
different conditions, but all basic events are treats the same in IRRAS. The different basic events are: 

• BASIC EVENT. This represente a simple failure or fault. It may be a hardware failure, a 
human error, or an adverse condition. Hardware failures are usually expressed in terms of 
a specific component and a failure mode, such as "Service Water Pump IA fails to start on 
demand." Human errors can be failure to carry out a desired task (failure to open a valve), 
failure to perform a specific recovery action (failure to start a backup system), or execution 
of a wrong action that has adverse effects on flie fault tree top event (isolated the source of 
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BASIC EVENTS 

6 u o Ci ^ ^ 

iVBlT M S I € EVBITS WBMT 

LOGIC GATES 

r;r ^y TZ^ ^ ^ v^^ ^i ^ 
AND G A n 0 1 C A n H/H GATE 

GATE GATE 

OTIEH STMBOLS 

ZV -A 
BIOHT M f T HOBBOMTAl ¥1BTICM COBMKTWC 

iox ma. 

Figyre 8= IRRAS fault tree symbols. 

S 
I ^ ^ I S L a 

" ^ 

A V-4 fAttoiia m 

1 OWMOMJ 

biss m <m»jm 1 
# A ^ TO M ^ £ 
1 O i !«MT«iT 

J ^ 
• 

lots w w w i d ' 

/ ^ 

Figyre 9. Example of a logical loop. 
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water for a cooling system). An adverse condition is not necessarily a failure but in 
combination witii other events can lead to faiure. For example, the temperature being below 
32 °F is an adverse condition necessary for the failure of flow rrfuction due to a frozen pipe. 
Even though a basic event does not necessarily describe a failure, the vast majority of basic 
events are failure. This leads to loose but understandable language such as "tie event is in 
the failed state" instead of tiie more correct "tiie event occurs." 

Basic events are always assumed to be independent of each other, in the statistical sense 
definol in Section 4.6. This means that the occurrence of one basic event does not influence 
the probability of occurrence of any other basic event. For example, suppose that there are 
two diesel generators, and the failure of either to start on demand is a basic event. 
Independence of the basic events says ttiat if one diesel generator fails to start on demand, this 
does not alter the probability that the second diesel generator will fail to start. A common 
cause event, such as "two diesel generators fail to start because of unusually cold weather," 
must be modeM as its own basic event, and be assigned ite own failure probability or failure 
rate. Tlis event is then regarded as statistically independent of all other basic events. 

• BOXED BASIC EVENT. This event is Ihe same as a basic event except the box provides 
room to add descriptive text to the event. This does not influence the logic of the fault tree, 
but adds clarity to tiie model for those using and reviewing it. 

• TABLE OF BASIC EVENTS. This symbol is a convenience for the modeler. If there are 
many basic event inputs to a particular logic gate, the events can be listed in a table rather than 
trying to connect many basic event symbols to the logic gate. This can be done for any logic 
gate that can receive more than one input. IRRAS proc«ses the list of basic events as if they 
were shown separately. The tradeoff is the inability to add descriptive text to each basic event 
in the table. 

• UNDEVELOPED EVENT. This symbol is usrf to denote a b»ic event that is actually a 
more complex event that has not been farther developed by fault tree logic either because the 
event is of insufficient consequence or because information relevant to the event is unavailable. 
This event is used by IRRAS just like any other basic event. 

• HOUSE EVENT. A house event is used to denote a failure that is guarantee to always occur 
for the given modeling conditions or is guaranteed to never occur for the given modeling 
conditions. This has unique implications in the procMsing of the logic model. (See Section 
5 for a discussion of how house events impact the logic of the fault tree.) In the IRRAS 
graphic displays, the house symbol is used mainly for clarity of the model. The determination 
of whether an event is a house event or not is established when flie calculation type is assigned 
to the basic event (see Section 7). Thus, any basic event in IRRAS can be made into a house 
event. 

• UNDEVELOPED TRANSFER. This symbol indicate that the event is complex enough to 
have ite own fault tree logic developed elsewhere; however, to simplify the present fault tree, 
the event will be treated as a basic event. Usually the complex event is processed as a 
separate event tree and the resulte are used as the failure probability for the representative 
basic event. This can greatly simplify a large fault tree, speeding up processing time. 
However, with the current capabilities of IRRAS, there is little advantage to this technique. 
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It is pr«ented in IRRAS because many existing models being transferred from other software 
into IRRAS use It. 

Logic gates are usal to indicate how the basic evente must combine to result in failure of the top 
event. Every logic gate has one or more inputs at the bottom and an output at the top. Inputs may be 
basic events or otiier logic g&tes. The output must serve as the input to another logic gate or result in 
the top event. Each logic gate derivo ite name from tfie manner in which the inpute must combine to 
pass through it to the next level. The input to a logic gate is a set of evente. TTie output is a single 
event, formed by using the set operations AND and OR on the input events. The logic gates in IRRAS 
(Figure 8) are: 

• AND GATE. Hits gate states Aat the output event is the simultanwus occurrence of Ml the 
input events, as shown in Figure 10. In set language, ttie output set is the intersection of the 
input sete. In terms of statement logic, the output is a compound statement (X AND F AND 
Z), 

Output X Y Z 

AND Gate 

D 
GATE 

Input 
Figure 10. Example AND gate. 

OR GATE. This gate combines the inpute by the OR operation. In Figure 11, Ae ou^ut set 
is the union of the three input sete. Alternatively, the output statement is X OR F OR Z. 

N/M GATE. This gate states that N of the M input evente occur. It is sometimes called an 
N-out-of-M gate or a combination gate. For a 2/3 gate, illustrated in Figure 12, 2 of the 3 
input evente must occur. The output statement is (X AND ¥) OR (X AND Z) OR (Y AND Z). 

TRANSFER GATE. This gate does not require any special logic to r«ult in an output, rather 
it is usai to link logic structure together without introducing any new logic of ite own. This 
is used primarily as a convenience for the modeler. All but the simplest of fault trees take up 
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more Aan one page. The TRANSFER GATE indicate where the logic on a given page is 
continued on another page. A TRANSFER GATE may also be used to indicate where the 
logic is continurf on the same page. This is shown in Figure 13, where GATE-3 is an input 
both to GATE-1 and to GATE-2. In IRRAS, tfie following rales apply when using a 
TRANSFER GATE: 

T ^ E 

IT 
G A T ' - 1 &j\ :-2 

EVENT-A 

WT\ :-3 

TIANSFER 
GATE 

TT 
^T i : -4 

Figure 13. Example TRANSFER gate. 

The TRANSFER GATE name must be flie same as the name of the gate where tie logic 
continues. 
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- When transferring on the same page, the gate being transferred to can be anywhere on flie 
page, except where it would create a logic loop. 

- When transferring to another page, the gate being transferrwl to must be tfie top gate on the 
page. 

- When transferring to another page, the transfer gate name, the file name for the page being 
transferred to and flie name of the gate being transferrM to must all be the same. For 
example, if Ae TIANSFER GATE is called TRANS 1, then the page being transferred to 
must be calM TRANS 1 and tfie top gate on that page must be called TRANS 1. 

• INHIBIT GATE. This gate, as ite name implies, has ite output inhibited unl«s a certain 
condition is met. The output event occurs if the single input fault occurs in the presence of 
an enabling condition. The input event is connected to the bottom of the gate and tfie 
conditioning event is drawn to tiie right of flie gate. An INHIBIT GATE is shown in 
Figure 14. Event X cannot occur unlMS Conditioning Event Y is present. The output is the 
combination of evente X and Y. Thus, flie INHIBIT GATE is a special type of AND GATE 
and IRRAS proc«s^ it as such. The Conditioning Event is treated as any other basic event 
with a probability of occurrence calculated and usrf in the processing. 

Output X Y 

Inpu t 

Condit ioning 
Event 

Figure 14. Example INHIBIT gate. 

• NOT AND GATE. This gate is also called a NAND GATE. It can be thought of as flie 
negation of an AND GATE. TTie output occurs if any one of the inpute does not occur. This 
is best explained flirough an example. The left side of Figure 15 shows a NOT AND GATE 
with inpute X, Y, and Z. If any one of the inpute does not occur, then an output occurs. Any 
of three possibilities satisfy this condition: 1) X doM not occur, 2) Y does not occur, or 3) 
Z does not occur. Since any event (X) and ite complement (/X) are mutually exclusive, we 
can say that 

NUREG/CR-5964 20 December 1992 



Fault Tree Concepte 

X does not occur = IX occurs. 

Therefore, the output of the NOT AND GATE in Figure 15 is IX (read not X), or 17, or /Z. 

OUTPUT /X + / ¥ + /Z 

1 

IMPUTsT J fj fj 
I f i 

EQUALS 

/X + /T + /Z 

6011) 
M n M 

Figure 15. Example NOT AND gate. 

Another way of looking at flie problem is lie way IRRAS actually process^ a NOT AND 
GATE. The gate is transform^ into an OR GATE with all of the inpute transformed into 
their complemente. This is shown on the right side of Figure 15. Any single complement 
event occurring resulte in an output. 

NOT OR GATE. This gate is also called a NOR GATE. It is the negation of an OR GATE. 
The output occurs if none of the inpute occur. This is shown in Figure 16. There is only one 
combination of evente where none of the inpute occur; X does not occur and 7 does not occur 
and Z does not occur. In terms of complemented evente this is IX and IT and /Z. 

OUTPUT /X / I /Z 
1 

imma ( ) fj ( j 
I f 1 

EQUALS 

/X / ¥ /I 

1 

y 
0 0 0 

M M M 

Figyre 16. Example NOT OR gate. 

IRRAS processes a NOT OR GATE by transforming it into an AND GATE wifli all of flie 
inpute transformed into their complemente. All of the not evente must occur for the output 
event to occur. This is the same as none of the original evente occurring. The other symbols 
in a fault tree are used to add clarity to the diagram and to connect the various gata and 
evente together properly. 

I 
December 1992 21 NUMEG/CR-5964 



Fault Tree Concepte 

• MGHT (LEFT) TRANSFER. These symbols are used to indicate where a transfer hm taken 
place. At the place where flie original line of logic left off is a "mANSFER GATE. At flie 
place where iie logic picfa up again, a RIGHT or LEFT TRANSFER symbol is placed. This 
mak« it easier for a reader or reviewer to follow the logic through a large fault tree taking 
up several pages. Typically, the TRANSFER GATE and ite corresponding TRANSFER 
symbol are given the same label, as shown in Figure 13. 

The RIGHT (LEFT) TRANSFER symbol is strictly for reader convenience and is not needrf 
by IRRAS to have a correct model. IRRAS has all flie information it meeds from the 
TRANSFER GATE name and fault tree page file name to generate tfie proper logic. The 
presence or Asence of a transfer symbol Is ignored by IRRAS. 

• HORIZONTAL (VERTICAL) BOX. These boxes are also provided for the convenience of 
the reader/reviewer. They allow ftirflier descriptive information to be placrf In flie diagram 
tfian that contalnM in the boxes attached to the various gat« and evente. IRRAS ignores these 
boxes when procwsing the fault tree. 

• CONNECTING LINES. Three line typ« are providM in IRRAS. As shown in Figure 8, 
these are a solid line, a dashai line, and a dotted/dashed line. The different line typ« can be 
used to highlight or differentiate various portions of the fault tree model. All three line types 
are treated the same by IRRAS. Lines are usM to connect the gat« and b»ic evente together 
to form flie logic of Ae fault tree. A single input can be attach^ to a gate directly wifliout 
using any line. If there is more than one input to a gate, then a line or table of events must 
be used to make the coenection. Lines may be drawn at any angle. Connecting lina must 
actually touch flie symbols being connected and must do so at the input or output stems on flie 
symbols. Evente or gates left dangling will not be part of the fault tree logic. LinM always 
connect outpute to inpute, never input to input or output to output. Figure 17 shows examples 
of correct and incorrect use of lines. 
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Figure 17. Exampte of connecting lines. 
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4. PROBABILITY CONCEPTS 

This section provides flie reader with an overview of the concepte of probability associate wifli 
the uncertainty analysis usM in PRA. This discussion will not be inclusive, but it will present the bfeic 
conc^te and principte. For a more detailed discussion of these topics, flie reader can obtain more 
information from Press (1989), Lindley (1985) and Singpurwalla (1988). 

4.1 Definition of Probability 

Probability is the only satisfactory way to quantify our uncertainty about an uncertain event E, 
Probability is always conditional; it is condition^ on all of the background ieformation we have at the 
time we are quantifying our uncertainty. This background informatioa is denoted by H and the 
probability of E conditional on H is denoted by P(E|H). To make the notation less cumbersome, we 
write this simply as P(E); neverflieless, the conditioning H should be understood. 

The range of a probability is between 0 and 1. P(E) = 0 means E will never occur, and P(E) 
= 1 means E will always occur. From now on, msume fliat a probabEity is definrf for all evente in the 
population. 

4.2 Rules of Probability 

The rales of probability tell us how to relate our uncertainty about evente. Specifically, they tell 
us how various probabllitiw combine or cohere. These rules are motivated by preferences between evente 
and a scoring rale argument. The scoring rale approach can be used to show that tiie following three 
rate of probability hold for discrete cases. 

For any event, 

0 ^ P{E) ^ 1, and F(0) = 1 . <^1) 

For any mutually exclusive events Ej, Ej, ... 

( « ) Û .-i - l 
= EP(E) • 

i - l 

The conditional probability of an event F given an event E Is 

P(F\E) = P(FOE)IP{E) C4-3) 

which is equivalent to the multiplication rule 
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P(Ff]E) = P(F\E)P(E) . ' 

These are the basic rales of probability, from which all others can be derived. One logical 
development of probability, due to Kolmogorov (Press 1989), takes Equations (4-1) and (4-2) m axioms, 
and Equation (4-3) as a definition. A more recent approach by Renyi (PrMS 1989) us« conditional 
probability as tfie fimdamental concept, rewritM every unconditional probability above as a conditional 
one, and us« the rewritten Equations (4-1), (4-2) and (4-3) as axioms. These mathematical fine pointe 
are not important to this r^ort. It is enough to note iiat every treatment of probability uses flie rate 
given above, and the rate tiiat follow as consequences in the sections below. 

Equation (4-2) says fliat the probability of the union of disjoint evente Is flie sum of the 
probabilities. This fact motivated the use of + as an alternate notation for U in Section 2.2.1. 

4.3 Law of Total Probability 

For any evente E and F, 

P(E) = P(Ef\F) + P(Ef\F') = P(E\F)P(F) + P(E\F')P(F') . 

This law can be extended to a set of n mutually exclusive and exhaustive evente F ,̂ Fj, . . . , F^ as 
follows: — 

! I 
P(£) = ip(E\F,)P(F,) . (4-4) 

t-i 

4.4 Basic Probability Relations 

no) = 1 

P(0) = 0 

P(A) = P(A^ = l~PiA) 

P(AUA) = P(A{jA') = P(0) = 1 
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I 

P(^n^) = P{Af\A') = P(0) = 0 

If E and F are two evente and E is a subset of F, tfien P(E) ̂ P(F). 

4.5 Bayes^ Law 

Consider any two evente E and F. By the multiplication law 

PiEflF) = P{E\F)P(F) = P(F\E)PiE) 

so 

P(E\F) = P(P\^P(^ . (4-5) 
^ ' P(F) 

We use Equation (4-5) to change our uncertainty about E given background information H to our 
uncertainty about E given F and H. We can think of F M new data. 

For example, suppose that turbine-driven pumps fail to start with some frequency p. We quantify 
our background knowledge about turbine-driven pumps through a probability distribution onp. (For ease 
of explanation, suppose that fliis distribution is discrete, a list of possible values p-,, each with a 
probability reflecting our degree of belief.) 

To continue tfiis example, let E be flie event "p - 0.01". Let F be tiie event "3 failures in ICX) 
attempte to start." We know P(E) from the probability distribution that quantifies our background 
knowledge. How should ttiis probability be changed to account for the new information? That is, what 
isP(E|F)? 

This question is answered using Bayes' Law. The theory of binomial random variables shows 
fliat 

PiFlp) im 
3 

P\l-P) lCK-3 

is the probability of the event F given some value of p. Therefore PP' |E) is P(Fy) with flie value 0,01 
substituted for p. The value of P(F) is obtained from the law of total probability. Equation (4-4): 

PiF) = I [P(F;p)P(p = p)} 

summed over all the possible values p^. Then finally, P(E |F) is obtained by substituting the values for 
P(E), P(F|E), and P^) into Equation (4-5). 

In summary, we used Equation (4-5) to change a belief about E given the background information 

December 1992 27 NUKEG/CR-5964 



Probability Concepte 

to a belief about E given both the background information and F. The belief was updated b»ed on new 
data. 

4.6 Independent Ewents 

We say an event E is independent of another event F if the probability of E, P(E), is unaltered 
by any information concerning event F. We write 

P{E\F} = F(£|FO = P{E) . 

This is also called statistical independence. From this definition we obtain the following relationship for 
independent evente 

P(Em = PiE\F)PiF) = P{E)PiF) . 

4.7 Additional Probability Relations 

The probability of the union of n evente is 

P(A,{jA,U-UAJ = IP(A) - IP(AA) * ... + (-irP(A^A,-AJ . (4^6) 

The probability of the intersection of n evente is 

P(A,A,-AJ = P(AJA,-A^J-P(A,\AJP{AJ . (4-7) 

The probability of the intersection of n evente when the evente are statistically independent is 

P(A^A,...AJ = P(A,)P(A,hP(Aj . (4-8) 

For any n evente (dependent or independent), we have 

P(A,A^-AJ < min[n^,),i'(^^,...,F(^J . (4-9) 

For independent evente, the probability of the intersection equals the product of tie probabilities. This 
fact motivated the product notation that was introduced as an alternate to n in Section 2.2.2. Because 
of its compactness, the product notation has been used for intersections in Equations (4-6) through (4-9). 
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5. DETERMINATION OF MINIMAL CUT SETS 

When considering flie development of a fault tree minimal cut set algorithm, it is good to review 
flie general process^ involvrf. First, we have the definition of tfie fault tree logic. Typically, die logic 
is defined using an alphanumeric file containing names of gates and basic evente. Gate and event nam« 
vary in lengii, but 16 characters seem to be a typical size. Along wiA the logic file is another 
alphanumeric file containing basic event names and a failure probability associated with each event. 
These failure probabilities are used during the fault tree solution process to simplify the tree by 
truncation. Additional proc«sing information may be used, but this is typically the minimum information 
required. 

The above information is loadrf into memory and converted into a format that is easier to 
process. Nam« are usually converted to numbers for smaller size and ease of manipulation. Certain 
optimization fimctions are also performed on the logic before it is process^. Next, the logic for each 
gate starting with tie TOP is recursively replaced wifli ite inpute until the resulting logic is in terms of 
basic evente only. This results in a list of event intersections. Each event intersection is a cM set of the 
fault tree and identifi« a set of evente that will cause the fiinction modeled by the fault tree to occur. 
The list of cut sete identifies all the logical combinations of evente that will cause the top event to occur. 

The cut sete d«cribed above may need farther rrfuction due to rules defined for Boolean 
rrfuction. These reductions are applied to obtain a simpler collection of cut sete. For example, the cut 
sete generated should be minimal, fliat is, tie list should not be simplifiable. For example, if A n S n C 
causes flie top event to occur, then AOBnC is a cut set. If A n i is also a cut set, ttien A n m C is 
not minimal, and it is discarded from the list. If neither A alone nor B alone causes the top event to 
occur, AOB is a minimal cut set, and it is retainM in the list. This is an application of the absorption 
identity: (Ani ) U (AOBnC) = A n i . 

The event probabilities are Aen used to calculate a probability for each cut set using Equation 
(4-7). This value is tie probability that the given set of evente will occur. Any cut set whose probability 
falls below a user-defined value is then eliminated. The remaining cut sete are the minimal cut sete for 
the fault tree and are the dMlrM end product of the fault tree solution. In IRRAS, Ae minimal cut sete 
are always in terms of basic evente unless the analyst specifically indicates that certain gatK are to be 
treated as basic events. 

Once the minimal cut sete have been determined, the quantification routines must be employed 
to determined a point estimate for the probabilities of the cut sete. The routines that find importance 
measures would then be used to calculate the Importance of each basic event in the cut sete, and the 
uncertainty routines would be used to perform uncertainty analysis on tiie cut sets. 

The steps describe above need not be applied in the order indicated, but each step is usually 
pr«ent in any fault tree software. We will now present a more detailed overview of each of these steps 
as fliey relate to IRRAS. 

In order to solve a fault tree, there are a number of operations that must be performed on the tree 
before it can be solvrf. Some of these operations relate to converting the tree into a format that is ready 
to solve, while others involve optimizing the tree to make flie processing of iie tree more efficient. 
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5.1 Recursive Algorithms 

Many of the processes associated with fault tree roiuction and quantification can be implemented 
easily using recursive proc«iures. A simple definition of a recursive procedure is "a procrfure that calls 
iteelf." An example of where a recursive procedure might be u&ed Is in checking a gate for "valid" 
inpute. A recursive implementation of this procrfure has as an argument, tfie gate to be checkrf. This 
procedure checks each input to the gate passed as an argument. If an input is a basic event, then it 
checks to see if it is valid. If the input is a gate, however, it calls iteelf to see if ttie inpute to tils gate 
are valid. When all flie inpute to a gate iave been processed, the procedure exite and continues 
processing flie gate it was checking before the recursive call. The algorithm stops when all inpute to all 
gates have been checked. Many computer languages do not support recursive procedures, but in those 
languages recursion can be simulated by using arrays to keep track of the argumente passed to the 
procedure. IRRAS tak« advantage of recursive procedures in many areas. 

5.2 Loading and Restructuring 

IRRAS was d«ignrf to allow the user to structure very large fault trees into smaller pieces or 
pages. The concept of pages comes from the graphical fault tree editor. One page represented the 
portion of a fault tree that could be easily displayed on a graphical screen or printed on a standard sheet 
of paper. This idea expanded to allow tie pages of the fault tree to be connected together with transfer 
gates. IRRAS stores fault trees by pages, in a relational data base. The name of each system is flie key 
to locate the system (fault tree) in the data base. Tramfer gat« are stored « subsystems. Again, the 
name of the transfer gate is tie name of the subsystem. During the load process, these nam« are usrf 
to connect the fault tree logic. 

Because IRRAS stores lie logic of tii^e fault trees as physically separate pag«, connected by 
transfer gates, the first task is to load these pages into memory and combine them into one connected fault 
tree. Tbis is done by reading in lie logic for the first page of the tree, then recursively scanning the 
loaded logic for a transfer gate that has not been processed. IRRAS allows the user to specify wheflier 
a transfer gate is to be expanded or not. The gates that are flagged (identified as not to be expanded) are 
converted to basic evente at tfiis time. 

During the load process, IRRAS connecte gates to the tree by name. The gates are maintained 
in a sorted list that is searched using a binary search, when required. When a new gate is encountered, 
it is inserted into the gate list in sortrf order. As the tree is loaded, transfer gat^ are replaced by gates 
with developed logic beneath fliem. During Ms process, if IRRAS encounters a gate that is not a trmsfer 
and has the same name as another gate, it checks to see if it is an identical gate (i.e., it is flie same type 
and has the same inpute). If flie gates are not identical, IRRAS displays an error message and terminates 
tfie process after the tree is loadrf. 

When all transfer gates iave been processed, any transfer gates remaining are consider^ to be 
unresolved transfer gates. The user is notified of tfi«e and they are converted to b»ic events with the 
same name as tie transfer gate. This allows IRRAS to continue processing the fault tree. Tiese 
unresolved transfers will appear as basic evente in the cut sete. 
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If the tree is successfiilly loaded, lERAS checks to see if Ae user has specified a gate name to 
be u s ^ as tie top gate. If so, then the tree is pmnrf to eliminate any logic that is not coimectai beneath 
this gate. This process simplifiK the tree and fre« any memory usrf by the exc«s logic. At this point, 
flie tree is ready for farther procMsing, 

5.3 N/M Gate Expansion 

Tie next step is to convert N/M gates to their representative logic in tenm of AND and OR 
gates. This type of gate is used in IRRAS to simplify the definition of flie logic for situations where the 
user neais to define a structure representing flie combination of M things taken ^ at a time. The user 
may specify any combination where N and M range from 2 to 9 and N<M. IRRAS automatically 
converts these gate structure by first generating a number of intermrfiate AND gat« containing as inpute 
tfie combinations of inpute represent^, then fliese gates are input to the original N/M gate. Once this 
is complete, the N/M gate type is changed to an OR gate. The number of AND gates under the OR gates 
is determinol by the total number of combinations of N failures out of a population of M evente. The 
equation for this number of combinations is 

'Ml ^ Ml 
Nj m(M-N)l 

An example of this proc«s can be illustrated with the following "2/3" gate. 

GATEl 2/3 INPUTl INPUT2 INPUT3 

is converted to flie following structure: 

GATEl OR N/M-1 N/M-2 N/M-3 
N/M-1 AND INPUTl INPUT2 
N/M-2 AND INPUTl INPUTS 
N/M-3 AND INPUT2 INPUTS 

Thus, for 2 out of 3 gates, there are 3 unique combinations of 2 failure. This generates 3 AND gates 
under tiie OR gate. If the number of inpute to the gate does not equal M, then a fatal error message is 
generated. In this case, IRRAS will not try to solve the fault tree. 

5.4 TOP Gate Determination 

If the user has not specified tie gate to be used as flie top gate of tie fault tree, tie next step in 
solving the fault tree is to determine which gate is the "TOP" gate. This is done by counting the 
references to each gate, A gate is referenced if it appears M input to any other gate. The top gate is the 
only gate fliat will not be reference by any other gate. If IRRAS detecte more than one gate that 
quMifies as flie TOP gate, then the user is notified and given tie opportunity to select flie gate to be used 
as flie TOP gate. If no gate is selected, IRRAS will not try to solve flie fault tree. If, however, the user 
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selecte one of the gates, IRRAS will prune all other logic not connect^ to this gate and continue with 
the solution. 

5.5 Loop Error Detection 

Now that the TOP gate of the fault tree has been determined, IRRAS can proceed to check for 
loops in the fault tree. A loop is a situation where a gate either directly or indirectly referencra iteelf. 
A simple example of a loop is represented by the following fault tree logic: 

TOP 
GATEl 
GATEl 
GATE3 

AND 
OR 
OR 
AND 

GATEl 
GATE2 
EVENT3 
GATEl 

EVENT! 
GATE3 
E¥ENT4 
EVENTS 

EVENT2 

In this example, GATEl indirectly references iteelf since GATEl references GATE3, and GATE3 
references GATEl. 

To determine if there is a loop in flie fault tree logic, IRRAS defines a Boolean array containing 
one element for each gate in the fault tree. This list is then initialized to FALSE. During processing of 
a gate, the Boolean variable for tiiat gate is TRUE when proc«sing that gate or any of ite inpute, 
otherwise it is FALSE. Starting wifli the TOP gate, IRRAS traverses flie fault tree by following tiie gates 
defined in the inpute to each gate. As a gate is encounterM, its Boolean variable is testM. If flie value 
of this variable is TRUE, then a previous reference to this gate must have occurrrf indicating a loop 
existe in the fault tree at fliis point. If Boolean variable is FALSE, flien it is set to TRUE to indicate fliat 
this gate is currently being processed and the inpute for this gate are traversed. When all flie Inpute to 
a gate have been checked, tie Boolean variable for the gate is set to FALSE before exiting. Using die 
previous loop example, the processing proceeds as follows: 

(1) Initialize Boolean array. 

(2) Start processing flie TOP gate. 
Set flag for TOP gate. 

(3) Process the first input to the TOP gate. 
First input is GATEl. 
Set flag for GATEl and continue. 

1 TOP 1 

1 FALSE 1 

GATEl1 

FALSE 1 

6ATE2 

FALSE 1 

GATB 

FALSE 1 

1 TOP 

1 TRUE 

1 TOP 

1 TRUE 

GATEl 

FALSE 1 

1 GATEl 

1 TRUE 

GATE 

FALSE 1 

1 GATE! 

1 FALSE 

GATB 

FALSE 1 

1 GATB 

1 FALSE 
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(4) 

(5) 

(6) 

(7) 

Process the first input to GATEl. 
First input is GATE2. 
Set flag for GATE2 and continue. 

No gates input to GATE2. 
Reset flag for GATE2 and exit. 

Continue processing inpute to GATEl. 
Next input is GATE3. 
Set flag for GATE3 and continue. 

1 TOP 

1 TRUE 

GATEl 

TRUE 

GATE! 

TRUE 

GATD 

FALSE 

TOP 

1 TRUE 

GATEl 

TRUE 

GATEl 

FALSE 

GATB 

FALSE 

TOP 

TRUE 

GATEl 

TRUE 

GATE 

FALSE 

GATE 1 

TRUE 1 

TOP 

TRUE 

GATEl 

TEUE 

GATEl 

FALSE 

GATB 1 

TRUE 1 

Process inpute to GATE3. 
First input is GATEl, 
Set flag for GATEl. 
Flag is already set. 
Loop detected! 

Two pointe of optimization can be considered in this approach. First, each gate only neais to be 
processed once. If it is referenced several times in tie fault tree, repeated proc«sing can be time 
consuming. IRRAS maintains a list of those gatM that have been procased and only traverses those that 
have not been previously processed. Second, tills algorithm is quite repetitive and can be implemented 
quite nicely as a recursive procedure (see Section 5.1), 

If IRRAS detecte a loop in ttie fault tree, a fatal error is generated along with a traceback. This 
traceback defines exactly the gate reference list that causrf the loop. IRRAS will not process a fault tree 
that has loops. The user must modify the logic to remove the loop before IRRAS will solve the fault 
tree. 

5.6 Complemented Gate Conwerslon 

Once IRRAS has ensured that the fault tree logic does not contain any loops, the complemented 
gates in the fault tree are processol. Two typ« of complemented gates are allowed in IRRAS. The user 
may indicate a complemented gate by using either the NAND or the NOR gate or by putting a forward 
slash (/) in front of a gate name. If the complemented gate types are used, then all reference to the gate 
name will use tie complement^ logic. If the user wants to complement only a specific reference to a 
gate, then tie slash character may be used in front of the gate name where it is referenced. 

IRRAS processes complemented gates by first complementing the gate type, then complementing 
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tie inpute to tie gate. The following example demonstrates tiis procws: 

TOP 
GATEl 
GATE2 
GATE3 

AND 
NAND 
AND 
NOR 

GA'lEl 
GATE3 
GATES 
EVENT3 

GA'I'R2 
EVENTl 
EVENT2 
EVENT4 

becomes 

TOP 
GATEl 
GA1E2 
GATES 

AND 
OR 
AND 
AND 

where the "/" character repress 

GATEl 
/GATE3 
GATE3 

/EVENT4 

ente the compl 

GATE2 
/EVENTl 
EVENT2 
/EVENTS 

,ement of the 

Notice that GATE3 is referenced as both a complemented gate and a noncomplemented gate. To 
iandle this, IRRAS generates a new gate called N0T3 that contains the complementai version of GATE3. 
Now, the new fault tree is as follows: 

TOP AND GATEl GATE2 
GATEl OR N0T3 /EVENTl 
GATE2 AND GATE3 EVENT2 
GATE3 AND /EVENT4 /EVENTS 
N0T3 OR EVENT4 EVENTS 

If every gate in the tree is referencai in the fault tree as both complement^ and 
noncomplemented, then this approach to procKsing tfie complemented gates can result in a fault tree with 
twice flie number of gates as in the original tree. This, however, is not usually tie case and the number 
of additional gates is substantially smaller. Wien IRRAS first encounters a reference to a complement^ 
gate in the fault tree, it assumes that this will be the only reference to the gate, therefore, it complemente 
the original gate. If later on it encounters a reference to the noncomplementrf version of the gate, it then 
generates a new gate that is identical to the original uncomplemented gate. 

5.7 House Ewent Pruning 

IRRAS allows the user to modify tiie logic structure of a fault tree by using "house" evente. 
House evente are evente fliat can be set to logical TRUE (T) or FALSE (F). This forc« flie event to 
occur with house event TRUE, or forces it not to occur with house event FALSE. IRRAS also allows 
the user to specify that an event is to be ignored with house event IGNORE (I) which says to remove the 
event from the fault tree logic. An event set to house event IGNORE will be treatrf as if it did not exist 
in the fault tree. 

Normally, house evente are treated as special evente tfiat must be designated as house evente. 
In IRRAS, however, tiie user may treat any event as a house event. Since IRRAS creat« an event for 
each transfer gate in the tree, house evente may also be used to prune subsystems from a fault tree. At 
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various times, IRRAS will use house events to simplify or optimize the processing of the fault tree. 
Here are two of lliese situations. First, If the user is truncating on probability and the probability of an 
event is below the truncation value, then we know that this event has negligible probability of occurring. 
To prune the fault tree, we set th«e events to house event FALSE. This same technique could be usai 
for other truncation criteria that can be determined before the fault tree is solved to farther simplify tfie 
tree. 

Second, IRRAS us« house events when solving sequence cut sets. In IRRAS, accident sequencK 
are defined using an event t r« to indicate the failure or success of top events. Each top event in the 
event tree is associatal witfi a system fault tree (see Section 5.22). To solve the accident sequence, 
IRRAS constructe a fault tree for those systems that are defined to be faErf in the sequence logic by 
creating a dummy AND gate witfi fliese systems as inputs. IRMAS tfien solves this fault tree using the 
specific truncation valu«. This process results in a list of cut sets for the faiW systems in the accident 
sequence. IRRAS then uses the "cut set matching" technique to ftirther reduce this list of faiW system 
cut sets. This technique uses the cut sets determinrf from solving Ae successM system fault tre« in the 
accident sequence logic to eliminate cut sets from the list of failed system cut sets. To do tiiis, IRRAS 
first scans the list of faiW-system cut sets and assigns a value of FALSE to any event in IRRAS that dora 
not appear in this list. Once flils is done, the fault tree representing the successM systems in the accident 
sequence logic is construct^, pnm^ by the house events, and solvai. TTie evente that are set to FALSE 
in the previous step r^ult in a significantly reduced succ^s system fault tree. We can do this since we 
know Aat for any successM-system cut set to eliminate a failed-system cut set, it must contain only 
events in the list of failed-system cut sets. Setting these events to house event FALSE will ensure tiiat 
the cut sets with these events in them will be eliminated at ttie fault tree r^tmcturing step. This process 
greatly sperfs up the solution of flie success&l system fault tree. For example, let the following cut sete 
represent the failed systeim cut sets for the accident sequence. 

El * E2 * E3 
E2 * E5 * E7 
El * E2 * E5 

Let the following fault tree represent the succasM-systems fault tree. 

TOP OR SYSl SYS2 SYS3 
SYSl AND El E6 
SYS2 AND El E5 
SYS3 AND E3 E4 

Since events E4 and E6 do not appear in the list of faiM-systems cut sets, we can set tiiem to house 
event FALSE and prune the fault tree, resulting in the following fault tree. 

TOP OR S ¥ » SYS2 S¥& 
S¥»™^N»—B4 FAfeSE 
SYS2 AND El E5 
S¥S*-ANB-^3 FAfeSE 

Pruning this tree gives the following reduced fault tree. 
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TOP AND El E5 

Solving this fault tree results in the following single cut set 

El *E5 

This cut set is used to reduce the failed-systems cut sete as follows. 

El * E2 * E3 
E2 * E5 * E7 

Whether specific externally by the user or internally by IRRAS, before the fault tree is solvrf, 
it is pruned depending on the structure of flie tree and the house event setting. In order to do Ais, 
IRRAS again traverse the fault tree checking for house events. At each gate the algorithm checks each 
of the inputs to the gate to see if it has been set to any one of the tfiree house event settings, "T," "F," 
or "I," If so then the logic for that gate is modified as follows. If the gate is an AND gate, then an input 
set to T or I is removrf from the gate input list, while an input set to F causM the gate to be set to F. 
If the gate is an OR gate, then an input set to F or I is removrf from tiie gate input list, while an input 
set to T causes flie gate to be set to T. 

The routine to check for house events and prune the logic of the fault tree is a recursive routine. 
Using the fault tree logic deflnrf previously, along with tfie house event information and starting at the 
top gate in the fault tree, IRRAS checks each of the inputs to flie current gate. If the input is a gate and 
the gate has not been previously checked, then the recursive routine calls itself to check this gate. H e 
recursive routine returns a value of T, F, or I for each gate that is processed and it procMses each gate 
only once. If a house event value is returned for the top gate, then there is no need to solve Ae fault tree 
and a message is displayed. If the value returned is T, the message "The TOP event has occurred 
(TRUE)!" will be display^. If the value is F, then the message "TTie TOP event cannot occur 
(FALSE)!" will be displayed. If the value return^ is I, then the message "No logic to solve!" will be 
displayed. 

5.8 Coalescing Like Gates 

The next step in tfie fault tree solution is to coalesce like gates. This procas combines those 
gates that are input to other gat« of the same type. Specifically, AND gata tfiat are input to AND gates 
are combing and OR gates fliat are Input to OR gates are combined. The following fault tree is an 
example of the coalescing of both an AND gate and an OR gate. 

TOP AND GATEl GATE2 
GATEl OR GATES E¥ENT1 
GATE2 AND EVENT2 EVENTS 
GATE3 OR EVENT4 EVENTS 

Atter coal«cing, GATE2 is consumed by flie TOP gate and GATE3 is combined with GATEl. 
The following fault tree is the result of fliese modifications. 
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TOP AND GATEl EVENT2 EVENTS 
GATEl OR EVENTl EVENT4 EVENTS 

In flie above example, bofli gates that were coalesced were referenced only by gates of the same 
type. This resulted in the removal of botfi of these gat« from tiie logic. The following example shows 
a case where the coalesce gate is not removed. 

TOP AND GATEl GATE2 
GATEl OR GATE2 EVENTl 
GATE2 AND EVENT2 EVENTS 

After coalKcing, the following tree is generated: 

TOP AND GATEl EVENT2 EVENTS 
GATEl OR GATE2 EVENTl 
GATEl AND EVENT2 EVENTS 

By coalescing the fault tree, the number of gates is raiucrf and the number of inputs to a gate 
is maximizrf. This process can substantially reduce the processing time as well as provide for better 
optimization later in the fault tree r«tructuring process. Note, however, that the total amount of space 
require to store the inputs to the fault tree can grow significantly as a result of coalescing the tree. The 
amount of additional space required depends on the number of gates that can be coalesced, ttie number 
of times a coalesced gate is referenced in the tree, and the number of inputs to the coalesce gate. This 
increM«i space requirement will usually be recovered during module and independent subtree procMsing 
later. 

To perform the coalKcing step, IRRAS starts with the TOP gate of the fault tree and recursively 
checks the list of inputs to flie current gate. Any duplicate inputs in tfie list are removed. If flie Input 
is a gate and it is the same type as the current gate, then the list of inputs to this gate is added to flie 
current gate input list. Tie gate reference is then removed from the list. If the input is a gate wifli a 
single input then the gate reference is replaced by ite input. Once all inputs to all gates have been 
process^, then lERAS makes a pass through flie current gate list and eliminates any gates fliat are no 
longer needed due to any of flie previous restructuring steps. 

5.9 Modules wersus Independent Subtrees 

IRRAS us« two methods of optimization that are similar and should be clarified. Hiae 
optimization methods are independent subtrees and modules. Before solving a fault tree, IRRAS converts 
all tile logic into a logically equivalent form in terms of AND gates, OR gates, and bmic evente. TTie 
following discussion assum« this form of fault tree logic. In IRRAS, an independent event is defined 
as an event that is input to only one gate. An independent gate is a gate that is input to only one oflier 
gate and contains as inputs only independent events. 

An independent subtree is a gate that has as inpute only independent events or independent gates. 
The inpute to an independent subtree can occur only once in a fault tree, however, an independent 
subtree may be input to many other gates. Note, the independence defined here is logical Independence. 
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In IRRAS a set of events M={El,E2,...,En} is defined to be a module of a fault tree if die 
following two conditions are met. (1) For every occurrence of E as input to a gate, flie other everts in 
M also occur as input to tiie same gate. (2) Every occurrence of M is an input to the same gate type, 
eitfier an AND or an OR gate. These events can be combined under a single gate calW a module. All 
referencK to these events are converted to reference the module. Once a module is created, all of flie 
events input to it occur only as inpute to a single gate. Since a module may appear multiple times in a 
fault tree, it is usually not an independent gate, however, it is always an ind^endent subtree. A gate fliat 
has a module as one of its inputs is only an independent subtree if the module is an independent gate. 

In the fault tree reduction process, independent subtrees need not be expandrf until flie very end 
of the process. Once a fault tree is solved in terms of independent subtrees, it is a simple expansion 
process to convert ttie minimal cut sets to tfieir bmic event representation. Since a reducrf number of 
tokens needs to be analyzrf in the fault tree solution process, independent subtrees save large amounts 
of processing time. Figure 18 shows an example fault tree with a module and an independent subtree. 
In the example, Gate-3 also happens to be an independent gate. 

5.10 Module Determination and Creation 

The next step in the restructuring process is to find all modules in the fault tree. To perform this 
step, IRRAS uses a temporary bit vector. The bit vector contains one bit for each event in flie fault tree. 
The first of these bit vectors keeps track of the events that are usrf In the fault tree. If complement^ 
events are used, then a second bit vector is allocated for the complemented events. 

A vector is also created for each gate currently defined. These vectors will contain, in bit format, 
the events used by each gate. We also define two vectors, TMPl and TMP2, which hold interm^iate 
results. Finally, we define an array containing one number for each event. This number is a count of 
the number of times each event is usrf in the fault tree. 

Once flie data arrays are created, we initialize flie TMPl vector and the event count array by 
traversing the input list. For each input, we check to see if it is an event, and if so, we set its bit in the 
TMPl vector and increment the count for this event. If the event is complemented, then its bit is set In 
the complement^ vector. When all inputs have been process^, we eliminate any event that occurs as 
both a complement^ and a non-complemented event from the event vector list. These events cannot be 
included in modules. Next, we process each gate and set the appropriate bits in each gate's bit vector 
to reflect the events used by that gate. When this process is complete, we are ready to find the modules 
in flie fault tree. Using the fault tree shown in Figure 18, the following initializal data structures would 
be definai. 

Used? 

Event-1 

1 

Event-2 

1 

Eveiit-3 

1 

Event-4 

1 

Event-5 

1 

Event-6 

1 

Event-7 

1 

Event-8 

1 
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TopGate 

Gate-1 

j Gate-2 

ij Gate-3 

Gate-4 

Gate-5 

Gate-6 

1 Gate-7 

Event-1 

1 

1 

Event-2 

1 

1 

Event-3 

1 

Event-4 

1 

1 

Eveal-5 

1 

1 

Event-6 

1 

Event-7 

1 

Event-8 

1 

TMPl 

1 TMP2 

Event-1 

1 

Eveiit-2 

1 

Event-3 

1 

Event-4 

1 

Event-5 

1 

Eveiit-6 

1 

Event-7 

1 

Evait-8 

1 

Count 

Event-1 

2 

Event-2 

2 

Event-3 

1 

Event-4 

2 

Evenl-5 

2 

Event-6 

1 

Event-? 

1 

Event-g 

1 

Using the TMPl bit vector and the maximum number of events to be processed, we check to see 
if an event's bit is set. If the bit is set in the TMPl vector for this event, thee we look at all USM of this 
event to see if it occurs in combination with ottier evente. We do this by initialfeing the TMK vector 
to the current list of evente to process, TMPl. We then loop over the gate vectors checking to see if the 
current event is usrf by flie gate. If It is used, then we perform a bit "AND" operation using the gate 
vector and the TMPl vector. The result of the operation is storrf in the TMP2 vector. We continue tiiis 
process for each gate ttiat uses tfie basic event. If at any time we find a gate that uses flie event and is 
a different type than the other gates that use the event or the TMPl vector has no events set, we exit flie 
processing and continue with the next event. Using our data structure, the steps for Event-1 are as 
follows. 

(1) Initialize TMP2 vector. 

TMPl 

TMP2 

Event-1 

1 

1 

Eveiit-2 

1 

1 

Event-3 

1 

1 

Eveiit-4 

1 

1 

Event-5 

1 

1 

Event-6 

1 

1 

Event-? 

1 

1 

Event-8 

1 

1 
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(2) The first gate to use Event-1 is Gate-1, tiierefore, perform bit "AND' operation on Gate-1 and 
TMP2 storing r«ulte in TMP2. 

TMPl 

1MP2 

Event-1 

1 

1 

Ev«t-2 

1 

1 

Eveiit-3 

1 

Event-4 

1 

Event-5 

1 

Evait-6 

1 

Event-7 

1 

Event-8 

1 

(3) The next gate to use Event-1 is Gate-7, therefore, perform bit "AND" operation on Gate-7 and 
TMPl storing r«ults in TMPl. 

TMPl 

TMP2 

Evenl-1 

1 

1 

Evait-2 

1 

1 

Event-3 

1 

Evml-4 

1 

Evait-5 

1 

Event-6 

1 

Evenl-7 

1 

Event-8 

1 

1 
No more gates me Event-1, therefore, the result of die alwve proc«s is a bit vector, TMPl, 

containing those evente fliat are always referenced together. We need to fiirtier check tills list to eiBure 
that none of these events are usai elsewhere in the fault tree. We achieve this by checking flie count of 
the number of timM flie event is referenced in the fault tree. If this count does not match the current 
event's count, flien the event is removed from the list. In our example we see that Event-1 and Event-1 
are in the TMPl vector. Checking the count vector, we see that both evente are used the same number 
of times (twice) in tfie fault tree. 

If flie remaining list is greater than one event, we create a new gate containing the events in tie 
list and change all gates that reference tiie current event so they reference this new gate imtead. The 
other evente in the new gate are also deleted from any modified gate. Once this is done, we update our 
TMPl vector containing flie current list of evente to process. TMs is done by complementing Ihe TMPl 
vector and performing a bit "AND" operation with flie TMPl vector. This effectively removes any 
evente that we have put in a module from the list of evente to be processed. In our example, we create 
a module using Event-1 and Event-2, then update the fault tree to use this module. The temporary bit 
vectors are updatai as shown. Notice that bofli Event-1 and Event-1 are removed from the list of evente 
to be processed. 

j TMPl 

TMPl 

£vent-l 

1 

Event-2 

1 

Event-3 

1 

Event-4 

1 

Event-5 

1 

Event-6 

1 

Event-7 

1 

Event-8 

1 

The above operations continue until all evente have been process^ and no fiirther r«tructuring 
is possible. When IRRAS hm completed this st^, one more loop through the tree is made to combine 
any gates that had all their inpute convert^ to a gate. This eliminates any single-input gates from flie 
fault tree. 
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5 J 1 Independent Ewent Determination 

The next step in the fault tree restructuring proc«s is to determine which events are ind^endent. 
For fliis purpose IIMAS deiaes "independenf as only occurring once in iie fault tree. His s t^ is 
performai by defining two bit vectors. Each time an event is encounter^, a bit Is set in flie first v«tor. 
If the bit is already set, then flie corresponding bit in the second veOot is also set. When complete, the 
second bit vector represente the list of b^ic evente that occur more tfian once. The events not in iiis list 
are independent. 

5.12 Independent Gate and Subtree Determination 

The next step In flie restructuring of the fault tree is to determine the independent gat« and 
subtrees in the fault tree. Ind^endent subtrees are much cMler to solve since tfiey generate only minimal 
cut sete. IREAS processM independent subtree separately from the rest of the fault t r« . 

To find the independent gatM and subtre«, IRRAS again us« a recursive routine to traverse the 
fault tree, IRRAS usa flie data structures definrf previously to check the inputs to each gate. If all flie 
inpute to the gate are ind^endent evente and the gate occurs only once, then it is markM as an 
independent gate. If the input is a gate and has not been process^, then flie routine calls Iteelf to check 
this gate. If all inpute to the gate are independent evente or gates, then flie gate is iaggrf « an 
Independent subtree. TTiis resulte in a fault tree that has all independent subtre« identified. 

5.13 Determlnliig Gate Lewels 

The last s t ^ in flie fault tree restructuring proc«s is to determine the gate levels. TTie TOP gate 
is definai to have level 0. Ite inpute have level 1, tfie inputs to those gat« have level 2, and so forth. 
The level of a gate is the number of gates one encounters after the TOP in going from the TOP to the 
gate of interest. If a gate appears more than once in a tree, define tfie gate's level m iie larg«t of flie 
levels corresponding to the various places where tfie gate occurs. To determine flie level of each gate, 
a recursive routine is us^ . This routine keeps track of the level for each gate. Each time flie gate is 
encounterrf in the traversal of tiie fault tree, ite level is checkrf against ttie current level. If the current 
level is greater than the gate's assignM level, flien the gate's level is set to tfie current level. Hie routine 
exite early if a gate's level is greater flian or equal to the current level. This proc«s continue untE ttie 
entire tree has been processai. 

This information is usrf later in determining the expansion path for the fault tree. The expansion 
path for a fault tree is the order in which the gates for a fault tree are solvrf. This expansion path can 
significantly affect the time it tak« to solve a fault tree. IRRAS attempte to determine the optimal 
expansion path. 
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5.14 Fault Tree Reduction 

Once the fault tree Is loadal and restructure, it is ready to be solv^. This process consiste of 
a number of steps that convert the Boolean logic representing tiie fault tree to ite expanded form 
reprraenting the d«irrf minimal cut sete for the tree. In IRRAS, a fault tree may represent either a 
system equation or a sequence equation. In either case, Ae same algorithm is usrf to solve the tree. 

5.15 Cut Set Truncation 

The exact solution of many large fault tre« can prove to be prohibitive; therefore, various 
mefliods have been developed to rrfuce the time required to solve a fault tree. IRRAS allows the user 
to specify that a number of th«e methods be used in the fault tree solution. The first and most common 
method is to eliminate any cut set whose probability falls below a specified truncation value. The second 
metiiod is to eliminate any cut set that has more flian a specific number of unique evente in it. The third 
meliiod is to eliminate any cut set that has more than a specified number of zone flagged evente in it. 
A zone flagged event is an event that has been marked as representing a zone (location or area). In a 
facility, a fire zone may represent a room with fire barriers around it. A security zone may represent 
an area with certain security characteristics. This method is usai in location analysis to allow for the 
truncation on the number of zone evente in a cut set. The last method provided in IRRAS for cut set 
truncation is typically usrf in seismic analysis and allows the user to combine the first truncation method 
with another criterion that checks to see if any event in the cut set is below a specifiai probability before 
it is truncated. 

All of the above truncation methods are supportwl by IRRAS. The user may also choose to solve 
the fault tree exactly. No matter which methods are used, IRRAS attempte to take advantage of whatever 
it can to simplify and reduce the amount of work required to solve a tree. The ways each of th«e 
truncation methods is implemented will be discussed in detail m, the process for the fault tree solution is 
dMcribed. 

5.16 Internnediate Result Caching 

Fault tree solutions can e^ily generate enough intermediate cut sete to fill up all available 
computer memory. Therefore, a method is required to allow this data to be written out to a secondary 
data storage area. IRRAS uses a disk caching technique to store the intermaliate data. This allows for 
the processing of large amounte of intermediate data. The limit is the amount of available disk space on 
the computer being usai. This also allows IRRAS to be run on a minimal computer without memory 
beyond the 640K available to standard DOS applications. IIRAS does, however, allow the user with a 
more power&l computer and additional extendai memory to create a virtual disk and direct the 
intermrfiate information ttiat would have resided on tiie hard disk to the virtual disk. This will improve 
the performance of IRRAS on large problems by a factor of 3 to 5 times. This overview will not attempt 
to describe in detail how the cache software works. The performance of any fault tree reduction software 
is quite dependent on the methods u s ^ to handle the large amounte of intermwiiate data; therefore, the 
user should ensure that an efficient method is used. 
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5.17 Fay It Tree Cache Initialization 

The first step in the fault tree reduction process is to take the fault tree logic that has been loadrf 
and r«tructured and store this logic In a format for efficient use and retrieval by the fault tree rMuctlon 
software. This process includes the creation and initialization of certain data structures containing 
information that is used during the solution process to simplify and sperf up the fault tree rwluction 
process. By including this data in a data structure and updating it as the fault tree is solved, MRAS is 
able to avoid many additional calculations. 

Using the gate level information determined previously, IRRAS creates an orderrf table such ttiat 
all gates for a given level appear before any gat« for the next larger level. Any independent subtrees 
appear after all nonindependent gates for the fault tree. This ordering define the expansion path to be 
used for solving the fault tree. As mentioned previously, the IRRAS algorithm is essentially a top-down 
approach, but strictly speaking, tiie algorithm proc«ses the fault tree first from ttie bottom up, then from 
ttie top down. Hie algorltiim is bottom up because we treat each OR gate as a mini fault tree and solve 
them starting with the last gate or the bottom of the fault tree. When all OR gates up to the TOP gate 
have been solvai, IRRAS expands the TOP gate from the top down. 

As the fault tree logic table is being created, IRRAS generates some information to be uscrf during 
the expansion process to help in cut set truncation. A bound can be calculated on tiie contribution of ttie 
independent subtrees to the cut set probabilities. If the user has specified truncation on probability, tiiis 
bound can be used to eliminate cut sete earlier than otherwise possible. For now, let BPC denote this 
Bound on the Probability Contribution. Calculate tfie BPC for any gate as follows. The BPC for a basic 
event is ite probability. The BPC for an AND gate is the product of the BPC's of tfie inpute. The BPC 
for an OR gate is the largest BPC of the inpute. Since the gate table is ordered by level, these 
calculations can be performed one gate at a time, starting with the tet gate and proceMing to tiie top of 
each independent subtree. 

To see how this works, suppose first that S is an independent subtree witti only two inpute, A and 
B, both basic events. Because S is independent, as definai in Sections 5.9 and 5.12, each of ite basic 
evente appears only once, so A and B do not appear in any other part of the fault tree. Because basic 
evente are assumed to be independent in ihe statistical sense of Section 4.6, A and B are statistically 
independent of each other and of the rest of the tree. 

Any cut set that S contributes to will have the form (S AND otiier terms). If S is an AND gate, 
fliis form is (A AND B AND other terms), and the probability of tiie cut set Is P(A)P(S)P(otka terms), 
by independence. This equals BPC(S)xP(otiier terms), by tfie definition of BPC for an AND gate. If 
instead S is an OR gate, any cut set that S contributes to will have the form (A and other terms) or else 
(B and other terms). TTie cut set probabilities are bounded by 

max[F(^), F(^)]xF(otiier terms) 

which equals BPC® xP(other terms), by tiie definition of BPC for an OR gate. 

In either case, any cut set tfiat S contributes to has probability bounded by the value of BPC for 
S. The same idea is true if S has more than two inpute, and if they are not necessarily basic evente but 
may be independent gates instead. Therefore, if BPC for S is less than the truncation value, S can be 
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eliminated from the tree. In any case, the BPC is calculate and stored so Aat it can be used to eliminate 
cut sets earlier than otherwise possible. 

If die user has chosen to truncate on size or zones a similar calculation can be performed on 
independent subtrees to get a size contribution of the subtree to each cut set it appears in. If size 
truncation is selected, then all basic evente are counted. If zone truncation is select^, then only evente 
that are zone flagged are countrf. At each AND gate, the size contributions of the inpute are added 
together. For a qualifirf basic event the size is one. For a gate, however, the size may be larger than 
one. At each OR gate, the size contribution of the smaltet input is usrf as the size contribution of the 
gate. Once these values are calculated, they are stored in the gate table for fiiture use. The fault tree 
is now ready to be expand^. 

5.18 Fault Tree Gate Expansion 

The proc«s of solving a fault tree involves three basic steps. These steps are gate expansion, 
Boolean absorption, and cut set truncation. In the first step, the gates of the fault tree are expanded by 
replacing them witii their inpute. In the second step, the first four of the following identiti« are applirf 
to the cut sete: 

(1) A*A=A 
(2) A + A*B = A 
(3) A*B*M = 0 
(4) /M =A 
(5) A*B + A*m = A (not currently applied). 

TTie first identity (idempotent relationship) prevents two identical events from appearing in the same cut 
set. H e second one (absorption relationship) is the most computationally difficult to apply. In terms 
of set thwry it consists of eliminating subsets, because A*B is a subset of A. Computer programmers, 
on the other hand, tend to think of the identity as eliminating supersets; A*B is regarded m a larger entity 
than A because it h ^ more tokens to manipulate. Both the subset and superset terminology can be found 
in tfie literature, but this document will use only the term "absorption." The absorption identity is used 
to eliminate cut sets that are not minimal. The basis for using the Law of Absorption is that the top gate 
has become a giant OR gate with tiie cut sets as inputs. If A and A*B are cut sets, tiie top gate contains 
A -I- A*B, which can be simplified to A. H e third identity (exclusion relationship) implies that no cut 
set will contain botfi tfie failure and tfie success of an event. The fourth identity (double negation 
relationship) statM tiiat the complement of a complemented event is the event iteelf. Identity number five 
(exhaustion relationship) is not currently performed by IRRAS. It is important to note that IRRAS does 
not currently calculate prime implicants (Quine 1959). Complemented events appear in the cut sete with 
a "/" in front of the event name. 

Tie final step, cut set truncation, involves the elimination of cut sets that fall outside user 
specified truncation limite. There have been many different methods applied to performing ih«e three 
steps. Some codes use a top-down approach, while others use a bottom-up approach. Botii approaches 
have their strong points. IRRAS us« some features from each approach to optimize the fault tree 
solution procMS. 
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Using the fault tree logic definition generate previously, IRRAS begins expanding tiie tree. 
Since OR gates increase the number of cut sets, tfie algorithm treats all OR gates in the fault tree as mini 
fault trees. These trees are solvrf first, starting with the last nonindependent OR gate and procerfing 
to tfie TOP gate of the fault tree. All absorption and truncation technique are applied on thae small 
trees, eliminating cut sets as soon as possible. When the TOP gate is encountered, it is solved using as 
input all the cut sete generated by solving the mini fault trees described above. The result of this 
approach is to partition the large fault tree into many smaller subtrees that are easier to solve. The fewer 
cut sets generate for the smaller trees will also tend to require less time to apply the absorption identities 
and to truncate. 

Note that the cut sets generated by the above proc«s are in tenm of independent subtrees. When 
the TOP gate has been solved and all absorption h ^ been performed, tiie independent subtree are 
expanded. This step r^uires no absorption; independent subtrcM can only generate cut sets ttiat are 
minimal. 

5 J 9 Cut Set Absorption 

As the fault tree expansion occurs, cut sets are checked at each gate to see if they can be 
eliminated. There are several ways a cut set may be eliminated during the expansion process. IRRAS 
maintains the current bound on the probability contribution (BPC defined in Section 5.17) and size for 
each cut set tiiroughout tiie fault tree expansion. These contributions are updated depending on the type 
of expansion being performed. By keeping current BPC values, IRRAS does not ne«l to recalculate 
three values each time the cut set is modified or expanded. Much computation time is savoi by this 
approach. 

If the gate to be expanded is an OR gate, then IRRAS also compares the inputs to ttie OR gate 
against the inputs of tiie cut set containing the OR gate. If tiiere is a common event, then the reference 
to the OR gate can be removrf and the cut set need not be expanded further. The reason for this is that 
any cut sete generated from an OR gate of tiiis type will be absorbed later in the proems anyway. The 
following example demonstrates tiiis process. 

The cut set 

GATEl * EVENTl * EVENT2 

and the following definition of GATEl as an OR gate with three inputs 

GATEl OR EVENTl EVENTS EVENT4 

will generate the following cut sets when expanded. 

EVENTl * EVENT2 
EVENTl * EVENT2 * EVENT3 
EVENTl * EVENT2 * EVENT4 

Notice that the second and third cut sets are absorb^ by the first. 
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5.20 Boolean Absorption 

The proc«s of performing the Boolean absoiption reduction can be a time-consuming operation. 
The metiiods usrf in IRRAS are describe in Corynen (1988). This metfiod us« a set of bit tabte to 
determine those cut s * iiM can be absorb^ by a given cut set. For a detaiW d«cription of the 
process, refer to the indicatal document. TMs meAod is very powerfiil and hm good run-time 
characteristics. In order to be most effective witti this algorithm or any other one used for Ae B«)lean 
absorption process, tfie number of cut sete comparM must be minimize. The expansion approach 
described previously tends to generate smaller numbers of intermrfiate cut sets, minimizing the amount 
of time spent on absorption. 

5.21 Data Storage Considerations 

Given ttie tmk to be performed in solving a fault tree, an optimal format for storage and retrieval 
of ttie intermrfiate cut set data must be determined. Two obvious methods were considerol in IRRAS. 
First, since a large amount of time can be spent in the determination of sete to be absorbed, one option 
is to store the intermediate data in a format that can be directly used by the absorption routine. This 
format would be an array of bit vectors with each row of the array representing an event and each column 
r^resenting a cut set. TMs format was used in the first version of IRRAS and worked well for small 
problems because the bit vector arrays could be easily contained in the computer's fast memory. As 
problem size increased and it became necessary to shift these arrays to disk, this method of storage 
became difficult to manage efficiently. 

The second alternative is to store the cut sete as an array of numbers representing the evente in 
each cut set. The first number is a count repr«enting the number of evente in ttie cut set. This number 
would be foUowrf by a probability value, a size value, and a list of numbers repr«enting the gates or 
evente contained in ttie cut srt. The list is terminated by a zero count number. This format is the one 
usrf in the current version of IRRAS. It is simple and easy to store and retrieve from intermrfiate 
storage. The process of gate expansion is also easily handled with ttiis format. When absorption is 
performai, IRRAS creat« the array of bit vectors. As problem size increasK, this format has proven 
to be much more flexible and easy to manage tiian the first. 

5.22 Sequence Cut Set Generation 

Anoflier area that must be considered when developing a risk assessment code is the accident 
sequence analysis. Accident sequences are defined in IRRAS by developing event trea. IRRAS provide 
a graphical rfitor to use in developing event tre«. Figure 19 shows an example of an event tree 
develop^ in IRRAS. Once the user has develop^ the event tree, IRRAS automatically generates the 
sequence logic fi-om the graphical event tree. The sequence logic is the list of systems ttiat succeai or 
fail during this accident sequence. Th«e system failures and successes are top evente of fault trees. This 
logic is used by IRRAS to generate tiie cut sete for the sequence. 

There are two metiiods that can be used to generate sequence cut sete. First, the cut sets generated 
by solving the system fault tr«s can be used as input to the accident sequence algorithm. This method 
simply combines the cut sets for each system as defined by the sequence logic. The second method is 

December 1992 47 NUREG/CR-5964 



Determination of Cut Sete 

P 
S § § H n H H 

o o o o 
o o o O 

^ 
< 

-4 N CT ' t « « r« 

s 

c 
> 

Figyre 19. IRRAS event tree 
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to create a fault tree for a sequence by combining the fault trees corresponding to system failures and 
succases for Ae sequence. H e fault tree rrfuction algorithms can then be used to solve the accident 
sequence. IRRAS allows the user to select eitiier method, but only the latter method will be discussrf 
here. 

In IREAS, accident sequenca are defined using an event tree to indicate the failure or success 
of top evente. Each top event in the event tree is associated with a system fault tree. To solve the 
accident sequence, IRRAS constructe a fault tree for tiiose systeim that are defined to be failed in the 
sequence logic by creating a dummy AND gate with these systems as inpute. In Figure 19, the accident 
sequence logic for sequence 9 is 

LOSP * /EPS * AFW * /HPI * /PRV * CCS * LPR 

Therefore, IRRAS creates the following failed systems fault tree 

FAILED AND AFW CCS LPR 
AFW TRAN 
CCS TRAN 
LPR TRAN 

where AFW, CCS, and LPR represent the fault tree logic for Auxiliary Feedwater System, Containment 
Spray System, and Low Pr«sure Recirculation system, r«pectively, and TRAN denotes a transfer to the 
system fault tree. 

IRRAS then solves Ms fault tree using tiie specified truncation values. This process resulte in 
a list of cut sete for flie failed systems in the accident sequence. IRRAS then uses the "cut set matching" 
technique to farther rrfuce this list of failed-system cut sete. This technique uses the cut sete determinai 
from solving ttie success&l-system fault trees in tiie accident sequence logic to eliminate cut sete from 
tfie list of faiW-system cut sete. To do this, IIRAS first scans iie list of failed-system cut sete and 
assigns a value of FALSE to any basic event tiiat does not appear in this list. Once this is done, the fault 
tree repr«enting the successfiil systenK in the accident sequence logic is constructed, pruned by the house 
evente, and solvrf. H e successM systems fault tree for accident sequence 9 is 

SUCCESS OR RPS HPI PRV 
RPS TRAN 
HPI TRAN 
PRV TRAN 

where RPS, HPI, and PRV represent the fault tree logic for the Reactor Protection System, High Prwsure 
Injection system, and the PrMsure Relief Valves, respectively. This fault tree models failure of the RPS 
system, the HPI system, or the PRV system. The top event of the tree does not occur as part of accident 
sequence 9, That is, none of the cut sets in the tree occur. 

The minimal cut sete for the sequence remain after the successM-system cut sete are deleted. 
TTiere are a couple of pointe to note in ttiis process. First, each sequence has an initiating event 
frequency associated witfi it. If tiie user specifies a probability truncation value, IRRAS divides tfiis value 
by the initiating event frequency. This eliminates tiie need to handle the initiating event during die fault 
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tree reduction phase. Second, during the processing of an accident sequence, certain piec« of equipment 
or trains of a system may nerf to be either falM or ignored. IRIAS allows the user to specify a srt of 
house event flags to be associatal with a particular sequence. These flags allow the Bser to automatically 
prune the fault tree logic before it is solvrf by setting basic evente to house evente and rrfucing as 
described in Section 5.7. The result is a fault tree with the specified componente in the specific state 
required by the sequence. 
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6. QUANTIFICATION TOOLS FOR PROBABILITIES AND FREQUENCIES 

This section provide an overview of fault tree and accident sequence quantification using minimal 
cut sete. Vesely et al. (1981) and Fussell (1975) contain additional drtails and references for the 
Interested reader. The section is written in terms of failure probabilities, but is also correct if the term 
"probability" or "failure probability" is replacrf everywhere by "unavailability." 

6 J Quantifying Minimal Cut Sets 

The individual cut set probabilities are determined by multiplying the probabiliti« of the 
applicable basic events. 

where 

C, = probability of cut set I, and 

q^ - probability of the fc-th basic event in the ith cut set. 

This follows from Equation (4-8) and the assumed statistical independence of the basic evente. 

6.2 Qoantifylng Faolt Trees 

The fault tree quantification process is performed in two steps: (1) calculation of individual cut 
set probabilities, which was describe above in Section 6.1, and (2) combining tiie cut set probabiliti«. 
The exact probability of the union of the cut sete can be found, in principle, by Equation (4-6), where 
each Ai is a cut set. This is normally much too cumbersome. Therefore, two approximatiom are often 
us«i, the rare event approximation and the minimal cut set upper bound. Each of t i«e approaches will 
be discussed below. Examples are calculated in Sections A4 and A5 of Appendix A. 

6.2 J Rare Event Approximation 

A common approach to calculate tiie probability for a top event is to add together the probabilities 
for the cut sete, where the cut set probability is given by Equation (6-1). Thus, the rare event 
approximation is 

S = ^C. . (^2) 

His approximation is a good approximation when Ae cut set probabilities are small. In screening 
analysM, when relatively large screening values are usrf to bound the component failure probabiliti«, 
tiie rare event approximation can excerf 1. 
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6.2.2 Minimal Cut Set Upper Bound 

TTie minimal cut srt upper tound calculation is an approximation to the probability of the union 
of the minimal cut sete for the fault tree. The equation for the minimal cut set upper bound is 

S = 1-5(1-Q (^3) 

where 

S = minimal cut set upper bound for ttie system unavailability, 

Q = probability of tiie Itii cut set, and 

m = number of minimal cut sete in the fault tree. 

The minimal cut set upper bound is always tes than or equal to 1. The input values for the 
minimal cut set upper bound are probabilities. Barlow and Proschan (1981) show that Equation (6-3) 
gives an upper bound on the exact probability of the top event. 

The minimal cut set upper bound works well with fault trees containing only AND and OR gates 
without complemented evente or NOT gates. Witti noncoherent fault trees, that is, Uoes tfiat contain NOT 
gates and/or complemented evente, the minimal cut set upper bound can produce resulte tiiat are overly 
conservative. The magnitude of tiie overwtimation will depend upon the structure of the tree. In such 
cases, other calculational technique should be used such as the SIGPI algorltiim (Patenaude 1987). In 
most cases, the minimal cut set upper bound will produce reliable resulte. 

Warning: When Cj is very small (on tiie order of lE-15), 1 - Q is roundai off to LO. If tills 
happens for most or all of tiie Q's, tiie product in Equation (6-3) will be too large, and the bound 
S will be too small. Although S is an upper bound in theory, in practice it is not compute to 
sufficient accuracy when the Q's are extremely small. In such a case the rare event 
approximation, given by Equation (6-2), is better. 

6.3 Quantifying Sequences 

An accident sequence begins with an initiating event, which has a frequency/. The unite of the 
frequency are 1/time, and there is no theoretical upper bound on ite possible value. TTiis distinguishes 
a frequency from a probability, which is unitless and bounded by 1.0. 

After the initiating event, various systems in the plant are suppose to fimction in sequence. 
Depending on whether they function or not, the sequence can proceed to different possible plant states. 
Consider one of tiiese systems. Given the assumrf initiating event and the SUCCMS or failure of the 
systems that were invoM earlier in the sequence, tiie probability of the system's failure is quantifirt by 
a fault tree for the system. For each such sequence of interest, IRRAS constructe and simplifia the fault 
tree for the entire sequence, by combining the fault trees for the faiM systems and the negation of the 
fault trees for the successM systems, as described in Section 5.22. 
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Let S be the probability of ttie sequence fault tree, evaluate using the minimal cut set upper 
bound or the rare event ^proximation. Then, the frequency of tiie sequence is the product^. In this 
way, sequence frequencia are found. 
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7. EVENT PROBABILITY CALCULATION TYPES 

The calculation type specific the method to be used to calculate Ae basic event probability. 
Thirteen types are available in IRIAS, and tiiey are summarized in Table 1. The resulting probability 
for TypM 1 tiirough 7 will be the mean used in the uncertainty analysis d«cribrf in Section 9. Typ« 
2, 4, and 6 are approximation of the exact formulas given by Types 3, 5, and 7. 

Table 1. IRRAS calculation types 

Ijm Calculation Method 

1 Probability 
2 Lambda * Mission Time 
3 1 - Exp(-Lambda * Mission Time) 
4 Lambda * Min(Mission Time, Tau) 
5 Operating Component with Repair (Full Eq) 
6 Lambda * Tau / 2.0 
7 1 + (Exp(-Lambda*Tau)-1.0) / (Lambda * Tau) 
8 Base Probability + Probability 
9 Base Probability * Probability 
T Set to House Event (Failed, Prob =1.0) 
F Set to House Event (Succ«sfiil, Prob=0.0) 
I Ignore this Event (Remove it from logic) 
S Set to System Min Cut Upper Bound 

A description of each calculation type follows. 

Calculation Type 1 takes the number specific by the user in the Probability field M tiie bmic 
event failure probability. This is the type used for demand probabilities. 

Calculation Type 2 uses the number provided for X as the basic event failure rate per hour and 
multiplies it by the basic event mission time expr^sed in hours. If the basic event mission type, 
expr«sed in hours, is not input then the global or system mission time is usrf. The global 
mission time is set by the user in the Utility Options module (Define Constante) or tiie Fault Tree 
Analysis or Analyze Sequences module. A default mission time of 24 hours is provide by 
IRRAS until it is changrf by the user. TTiis calculation is ttie rare event approximation to the 
actual failure probability for an operating component without repair during the mission time. 
This approximation is relatively good for failure probabiliti« less than 0.1. 

Calculation Type 3 uses tfie actual equation for failure probability for an operating component 
without repair, 

q=l-e -x< 
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where 

q = failure probability of the basic event, 

X = failure rate per hour, input as X, and 

t = mission time express^ in hours. 

Calculation Type 4 Is a rare event approximation for tiie failure of an operating component witti 
repair. The approximation is X times T. It uses X as the per hour failure rate and T as a 
user-specifi«l time to r^air in hours. If the mission time I is less tiian r, then \*t is a better 
approximation of ttie event probability; therefore, IRRAS uses X times the minimum of r and 
mission time. 

Calculation Type 5 is ttie actual equation for the failure probability of an operating component 
with repair. The equation Is 

q = . ^ ( l ^ e ^ ) 
1-<-XT 

where 

q = failure probability of the b^ic event, 

X = failure rate per hour, input as X, 

t = mission time expressed in hours, input as a default, and 

T = average time to repair express^ in hours, input as T. 

Calculation Type 6 Is tiie rare event approximation for ttie failure probability of a standby 
component witti a surveillance t « interval. The equation used is 

a = — 
^ 2 

where 

q = failure probability of ttie basic event, 

X = standby failure rate per hour, input M X, and 

T = surveillance tot interval in hours, input as r. 

Calculation Type 7 is the actual equation for the failure probability of a standby component with 
a surveillance test interval. The equation is 
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q = 1*1 i 
^ xr 

where 

q = failure probability of the basic event, 

X = standby failure rate per hour, input as X, and 

r = surveillance test interval in hours, input as T. 

Calculation Types 8 and 9 are usrf for sensitivity analyses. Type 8 allows the user to specify 
a current c^e probability that differs from the base case by an exact amount. The amount to 
change the base case probability by is entered in the probability field. Type 9 lete the user create 
a current case probability that is a specified percentage of tfie base case. The percentage is 
enterrf in the probability field. 

Calculation Types T. F. and I are usrf to set basic evente to house evente. Calculation Type T 
turns the basic event into a house event that always occurs (probability 1.0). Type F turm the 
basic event into a house event that never occurs probability 0.0). If the event stata that a 
component fails, T forces ttie component to fail while F forces it to succerf. Type I indicates 
that the basic event is to be treats as if it did not exist in tie logic for the fault tree. Setting an 
event to a house event actually changes the logic of ttie fault tree, pruning appropriate branches 
and evente from the fault tree. Therefore, tiie flags on the affectrf fault trees will indicate a n e ^ 
to generate new cut sete rather than just requantifying existing cut sete. See Section 5.7 for 
details on tie processing of house evente. 

Calculation Type S indicates fliat flie probability of the basic event is to be determine by finding 
a system with ttie same name as the hm.c event. Then, use the minimal cut set upper bound for 
this system as the failure probability for the basic event. 

IRRAS will accept numbers in scientific or decimal format. For example, LE-4 and 0 . ^ 1 are 
both valid inpute. 

NOTE: When using the short-hand scientific notation, a decimal point must precaie ttie 
"E", ttius lE-2 will not be accept^ but l.E-2 or l.OE-2 will. IRRAS will accept 
an upper-case E or a lower-case e. Also, note that l.OE-020 is not the same as 
l.OE-02. This has caused con&sion in the past. 
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8. IMPORTANCE MEASURES 

8.1 Types of Importance Measures 

IIMAS calculata seven different bKic event importance measur«. These are the Fussell-Vesely 
Importance, risk rrfuction ratio, risk increase ratio, Bimbaum or first derivative importance, risk 
rrfuction difference, risk increase difference, and tfie structural importance. These importance measura 
are calculate for each bwic event for iie respective fault tree or accident sequence. 

The ratio importance measurra are dimensionlas and consider only relative changes. H e 
difference definition account for the actual risk levels lliat exist and are more appropriate when actual 
risk levels are of concern, such as comparisons or prioritizations across different plante. For purely 
relative evaluations, such as prioritizations within a plant, Ae ratios sometime give more graphic resulte. 

The main importance mcMures are 

• Fussell-Vesely importance, an indication of the percentage of tiie minimal cut set upper bound 
contributed by the cut sete containing the basic event 

• Risk rrfuction. an indication of how much the minimal cut set upper bound would decre»e 
if the basic event never occurred (typically, if the corresponding component never faiW) 

• Risk increase, an indiotion of how much the minimal cut set upper bound would go up if the 
basic event always occurrrf (typically, if ttie corresponding component always faiM) 

• Structural importance, the number of cut sete that contain ttie basic event. 

In IRRAS, the BMIC Event Importance display liste the basic event name, ite failure probability, 
the number of cut sete in which the bmic event occurs, and ttiree of ttie six importance measures. The 
user can choose to display either ratios or differences by setting a user constant. If the user selecte ratios 
tiien the Fussell-Vaely importance, risk reduction ratio, and risk increase ratio are displayed together. 
Otherwise, tiie Bimbaum importance, risk reduction difference, and risk increase difference are displayed 
together. The list can be sortrf on any column in the display. 

The exposition below is written in terms of fault trees and event probabilities. However, IRRAS 
also can calculate importance for evente in sequences. Recall that a sequence is simply a fault tree 
precwied by an initiating event with frequency/ where/has unite 1/time. The frequency of any event 
in the fault tree is/times the probability of the event. Therefore, the ratio importances are unchanged 
whether the event is part of a fault tree or a sequence. A difference importance for an event in a 
sequence is / times the importance of the event in the fault tree. The maximum possible value of a 
difference importance is 1.0 if the event is in a fault tree and/if the event is in a sequence. This 
alternative formulation is indicate below by phrases in parenthraes. 

8.2 Calculational Details 

This section contains the calculational definition of the Importance measures. Examples are given 
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in Section A6 of Appendix A. Both the ratio and Ae difference are discuss^ in Ae appropriate swtlons. 
For the basic event under consideration, several notations are used repotrfly. 

F(x) — minimal cut set upper bound (sequence frequency) evaluated with fte basic event 
probability at its mean value. 

F(0) = minimal cut set upper bound (sequence frequency) evaluate with flie basic event 
probability set to zero. 

F(l) = minimal cut set upper bound (sequence frequency) evaluate with the basic event 
failure probability set to 1.0. 

8.2 J Fussell-Veself Importance 

The Fussell-V«ely importance is an indication of the fraction of tiie minimal cut set upper bound 
(or sequence frequency) that involves the cut sets containing the basic event of concern. It is calculate 
by finding flie minimal cut set upper bound of those cut sete containing the basic event of concern and 
dividing it by the minimal cut set upper bound of the top event (or of the sequence). In IRRAS, this 
calculation is perform^ by determining the minimal cut set upper bound (sequence frequency) with Ae 
basic event failure probability at its mean value and again witfi the basic event failure probability set to 
zero. The difference between t i a e two results is dividrf by flie hwe minimal cut set upper bound to 
obtain the Fussell-Vesely importance. In equation form^ flie Fussell-Vesely importance FV is 

FV = [Fix) - F(0)]/F(x) . 

8.2.2 Risk Reduction 

The risk reduction importance measure is an indication of how much the r«ults would be raiuced 
if Ae specific event probability equalrf zero, normally corresponding to a totally reliable piece of 
equipment. The risk rrfuction ratio is determine by evaluating the fault tree minimal cut set upper 
bound (or tie sequence frequency) with the b»ic event probability set to ite true value and dividing it by 
the minimal cut set upper bound (sequence frequency) calculate with the basic event probability set to 
zero. In equation form, the risk reduction ratio RRR is 

Sm = Fix)iF(Q) . 

The risk reduction difference indicates the same characteristic as iie ratio, but it reflects flie actual 
minimal cut set upper bound (sequence frequency) levels instead of a ratio. This is the amount by which 
the failure probability or sequence frequency would be rrfuced if the basic event never faiM. 

The risk r^uction difference (RID) is calculate by taking the difference between the mean value and 
the fimction evaluated at 0. In equation form, the risk reduction difference MRD is 
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SSD = F{x) - F(0) . 

8.2.3 Risk increase 

The risk incre^e ratio is an indication of how much the top event probability (frequency) would 
go up if the specific event had probability equal to 1.0, normally corresponding to totally unreliable 
equipment. The risk increase ratio is determined by evaluating the minimal cut set upper bound 
(sequence frequency) with the basic event probability set to 1.0 and dividing it by the minimal cut set 
upper bound evaluate with the basic event probability set to its true value. In equation form, flie risk 
increase ratio MR is 

MIR = F(l)iF(x} . 

The risk increase difference MID is calculate by taking the difference between the fimction evaluatol at 
1.0 and the nominal value. In equation form, flie risk increase difference WD is 

RID = F(l) - F(x) . 

8.2.4 Birnbaum importance 

The Birnbaum importance measure is calculate in place of the Fussell-V«ely importance 
measure when differenc« are select^ instead of ratios. The Bimbaum importance is an indication of 
the sensitivity of the minimal cut set upper bound (or sequence frequency) with respect to flie bMic event 
of concern. It is calculated by determining flie minimal cut set upper bound (or sequence frequency) with 
the basic event probability of concern set to 1.0 and again with flie basic event probability set to 0.0. 
The difference between thrae two values is the Birnbaum importance. In equation form, tie Bimbaum 
importance B is 

B = F{1) " F(Q) . 
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9. UNCERTAINTY AND MONTE CARLO 

The uncertainty analysis allows the user to calculate the uncertainty in the top event probability 
resulting from uncertainties in the basic event probabilities. To use fliis option, die user must have 
previously loaded or generatoi flie cut sets and loadrf the component reliability information and 
distribution data. Bohn et al. (1988) contains an excellent discussion of uncertainty analysis. A very 
brief overview is given here, with elaborations in the subsequent sections. 

In an uncertainty analysis, IRRAS already has the top event expr«sed in terms of minimal cut 
sets, either generate earlier or loadrf from some other source. These cut sets depend on many basic 
evente, each of which has a probability described in terms of some parameter(s). For definiteness in this 
explanation, suppose that a basic event probability depends on the parameter X. The value of X for Mch 
basic event is not known exactly, but is estimated bMrf on data or on expert opinion. The uncertainty 
in X is quantified by a probability distribution: the mean of the distribution is the b«t estimate of X, and 
ttie dispersion of the distribution measures the uncertainty in X, with a large or small dispersion reflecting 
large or small uncertainty, respectively, in tie true value of X. This distribution is tie uncertainty 
disiribuiion of X. 

For all lie b^ic evente, IRRAS randomly samples the parameters from their uncertainty 
distributions, and us« these parameter values to calculate the probability of the top event. IWs sampling 
and calculation are repeated many times, and the uncertainty distribution for flie probability of flie top 
event is thus found empirically. The mean of the distribution is the best estimate of the probability of 
the top event, and the dispersion quantifies the uncertainty in this probability. For an accident sequence 
the process is the same, except the sequence fault tree is preceded by an initiating event, whose frequency 
is also quantified by an uncertainty distribution. The term Monte Carlo is used to describe this analysis 
by repeated random sampling. Two kinds of Monte Carlo sampling are simple Monte Carlo sampling 
and Latin Hypercube sampling; fliey are described and compared in Sectiom 9.6 tfirough 9,8. 

9.1 Basic Uncertainty Output 

The Monte Carlo procedure computes flie probability distribution of a fault tree top event or 
accident sequence using the assigned probability distributions for rach basic event contain^ in the 
minimal cut sets. By using the probability distributions for the hask events, the uncertainty in die system 
unavailability can be calculate. 

The first step ia the process of computing tfie uncertainty in the minimal cut set upper bound is 
to provide a me^ure of the uncertainty for each basic event containM in ttie minimal cut sets. IRRAS 
then computes flie minimal cut set upper bound for a set of random samples from tie uncertainty 
distributions of the basic events. After calculating flie minimal cut set upper bound, IRRAS comput« 
tie first four moments of the distribution and the 5th, 5(Mi, mean, and 95tfi percentile values. 

The moments are calculated as a basis for comparison of the calculated distribution with other 
distributions (McGratii and Irving 1975). From flie first four moments, the sample mean, sample 
variance, coefficient of skewness, and coefficient of kurtosis can be calculated. To «tablish some 
standard notation, the following symbols are used: 
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n = the number of samples calculatai. 

Xi — ith data value for i = 1, 2, 3, ... n. 

The sample mon, given m x, can be defined as 

and the sample variance, given m, 

" X 

1 n 

2 A (xrW 

The k-th sample moment about the mean is next defined in general as 

m. = J — . 
* ^ «-l 

Thus, from tfie third moment, the coefficient of skewness, jS/'^, is 

and from the fourth moment, the coefficient of kurtosis, jSj, is 

where s = the square root of / . 

Tie coefficient of skewness and the coefficient of kurtosis are generally used as measures for 
comparison with flie normal distribution. If the skewness is close to zero while the kurtosis is 
approximately three, the normal distribution is a good approximation. A zero skewness value indicates 
a symmetric distribution; a negative skewness indicate a long left tail, while a positive value indicates 
a long right tail. If the kurtosis is greater than three, the distribution is more peaked than the normal 
distribution, and hm more weight in the tails. However, if the value is less than three, the distribution 
is iatter than the normal, and has less weight in the tails. 

9.2 Uncertainty Analysis Input Data 

From the Failure Data area, we moval to the Uncertainty Data area using the arrow keys or the 
tab key. The fields in this area that can be accessed from this menu are the current case distribution type, 
a distribution parameter value, and a correlation class. 
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Currently, IRRAS supports lognormal, normal, beta, gamma, chi-squared, exponential, uniform, 
and histogram distributions for the Monte Carlo uncertainty analyses. The default distribution type is the 
lognormal. 

Most distributions can be defined witii two statistical parameters, alfliough some take more. Tie 
first parameter is the mean failure probability and the second parameter is specific to flie particular 
uncertainty distribution. The mean failure probability is calculated from the data input in the Failure Data 
area just discussed. For more clarity, IRRAS allows the user to input the parameters of the distribution 
direcfly. It will check them for consistency with tfie mean. 

Correlation classes, as explained in Section 9.5, are used to identify basic events whose failure 
data are derived from the same data source. This information is us«l in the uncertainty analysis. 
Correlation classes consist of four upper-case values. A blank correlation class indicates that fliere are 
no data dependencies. When running the uncertainty analyses, the same sample value will be u s ^ for 
all basic events with tie same correlation ctes. 

NOTE; The user must set up a correlation class numbering scheme for flie basic events 
in the data base. For example, correlation ctes 1 may be assign^ to 
motor-driven pumps fail to start, correlation ctes 2 to motor-driven pumps fail 
to continue to run, correlation class 3 to check valves fail to close, and so on. 
Currently, this scheme is not saved within IRRAS but may be include in the 
fiiture. 

IRRAS provides more sophisticated ways of entering failure and uncertainty data that reduce the 
amount of data input require and ensure consistency among like b^ic events. These technique are 
discussed in the IRRAS Reference Manual (Russell et al. 1992a). 

9.3 Supported Continuous Distributions 

At tie present time, flie following uncertainty distributions are supported: lognormal, normal, 
beta, gamma, chi-squarrf, exponential, uniform, and histogram. The histogram distribution requires 
detailed information to be fiilly specified. Each of flie other distributions is d«cribed by its mean and 
typically one additional parameter. Table 2 summarizes this information for each of the support^ 
distributions except for lie histogram distribution, wbich is explained separately in Section 9.4. The 
distributions in Table 2 are described in Sections 9.3.1 flirough 9.3.7. More detail about these 
distributions can be found in Mood et al. (1974) and Hahn and Shapiro (1967). 

One method for generating random numbers, calM the inverse c.d.f. method, is usrf for several 
distributions below, and therefore is describoi here. Let X denote a random variable, let x denote a 
number, and let F denote the cumulative distribution fimction (c.d.f.) of X. It follows directly from flie 
definition 

Fix) = PiX ^ X) 

fliat F(X) is a uniformly distributed random variable between 0 and 1. Therefore, generate U from a 

uniform distribution between 0 and 1, and solve F(I) = U for X = F'\U). 
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TaWe 2. Uncertainty distributions 

Distribution 

lognormal 
normal 
beta 
gamma 
chi-squaroi 
exponential 
uniform 

Cede 

L 
N 
B 
G 
C 
E 
U 

Parameter 

95% error factor 
standard deviation 
b in beta(a, b) 
r in gamma(r) 
degrees of freedom 

-
upper end point 

For example, if X is exponentially distributa! wifli mean n, the c.d.f. is 

F{x) = I - e""'' . 

Therefore, to generate an exponentially distributed random variable X, generate a uniformly distributed 

random variable U and let X = F~\U) = - | i l i i( l-I^. Actually ln(U) can be used instead of In(l-O), 
because if U is uniformly distributed between 0 and 1, then so is l-U. 

The inverse c.d.f. mefliod is only one of many methods of generating random numbers from a 
specified distribution. For some distributions it is natural and f«t, and for oflier distributions a different 
method may be quicker. If the inverse c.d.f is hard to compute, for example if it must be found at any 
point by numerical iteration on the (non-inverse) c.d.f., then the inverse c.d.f. method is not a fast way 
to generate random numbers. 

There is one application where the inverse c.d.f. method is very natural. This is in Latin 
Hypercube Sampling (LHS), where stratified portions of the distribution must be sampled. For example, 
if 20 points are to be sampW, one point must be below the 5th percentile, one must be between the 5A 
and the 10th percentiles, one between the lOfli and iSth, and so forth. It is easy to sample in this way 
from a uniform distribution: For example, to sample a uniform (0, 1) distribution between its 10th and 
15fli percentite, we must sample it and obtain a number between 0.10 and 0.15. Do this by letting U 
be uniform between 0 and 1. Then let F equal 0.10 + O.OSU, which is between 0.10 and 0.15. Then 

X = F'\Y) is between the 10th and 15th percentiles of F, as required. For fliis reason, all Latin 
Hypercube samples are generatoi in IRRAS using the inverse c.d.f. method. 

9.3.1 Lognormal Distribution 

X has a lognormal distribution if InZhas a normal distribution. The parameters usal in IRRAS 
to d«cribe the lognormal distribution are the mean of the lognormal distribution and the upper 95% error 
factor. Tie mean value of the lognormal distribution, m, can be expressed as: 
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, . ^ (M) 
m = e ^ 

where n is the mean and a is tie standard deviation of the underlying normal distribution. Likewise, flie 
95% error factor ief) for tie lognormal distribution is given by 

ef = gtms. (9-2) 

where 1.645 is the 95ti percentile of the standard normal distribution. The density of the lognormal 
distribution is 

Ax) = -~l=e-««)-rf^'* 

for X > 0. 

In IRRAS, a random variable X is sampled from the lognormal distribution as follows. Equations 
(9-1) and (9-2) are first solved for n and a. A random variable Fis generate from a norma! distribution 
wifli mean n and standard deviation o, as explained in Section 9.3.2. Then X is definrf as X = exp(l). 
This is the procedure for simple Monte Carlo sampling and for Latin Hypercube sampling. 

9.3.2 Normal Distribution 

Tie additional parameter to describe the normal distribution in IRRAS is the standard deviation 
of the distribution, o. H e density fimction is given by 

where - w < x < + » . 

IRRAS uses the Marsaglia-Bray algoriflim, described on p. 203 of KennMy and Gentle (1980), 
to generate a normal(0, 1) random variable Z. Then X, a normal random variable witii mean n and 
standard deviation a, is definrf as X = |i + oZ. 

For LHS sampling from a normal distribution, the inverse c.d.f, mefliod is usai, wifli the inverse 

of flie normal c.d.f. p-XU) computed as follows. For 0.1 ^ U ^ 0.9, F'^ is found by die algoriflim 

of Beasley and Springer (1977). For C/ < 0.1 or C/ > 0.9, P'^ is approximated by Algoriflim 5.10.1 
of Thisted (1988), due to Wichura. The approximation is then refined by one application of Equation 
(5.9.2) of Tiisted. 
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9.3.3 Beta Distribution 

The parameters of tie beta distribution are a and b. The probability density fimction is given by 

for 0 < X < 1, where B(a,ft) is tiie beta fanction. In IRRAS, flie value in flie uncertainty distribution 
is b. The parameter a is calculate from the mean value by the formula 

a = n * biil-n) 

where n = alia+b) is the mean of the Beta distribution. Note tiiat tie mean of the Beta distribution is 
between 0 and 1. 

IRRAS generates a beta random variable using the fact that if X is x^(2a) and F is xX^b) and X 
and F are independent tfien X/(X -F f) has a beta(a, b) distribution. See Section 24.2 of Johnson and 
Kotz (1970). 

For LHS sampling, the inverse c.d.f. method is used, with flie inverse of the c.d.f. computai by 
numerical iteration (with the method of false position) on the beta c.d.f. The beta c.d.f. is evaluated 
using flie BETAI fimction of Press et al. (1986). Note, this way of generating flie LHS sample is not 
fast, and simple Monte Carlo sampling wifli a larger sample may be more efficient than LHS sampling 
when many beta distributions must be sampled. Comparative tests have not been run. 

9.3.4 Gamma Distribution 

The parameters of the Gamma distribution are X and r. The probability density function is given 
by 

J{x) = ^x'-'e-^ 
Tir) 

for X > 0, where T(r) is the Gamma fimction. In IRRAS, the value in the uncertainty distribution is r. 
The parameter X is calculate from the mean value by the formula X = rin, since the mean is /x = r/X. 

IRRAS generates a gamma random variable in two stages. First it generates a random variable 
F from a gamma distribution with the desired r and with X = 1. A rather inefficient algorithm is now 
used, which will be changal in the next rele^e of IRRAS, and described in the next revision of this 
report. Once Fhas been generated, the gamma random variable with parameter r and witii the desired 
mean n is defined as X = F/X, with X = r!ii. 

For LHS sampling, IRRAS uses the fact that the gamma and the chi-squaral distributions are 
different parameterizations of the same distribution. IRRAS us« the inverse c.d.f. mefliod described in 
Section 9.3.5 to generate LHS sampte from a gamma distribution. 
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9.3.5 Chl-Squared Distribution 

The chi-squarrf distribution is directly related to the gamma distribution, as follows. Let X have 
a gamma(X, r) distribution. Tbm 2XXhas a chi-squared distribution witti 2r degrees of freedom, denotrf 
X (̂2r). For this re»on, the chi-squared distribution is an option in IRRAS only as a convenience to flie 
user. Anything that requires a chi-squared distribution can be accomplisirf using a gamma distribution. 

The mean of a xXk) distribution equals *: and the variance equals 2fc, for degrees of freedom k 
> 0. Note that tie mean of a chi-squared distribution determine the variance. Tiis is not flexible 
enough for most uncertainty analyses. Tierefore, when IRRAS is askrf for a chi-squaroi random 
variable with k degre« of frerfom and mean fi, it generates a multiple of a chi-squared random variable, 
F = aX, where X is x\^) and a = nik. This rraults in a random variable with mean n and variance 
lii^ik. Exactly the same distribution would be obtained by specifying a gamma distribution with mean 
H and r = k/2. 

IRRAS generates the chi-squared random variable X by the inverse c.d.f method dMcribrf at tie 
begiraiing of Section 8.3. The inverse fanction is found with a refinement of tiie Wilson-Hilferty 
approximation. (See Section 5.10.2 and Eq. 5.9.2 of Thisted 1988.) Tiis mefliod may fail in flie left 
tail for small degrees of freedom. In that case, tiie inverse is found by numerical iteration (the method 
of false position) on F, with F evaluated by the Peizer-Pratt approximation (Section 5.10.2 of IMsted 
1988). IRRAS flien multipte X by n/k, where ^ is the desirrf mean and k is the number of degrees of 
freedom. This inverse c.d.f. method is used for both simple Monte Carlo and LHS samples. 

9.3.6 Exponential Distribution 

The exponential distribution is commonly usrf for modeling a time to failure, but it is not very 
useful for modeling uncertaintiw, and may some day be dropped as an option in this part of IRRAS. One 
reason for its use in modeling failures and its disuse in modeling uncertaintl« is that it has only one 
parameter. Therefore the mean determines the variance. The exponential density is 

where the parameter X and the mean n are related by /t = 1/X. Note fliat the exponential density is a 
special c^e of the gamma density, with the gamma parameter r = 1. Alternatively, if Fis x^(2), flien 
X = F/(2X) has a gamma distribution with r — I and mean p, = 1/X, i.e. an exponential(X) distribution. 
Therefore, anything that can be simulated with an exponential distribution can also be simulatal with a 
gamma or chi-squared distribution. 

An exponential(X) random variable is generated by the inverse c.d.f. mefliod, as explained at flie 
beginning of Section 9.3. Tiis mefliod is recommendal in Section 6.5.2 of Kennedy and Gertie (1980) 
for the gamma distribution with r = 1. 
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9.3.7 Uniform Distribution 

The mean of this distribution is M = (a+6)/2. The value in the uncertainty distribution in 
IRRAS is ft, tie rigit (upper) endpoint of ttie distribution. The value for a is calculated by the equation 
a = 2*M - b. The density fanction for this distribution is 

h-a 

for a ^ X ^ b. 

IRRAS generate a uniformly distributed random number using the prime modulus multiplicative 
linear congruential generator advocated by Park and Miller (1988). TTie modulus m is 2''-l = 
2,147,483,647 and tfie multiplier is 16807. This generates a sequence of w - 1 distinct integers before 
repeating, in an order that appears random. To obtain real numbers between 0 and 1, the integer 
obtainai in this way is divided by m. 

Having generated a random variable F uniform between 0 and 1, IRRAS obtains a random 
number uniform between a and 6 as X = a + (b-a)Y. This is used for both simple Monte Carlo 
sampling and for LHS sampling. 

9.4 Histograms 

IRRAS allows for either a discrete or a continuous distribution under this option. The modeled 
quantity is a probability Xl or Xr, or a frequency^ o r^ r . When the PERCENT option is selected, the 
distribution is discrete on up to 20 values; the percents, giving the degree of belief for each value, must 
sum to ITO. If ttie RANGE or AREA option is selected, the density is a step fanction covering up to 20 
adjacent intervals. The fanction is constant within each interval, and the area under the entire fanction 
must equal 1.0. 

9.5 Correlation Classes 

The practice of using the same uncertainty distribution for a group of similar components has 
been common since ttie Reactor Safety Study (NRC 1975). The PRA Procedures Guide (Hickman 1983) 
recommends this practice m well. Philosophical arguments have been given to support tfiis practice or 
usrf to give it credence. Apostolakis and Kaplan (1981) discuss this issue from a Bayesian perspective, 
and they call it a "lack of knowWge" dependency. However, this dependency is broader than just a lack 
of knowledge. It is present whenever the same data set is used for several componente. It is not a 
Bayesian or classical statistical phenomenon, but it is induced because of the way lie data are usrf. 

For example, suppose that a plant has two motor-driven AFW pumps. These pumps are virtually 
identical, and therefore are modeled as having the same unavailability, q. The uncertainty distribution 
for q is taken from some data base, and describes our best belief about the true value of q. Because the 
two components have uncertainty distributions taken from tie same source, if our estimate of q is too 
high (say) for one pump, it will be also be too high for the other pump, by the same amount. Similarly, 
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if our estimate is too low for one, it will be too low for the ottier by the same amount. TTie uncertainty 
distributions for flie two unavailabilities are perfectly correlate. 

This correlation of flie uncertainties must be distinguish^ from flie independence of die basic 
evente. The two basic events (failures of the pumps to be available) are independent; tiiat is, the 
probability that one pump is unavailable is some number q, unaffectrf by whether Ae other pump is 
available or not. However, our uncertainty about tfie value of q is totally correlated for the two bMc 
events. 

The user tells IIRAS of this uncertainty correlation by putting the two b^ic evente in a single 
correlation class. When q is sampled from its uncertainty distribution, that one value of q is assignoi 
to all tie basic events in tfie correlation class. After the probability of the top event has been calculate, 
on the next Monte Carlo pass a new (presumably different) value of q is drawn from the uncertainty 
distribution, and is assign^ to all tiie b^ic events in flie class. 

Let us now examine the effect of total correlation in accident sequence analysis. Consider a 
simple example involving a cut set with two componente. Let f; and 2̂ denote tie unavailability of flie 
two componente in the cut set. If the components are independent, flien 

Q = «A <̂ "̂ ) 

is the cut set unavailability. 

As we begin the analysis, we can make one of two ^sumptions. First, we can assume that the 
unavailability of each component is estimated from independent data sources. For example, if ttie first 
basic event is failure of a pump and the second b»ic event is failure of a valve, flie probabilitiM of tti«e 
basic events will be estimated from independent sources, and therefore tfie two probabilities have 
independent uncertainty distributions. H e expectrf value and variance of Q are given by 

EiQ) = Eiq,)Eiq^) (M) 

and 

variQ) = Eiql)E{(i)-[Eiq)Eiq^] . (^5) 

These equations follow from tfie independence of tie uncertainty distributions. 

If instead, flie components are identical, then f j = f2 = €? and Equations (9-4) and (9-5) rrfuce 
to 

EiQ) = E{q)Eiq.) = [E{q)] (̂ ^6) 

and 

var(0 = [£(f2)J - [£(^)f . (9̂ 7) 
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However, when the components are identical. Equations (9-6) and (9-7) are probably not correct. TTie 
same source would prammably be used to obtain flie uncertainty distribution for both unavailabilities. 
Tierefore, any value q that is usM for one bmic event should also be usal for the ofliers. Equation (9-3) 
reduces to 

so we have 

EiQ) = Eiq^ (M) 

and 

variQ) = Eiq*) - [Eiq^^ . <̂ "̂ ) 

A standard identity from statistics says that 

Eiq^ = [Eiq)f * variq) > [Eiq)f . 

Therefore, Equation (9-8), ttie correct one, is larger than Equation (9-6), the incorrect one. This is why 
the point estimate and the mean of the uncertainty distribution are not equal in PRAs. The point estimate 
for the example cut set is the product of the basic event means, given by Equation (9-6), wlier«s the 
mean of the cut set uncertainty distribution is given by the larger value in Equation (9-8). Simiarly, the 
variance should be calculate from Equation (9-9), not Equation (9-7). In typical cases, including any 
case in which q is lognormally distributed, Equation (9-9) gives a larger value than Equation (9-7). The 
effects are most pronouncrf when the distributions are highly skewed. 

Ericson et al. (1990, page 12-8) suggeste the following steps for grouping basic evente into 
correlation classes: 

• Group all basic events by component type (e.g., MOV, AOV, MDP), 

• Within each component group, organize evente into subgroups by failure mode 
(e.g., fail-to-start, fail-to-run), 

• For time related basic events, group all events from each component failure mode 
group into sete according to the time parameter value usrf to quantify the event 
probability (e.g., 6 hours, 720 hours), and 

• For demand related failure, no farttier grouping is necessary beyond flie 
component failure model level. 

If different estimates are developrf for components witiiin the same component group (e.g., Service 
Water Motor-Driven Pump, Residual Heat Removal Motor-Driven Pump), then iiese should be treatrf 
as separate component groups. 
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9.6 Owerwiew of Simple Monte Carlo Sampling 

The Monte Carlo ^proach is the most fandamental approach to uncertainty analysis. Simple 
Monte Carlo simulation consists of making repeated quantifications of the top event value using values 
selected at random from flie uncertainty distributions of tie basic events. For each iteration of the Monte 
Carlo run, each basic event uncertainty distribution is sampled using a random number generator to select 
the failure probability of flie basic event. The top event probability or accident sequence frequency is 
calculated. When this procrfure has been repeated a predetermine number of timm, flie top event or 
accident sequence results are sorted to obtain empirical estimate of the dwiroi top event attributes such 
m tie mean, median, 5th percentile, and 95th percentile, A plot of the empirical uncertainty disttibution 
is often obtained. Figure 20 contains an example of an uncertainty distribution for an accident sequence. 
For more information about the Monte Carlo technique tie reader is referr^ to Hahn and Siapiro (1967). 
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Figure 20. Uncertainty distribution for an accident sequence. 

To illustrate the Monte Carlo technique, consider a system with two components in series. Let 
A denote failure of ttie first component and B failure of ttie second. The cut sets for the system are A 
and B, so flie equation for ttie top event (system) is 
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S = A * B 

Let ̂  and fi have mean failure probabilities of O.TOl and 0.CMI5, r«pectively. Also assume fliat 
the uncertainty distribution for A is uniform from 0 to 0.CX)2 and the distribution for B is normal with 
standard deviation of O.CWl. These distributions are shown in Figure 21 and Figure 22. 
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Figure 2 1 . Uncertainty distribution for Component A 

The point estimate for S is O.CXM. Table 3 contains a random sample of size 10 for this example. 
Column 1 contains the sample for component A which has a uniform uncertainty distribution. Column 
2 contains the sample for failure of component B, and column 3 contains tie sum of columns 1 and 2 
which is the minimum cut set upper bound for the probability of failure of the system. The bottom row 
is ttie average of the columns. 
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Figure 22. Uncertainty distribution for Component B 

Table 3. Monte Carlo samples 

h 1 A±i_ 
0.00042 0.00500 0.00542 
0.00086 0.00661 0.00747 
0.00149 0.00570 0.00719 
0.00109 0.00605 0.00714 
0.00066 0.00420 0.00487 
0.00024 0.00609 0.00633 
0.00066 0.00396 0.00462 
0.00075 0.00293 O.OOSM 
0.00037 0.00500 0.00537 
0.00127 0.00597 0.00724 

0.00078 0.00515 0.00593 
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9.7 Owerwiew of Latin Hypercube Sampling 

Latin Hypercube Sampling (LHS) selects n different values from each of the k variabte XI,...,Xk 
in flie following manner. The range of each variable is divided into m nonoverlapping intervals on the 
basis of equal probabilities for the intervals. The n values thus obtained for XI are pairM in a random 
manner with the n values of X2. Thrae n pairs are combing in a random manner with the n valuM of 
X3 to form n triplete, and so on, until n fc-tuplets are formed. This is tie Latin Hypercube sample. It 
is convenient to think of the LHS, or a random sample of size n, as forming an n*k matrix of inputs 
where the Ith row contains specific values for each of the k input variables to be used on the ith 
evaluation of the cut sets. 

To help clarify how intervals are determine in tie LHS, consider tfie simple example usM in 
fte previous section. We want to generate an LHS sample of size 5. TTie first step is to divide the 
uncertainty distributions of ^ and B into 5 equal probability areas each containing an area of 0.2. For 
A fliis is easy since it has a uniform uncertainty distribution. The pointe are 0.TO04, 0.CXW8, 0.0)12, and 
0.TO16. The areas are shown in Figure 23. The uncertainty distribution for fi is a normal distribution; 
it is harder to find the points that divide the areas into equal probability areas. Probability tabte or a 
calculator with an inverse normal calculation routine is needed. The four points which define ttie 5 equal 
probability areas are 4.158E-3, 4.747E-3, 5.253E-3, and 5.842E-3. These are shown in Figure 24. 
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Figure 23 . Latin hypercube sample for Component A 
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Figure 24. Latin hypercube sample for Component B 

The next step Is to generate a random permutation of tiie integers 1, 2, 3, 4, and 5 for each 
component. For ^ we get (3 4 1 5 2}, and for B we obtain { 4 1 3 2 5 } . We then combine these two 
together to obtain: 

1 Computer Run 

1 1 

1 ^ 
1 3 

4 

1 

Interval for A 

3 

4 

1 
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2 

Interval for B j 

4 

1 

3 

2 

' 1 
These five cells are shown in Figure 25. The next step is to obtain random values for A and B 

for each of the intervals. The first value for A lies in interval 3; thus, tie value must be between 0 . ^ 8 
and 0.0012. 4̂ is generate as described in Section 9.3.7: A random number U is generate from a 
uniform distribution between 0 and 1. Then A is defined M 0.(TO8 + 0.00041/. The corresponding 
value for B l i« in interval 4; thus the value for B must lie between the ^ h and SOtii percentite of the 
normal distribution. This is generated as described in Section 9.3.2: A new random number U is 
generated from a uniform distribution between 0 and 1, and F = 0.6 + 0.2U is flierefore uniform 
between 0.6 and 0.8. Let F denote the standard normal c.d.f. Then Y = F\V) is sampW from between 
tiie mA and 8(Mi percentiles of flie standard normal c.d.f. Finally B = 0.TO5 + O.WlFis sampW from 
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between the 60tii and 80th percentiles of a normal distribution witfi mean 0.W5 and standard deviation 
O.CWl. The following table summarized tie random numbers in this case. 

1 Computer Run 

1 

2 

3 

4 

5 

1 Mean 

Value for A 

9.454E-4 

i.512E-3 

6.102E-5 

1.827E-3 

7.068E-4 

LOlOE-3 

Value for B 

5.398E-3 

3.862E-3 

4.898E-3 

4.504E-3 

6.684E-3 

5.069E-3 

Value for A+B 

6.343E-3 

5.374E-3 1 

4.959E-3 j 

6.331E-3 

7.391E-3 

6.080E-3 1 

2.0E^ 

1.6E-4. 

1.2E-4. 

8.0E-4. 

4.0E-4. 

0.0 

X 

X 

X 

1 

2.0E-3 4.16E-3 4.75E-3 5.25E-3 SME-S 8.0E-3 

Component B 

Figure 25. Cells sampW in LHS example. 
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9.8 Comparison of Simple Monte Carlo and Latin Hypercube Sampling 

The following information is a comparison of Simple Monte Carlo simulation and Latin 
Hypercube Sampling ^HS). TTie table contains output from IRRAS for tfie sample problem in tie 
previous section. Figure 26 contains a plot of the cumulative distribution fimction for rach sample. Tie 
results are very similar for these two mefliods. Notice the size of flie sampte for each. The LHS 
method requires only a quarter of tie sample size of ordinary Monte Carlo, for similar accuracy. This 
must be balanced against ttie fact that for some distributions it takes longer to generate a random number 
for an LHS sample than for a simple Monte Carlo sample. Neverthetos, LHS sampling can often 
substantially reduce the time required for an analysis, while obtaining similar accuracy. 

Table 4. Comparison of Monte Carlo and LHS for sample problem 

Random Seed 
Sanple Size 
Point estimate 
Mean Value 
5th Percent i le Value 
Median Value 
95th Percent i le Value 
M i n i i u i Sanple Value 
Naxinui Soiple Value 
Stanlard Deviatfwi 
Skewness 
Kurtosis 
Elapsed T i w 

Monte Carlo 
51530 

200 
5.995E-003 
6.008E-003 
3.890E-003 
6.103E-003 
7.783E-003 
2.TO8E-003 
8.944E-003 
1.163E-003 
-1.973E-001 
2.M0E+000 

00:00:02.530 

iHS 
27290 

50 
5.99iE-003 
5.994E-003 
3.876E-003 
6.320E-003 
7.81tt-003 
2.78«-003 
8.605E-003 
1.245E-003 
-3.071E-001 
2.747Ef000 

00100:00.650 
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Figure 26. Cumulative distribution plots for example using Monte Carlo and LHS. 
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Appendix A 

Fault Tree Quantification Example 

A 1 . INTRODUCTION 

His appendix contains a worked example of the rrfuction and quantification of a simple fault 
tree. TTie minimal cut sete are obtained using a cut set algorithm and also using Boolean equations. 
The minimal cut sets are then quantified using the rare event approximation, tfie minimal cut set 
upper bound, and the inclusion-exclusion rule to obtain the exact solution. These quantification steps 
are worked out in detail. Finally, basic event importance measures are calculated to show how the 
calculations are done. 

This appendix uses the notation + for U and * for n . 

A2. FAULT TREE INPUT 

The fault tree for this example is shown in Figure A-1. It contains a 2/3 combination gate. 
The alphanumeric input for the fault tree is shown in the following: 

Alphanumeric Fault Tree (Shown in Figure A-1) 

TOP AMD GATE1 GATE2 
GATE1 2/3 GATE3 GATE4 B1 
GATE2 m B1 B3 B4 
GATE3 OR B2 B4 
GATE4 AMD B3 B5 

Each row corresponds to a gate in the fault tree. The first entry is the gate name. The next entry is 
the gate type. The remaining entries are the inputs to the gate. 

Figure A-2 contains the fault tree with the 2/3 combination gate (GATEl) expandwi into 
AND and OR gates. Tlie new gates are FT-N/M-1, FT-N/M-2, and FT-N/M-3. The alphanumeric 
coding of the fault tree is shown below: 

Alphanumeric Fault Tree with Expanded Gates (Shown in Figure A-2) 

TOP 
GATEl 
GATE2 
GATE3 
FT-M/M-1 
FT-N/M-2 
FT-N/M-3 

AND 
m 
m 
m 
AND 
AND 
AMD 

SATE1 
FT-N/«-1 
B1 
B2 
GATE3 
GATE3 
B3 

GATE2 
FT-i/H-2 
B3 
B4 
B3 
B1 
B5 

CUT SET GENERATION (Top-down approach) 

In this section the minimal cut sets are obtained using a top-down approach. The steps are illustrated 
in detail so that the reader can understand all of the calculational details. In practice, several of the 
steps caE be performed together. 

I 
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Figure A-1. Example fault tree. 
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Figure A-2. Example fault tree with 2/3 gate expanded. 
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Step 1 (TOP) 

To start the algorithm the TOP gate is replaced by its inputs. If the TOP gate is an OR gate, 
then each Input becomes a row. If tie TOP gate is an AND gate, tiie inputs are placai in the same 
row. Thus, Ae first step is the following: 

GATEl GATE2 

Step 2 (GATEl) 

In this step, GATEl is replaced by ite three inputs. Since GATEl is an OR gate each Input 
becomes a row. This results in the following: 

FT-N/M-I GATE2 
FT-M/i-2 GATE2 
FT-ll/M-3 GATE2 

Stg) 3 (FT-N/M-1). 

In this step, FT-N/M-1 is replaced by its inputs GATE3, B3 and 15. Only the first row was 
modified since the gate is an AND gate. The r«ults are: 

B3 85 GATE2 GATES 
FT-M/i-2 GATE2 
FT-M/M-3 GATE2 

SlaJiFT-N/M-2) 

Next, FT-N/M-2 is expandM. It is m AND gate so it is replacoi by its inputs in every row 
that contains it. The resulte of this step are: 

B3 B5 GATE2 GATE3 
B1 GATE2 GATE3 
FT-i/M-3 GATE2 

Step 5 (FT-N/M-3) 

Gate FT-N/M-3 is selected to procMS. It is also an AND gate and appears in only one row of 
the table in step 4. Thus, no rows are added in tfiis step. The gate is replace by ite inpute. Hie 
TMults are: 

B3 B5 GATE2 GATES 
B1 GATE2 GATE3 
B1 B3 B5 GATE2 

Step 6 (GATE3) 

GATE3 is selected to be expanded next. GATES is an OR gate with two inpute. For the first 
row in the table in step 5, GATE3 is replace by one of ite inpute. TTie row is then Treated and the 
gate name replacrf by its other inpute. The resulte of this step are: 

B2 
B1 
B3 

B3 
B2 
B4 

B5 GATE2 
GATE2 
B5 GATE2 

CReplace GATE3 by B2.) 
CReplace GATE3 by B2.) 
CReplace GATE3 by B4.> 
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B1 B4 GATE2 
B1 B3 B5 GATE2 

CReplace GATE3 by B4.) 
CDoes not involve GATE3.) 

Notice that two new rows were added in fliis step. 

In this step, GATE2 is proc«sed. Notice that GATE2 apprars in every row of the table in 
step 6. GATE2 is an OR gate with 3 inpute. Thus, tfie number of rows will increase, but flie 
number of entries in each row will remain Ae same. The number of rows will be three times the 
number in the table of step 6. That is, the table for this step will consist of 15 rows. The table for 
tills step is the following: 

B2 B3 B5 B1 
B1 B2 B1 
B3 B4 B5 B1 
B4 B1 B1 
B1 B3 B5 B1 

B2 B3 B5 B3 
B1 B2 B3 
B3 B4 B5 B3 
B1 B4 B3 
B1 B3 B5 B3 

B2 B3 B5 B4 
B1 B2 B4 
B3 B4 B5 B4 
B1 B4 B4 
B1 B3 B5 B4 

CReplace GATE2 by B1.) 

(Replace GATE2 by i3.) 

(Replace GATE2 by B4.) 

Step 8 (Idempotence A*A=A) 

At this point, all of the gates have been resolved so tfiat only basic evente occur in the table. 
The next step is to i^ply tfie Law of Idempotence, A*A = A. The r«ulte are: 

B2 B3 B5 B1 = 
B1 B2 B1 
B3 B4 B5 B1 = 
B4 B1 B1 
B1 B3 B5 B1 •• 
B2 B3 BS B3 : 
B1 B2 B3 
13 B4 B5 B3 = 
B1 B4 B3 
B1 B3 B5 B3 = 
B2 B3 B5 B4 •-
B1 B2 B4 
B3 B4 BS B4 -
B1 B4 B4 
B1 B3 B5 B4 = 

Steo 9 f Absorotion. 

: B1 B2 13 B5 
= B1 12 
: B1 B3 B4 B5 
: B1 B4 
= B1 B3 BS 
= B2 B3 BS 
= B1 B2 B3 
: B3 B4 B5 
= B1 B3 §4 
= B1 B3 B5 
= B2 B3 B4 Bi 
= BI B2 B4 
: B3 B4 BS 
: B1 B4 
= BI B3 B4 B5 

4 + (A*B)=A) 

The next step is the absorption step. That is, nonminimal cut sete must be eliminated, as well 
as duplicate rows. In the following table, the rows that are eliminate have a line through them and 
the re^on it is eliminated' is providrf to the left. The resulte are: 
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EliBfnated ^ BI B2 
Eliminated by BI B2 
Elimnated by BI B2 
Elininat^ by B1 B4 
BliBinatrf by BI B4 
Elinfnated by B1 B4 

Repeated cut set 

Repeated cut set 
Eliminated by B2 B3 B5 

Repeated cut set 

Step 10 (Final minimal cut sets) 

The remaining 5 sete are the minimal cut sete for this example. TTiey are: 

BI B2 
BI B4 
BI B3 BS 
B2 B3 B5 
B3 B4 B5 

A3. BOOLEAN EQUATION FOR THE FAULT TREE 

In this section the Boolean equation form of the fault tree is used to obtain the minimal cut 
sete. The steps below are not the only way flie equations can be combined and reduced. Many of lie 
steps illustrate below can be combined and performed simultanwusly. These steps are presented to 
illustrate the various concepte and show how they parallel the cut set algorithm illustrated in the 
previous section. 

The equation form of the fault tree is: 

TOP = GATEl * GATE2 
GATEl = FT-M/i-1 + FT-i/M-2 + FT-N/M-3 
GATE2 = BI + B3 + 14 
GATES = B2 + B4 
FT-N/i-1 = GATES • B3 * B5 
FT-M/i-2 = GATE3 * i1 
FT-N/M-3 - BI * B3 * B5 

Stffil 

The first step is to start with the TOP equation: 

TOP = GATE1 * GAT62. 

StfflJ 

In this step GATEl and GATE2 are replaced by their inpute. This taults in the following 
equation: 

TOP = (FT-i/i-1 + FT-N/M-2 + FT-i/M-3) * CBl + B3 + B4K 

BI B2 

§4-83—U-SS 
84—B2—B4 
ft4-^S-B4 
g4-*J-E4-» 
g4-as-i4-« 
B1 i3 B5 
M—83—85 
BI B4 

m-m-m-as-
B2 B3 BS 
B3 B4 B5 
BS—§4—BS 
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In this step the three expanded gates (FT-N/M-1, FT-N/M-2, and FT-N/M-3) are replacrf by 
their inpute to yield 

lOP = CGATE3 • B3 * B5 * GATE3 * BI + BI * B3 * B5) * CB1 + B3 ••• B4). 

Stffil 

Next GATES is replac«l by ite inpute to obtain 

TW - CBl + B3 + B4) * I(B2 + B4KB3*B5> + CB2 + B4) * BI + BFB3*B5]. 

At this point all gates have been replaced by their inpute, and the equation consiste of basic 
evente only. 

Step 5 

The next step is to expand and combine the terms In the square brackete. This yields 

im =.m + B3 + B4) * CB2*B3^B5 + B3*B4*B5 + B1*B2 + BrB4 + B1*B3*B55. 

StffiJ 

The terms in Ae first set of parentheses are distributed across the second set to yield 

I TOP = SI * CB2^B3*B5 + B3*B4*B5 + B1^B2 + g1*B4 + BFB3'»B5) 
' + B3 • CB2*B3*B5 • B3*B4*B5 + EI^BZ • B1*'B4 + B1*B3'^B5) 

+ B4 ̂  CB2®B3*B5 + B3*B4*B5 + B1*B2 + B1*B4 + i1*B3*B5). 

Step? 

Each term is now expanded to yield 

TW = B1*B2*B3%5 + B1*B3*B4*B5 + B1*B1*B2 * B1*B1*B4 + B1*B1*B3*B5 
• B3*B2*B3*i5 + B3*B3*B4*B5 + B1*B2*B3 + B1*B3*i4 * B1*B3*B3®B5 
+ B2*B3*B4*S5 + B3*B4*'B4'̂ B5 + B1*B2*B4 + B1*B4*B4 + B1*B3*B4*B5. 

§ tg 8 (Idempotencel 

The Law of Idempotence {A*A=A) Is now applied. This produces 

TOP - B1*B2*B3*B5 + BFB3*B4*B5 + BFB2 + B1*B4 + B1*B3*B5 
+ B2*B3*B5 + B3*B4*B5 * B1*B2*B3 + B1*B3*B4 + B1*'B3'»B5 
+ B2*B3*B4*B5 + B3*B4*BS + B1*B2^B4 + B1*B4 + B1*B3*B4*'B5. 

Stg 9 (Absorption) 

Finally, the nonminimal cut sete are eliminated. The terms that are eliminated are shown with 
a line Arough them. 

TW = e4*«3»«*» + M»B*g4*8i + B1*i2 + B1*B4 • B1*B3*B5 
+ B2*B3*B5 + B3*B4'»B5 + i 4 * M * B + M^SS^* • »t*iS»lS 
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••• S2*BJ*g4*» + M*i4*S» + g4*B3*S4 + M*B4 + M*SS*S4*» 

Minimal Cut Set Equation 

The final minimal cut set equation is 

T » = B1*B2 + B1*B4 + i1*B3*B5 -t- B2*B3*B5 + B3*B4*B5. 

These are exactly the same minimal cut sete that were obtained in Section A2. 

A4. CUT SET QUANTIFICATION 

In this section the different ways of quantifying the minimal cut sete are compared. 
Numerical resulte are treatai in the next section. The objective is to illustrate the complexity of the 
exact solution and also the Boolean algebra requirai in calculating it. 

The minimal cut set equation is the starting point for the calculations. From Section A2 or 
A3, we have 

P[TOP] = P[B1*B2 * B1*B4 + B1*B3*B5 + B2*B3*B5 + B3*B4*'B5] 

Exact Solution 

The inclusion-exclusion rule, Equation (4-6) in the body of this report, is used to calculate the 
exact solution. Basically, it is the sum of the probability of the Individual sete, minus the sum of the 
probability of all possible pairs, plus the sum of the probabilities of all possible combinations of three, 
minus the probabilities of all possible combinations of four, plus the probability of intersection of all 
five minimal cut sete. This calculation is shown in Table A-1. 

From Table A-1 we see that the intersection of most of the sete contain common terms, e.g., 
BI B2 and BI B4 have BI in common. TTie intersections must be reduced to simplest form by use of 
the Law of Idempotence {A*A=A}. The resulte of this are shown in Table A-2. 

In most situations, the basic evente are assumed to be statistically independent. That is, 
P[M]=P[A]P[B]. The resulte of this step are shown in Table A-3. 

Rare Event Approximation 

The first term of the inclusion-exclusion rale is an upper bound for the probability of the TOP 
event. For our example the rare event approximation is 

P[TOP] = PtB1*B2] + P[B1*B4] + PtB1*'B3*B5] + P[B2*B3*B5] 
+ P[B3*B4*B5]. 
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TaWe A - 1 . Exact solution. Step 1 

PCTOP] = p 
+ p 
+ p 
+ p 
+ p 

- p 
- p 
- p 
- p 
- p 
- p 
- p 
- p 
- p 
- p 

- p 
- p 
- p 
- p 
- p 

:€B1^B2>] 
:€B1*'B4}] 
: iBrB3*15>l 
I:B2^B3*B5>] 
€B3*B4*i5>l 

:€BFB2> 
:€BrB2> 
;€BFB2> 
:CB1^B2> 
€B1*B4> 
fBl^B4> 
CB1*B4> 
CB1*B3*i5> 

€B1*B4>] 
CB1*B3*B5>1 
CB2*B3*B5}] 
€B3*B4®B5}] 
€B1*B3*'B5>] 
CB2*B3*B5>] 
«3*B4*B5M 

Ci2*B3*B5}] 
CB1*B3*B5> ^ CB3*B4*B5}1 
:CB2*B3*i5> • €B3^B4*B5}] 

CBFBZl 
a F B 2 > 
€B1^B2> 
«1*B2> 
€B1*B2> 
,CB1*B2> 
:€BFB4> 
:€B1*B4> 
€BFB4> 
•CBFB3*B5> 

CB1*B2> 
: « r B 2 > 
:«1*B2> 
:€BFB2> 
:CBFB4} 

€B1*14> * €B1^B3'»B5>] 
CB1*B4> * CB2^B3*B5>1 
CS1'*i4> * €B3*B4^B5>] 
€Sl*B3*Bi> * CB2*B3^B5>] 

• {B1*B3*B5> 
«2^B3*B5> 
CBrB3*B5> 
€BrB3^B5> 
€B2^B3^B5> 

CB3*B4^B5>] 
CB3*B4^B5>] 
CB2^B3*B5>] 
CB3^B4*B5>] 
{B3^B4*B5>] 

* €B2^B3*B5> * iB3*B4^BiM 

«1^B4> * CBrB3*B5> * CB2*B3*B5>] 
{B1*S4> '̂  CB1*B3*B5> * {B3*B4*B5>] 
CBrB4> * Ci2*B3^B5> • 1B3*B4*B5>] 
CB1*B3 B5> * €B2^B3^B5> • CB3*B4^B5>] 
CB1*B3*B51 * €i2^B3*B5> ^ €B3*B4^B5M 

+ P[CBrB2> * «1*B4> * €B1*B3^B5> * €B2*B3*B5> * «3*B4^B5}] 
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Table A-2. Exact solution after applying Law of Idempotence 

P[TOP] = P[B1*B2] 
+ P[B1*B4] 
+ P[B1^B3*B5] 
+ P[B2*B3*i5] 
+ P[B3*B4^B51 

- P[B1*B2*B4] 
- P[B1*B2«'B3*BS] 
- P[81*B2*B3*B5] 
- P[B1*B2*'B3*B4'»S5] 
- PIB1*B3*B4*B5] 
- PtB1*B2*B3*B4*B5] 
- P[B1*B3^B4^B5] 
- P[B1*B2*B3®i5] 
- P[B1*B3'*B4*B5] 
- P[B2*B3*B4*B51 

+ P[B1*B2*B3*B4*B5] 
+ P[B1*B2*B3*i4*BS] 
+ P[81*82*83*84*85] 
+ P[B1*B2*B3*B4*15] 
+ P[B1*B2*B3*B4«'B5] 
+ P[B1*B2*B3*B4*B5] 
* PtB1<»B2*B3*B4*B5] 
+ P[B1*B2*B3^B4*B5] 
* P[B1*B2*'B3*B4'^B5] 
4- PtB1*B2*B3*B4*B5] 

- P[B1*B2^B3*B4«'B5] 
- P[B1*B2*B3*B4*B5] 
- P[B1*B2'»B3^B4*BS] 
- PtB1*B2*B3*B4*B5] 
- P[B1*B2®B3«'B4'̂ B5] 

+ P[B1*B2*B3*B4'*B5] 
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Table A-3. Exact solution, using assumai stat 

PUVl = P[B1] 
+ P[B1] 
+ P [ i i i 
+ PtB2] 
+ P[B3] 

- PCB1] 
- PtBI] 
- P[B1] 
- P[B1] 
- P[B11 
- P B 1 ] 
- P[B1] 
- PtBI] 
- PtBI] 
- P[B2] 

+ PtBI] 
+ PtBI] 
+ PtBI] 
* P B 1 ] 
+ PtBI] 
+ PtBI] 
* PtBI] 
+ PIB1] 
+ PtBI] 
+ PIB1] 

- PtBIl 
- PtBI] 
- PtBI] 
- PCB1] 
- PtBI] 

* PtB2] 
* PtB4] 
* P[B3] * 
* P[B3] * 
* PIB4] * 

• PtB2] * 
* PIB2] * 
* PIB2] * 
* PtB2] < 
• PtB3J « 
* P[B2] x 
* PIB3] * 
* PIB2] « 
* PtB3] < 
* PIB3] * 

* P[B2] < 
* PIB21 < 
* PIB2] * 
* PtB2] < 
* PtB2] * 
^ PIB21 * 
* PtB2] * 
* PtB2] * 
* PtB2] * 
* PIB2] * 

* PIB2] 1 
* PtB2] * 
* P[B2] 1 
* PtB21 * 
* PtB2] * 

' P I i5 ] 
» PBS] 
* P[ i5 ] 

" PIB4] 
» PtB3] 
* PIB3] > 
» P[B3] ' 
* PCB41 « 
• P[B3] ' 
• PIB4] ' 
» PtB3] ' 
* PIS4] 
» PtB4] 

' P B 3 ] 
' PtB3] ' 
> PtB3] 
» PtB3] ' 
• PtB3] 
* PtB3] 
» PIB3] 
* PIB3] 
» PIB3] 
» P[83] ' 

* PB3] ' 
• PIB3] 
» PtB3] 
* PtB3] 
» PtB3] 

» PIB5] 
» PIB5] 
» PtB4] 
» PtB5] 
» PtB4] 
» PISS] 
" PtB5] 
^ PtB5] 
» PIB5] 

» PIB4] 
* PIB4] 
» PtB4] 
» PIB4] 
» PtB4] 
» PtB4] 
* PtB4] 
* PIB4] 
» PtB4] 
» PIB4] 

<• PIB4] 
* PIB4] 
* PtB4] 
» PIB4] 
» PIB4] 

* PtB5] 

® PIBS] 

* PtB5] 
* PIBS] 
* PtB5] 
* PIBS] 
* PIBS] 
* PtBS] 
* PtBS] 
*> PtBS] 
* PIBS] 
® PtBS] 

^ PtBS] 
* PB5I 
* PtBS] 
• PIBS] 
" PtBS] 

+ PIB1] • PIB2] * PtB3] * PB41 * PtBSl 

Minimal Cut Set Upper Borod 

The minimal cut set upper bound is discussed in Section 6.2.2. For our example the minimal 
cut set upper bound is shown in Table A-4. 
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Table A-4. Minimal cut set upper bound calculations for example 

PITOP] s 1 - CI - Pt€B1*B2>]) • CI - P [CBr i4> ] ) * Cl - PICB1*B3^B5>]) * C1 
PICB2*B3*B5>]) * Cl - PtCB3*B4*B5>]) 

Pt«1'^B2>] 
+ P K : B 1 * B 4 > ] 
+ P[ { i1*B*B5: 
+ Pt€B2*B3*B5: 
* PtCB3*B4*'B5: 

- Pt€B1*B2>] 
- P K B 1 * B 2 > ] 
- Pt€B1*B2>] 
- PICP1* 'B2>] 
- PtCB1<'B4>] 
- Pt€B1*B4>] 
- Pt«1*B4>] 
- PtCB1*B3*BS 
- PKBI^BS^BS 
• PCCB2®B3*'B5, 

PtCB1*B2>] 
PICB1*B2>] 
P[«1'»B2>] 
PC€B1*B2>] 
PI€B1*i2>] 
P[€B1«'B2>] 
Pt€B1*B4>] 
PI€B1*B4>] 
PC€B1*B4>] 
Pt€B1*B3*B5 

PtCB1*B2>] 
PtCB1*B2>] 
Pt€B1*B2>] 
Pt€B1*B2>] 
PI»1*B4>] 

PtCB1*B4>] 
Pt»1*B3*B5>] 
PI»2*B3*B5>] 
PtCBS'-BA^ESl] 
PI€B1*B3*B5>] 
Pt€B2*B3*B5>] 
PIiB3*B4*15>] 

,] • p[CB2*B3*B5J] 
1 • PICB3*B4*B5>] 
1 * PI€B3*B4*BS>] 

Pt€B1*'B4>] 
P « : B 1 * B 4 1 ] 
PI€B1*B4>] 
PtCB1*B3*B5}] 
P[€B1®S3*B5>] 
P[€B2*B3*B5>] 
PtCB1*B3*B5>] 
PI€B1*B3*B5>] 
P[€B2*B3*B5>] 

Pt€B1*B3*B5>] 
PtCB2*B3*B5>] 
PI€B3*B4*B5>] 

* Pt€B2%3*B5>] 
* PI€B3*B4*B5>] 
* Pt{B3*B4*BS>] 
* Pt€B2*B3*B5>] 
* P[€B3*B4*B5>] 

PI€B3*B4*B5>] 
.] * PKBl^BS^BSl] * Pt€B3*B4*B5>] 

P[€B1'^B4}] * Ptai*B3*B5>] * Pt«2*B3*B5>] 
Pt€B1*B4j] * Pt{Bl*B3*B5>] * PICE3*B4*B5>] 
Pt€B1*B4}] * PtCB2*B3*B5>] * PI€B3*B4*B51] 
PI€B1*B3 BS>] * P[€B2*B3'«'BS>] * P [€B3*B4*B5>] 
PI€B1*B3*B5M * P I€B2*B3*e5>] * P I€B3*B4*B5>] 

+ Pt€B1*B2>] * PI€B1*B4>] * PI€B1*B3*B5M * P I€B2*B3«'B5>1 * P II:B3*B4*B5>] 
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m. NUMERICAL CALCULATIONS 

Hiis section contains numerical calculations illustrating the formulas developed in the previous 
section. The basic event probabilities for our example problem are the following: 

pcen - q, = 0.01 
PCB2) != % = 0.02 
P<B3) ̂  % = 0.03 
PCB4) = % - 0.04 
PCB5) = % ^ 0.05 

The cut set unavai!abiliti«, denoted by Q, are calculated below: 

C, = PCB1*B2) = PCB15*PCB2I - q,q2 = 0.01 * 0.02 - 2.0E-4 
Cg = PCB1*B4) = P<B1)*PCS4) = q,q4 = 0.01 * 0.04 = 4.0E-4 
C3 = PCB1*B3^B5) = PCB1)*PCB3)*PC15) = q^q^^^ = 0-01 * 0.03 * 0.05 = 1.5E-5 
C4 - PCB2®B3*B5) = P(K)*PCB3>*PCB5) = q^q^ - 0.02 ^ 0.03 • 0.05 = 3.0E-5 
Cg = PCB3*B4^B5) = PCB3)*PCB4)*'P(B5) = ^(^^ = 0.03 * 0.04 • O.OS = 6.0E-5 

Using the cut set unavailabilitiM, the rare event ^proximation and the minimal cut set upper bound 
can be calculate. The rare event approximation is: 

Rare Event Approxinatiwi s C, + Ĉ  • C3 + C4 + Cg = 7.050E-4 

The minimal cut set upper bound is: 

i i n Cut Upper Bowrf = 1 - C1-C,) * C1-Cj) " CI-C3) * O-C^} * d - q ) 
= 1 - 0.W98 * 0.9996 * 0.999985 ^ 0.99997 •» 0.99994 
= 1 - 0.9992951S = 7.0485386E-4 

The exact solution calculations are shown in Table A-6. Table A-5 compares the r«ults of the three 
calculation formulas. 

Table A-7 shows the probabilities of the contributors (listai in Table A-4) for the minimum 
cut set upper bound. A line-by-line examination shows that some lines of Table A-7 have certain 
basic event probabilltM repeat^ and that this is the only difference between Tables A-6 and A-7. A 
corr«ponding comparison can be made of Tables A-3 and A-4. 

Table A-5. Comparison of Moults 

1 Type of Calculation 

1 Min Cut Upper Bound 

1 Rare Event Approximation 

1 Sum of ist and 2nd order terms" 

1 Sum of 1st* 2nd and 3rd order terms' 

1 Sum of 1st* 2nd* 3rd* and 4th order terms" 

Sum of all terms (Exact answer)̂  

Unavailability 

7.04854E-4 

7.050C»E-4 

6.93076E-4 

6.93196E-4 1 

6.93136E^ 1 

6.93148E-4 | 

a. See Table A-6 for details. 
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Table A-6. Calculations for exact solution 

of 
of 
©f 
of 
of 

Basic Events In Term 
+ 
+ 
+ 
4. 

+ 

. 
-
-
. 
-
-
-
-
. 
-

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

. 

. 
-
-
-

+ 

all 

BI 
BI 
BI 
B2 
B3 

81 
BI 
BI 
BI 
81 
11 
BI 
BI 
BI 
B2 

BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 
BI 

BI 
BI 
BI 
BI 
i1 

SI 

ter 

B2 
B4 
i3 
§3 
14 

S2 
S2 
82 
12 
B3 
B2 
B3 
B2 
B3 
B3 

12 
B2 
B2 
B2 
B2 
B2 
B2 
i2 
B2 
B2 

B2 
B2 
B2 
B2 
B2 

B2 

B5 
B5 
15 

14 
B3 
B3 
B3 
B4 
B3 
B4 
B3 
B4 
B4 

B3 
B3 
B3 
B3 
B3 
B3 
B3 
B3 
B3 
B3 

B3 
B3 
B3 
B3 
B3 

B3 

ts 
BS 
84 
B5 
B4 
B5 
BS 
BS 
BS 

B4 
B4 
B4 
B4 
B4 
B4 
B4 
B4 
B4 
B4 

B4 
B4 
B4 
B4 
i4 

B4 

BS 

BS 

B5 
BS 
BS 
BS 
B5 
BS 
BS 
BS 
BS 
BS 

BS 
B5 
BS 
B5 
BS 

BS 

'BB CExact Answer) 
l8t Order t 
1st 
1st 
Ist 

erms 
arrf 2rri order ternB 
, 2nd and 3rd order 
, 2rri, 3rd, 

4th order terns 
and 

Unavailability 
2.000E-04 
A.mnf-m 
1.500E-05 
3.nonF-05 
6.000E-05 

-8.000E-06 
-3.000E-07 
-3.000E-07 
-1.200E-08 
-6.000E-07 
-1.200E-08 
-6.000E-07 
-3,0006-07 
-6.000E-07 
-1-200E-06 

1.200E-08 
1.200E-08 
1.200E-08 
1.200E-08 
1.200E-08 
1.200E-08 
1.200E-08 
1.200E-08 
1.200E-08 
1.200E-08 

-1.200E-08 
-1.200E-08 
-1.200E-08 
•1.200E-08 
-1.200E-08 

1.200E-08 

6.9314W-04 
7.05000E-04 
6.93076E-04 
6.93196E-04 
6.93136E-04 
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Table A-7. Probability of contributors to minimal cut set upper bound 

+ 
+ 
+ 
+ 
+ 

• 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

11 
BI 
BI 
B2 
B3 

BI 
81 
BI 
BI 
BI 
BI 
BI 
B1 
BI 

Basic Events in Tern 
B2 
B4 
B3 B5 
B3 B5 
B4 BS 

B2 BI B4 
B2 BI B3 BS 
B2 B2 B3 15 
B2 B3 B4 BS 
B4 BI B3 BS 
B4 B2 B3 BS 
B4 B3 B4 B5 
B3 B5 B2 B3 BS 
B3 BS B3 B4 iS 

B2 BS B5 B3 B4 BS 

BI 
BI 
BI 
BI 
BI 
B1 
BI 
i1 
B1 
BI 

B1 
BI 
BI 
BI 
BI 

BI 

B2 B1 B4 BI B3 B5 
B2 BI B4 B2 B3 BS 
B2 BI B4 B3 B4 BS 
B2 BI B3 BS B2 B3 BS 
B2 BI B3 B5 B3 B4 BS 
B2 B2 B3 BS B3 B4 BS 
14 BI B3 B5 B2 B3 BS 
B4 BI B3 B5 B3 B4 BS 
B4 B2 B3 B5 B3 B4 BS 
B3 BS B2 B3 B5 B3 84 B5 

B2 BI B4 BI i3 B5 B2 B3 BS 
B2 BI B4 BI B3 B5 B3 B4 B5 
B2 BI B4 B2 B3 BS B3 B4 B5 
B2 BI B3 BS B2 B3 BS B3 B4 BS 
B4 BI B3 BS B2 B3 B5 B3 B4 B5 

B2 BI B4 BI B3 BS B2 B3 BS B3 B4 BS 

TOTAL 

Onavailabilftv 
2.000E-04 
4.000E-04 
1.500E-0S 
3.000E-05 
6.000E-05 

-8.000E-08 
-3.000E-09 
-6.000E-09 
-1.200E-08 
-6.000E-09 
-1.200E-08 
-2.400E-08 
-4.S00E-10 
-9.000E-10 
-1.800E-09 

1.200E-12 
2.400E-12 
4.800E-12 
9.000E-14 
1.800E-13 
3.600E-13 
1.800E-13 
3.600E-13 
7.200E-13 
2.700E-14 

-3.600E-17 
-7.200E-17 
-1.440E-16 
-5.400E-18 
-1.080E-17 

2.160E-21 

7.048S3ME-04 
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A6. IMPORTANCE MEASURES 

Basic Event Probabilitia 

PCB1) = q, = 0.01 
P(B2) = q̂  = 0.02 
PCB35 = qs = 0.03 
PCB4) - q, = 0.04 
PCB55 - qs = 0.05 

c, 
c. 
c. 
C4 
Cs 

= PCB1^B25 
- PCB1*B45 
= P(B1*B3*B5) 
= PCB2*B3*B5) 
= PCB3*B4*B5) 

= PCSn'̂ PCBZ) 
= PCBn*PCB4> 
= P(B1}*PCB3>*PCB5) 
= PCI^)*PCB5)*PCB5) 
= PCB3)*PCB45*P<B5) 

= %^z 
- %% 
= q A ^ 
- q^qs* 
= ^nA 

= 0.01 * 0.02 
= 0.01 * 0.04 
= 0.01 •" 0.03 * 0.05 
= 0.02 * 0.03 • O.OS 
= 0.03 * 0.04 * 0.05 

= 2.0E-4 
= 4.0E-4 
s 1.5i-S 
= 3.06-5 
= 6.0E-5 

Q ^ C, + C2 + C3 + C4 + CB = 7.050E-4 

Fussell-Vesely Importance Measure 

BI - FVCB1) - CC1 + C2 + C3I/0 = C2,0E-4 + 4.0E-4 + 1.5E-5)/7.05E-4 = 0.8723 
B2 - FV(B2) = (Cl + C4)/0 = C2.0E-4 + 3.E-55 / 7.05E-4 = 0.3262 
B3 - FVCB3> = CC3+C4+C55/Q - 1.05E-5/7.0SE-5 = 0.1489 
B4 - FVCB4? = CC2+C5>/0 = 4.0E-4 ••• 4.6E-4/7.05E-4 = 0.6525 
B5 - FV9B5) - CC3+C4+C55/0 = 1.05E-4 / 7.05E-4 = 0.1489 

Risk Reduction Importance 

For BI, set qi = 0.0. Then we get 

C, = P(B1*B25 = PCB1)*PCB2) = q,q2 = 0.01 • 0.02 = 0 
Cj = PCB1*'B4) = PCB1)*PCB4) = q,q4 = 0.01 * 0.04 = 0 
C3 = PCBI^BS^BS^ = PCB1)*PCB3)*PCB5) = q,q3q4 - 0.01 * 0.03 * 0.05 = 0 
C4 = PCB2*B3®B5) = PCb2)*PCB35*PCB55 " qaqg^ = 0.02 * 0.03 * 0.05 = 3.0E-5 
Cs = PCB3*B4*B55 = PCB35*PCB4)®PCBi) = q3q4q5 = 0.05 • 0.04 ^ 0.05 - 6.0E-5 

Using these results^ the risk reduction ratio is 

RRRCB1) = 7.05E-4/C3.0E-5*6.0E-5) = 7.05E-4/9.0E-5 = 7.833, 

and the risk reduction difference is 

mom) = 7.05E-4 - 9.OE-5 = 6.15e-4. 

Risk Increase Importance 

For BI, set qi = 1.0. Then we get 

C, s PCB1*'B2) = PCB1)*PCB2) = q,q2 = 1 . 0 * 0.02 = 0.02 
Cs - PCB1*B45 = PCB1)*PCB4) - q^q^ =1.0 * 0.04 = 0.04 
Cg s PCBI^BS^BS) = PCB1)'»PCB3)*PCB5) = ^,^^ s 1.0 « 0.03 * 0.05 = 1.5E-3 
C4 = PCB2*B3*'B55 = P(b2)*PCB3)*PCBS5 ^ q^^q^ = 0.02 * 0.03 * 0.05 = 3.0E-5 
Cg = PCB3*B4*B55 = PCB3)*PCB45*PCB55 = q3q4% = 0.03 * 0.04 * 0.05 = 6.0E-5 

Using three results, the risk increase ratio is 
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RIRCB1) = 6.159E-2/7.05E-4 = 86.36, 

and the risk increase difference is 

RIDCBI) = 6.159E-2 - 7.05E-4 = 6.089E-2. 

Birnbaum Importance 

BCB1) = 6.159E-2 - 9.0E-5 = 6.15E-5. 

Structural Importance 

BI appears in ttirw cut sets 

Table A-8. Ratio importance measures 

nmm 

BI 
B4 
B2 
B3 
BS 

i u i . 
of 

Occ. 

3 
2 
2 
3 
3 

Probab i l i t y 
of 

Fai lure 

1.000E-2 
4.000E-2 
2.000E-2 
3.000E-2 
5.000E-2 

Fussel l -
Vesely 

IiH»rtance 

8.723E-1 
6.524E-1 
3.261E-1 
1.489E-1 
1.489E-1 

Risk 
ReAjction 

Ratio 

7 . B 2 
2.877 
1.484 
1,175 
L i r e 

Risk 
Increase 

Ratio 

8.611E+1 
1.664E+1 
1.696E+1 
5.809E+0 
3.827E+0 

Table A-9. Difference importance measures 

NatK 

BI 
B4 
B2 
B3 
B5 

Nui . 
of 

Occ. 

3 
2 
2 
3 
3 

Probab i l i t y 
of 

Fai lyre 

1.000E-2 
4.000E-2 
2.000E-2 
3.000E-2 
5.000E-2 

Birnbaun 
Importance 

Measure 

6.061E-2 
1.148E-2 
1.148E-2 
3.494E-3 
2.097E-3 

Risk 
R ^ j c t i o n 
Dif ference 

6.149E-4 
4.599E-4 
2.299E-4 
1.049E-4 
1.049E-4 

Risk 
Increase 
Difference 

S.999E-2 
1.102E-2 
1.125E-2 
3.389E-3 
1.995E-3 
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The numbers shown are section numbers rather than page numbers. Terms that are in the 
of contents are not necasarily in this index. Section numbers in bold face contain definitions. 

absorption 2.3, 5., 5.18, A2 
accident sequence See "sequence" 
AND 2.2.2, 2 A 2.5, 3.2 
basic event 3.2 
Boolean 2.4, 5, 5.5 
c.d.f. 9.3 
combination gate 3.2 
complement 2.2.3, 2.5 
conditional probability 4.2 
circular logic See "loop" 
correlation class 9.5 
cut set 5. 
difference 2.2.4 
disjoint 2.2.5 

See also "mutually exclusive" 
element 2.1 
empty set 2.1 
equal 

for logical statements 2.4 
for sets 2.1 

event 2.1, 2.5, 3.1, 3.2 
event tree 5.7 
exclusive See "mutually exclusive" 
exhaustive 2.2.6, 4.3 
expansion path 5.13 
fault tree 3.1, 5., 5.7 
gate 3.2 
house event 3.2 
idempotence 2.3, A2 
identity set 2.1 
independence 

logical 5.9,5.12,5.17 
of bMC evente 3.2, 6.1 
of uncertainty distributions 9.5 
statistical 3.2, 4.6, 5.17, 6.1, 9.5 

inhibit 3.2 
intersection 2.2.2, 2.5 
inverse c.d.f. method 9.3, 9.3.4, 9.3.6, 9.3.7 
level 5.13 
logical loop 3.1, 5.5 

See also "loop" 
loop See "circular logic" and 

"logical loop" 
minimal cut set S., 5.18, A2 
mutually exclusive 2.2.5, 2,2.6, 4.2, 4.3, 4.6 
NAND 3.2 
N/M 3.2 
NOR 3.2 
NOT 2.23, 2.4, 2.5 
NOT AND 3.2 
MOTOR 3.2 
null set 2.1 
occur 2.5, 3.2 
OR 2.2.1, 2.4, 2.5, 3.2 
partition 2.2.6 
population 2.1 
probability 4.2 
probability contribution 5.17 
recursive 5.1 See also "loop" 
reference set 2.1 
sequence 5.7, 5.22, 6.3, 8.1 
set 2.1 

See also adjectiv«, such as "empty set", 
"universal set" 

statement 2.4 
statistical independence 

See independence 
subset 2.1 
top event 3.1 
transfer 3.2 
uncertainty distribution 9., 9.4 
undeveloped event 3.2 
uncertainty distribution 9, 9.3, 9.4, 9.5 
union 2.2.1, 2.5 
universal set 2.1 
zero set 2.1 
zone iagged event 5.15 
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