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ABSTRACT

This report provides information on the principles used in the
construction and operation of Version 4.0 of the Integrated Reliability and Risk
Analysis System (IRRAS) and the System Analysis and Risk Assessment (SARA)
system. It summarizes the fundamental mathematical concepts of sets and logic,
fault trees, and probability. The report then describes the algorithms that these
programs use to construct a fault tree and to obtain the minimal cut sets. It gives
the formulas used to obtain the probability of the top event from the minimal cut
sets, and the formulas for probabilities that are appropriate under various

‘ assumptions concerning repairability and mission time. It defines the measures
of basic event importance that these programs can calculate. The report gives
an overview of uncertainty analysis using simple Monte Carlo sampling or Latin
Hypercube sampling, and states the algorithms used by these programs to
generate random basic event probabilities from various distributions. Further
references are given, and a detailed example of the reduction and quantification
of a simple fault tree is provided in an appendix.
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‘ EXECUTIVE SUMMARY

The System Analysis Programs for Hands-on Integrated Reliability
Evaluations (SAPHIRE) refers to a set of several computer programs that were
developed to create and analyze a probabilistic risk assessment (PRA) of a
nuclear power plant. A summary of the four programs that currently comprise
SAPHIRE is given in the Foreword. This report provides information on the
principles used in the construction and operation of the two major programs: the
Integrated Reliability and Risk Analysis System (IRRAS) and the System
Analysis and Risk Assessment (SARA) system. Other related documents include
the IRRAS and the SARA reference manuals (Russell et al. 1992a, 1992b),
explaining each command; and the IRRAS (VanHorn et al. 1992) and SARA
(Sattison et al. 1992) tutorials, providing a series of lessons that guide the user
through the basic procedures necessary to perform analyses with these programs.
Many of the concepts in this manual apply to both SARA and IRRAS. Since
SARA is a tool designed primarily for review of a PRA, it does not have the
fault tree and event tree construction and solution concepts found in IRRAS.
This manual will focus primarily on the concepts found in IRRAS, but where
these same features exist in SARA the technical information provided is
applicable.

This report differs from the related documents by concentrating on
principles and algorithms rather than on the interface between the program and
the user. The first few sections of the report contain mathematical background.

. Set theoretic operations and relations are summarized, and their relation to
Boolean logic is explained. Fault trees are reviewed, including all of the gate
types allowed by IRRAS. Finally, the rules of probability are summarized.

The next section outlines the procedure by which IRRAS builds a fault
tree from the user inputs, simplifies and truncates it according to the user’s
specifications, and determines the minimal cut sets. IRRAS is written in a
recursive language, and performs many operations by recursive procedures. It
initially takes the user’s input and builds a simplified internal representation of
the tree. This involves several steps:

linking portions that were connected by transfer gates,
expanding N/M gates as combinations of OR and AND gates,
determining the unique TOP gate,

checking for logical loops,

pruning portions of the tree having house events,

coalescing like gates.

To obtain the minimal cut sets in an efficient way, IRRAS searches for
independent subtrees and for modules, both of which are treated as single tokens
until very late in the process. It then determines the optimal order for processing
the tree, based on the levels of the gates, and begins making a list of cut sets.
Based on the basic event probabilities or sizes (and the user’s truncation
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specifications), it eliminates some cut sets early in the process. It also eliminates
nonminimal cut sets, those that can be absorbed by other simpler cut sets, and
finally obtains a list of minimal cut sets that the user has specified should not be
truncated. The last step is to combine the fault trees for failures of different
systems, to obtain the fault tree for an accident sequence involving the failure of
certain systems and the success of others.

Selected formulas are given in the next several sections of the report.
One section gives the formula for the probability of a cut set, approximations for
the probability of a union of cut sets, and the formula for the frequency of an
accident sequence. The next section gives formulas for reliability and
unavailability of repairable and nonrepairable components, corresponding to the
probabilities of various basic events. Finally, a section gives formulas for
different measures of importance of a basic event.

Uncertainty analyses are performed by Monte Carlo simulation, with the
basic event probabilities drawn from user-specified distributions. Two types of
simulation are possible in IRRAS, simple Monte Carlo sampling and Latin
Hypercube sampling. The final section of this report presents the sampling
distributions that are supported by IRRAS, and documents the algorithms used
for generating random numbers from these distributions. Correlation classes,
allowing the user to state that certain basic event probabilities are equal although
both are uncertain, are also explained. A simple example illustrates the two
types of simulation.

The list of references refers the reader to more information on topics that
could only be briefly summarized in this report. The appendix contains an
example showing how IRRAS finds the minimal cut sets of a fairly simple fault
tree, and how IRRAS finds the probability of the TOP event and the importances
of the basic events.
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. FOREWORD

The U. S. Nuclear Regulatory Commission has developed a powerful
suite of personal computer programs for the performance of probabilistic risk
assessments (PRAs). This suite of programs, known as the System Analysis
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), aliows an
analyst to perform many of the functions necessary to create, quantify, and
evaluate the risk associated with a facility or process being analyzed. These
programs include software to define the database structure, to create, analyze,
and quantify the data, and to display results and perform sensitivity analyses.
The programs included in this suite are as follows: Models And Results
Database (MAR-D) software, Integrated Reliability and Risk Analysis System
(IRRAS) software, System Analysis and Risk Assessment (SARA) software, and
Fault tree, Event tree, and P&ID (FEP) graphical editor software. Each of these
programs performs a specific function in taking a PRA from the conceptual state
all the way to publication.

MAR-D is a program that is used primarily for PRA data loading. This
program defines a common relational database structure that is used by the entire
suite of programs. This structure allows all of the software to access and
manipulate data created by other software in the system without performing a
lengthy conversion. Therefore, data created by IRRAS is immediately available
to SARA for sensitivity analysis. The MAR-D program also provides the
facilities for loading and unloading of PRA data from the relational database

. structure used to store the data. A simple ASCII data format is used for
interchange with other PRA software not included in NRC’s suite of programs.
This feature allows for compatibility with previously developed software systems
and allows for maximum data interchange. Elements of this software are
included with both IRRAS and SARA to allow these programs to load and unload
data in the MAR-D format. Normally, the entire MAR-D software is used only
by those performing a data loading function and is not required by the end user.
Documentation for MAR-D, Version 4.0 is available as NUREG/CR-5301
(Branham-Haar et al. 1992). It should be noted that whenever the MAR-D
database structure is changed, it necessitates changes in the remaining codes (i.e.,
IRRAS, SARA, and FEP). Therefore, the code version numbers are changed in
unison. Each version set must be used together to maintain compatibility.

IRRAS is a program developed for the purpose of performing those
functions necessary to create and analyze a complete PRA. This program
includes functions to allow the user to create event trees and fault trees, to define
accident sequences and basic event failure data, to solve system and accident
sequence fault trees, to quantify cut sets, and to perform uncertainty analysis on
the results. Also included in this program are features to allow the analyst to
generate reports and displays that can be used to document the results of an
analysis. Since this software is a very detailed technical tool, the user of this
program should be familiar with PRA concepts and the methods used to perform
these analyses. Although IRRAS has been designed to be user friendly and
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makes the process of performing a PRA easier, the complexity of this type of
analysis requires a user with a more detailed understanding of PRA concepts than
is required by other tools in this suite. The IRRAS 4.0 reference manual is
available as NUREG/CR-5813, Volume 1 (Russell et al. 1992a) and the IRRAS
4.0 tutorial is available as NUREG/CR-5813, Volume 2 (VanHorn et al. 1992).
In addition, a technical document that provides information on the principles and
algorithms used in the construction and operation of IRRAS and SARA is
available as NUREG/CR-5964.

SARA is a program that allows the user to review the results of a PRA
and to perform limited sensitivity analysis on these results. It is limited primarily
to the extent that changes in the plant model can be accommodated by using the
cut set editor. If other than simple changes are being simulated, then IRRAS
should be used so that new cut sets can be accurately generated. This tool is
intended to be used by a less technically-oriented user and does not require the
level of understanding of PRA concepts required by IRRAS. With this program
a user can review the information generated by a PRA analyst and compare the
results to those generated by making limited modifications to the data in the
PRA. Also included in this program is the ability to graphical display the
information stored in the MAR-D database. This information includes event
trees, fault trees, P&IDs and uncertainty distributions. The user of this program
can gain a better understanding of the results of a PRA without getting into the
details of the construction and analysis work behind the PRA. The SARA
reference manual (Russell et al. 1992b) and tutorial (Sattison et al. 1992) are
available as NUREG/CR-5303, Volumes 1 and 2, respectively.

FEP is a program developed to provide a common access to the suite of
graphical tools developed for performing risk assessment. These tools include
the graphical fault tree, event tree, and P&ID editors. The fault tree and event
tree editors are available through IRRAS; however, the P&ID editor is only
accessible through FEP. The fault tree editor allows the user to construct and
modify graphical fault trees. The event tree editor allows the analyst to construct
and modify graphical event trees. The P&ID editor allows the user to construct
and modify plant drawings. These drawings can then be used to document the
modeling used in a PRA. These editors are an integral part of a PRA. With the
FEP tool, the user need not be concerned with the complexity of the IRRAS
program if the need is only to generate one of these graphical displays.
Documentation for FEP, Version 4.0 is available as NUREG/CR-5866 (McKay
et al. 1992).
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SAPHIRE Technical Reference Manual
IRRAS/SARA Version 4.0

1. INTRODUCTION

The Integrated Reliability and Risk Analysis System (IRRAS) software development project was
started as a result of a recognized need for microcomputer-based software to aid the probabilistic risk
assessment (PRA) analyst. The initial scope of the project was to provide a software package that could
demonstrate the feasibility of using the microcomputer as a workstation for performing PRA analyses.
This package did not necessarily need to perform all of the functions required; however, it did need to
provide certain essential functions such as fault tree construction, failure data input, cut set generation,
and cut set quantification.

At about the same time, the need for a simple tool that used the results of a PRA to perform
limited review and sensitivity analyses was identified. This tool need not be able to create and solve fault
trees and event trees, but should be able to perform limited modifications to failure data and cut sets and
compare these changes to a base case set of data. This need resulted in another software development
project, the System Analysis and Risk Assessment (SARA) system. The IRRAS and SARA system soon
became complementary tools for the performance of PRAs. For each release of the IRRAS system there
was a corresponding SARA system. The first version of these software packages was released in
February of 1987 and contained only the essential concepts mentioned above.

Version 1.0 of IRRAS/SARA was an immediate success and clearly demonstrated not only the
tremendous need but also the feasibility of performing this work on a microcomputer. As a result of this
success, Version 2.0 development was begun. This package was designed to be a comprehensive PRA
analysis package and included all the functions necessary for a PRA analyst to perform his or her work.
The areas that were not treated in version 1.0 were addressed, and a complete, integrated package was
developed. Because Version 2.0 was a complete rewrite from version 1.0, a thorough test plan was
necessary. The major features of Version 2.0 along with an Alpha test were completed in early March
of 1988. Following the Alpha test, approximately 15 sites were selected from among the sites currently
using Version 1.0. and were sent a Beta test Version 2.0. In May of 1988, the Beta test was completed
and work began on fixing any bugs found. In addition, any desired new features that could reasonably
be incorporated into version 2.0 were included. Version 2.0 was released in June 1990 and work began
on the development of Version 2.5.

Version 2.5 was an integrated PRA software tool that gave the user an enhanced ability to create
and analyze fault trees and event trees using a personal computer (PC). This program provided functions
for fault tree and event tree construction and analysis. The fault tree functions ranged from graphical
fault tree construction to fault tree cut set generation and quantification. The event tree functions included
graphical event tree construction, the linking of fault trees, defining accident sequences, generating
accident sequence cut sets, and quantifying them.

Version 4.0 contains many significant enhancements over previous versions. This version
provides much more powerful cut set generation algorithms. These algorithms are more than a thousand
times faster than previous versions. Problems that took hours to solve can now be solved in seconds
using Version 4.0. Other enhancements provided in this version include the ability to use the system fault
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Introduction

tree logic to solve accident sequences and the addition of flag sets to automatically prune the sequence
logic. Many of the operations in IRRAS and SARA have also been streamlined and simplified to provide
an even more powerful tool for the PRA analyst. This version has undergone a rigorous testing program
to ensure reliability and useability. Overall, Version 4.0 continues to provide more powerful tools for
the PRA analyst.

IRRAS automates the model creation, manipulation, modification, and quantification processes.
Designed for the IBM-PC and compatibles, IRRAS is readily accessible and portable. Taking advantage
of new state-of-the-art algorithms, IRRAS is quite fast and powerful.

IRRAS simplifies the analysis process and automates the construction of input to the analysis
software. The analyst can graphically construct and modify fault trees. IRRAS gives the users better
visualization of the fault tree and simplifies the construction and maintenance. The program supports all
of the basic constructs involved in fault tree construction, including NOT gates. Once the fault tree is
constructed, the program automatically generates the alphanumeric input for the analysis software. The
component reliability information is then easily input into the IRRAS data base using specially designed
menus and screens.

IRRAS 4.0 includes fault tree, event tree and cut set editors to improve the analysis capabilities
without requiring complete regeneration and reduction of the fault trees. Basic event or initiating event
frequencies are easily changed. Cut sets are easily modified with the cut set editor to add recovery
actions, or cut sets may be deleted if desired. These changes can be saved in the data base and quantified
as desired.

This report provides the IRRAS 4.0 user with a basic understanding of the mathematical and
probabilistic concepts needed to understand the basic principles used in IRRAS. In addition, it gives an
overview of the algorithms used in the program. This report is not intended to provide all of the details
some readers may desire. Therefore, references are provided that contain more detail for the interested
reader.

The report contains the following topics:

e Section 2 is an introduction to sets and set operations and to the corresponding logical
operations

e Section 3 contains a review of fault tree construction principles and the philosophy used in
IRRAS

e Section 4 is an overview of probability theory

@ Section 5 contains an overview of the cut set algorithms used in IRRAS

e Section 6 reviews the quantification techniques used in IRRAS

® Section 7 provides a summary of the calculation types used for the basic events

e Section 8 contains an overview of importance measures
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Introduction

¢ Section 9 discusses the uncertainty analysis and provides an introduction to Monte Carlo
‘ sampling and Latin Hypercube sampling

e Section 10 contains a list of applicable references

® Appendix A presents an example of the details of an IRRAS application to a simple fault tree.
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2. SET THEORETIC AND LOGICAL CONCEPTS

This section presents basic definitions of sets and a summary of useful identities. The reader can
obtain more information from Vesely et al. (1981), Mood et al. (1974), or Hahn and Shapiro (1967).

2.1 Set Theoretic Concepts

A set is a collection of objects or elements with some characteristics or distinguishing features
in common. An example of a set is all possible states of the components in a nuclear power plant. The
set of all elements is called the population, the reference set, the universal set, or the identity set. It is
denoted by the Greek letter capital Q or by I. The set not containing any elements is called the null set,
the empty set, and sometimes the zero set. It is denoted by .

Let A and B be sets of Q in the following discussion. B is said to be a subser of 4, if and only
if every element in B is also an element of 4. It is denoted by B € 4. If 4 contains an element not in
B, then B is called a proper subset of A and it is denoted by BCA. A and B are equal, denoted by A=B,
if and only if ASB and BS A4, then A and B have the same elements and neither is a proper subset of the
other.

A useful tool to illustrate set relations
pictorially is the Venn diagram. Figure 1 shows the
Venn diagram for two sets, 4 and B, where B is a
proper subset of 4.

For IRRAS, we are interested in what could
occur at a nuclear power plant. Therefore, when set
theory is used for IRRAS applications, we usually let
the population @ consist of all possible conditions of
the plant. Any one element of this set consists of a
detailed specification of the condition of every part of

the plant. Consequently, & has a huge number of == e
elements. Figure 1. Venn diagram of proper subsets.

Events are subsets of this population. For example, an event such as "AFW pump PAFWT]1 fails
to start” is a subset, consisting of all conditions of the pump and its supporting equipment that result in
failure to start, together with all possible conditions of the rest of the plant. The event "core melt" is also
a subset of the population, containing all the detailed plant conditions that result in core melt.

2.2 Operations on Sets
Three basic operations exist for sets. They are union, intersection, and complementation. A

fourth operation, called set difference, is sometimes considered; it is expressed as a combination of the
other set operations.
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2.2.1 Union

The union of two sets is a set consisting of all the distinct elements in 4 or all of the elements
in B or both. It is denoted by C=AUB.

The union operation is also called an OR operation, and is sometimes denoted by C=A+B.
Inexperienced analysts are wise always to use the symbol U to combine sets and the symbol + to
combine numbers, but adept symbol jugglers learn to use + safely in both contexts. Computer programs
that use only the 128 ASCII characters or the characters on a line printer are forced to use + instead of
U. The union of two sets is shown in Figure 2.

Figure 2. Union of two sets. Figure 3. Intersection of two sets.

The union of any number of sets 4;, 4,, ... is the set of all elements that are in any of the 4;’s.
It can be written with notation analogous to summation notation:

8

U4,

i=l
for n sets and

@®
U4,
i=1

for infinitely many sets.

2.2.2 Intersection

The intersection of two sets is the set consisting of all the elements common to both 4 and B.
That is, the elements belong t0 4 and to B. It is also called the AND operation. It is denoted by
C=ANB or sometimes C=A*B or simply C=4B. The intersection of two sets is shown as the
crosshatched region in Figure 3.
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The intersection of 4;, 4,, ... is the set of all elements that are in all the 4,’s. The intersection
of n sets can be written as:

M,

i=]

or, using product notation, as 4,4,...4,.

2.2.3 Complement

The complement of a set A is the set consisting of all elements in the population that are not
contained in 4. It is sometimes called the NOT operation. It is denoted by 4', 4°, or 4. A complement
of a set is shown in Figure 4.

2.2.4 Set Difference
The set of all elements in A and not in the set B is called the set difference. It is denoted by 4-B.

It can also be written as ANB’'. The clear portion of set 4 (shown in Figure 3) represents the set
difference 4-B.

2.2.5 Mutually Exclusive

‘ Two sets are said to be mutually exclusive or disjoint if and only if they contain no elements in
common. That is, their intersection is the null set, ANB=C. Mutually exclusive sets are shown in
Figure 5. The sets 4,, 4,, ... are mutually exclusive if each pair is mutually exclusive, that is, no
element of Q is in more than one 4;, The term "mutually exclusive” can therefore refer even to an
infinite collection of sets.

Figure 4. Complement of a set. Figure 5. Mutually exclusive sets.
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2.2.6 Exhaustive Sets

A collection of sets 4;, A,, ... is exhaustive if the union of the sets is the population {1, that is,
every element of Q is in at least one 4;. In most applications, exhaustive sets are also chosen to be
mutually exclusive. When the sets 4;, 4,, ... are both mutually exclusive and exhaustive, they form a
partition of Q: every element of Q is in one and only one of the 4,’s.

2.3 Summary of Useful ldentities
The following are useful identities in working with sets:

Commuiative Laws

AUB = BU4

ANB = BNA

Associative Laws

AU@BUG = 4UBUcC

ANEBNC = 4NBNC

Distributive Laws

ANGBUO = UNBUAUNC)

AUBNC) = 4UBNMAEUC)

Idempotent Laws

ANA =4
A4 = 4
Laws of Absorption
ANAUB) = A
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‘ AUMANB) = 4

Complementation

!
Q

ANA’ = ANA = A[4° =

il
L)

AlA’ = A|JA = 4|J4c

(4) = (4 = 4
Operations Involving Null Set and Population
M4 =9

BUA = 4

DeMorgan’s Laws
ANBY = A'UB’

AUBY = A'NB’
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Other Identities
AJ@A’'NB) = AUB

ANEAUB) = ANB" = (4UBY

2.4 Concepts of Statement Logic

A statement is defined here as a sentence that can be declared either true or false. Examples are
"Generator DG1 fails to start” and "Safety injection is initiated." English statements that are not clearly
true or false, such as "This is a nice looking control room," are not considered. Mathematically, a
statement is an object that can take one of two values, either TRUE or FALSE. Use the letters p, ¢, 7,
etc. to denote statements.

New statements can be built by combining simpler statements using AND, OR, and NOT, defined
as follows:

{p AND g) is TRUE if both p and g are TRUE, and it is FALSE if p is FALSE, ¢ is FALSE,
or both are FALSE.

( OR g) is TRUE if p is TRUE, ¢ is TRUE, or both are TRUE. It is FALSE if both p and ¢
are FALSE.

(NOT p) is TRUE if p is FALSE, and FALSE if p is TRUE.
The symbols of mathematical logic (A for AND, v for OR, = for NOT) will not be used here.
However, for ease of input from a computer terminal, IRRAS uses the notation / for NOT. That is /X

is the notation for NOT X in IRRAS input.

Working from the above basic definitions, one can prove many simple facts about statements,
similar to those listed for sets in Section 2.3. For example, one distributive law says

pAND (QOR ) = (p AND ¢) OR (p AND 1)
and one of DeMorgan’s laws says
NOT (p AND g) = (NOT p) OR (NOT g).

These equations mean that the statement on the left-hand side is TRUE if and only if the statement on
the right-hand side is TRUE. There are many such equations not listed here.

Mathematics that uses the formal manipulation of these logical relations is sometimes called
Boolean, after the mathematician George Boole.
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2.5 Relations between Set Theory and Statement Logic

The above sections have hinted about parallel structures for sets and for statements: the terms
AND, OR, and NOT were used for both, and similar rules such as the distributive laws and DeMorgan’s
laws applied to both. The relation is made explicit here.

Let Q be the population, and consider statements about the elements of Q. Any statement has a
corresponding truth set, defined as the set of all elements for which the statement is true. An element
is in the truth set if and only if the statement is true for that element. For example, the statement "core
melt occurs” corresponds to the set of all possible plant conditions that result in core melt. Suppose that

A is the set of elements for which p is TRUE
B is the set of elements for which g is TRUE.

Then the rules for combining sets and for combining statements are related as follows:

AUB is the set of elements for which (p OR ¢) is TRUE
ANB is the set of elements for which (p AND ¢) is TRUE
A’ is the set of elements for which (NOT p) is TRUE .

Because the correspondence is so direct, we sometime interchange the languages and say, for example,
A OR B instead of AUB.

For IRRAS applications, the statements of interest describe events. For example, the event
"AFW pump PAFWT!1 fails to start” may be thought of as a statement p that can be combined with other
statements as described in Section 2.4. The event occurs if the statement defining the event is TRUE.
This defines an event as a statement. Alternatively, the event can be thought of as naming the set A of
all plant conditions that result in failure of the pump to start. Similarly, the statement "MOV134 fails
to open” can be thought of as corresponding to a set B of plant conditions. The statement that both these
events occur, "MOV134 fails to open AND AFW pump PAFWTI1 fails to start,” corresponds to the
intersection BN A.

The relation between statements and sets is so direct that most people switch back and forth
between the two without even realizing it. This is why the terms AND, OR, and NOT were introduced
in Section 2.2 as alternative terms for intersection, union, and complementation. The rest of this report
allows for this back-and-forth thinking, not carefully distinguishing between statement logic and set
theory.

One reason we did not list all the facts about statements in Section 2.4 is that they are simply
reexpressions of the facts in Section 2.3. Any fact about sets in Section 2.3 can be translated to a fact
about statement logic by replacing sets 4, B, and C by statements p, ¢, and r and replacing U, N, and
" by OR, AND, and NOT. The population { must be replaced by a statement that is always true, and
the null set & must be replaced by a statement that is always false.
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‘ 3. REVIEW OF FAULT TREE CONCEPTS
This section provides the reader with an overview of the concepts used by IRRAS in the creation
of fault tree models. More information can be found in Vesely et al. (1981).
3.1 IRRAS Fault Tree Approach
IRRAS allows the user to input fault tree models in either of two ways: graphically (Figure 6)

or alphanumerically (Figure 7). Both methods produce equivalent results and use the same basic
approach to modeling.

Figure 6. Graphical fault tree model input.

A fault tree model consists of a top event (usually defined by a heading in an event tree) and a
connecting logic structure that models the combinations of events that must take place to result in the
undesired top event. A fault tree is a failure model. Thus, all the elements in the fault tree generally
represent failures, whether they be equipment failures, human errors, or adverse conditions that can
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TOPGATE EVENT-A GATE-2

GATE-1 GATE-3 EVENT-B
GATE-2 EVENT-D EVENT-C
GATE-3 EVENT-E EVENT-G

Figure 7. Alphanmeric fault tree model input.

contribute to failure of the modeled event. Successful events (those things that shouid happen) that can
contribute to failure of the top event can be included in the fault tree also, but special care must be
exercised.

The logic structure must contain only one top event. IRRAS will provide an error message if
more than one top event is discovered. A simple way to guarantee only one top event per fault tree is
to develop the fault tree model from the top down and complete each level of the fault tree model before
proceeding to the next level.

The fault tree logic structure can consist of any combination of the logic symbols shown in
Figure 8 that do not result in a logical loop. A logical loop is a chain of events that comes back on itself.
For example, a service water system can fail due to a loss of electrical power. Part of the electric power
model contains failure of the emergency diesel generators. The emergency diesel generators can fail due
to a loss of cooling water supplied by the service water system. The combination of events resulting in
the loss of service water due to a loss of electrical power caused by failure of the diesel generators that
was due to the loss of service water is a logical loop. This is shown in Figure 9. This type of circular
logic is ambiguous and is not allowed by IRRAS. If such a logic pattern is detected, IRRAS will provide
an error message and will display the sequence of logic gates that are in the loop.

3.2 IRRAS Fault Tree Symbols

The fault tree model consists of simple faults called basic events and logical operators that dictate
how the basic events must combine to result in failure of the fault tree top event. Basic events are the
building blocks of the model. When the model is processed, the results will be all the minimal
combinations of basic events sufficient to cause failure of the top event. These combinations are called
minimal cut sets, and are defined in Section 5. Minimal cut sets contain only basic events,

Figure 8 shows the various fault tree symbols used in IRRAS. These have been grouped into
basic events, logic gates, and other symbols. There are six different basic event symbols to indicate
different conditions, but all basic events are treated the same in IRRAS. The different basic events are:

® BASIC EVENT. This represents a simple failure or fault. It may be a hardware failure, a
human error, or an adverse condition. Hardware failures are usually expressed in terms of
a specific component and a failure mode, such as "Service Water Pump 1A fails to start on
demand.” Human errors can be failure to carry out a desired task (failure to open a valve),
failure to perform a specific recovery action (failure to start a backup system), or execution
of a wrong action that has adverse effects on the fault tree top event (isolated the source of
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BASIC EVENTS

= B =

BASIC EVERT BOXED TABLE OF UNDEVELOPED HOUSE EVENT  UNDBVELOPED
BASIC EVENT BASIC BVBNTS BVENT TRARSPER

LOGIC GATES

] i ] 1 1 ]
4 | | | |
noie &
AND GATB OR GATB H/M GATE  TRANSFER IHEIBIT HOT AKD HOT OR
GATE GATE (MAND) (uo_lg:g
CATE GA

OTHER SYMBOLS

RIGHT LEFT HORIZONTAL VERTICAL CORNECTING
TRANSFBER TRANSFER BOX BOX LINES

Figure 8. IRRAS fault tree symbols.

PALLURBRS OF 088 0P EZBRVE
DIRSEL WATER SYETEM
CERBRATORS

Figure 9. Example of a logical loop.
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water for a cooling system). An adverse condition is not necessarily a failure but in
combination with other events can lead to failure. For example, the temperature being below
32°F is an adverse condition necessary for the failure of flow reduction due to a frozen pipe.
Even though a basic event does not necessarily describe a failure, the vast majority of basic
events are failures. This leads to loose but understandable language such as "the event is in
the failed state” instead of the more correct "the event occurs."”

Basic events are always assumed to be independent of each other, in the statistical sense
defined in Section 4.6. This means that the occurrence of one basic event does not influence
the probability of occurrence of any other basic event. For example, suppose that there are
two diesel generators, and the failure of either to start on demand is a basic event.
Independence of the basic events says that if one diesel generator fails to start on demand, this
does not alter the probability that the second diesel generator will fail to start. A common
cause event, such as "two diesel generators fail to start because of unusually cold weather,"
must be modeled as its own basic event, and be assigned its own failure probability or failure
rate. This event is then regarded as statistically independent of all other basic events.

e BOXED BASIC EVENT. This event is the same as a basic event except the box provides
room to add descriptive text to the event. This does not influence the logic of the fault tree,
but adds clarity to the model for those using and reviewing it.

e TABLE OF BASIC EVENTS. This symbol is a convenience for the modeler. If there are
many basic event inputs to a particular logic gate, the events can be listed in a table rather than
trying to connect many basic event symbols to the logic gate. This can be done for any logic
gate that can receive more than one input. IRRAS processes the list of basic events as if they
were shown separately. The tradeoff is the inability to add descriptive text to each basic event
in the table.

¢ UNDEVELOPED EVENT. This symbol is used to denote a basic event that is actually a
more complex event that has not been further developed by fault tree logic either because the
event is of insufficient consequence or because information relevant to the event is unavailable.
This event is used by IRRAS just like any other basic event.

e HOUSE EVENT. A house event is used to denote a failure that is guaranteed to always occur
for the given modeling conditions or is guaranteed to never occur for the given modeling
conditions. This has unique implications in the processing of the logic model. (See Section
5 for a discussion of how house events impact the logic of the fault tree.) In the IRRAS
graphic displays, the house symbol is used mainly for clarity of the model. The determination
of whether an event is a house event or not is established when the calculation type is assigned
to the basic event (see Section 7). Thus, any basic event in IRRAS can be made into a house
event.

e UNDEVELOPED TRANSFER. This symbol indicates that the event is complex enough to
have its own fault tree logic developed elsewhere; however, to simplify the present fault tree,
the event will be treated as a basic event. Usually the complex event is processed as a
separate event tree and the results are used as the failure probability for the representative
basic event. This can greatly simplify a large fault tree, speeding up processing time.
However, with the current capabilities of IRRAS, there is little advantage to this technique.
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It is presented in IRRAS because many existing models being transferred from other software

‘ into IRRAS use it.

Logic gates are used to indicate how the basic events must combine to result in failure of the top
event. Every logic gate has one or more inputs at the bottom and an output at the top. Inputs may be
basic events or other logic gates. The output must serve as the input to another logic gate or result in
the top event. Each logic gate derives its name from the manner in which the inputs must combine to
pass through it to the next level. The input to a logic gate is a set of events. The output is a single
event, formed by using the set operations AND and OR on the input events. The logic gates in IRRAS

(Figure 8) are:

e AND GATE. This gate states that the output event is the simultaneous occurrence of all the
input events, as shown in Figure 10. In set language, the output set is the intersection of the
input sets. In terms of statement logic, the output is a compound statement (X AND ¥ AND

XY Z

I
AND Gate

Figure 10. Example AND gate.

® OR GATE. This gate combines the inputs by the OR operation. In Figure 11, the output set
is the union of the three input sets. Alternatively, the output statement is X OR Y OR Z.

® N/M GATE. This gate states that N of the M input events occur. It is sometimes called an
N-out-of-M gate or a combination gate. For a 2/3 gate, illustrated in Figure 12, 2 of the 3
input events must occur. The output statement is (X AND ¥) OR (X AND Z) OR (Y AND 2).

o TRANSFER GATE. This gate does not require any special logic to result in an output, rather

it is used to link logic structures together without introducing any new logic of its own. This
is used primarily as a convenience for the modeler. All but the simplest of fault trees take up
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OC*@UC# .M+<+N

_
OR Gate

Input @

Figure 11. waEEo OR gate.

OC&W:\:“ XY + XZ + YZ

|
N/M Gate ‘

Input Q

Figure 12. Example N/M gate.
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continued on another page. A TRANSFER GATE may also be used to indicate where the
logic is continued on the same page. This is shown in Figure 13, where GATE-3 is an input
both to GATE-1 and to GATE-2. In IRRAS, the following rules apply when using a
TRANSFER GATE:

' more than one page. The TRANSFER GATE indicates where the logic on a given page is

r

TRANSFER
GATE

Figure 13. Example TRANSFER gate.

- The TRANSFER GATE name must be the same as the name of the gate where the logic
continues.
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- When transferring on the same page, the gate being transferred to can be anywhere on the
page, except where it would create a logic loop.

- When transferring to another page, the gate being transferred to must be the top gate on the
page.

- When transferring to another page, the transfer gate name, the file name for the page being
transferred to and the name of the gate being transferred to must all be the same. For
example, if the TRANSFER GATE is called TRANSI, then the page being transferred to
must be called TRANS1 and the top gate on that page must be called TRANSI.

e INHIBIT GATE. This gate, as its name implies, has its output inhibited unless a certain
condition is met. The output event occurs if the single input fault occurs in the presence of
an enabling condition. The input event is connected to the bottom of the gate and the
conditioning event is drawn to the right of the gate. An INHIBIT GATE is shown in
Figure 14. Event X cannot occur unless Conditioning Event Y is present. The output is the
combination of events X and Y. Thus, the INHIBIT GATE is a special type of AND GATE
and IRRAS processes it as such. The Conditioning Event is treated as any other basic event
with a probability of occurrence calculated and used in the processing.

Pipe Rupture
Ducpfl'o Preezing

( >G> Conditioning

INHIBIT

Pi% Patle Due
Preszing

@

X

Figure 14. Example INHIBIT gate.

e NOT AND GATE. This gate is also called a NAND GATE. It can be thought of as the
negation of an AND GATE. The output occurs if any one of the inputs does not occur. This
is best explained through an example. The left side of Figure 15 shows a NOT AND GATE
with inputs X, Y, and Z. If any one of the inputs does not occur, then an output occurs. Any
of three possibilities satisfy this condition: 1) X does not occur, 2) Y does not occur, or 3)
Z does not occur. Since any event (X) and its complement (/X) are mutually exclusive, we
can say that
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X does not occur = /X occurs.
‘ Therefore, the output of the NOT AND GATE in Figure 15 is /X (read not X), or /Y, or /Z.

OUTPUT /X + /¥ + /% /X & /Y + /%
| 1

EQUALS

o &
Q) QO Q@ QQ

Figure 15. Example NOT AND gate.

Another way of looking at the problem is the way IRRAS actually processes a NOT AND
GATE. The gate is transformed into an OR GATE with all of the inputs transformed into
their complements. This is shown on the right side of Figure 15. Any single complement
event occurring results in an output.

¢ NOT OR GATE. This gate is also called a NOR GATE. It is the negation of an OR GATE.

The output occurs if none of the inputs occur. This is shown in Figure 16. There is only one

‘ combination of events where none of the inputs occur; X does not occur and ¥ does not occur
and Z does not occur. In terms of complemented events this is /X and /Y and /Z,

OUTPUT /X /Y /2
1 i

.
Q Q Q

EQUALS

@
weurs O Q O

Figure 16. Example NOT OR gate.

IRRAS processes a NOT OR GATE by transforming it into an AND GATE with all of the
inputs transformed into their complements. All of the not events must occur for the output
event to occur. This is the same as none of the original events occurring. The other symbols
in a fault tree are used to add clarity to the diagram and to connect the various gates and
events together properly.
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e RIGHT (LEFT) TRANSFER. These symbols are used to indicate where a transfer has taken
place. At the place where the original line of logic left off is a TRANSFER GATE. At the
place where the logic picks up again, a RIGHT or LEFT TRANSFER symbol is placed. This
makes it easier for a reader or reviewer to follow the logic through a large fault tree taking
up several pages. Typically, the TRANSFER GATE and its corresponding TRANSFER
symbol are given the same label, as shown in Figure 13.

The RIGHT (LEFT) TRANSFER symbol is strictly for reader convenience and is not needed
by IRRAS to have a correct model. IRRAS has all the information it needs from the
TRANSFER GATE name and fault tree page file name to generate the proper logic. The
presence or absence of a transfer symbol is ignored by IRRAS.

e HORIZONTAL (VERTICAL) BOX. These boxes are also provided for the convenience of
the reader/reviewer. They allow further descriptive information to be placed in the diagram
than that contained in the boxes attached to the various gates and events. IRRAS ignores these
boxes when processing the fault tree.

© CONNECTING LINES. Three line types are provided in IRRAS. As shown in Figure 8,
these are a solid line, a dashed line, and a dotted/dashed line. The different line types can be
used to highlight or differentiate various portions of the fault tree model. All three line types
are treated the same by IRRAS. Lines are used to connect the gates and basic events together
to form the logic of the faylt tree. A single input can be attached to a gate directly without
using any line. If there is more than one input to a gate, then a line or table of events must
be used to make the connection. Lines may be drawn at any angle. Connecting lines must
actually touch the symbols being connected and must do so at the input or output stems on the
symbols. Events or gates left dangling will not be part of the fault tree logic. Lines always
connect outputs to inputs, never input to input or output to output. Figure 17 shows examples
of correct and incorrect use of lines.
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ﬁ T

SR

PN Q

CORRECT INCORRECT

Figure 17. Examples of connecting lines.
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4. PROBABILITY CONCEPTS

This section provides the reader with an overview of the concepts of probability associated with
the uncertainty analysis used in PRA. This discussion will not be inclusive, but it will present the basic
concepts and principles. For a more detailed discussion of these topics, the reader can obtain more
information from Press (1989), Lindley (1985) and Singpurwalla (1988).

4.1 Definition of Probability

Probability is the only satisfactory way to quantify our uncertainty about an uncertain event E.
Probability is always conditional; it is conditioned on all of the background information we have at the
time we are quantifying our uncertainty. This background information is denoted by H and the
probability of E conditional on H is denoted by P(E|H). To make the notation less cumbersome, we
write this simply as P(E); nevertheless, the conditioning H should be understood.

The range of a probability is between 0 and 1. P(E) = 0 means E will never occur, and P(E)

= | means E will always occur. From now on, assume that a probability is defined for all events in the
population.

4.2 Rules of Probability

The rules of probability tell us how to relate our uncertainty about events. Specifically, they tell
us how various probabilities combine or cohere. These rules are motivated by preferences between events
and a scoring rule argument. The scoring rule approach can be used to show that the following three
rules of probability hold for discrete cases.

For any event,

0<PE) <1,and P@ =1 . 4-1)

For any mutually exclusive events E,, E,, ...

P

DEi] = iP(Ei) . @2

i=1 i=1

The conditional probability of an event F given an event E is
P(F|E) = P(FN\E)/P(E) @3)

which is equivalent to the multiplication rule
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PFNE) = PF|E)PE)

These are the basic rules of probability, from which all others can be derived. One logical
development of probability, due to Kolmogorov (Press 1989), takes Equations (4-1) and (4-2) as axioms,
and Equation (4-3) as a definition. A more recent approach by Renyi (Press 1989) uses conditional
probability as the fundamental concept, rewrites every unconditional probability above as a conditional
one, and uses the rewritten Equations (4-1), (4-2) and (4-3) as axioms. These mathematical fine points
are not important to this report. It is enough to note that every treatment of probability uses the rules
given above, and the rules that follow as consequences in the sections below.

Equation (4-2) says that the probability of the union of disjoint events is the sum of the
probabilities. This fact motivated the use of + as an alternate notation for U in Section 2.2.1.

4.3 Law of Total Probability

For any events E and F,

PE) = PE(F) + PENF') = PE|F)PF) + PE|F)PEF")

This law can be extended to a set of n mutually exclusive and exhaustive events F,, F,, . . . , F, as
follows:
PE) = :‘:1 PE|F)P(F) . 4-49)

4.4 Basic Probability Relations
P@) =1
P(@) =0
P(A) = P(A) = 1-P(4)

PAUA) = PAUAY = P@) = 1
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PANA) = PANA) = P(D) = 0
If E and F are two events and E is a subset of F, then P(E) <P(F).

4.5 Bayes’ Law

Consider any two events E and F. By the multiplication law
PENF) = PE|PPEF) = PF|E)PE)

SO

PE|F) = ﬂf}%’@ . @5)

We use Equation (4-5) to change our uncertainty about E given background information H to our
uncertainty about E given F and H. We can think of F as new data.

For example, suppose that turbine-driven pumps fail to start with some frequency p. We quantify
our background knowledge about turbine-driven pumps through a probability distribution on p. (For ease
of explanation, suppose that this distribution is discrete, a list of possible values p,, each with a
probability reflecting our degree of belief.)

To continue this example, let E be the event "p = 0.01". Let F be the event "3 failures in 100
attempts to start." We know P(E) from the probability distribution that quantifies our background
knowledge. How should this probability be changed to account for the new information? That is, what
is P(E|F)?

This question is answered using Bayes’ Law. The theory of binomial random variables shows
that

% |-

PFp) = [ 3

is the probability of the event F given some value of p. Therefore P(F |E) is P(F;p) with the value 0.01
substituted for p. The value of P(F) is obtained from the law of total probability, Equation (4-4):

P(F) = YL [P(F,;p)P@ = p)]

summed over all the possible values p,. Then finally, P(E|F) is obtained by substituting the values for
P(E), P(F|E), and P(F) into Equation (4-5).

In summary, we used Equation (4-5) to change a belief about E given the background information
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to a belief about E given both the background information and F. The belief was updated based on new
data.

4.6 Independent Events

We say an event E is independent of another event F if the probability of E, P(E), is unaltered
by any information concerning event F. We write

P(E|F) = PE|F) = P(E)

This is also called sratistical independence. From this definition we obtain the following relationship for
independent events

PENF) = PE|FPF) = PEPEF)

4.7 Additional Probability Relations

The probability of the union of n events is

PA,UAU-U4) = TPU) - TPAA) + - + (-1yPAA-A) . 4-6)

The probability of the intersection of n events is

P(AA,~A) = P4 |A~A,_)PA,|ADPA) . C o))

The probability of the intersection of n events when the events are statistically independent is
P(AA,A) = PA)PA)PA) . 4-8)

For any n events (dependent or independent), we have

P(AA,A) < min[PA),PA,),...PA)] . @49

For independent events, the probability of the intersection equals the product of the probabilities. This
fact motivated the product notation that was introduced as an alternate to N in Section 2.2.2. Because
of its compactness, the product notation has been used for intersections in Equations (4-6) through (4-9).
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5. DETERMINATION OF MINIMAL CUT SETS

When considering the development of a fault tree minimal cut set algorithm, it is good to review
the general processes involved. First, we have the definition of the fault tree logic. Typically, the logic
is defined using an alphanumeric file containing names of gates and basic events. Gate and event names
vary in length, but 16 characters seem to be a typical size. Along with the logic file is another
alphanumeric file containing basic event names and a failure probability associated with each event.
These failure probabilities are used during the fault tree solution process to simplify the tree by
truncation. Additional processing information may be used, but this is typically the minimum information
required.

The above information is loaded into memory and converted into a format that is easier to
process. Names are usually converted to numbers for smaller size and ease of manipulation. Certain
optimization functions are also performed on the logic before it is processed. Next, the logic for each
gate starting with the TOP is recursively replaced with its inputs until the resulting logic is in terms of
basic events only. This results in a list of event intersections. Each event intersection is a cut set of the
fault tree and identifies a set of events that will cause the function modeled by the fault tree to occur.
The list of cut sets identifies all the logical combinations of events that will cause the top event to occur.

The cut sets described above may need further reduction due to rules defined for Boolean
reduction. These reductions are applied to obtain a simpler collection of cut sets. For example, the cut
sets generated should be minimal, that is, the list should not be simplifiable. For example, if ANBNC
causes the top event to occur, then ANBNC is a cut set. If ANB is also a cut set, then ANBNC is
not minimal, and it is discarded from the list. If neither A alone nor B alone causes the top event to
occur, ANB is a minimal cut set, and it is retained in the list. This is an application of the absorption
identity: (ANB) U (ANBNC) = ANB.

The event probabilities are then used to calculate a probability for each cut set using Equation
(4-7). This value is the probability that the given set of events will occur. Any cut set whose probability
falls below a user-defined value is then eliminated. The remaining cut sets are the minimal cut sets for
the fault tree and are the desired end product of the fault tree solution. In IRRAS, the minimal cut sets
are always in terms of basic events unless the analyst specifically indicates that certain gates are to be
treated as basic events.

Once the minimal cut sets have been determined, the quantification routines must be employed
to determined a point estimate for the probabilities of the cut sets. The routines that find importance
measures would then be used to calculate the importance of each basic event in the cut sets, and the
uncertainty routines would be used to perform uncertainty analysis on the cut sets.

The steps described above need not be applied in the order indicated, but each step is usually
present in any fault tree sofiware. We will now present a more detailed overview of each of these steps
as they relate to IRRAS.

In order to solve a fault tree, there are a number of operations that must be performed on the tree

before it can be solved. Some of these operations relate to converting the tree into a format that is ready
to solve, while others involve optimizing the tree to make the processing of the tree more efficient.
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5.1 Recursive Algorithms

Many of the processes associated with fault tree reduction and quantification can be implemented
easily using recursive procedures. A simple definition of a recursive procedure is "a procedure that calls
itself.” An example of where a recursive procedure might be used is in checking a gate for “"valid”
inputs. A recursive implementation of this procedure has as an argument, the gate to be checked. This
procedure checks each input to the gate passed as an argument. If an input is a basic event, then it
checks to see if it is valid. If the input is a gate, however, it calls itself to see if the inputs to this gate
are valid. When all the inputs to a gate have been processed, the procedure exits and continues
processing the gate it was checking before the recursive call. The algorithm stops when all inputs to all
gates have been checked. Many computer languages do not support recursive procedures, but in those
languages recursion can be simulated by using arrays to keep track of the arguments passed to the
procedure. IRRAS takes advantage of recursive procedures in many areas.

5.2 Loading and Restructuring

IRRAS was designed to allow the user to structure very large fault trees into smaller pieces or
pages. The concept of pages comes from the graphical fault tree editor. One page represented the
portion of a fault tree that could be easily displayed on a graphical screen or printed on a standard sheet
of paper. This idea expanded to allow the pages of the fault tree to be connected together with transfer
gates. IRRAS stores fault trees by pages, in a relational data base. The name of each system is the key
to locate the system (fault tree) in the data base. Transfer gates are stored as subsystems. Again, the
name of the transfer gate is the name of the subsystem. During the load process, these names are used
to connect the fault tree logic.

Because IRRAS stores the logic of these fault trees as physically separate pages, connected by
transfer gates, the first task is to load these pages into memory and combine them into one connected fault
tree. This is done by reading in the logic for the first page of the tree, then recursively scanning the
loaded logic for a transfer gate that has not been processed. IRRAS allows the user to specify whether
a transfer gate is to be expanded or not. The gates that are flagged (identified as not to be expanded) are
converted to basic events at this time.

During the load process, IRRAS connects gates to the tree by name. The gates are maintained
in a sorted list that is searched using a binary search, when required. When a new gate is encountered,
it is inserted into the gate list in sorted order. As the tree is loaded, transfer gates are replaced by gates
with developed logic beneath them. During this process, if IRRAS encounters a gate that is not a transfer
and has the same name as another gate, it checks to see if it is an identical gate (i.e., it is the same type
and has the same inputs). If the gates are not identical, IRRAS displays an error message and terminates
the process after the tree is loaded.

When all transfer gates have been processed, any transfer gates remaining are considered to be
unresolved transfer gates. The user is notified of these and they are converted to basic events with the
same name as the transfer gate. This allows IRRAS to continue processing the fault tree. These
unresolved transfers will appear as basic events in the cut sets.
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If the tree is successfully loaded, IRRAS checks to see if the user has specified a gate name to
be used as the top gate. If so, then the tree is pruned to eliminate any logic that is not connected beneath
this gate. This process simplifies the tree and frees any memory used by the excess logic. At this point,
the tree is ready for further processing.

5.3 N/M Gate Expansion

The next step is to convert N/M gates to their representative logic in terms of AND and OR
gates. This type of gate is used in IRRAS to simplify the definition of the logic for situations where the
user needs to define a structure representing the combination of M things taken N at a time. The user
may specify any combination where N and M range from 2 to 9 and N<M. IRRAS automatically
converts these gate structures by first generating a number of intermediate AND gates containing as inputs
the combinations of inputs represented, then these gates are input to the original N/M gate. Once this
is complete, the N/M gate type is changed to an OR gate. The number of AND gates under the OR gates
is determined by the total number of combinations of N failures out of a population of M events. The
equation for this number of combinations is

M) . M
N|  NQ@-N)

An example of this process can be illustrated with the following "2/3" gate.
GATE1 2/3  INPUT1 INPUTZ2 INPUT3
is converted to the following structure:

GATE!1 OR  N/M-1 N/M-2 N/M-3
N/M-1 AND INPUT1 INPUT2
N/M-2 AND INPUT! INPUT3
N/M-3 AND INPUT2 INPUT3

Thus, for 2 out of 3 gates, there are 3 unique combinations of 2 failures. This generates 3 AND gates
under the OR gate. If the number of inputs to the gate does not equal M, then a fatal error message is
generated. In this case, IRRAS will not try to solve the fault tree.

5.4 TOP Gate Determination

If the user has not specified the gate to be used as the top gate of the fault tree, the next step in
solving the fault tree is to determine which gate is the "TOP" gate. This is done by counting the
references to each gate. A gate is referenced if it appears as input to any other gate. The top gate is the
only gate that will not be referenced by any other gate. If IRRAS detects more than one gate that
qualifies as the TOP gate, then the user is notified and given the opportunity to select the gate to be used
as the TOP gate. If no gate is selected, IRRAS will not try to solve the fault tree. If, however, the user
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selects one of the gates, IRRAS will prune all other logic not connected to this gate and continue with
the solution.

5.5 Loop Error Detection

Now that the TOP gate of the fault tree has been determined, IRRAS can proceed to check for
loops in the fault tree. A loop is a situation where a gate either directly or indirectly references itself.
A simple example of a loop is represented by the following fault tree logic:

TOP AND GATElL EVENT1
GATE1 OR  GATE2 GATE3 EVENT2
GATE2 OR  EVENT3 EVENT4
GATE3 AND GATEI1 EVENTS

In this example, GATE1 indirectly references itself since GATE1 references GATE3, and GATE3
references GATE].

To determine if there is a loop in the fault tree logic, IRRAS defines a Boolean array containing
one element for each gate in the fault tree. This list is then initialized to FALSE. During processing of
a gate, the Boolean variable for that gate is TRUE when processing that gate or any of its inputs,
otherwise it is FALSE. Starting with the TOP gate, IRRAS traverses the fault tree by following the gates
defined in the inputs to each gate. As a gate is encountered, its Boolean variable is tested. If the value
of this variable is TRUE, then a previous reference to this gate must have occurred indicating a loop
exists in the fault tree at this point. If Boolean variable is FALSE, then it is set to TRUE to indicate that
this gate is currently being processed and the inputs for this gate are traversed. When all the inputs to
a gate have been checked, the Boolean variable for the gate is set to FALSE before exiting. Using the
previous loop example, the processing proceeds as follows:

(¢}) Initialize Boolean array. “ ||
TOP GATE1 GATEZ | GATE3

| FALSE | FALSE | FALSE | FALSE |

2) Start processing the TOP gate.

Set flag for TOP gate. | Top | cater |Gate2 |GaTES |
| RUE [raLsE | Faise | Faise |
3 Process the first input to the TOP gate. &
First input is GATEL. [tor | cater |came: | cares |

Set flag for GATE]1 and continue.

| TRUE |TRUE |FALSE |FALsE |
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4) Process the first input to GATEL.
First input is GATE2. “ TOP GATE1L GATE2 | GATE3 “

Set flag for GATE2 and continue. “ TRUE TRUE TRUE FALSE “

5) No gates input to GATE2. '
Reset flag for GATE2 and exit. “ TOP GATE1 GATE2 | GATE3 “

| TRUE | TRUE | FALSE | FALSE l|

6) Continue processing inputs to GATE].
Next input is GATE3, ITor |cater |cate2 | GaTes |

Set flag for GATE3J and continue. II TRUE TRUE FALSE | TRUE “

(@) Process inputs to GATES3.

First input is GATEI. " TOP GATE1 GATE2 | GATE3 II
Set flag for GATEL.

Flag is already set. II TRUE TRUE FALSE | TRUE “
Loop detected!

Two points of optimization can be considered in this approach. First, each gate only needs to be
processed once. If it is referenced several times in the fault tree, repeated processing can be time
consuming. IRRAS maintains a list of those gates that have been processed and only traverses those that
have not been previously processed. Second, this algorithm is quite repetitive and can be implemented
quite nicely as a recursive procedure (see Section 5.1).

If IRRAS detects a loop in the fault tree, a fatal error is generated along with a traceback. This
traceback defines exactly the gate reference list that caused the loop. IRRAS will not process a fault tree
that has loops. The user must modify the logic to remove the loop before IRRAS will solve the fault
tree.

5.6 Complemented Gate Conversion

Once IRRAS has ensured that the fault tree logic does not contain any loops, the complemented
gates in the fault tree are processed. Two types of complemented gates are allowed in IRRAS. The user
may indicate a complemented gate by using either the NAND or the NOR gate or by putting a forward
slash (/) in front of a gate name. If the complemented gate types are used, then all references to the gate
name will use the complemented logic. If the user wants to complement only a specific reference to a
gate, then the slash character may be used in front of the gate name where it is referenced.

IRRAS processes complemented gates by first complementing the gate type, then complementing
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the inputs to the gate. The following example demonstrates this process:

TOP AND GATE!? GATE2

GATE1 NAND GATE3 EVENT1

GATE2 AND GATE3 EVENT2

GATE3 NOR EVENT3 EVENT4
becomes

TOP AND GATE1 GATE2

GATE1 OR /GATE3 /EVENT1

GATE2 AND GATE3 EVENT2

GATE3 AND /EVENT4 /EVENTS

where the "/" character represents the complement of the input.

Notice that GATES3 is referenced as both a complemented gate and a noncomplemented gate. To
handle this, IRRAS generates a new gate called NOT3 that contains the complemented version of GATE3.
Now, the new fault tree is as follows:

TOP AND GATEI1 GATE2
GATEL1L OR NOT3 /EVENT1
GATE2 AND GATE3 EVENT2
GATE3 AND /EVENT4 /EVENTS
NOT3 OR  EVENT4 EVENTS

If every gate in the tree is referenced in the fault tree as both complemented and
noncomplemented, then this approach to processing the complemented gates can result in a fault tree with
twice the number of gates as in the original tree. This, however, is not usually the case and the number
of additional gates is substantially smaller. When IRRAS first encounters a reference to a complemented
gate in the fault tree, it assumes that this will be the only reference to the gate, therefore, it complements
the original gate. If later on it encounters a reference to the noncomplemented version of the gate, it then
generates a new gate that is identical to the original uncomplemented gate.

5.7 House Event Pruning

IRRAS allows the user to modify the logic structure of a fault tree by using "house” events.
House events are events that can be set to logical TRUE (T) or FALSE (F). This forces the event to
occur with house event TRUE, or forces it not to occur with house event FALSE. IRRAS also allows
the user to specify that an event is to be ignored with house event IGNORE (I) which says to remove the
event from the fault tree logic. An event set to house event IGNORE will be treated as if it did not exist
in the fault tree.

Normally, house events are treated as special events that must be designated as house events.

In IRRAS, however, the user may treat any event as a house event. Since IRRAS creates an event for
each transfer gate in the tree, house events may also be used to prune subsystems from a fault tree. At
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various times, IRRAS will use house events to simplify or optimize the processing of the fault tree.
There are two of these situations. First, if the user is truncating on probability and the probability of an
event is below the truncation value, then we know that this event has negligible probability of occurring.
To prune the fault tree, we set these events to house event FALSE. This same technique could be used
for other truncation criteria that can be determined before the fault tree is solved to further simplify the
tree.

Second, IRRAS uses house events when solving sequence cut sets. In IRRAS, accident sequences
are defined using an event tree to indicate the failure or success of top events. Each top event in the
event tree is associated with a system fault tree (see Section 5.22). To solve the accident sequence,
IRRAS constructs a fault tree for those systems that are defined to be failed in the sequence logic by
creating a dummy AND gate with these systems as inputs. IRRAS then solves this fault tree using the
specified truncation values. This process results in a list of cut sets for the failed systems in the accident
sequence. IRRAS then uses the "cut set matching" technique to further reduce this list of failed system
cut sets. This technique uses the cut sets determined from solving the successful system fault trees in the
accident sequence logic to eliminate cut sets from the list of failed system cut sets. To do this, IRRAS
first scans the list of failed-system cut sets and assigns a value of FALSE to any event in IRRAS that does
not appear in this list. Once this is done, the fault tree representing the successful systems in the accident
sequence logic is constructed, pruned by the house events, and solved. The events that are set to FALSE
in the previous step result in a significantly reduced success system fault tree. We can do this since we
know that for any successful-system cut set to eliminate a failed-system cut set, it must contain only
events in the list of failed-system cut sets. Setting these events to house event FALSE will ensure that
the cut sets with these events in them will be eliminated at the fault tree restructuring step. This process
greatly speeds up the solution of the successful system fault tree. For example, let the following cut sets
represent the failed systems cut sets for the accident sequence.

El1 *E2 *E3
E2 *E5 *E7
El *E2 *ES

Let the following fault tree represent the successful-systems fault tree.

TOP OR  SYS1 SYS2 SYS3
SYS1 AND E1 E6
SYS2 AND E1l ES
SYS3 AND E3 E4

Since events E4 and E6 do not appear in the list of failed-systems cut sets, we can set them to house

event FALSE and prune the fault tree, resulting in the following fault tree.

TOP OR  S$¥84 SYS2 S¥%83
SEE—AND—El——-FALSE
SYS2 AND Ei ES
SYSI—AND—EI-——FALSE

Pruning this tree gives the following reduced fault tree.
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TOP AND EIl ES

Solving this fault tree results in the following single cut set
El * E5
This cut set is used to reduce the failed-systems cut sets as follows.

El *E2 *E3
E2 * ES * E7
Bl E2-E£HS

Whether specified externally by the user or internally by IRRAS, before the fault tree is solved,
it is pruned depending on the structure of the tree and the house event setting. In order to do this,
IRRAS again traverses the fault tree checking for house events. At each gate the algorithm checks each
of the inputs to the gate to see if it has been set to any one of the three house event settings, “T," “F,"
or "1." If so then the logic for that gate is modified as follows. If the gate is an AND gate, then an input
set to T or I is removed from the gate input list, while an input set to F causes the gate to be set to F.
If the gate is an OR gate, then an input set to F or I is removed from the gate input list, while an input
set to T causes the gate to be set to T.

The routine to check for house events and prune the logic of the fault tree is a recursive routine.
Using the fault tree logic defined previously, along with the house event information and starting at the
top gate in the fault tree, IRRAS checks each of the inputs to the current gate. If the input is a gate and
the gate has not been previously checked, then the recursive routine calls itself to check this gate. The
recursive routine returns a value of T, F, or I for each gate that is processed and it processes each gate
only once. If a house event value is returned for the top gate, then there is no need to solve the fault tree
and a message is displayed. If the value returned is T, the message "The TOP event has occurred
(TRUE)!" will be displayed. If the value is F, then the message "The TOP event cannot occur
(FALSE)!" will be displayed. If the value returned is I, then the message "No logic to solve!” will be
displayed.

5.8 Coalescing Like Gates

The next step in the fault tree solution is to coalesce like gates. This process combines those
gates that are input to other gates of the same type. Specifically, AND gates that are input to AND gates
are combined and OR gates that are input to OR gates are combined. The following fault tree is an
example of the coalescing of both an AND gate and an OR gate.

TOP AND GATEI1 GATE2

GATEI1 OR  GATE3 EVENT1
GATE2 AND EVENT2 EVENT3
GATE3 OR  EVENT4 EVENTS

After coalescing, GATE2 is consumed by the TOP gate and GATES3 is combined with GATEI.
The following fault tree is the result of these modifications.
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TOP AND GATEI EVENT2 EVENT3
GATE1 OR  EVENTI1 EVENT4 EVENTS

In the above example, both gates that were coalesced were referenced only by gates of the same
type. This resulted in the removal of both of these gates from the logic. The following example shows
a case where the coalesced gate is not removed.

TOP AND GATEI1 GATE2
GATE1 OR  GATE2 EVENTI1
GATE2 AND EVENT2 EVENT3

After coalescing, the following tree is generated:

TOP AND GATE! EVENT2 EVENT3
GATE1 OR  GATE2 EVENTI1
GATE2 AND EVENT2 EVENT3

By coalescing the fault tree, the number of gates is reduced and the number of inputs to a gate
is maximized. This process can substantially reduce the processing time as well as provide for better
optimization later in the fault tree restructuring process. Note, however, that the total amount of space
required to store the inputs to the fault tree can grow significantly as a result of coalescing the tree. The
amount of additional space required depends on the number of gates that can be coalesced, the number
of times a coalesced gate is referenced in the tree, and the number of inputs to the coalesced gate. This
increased space requirement will usually be recovered during module and independent subtree processing
later.

To perform the coalescing step, IRRAS starts with the TOP gate of the fault tree and recursively
checks the list of inputs to the current gate. Any duplicate inputs in the list are removed. If the input
is a gate and it is the same type as the current gate, then the list of inputs to this gate is added to the
current gate input list. The gate reference is then removed from the list. If the input is a gate with a
single input then the gate reference is replaced by its input. Once all inputs to all gates have been
processed, then IRRAS makes a pass through the current gate list and eliminates any gates that are no
longer needed due to any of the previous restructuring steps.

5.9 Modules versus Independent Subtrees

IRRAS uses two methods of optimization that are similar and should be clarified. These
optimization methods are independent subtrees and modules. Before solving a fault tree, IRRAS converts
all the logic into a logically equivalent form in terms of AND gates, OR gates, and basic events. The
following discussion assumes this form of fault tree logic. In IRRAS, an independent event is defined
as an event that is input to only one gate. An independent gate is a gate that is input to only one other
gate and contains as inputs only independent events.

An independent subtree is a gate that has as inputs only independent events or independent gates.

The inputs to an independent subtree can occur only once in a fault tree, however, an independent
subtree may be input to many other gates. Note, the independence defined here is logical independence.
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In IRRAS a set of events M={E1,E2,...,En} is defined to be a module of a fault tree if the
following two conditions are met. (1) For every occurrence of E as input to a gate, the other events in
M also occur as input to the same gate. (2) Every occurrence of M is an input to the same gate type,
either an AND or an OR gate. These events can be combined under a single gate called a module. All
references to these events are converted to reference the module. Once a module is created, all of the
events input to it occur only as inputs to a single gate. Since a module may appear multiple times in a
fault tree, it is usually not an independent gate, however, it is always an independent subtree. A gate that
has a module as one of its inputs is only an independent subtree if the module is an independent gate.

In the fault tree reduction process, independent subtrees need not be expanded until the very end
of the process. Once a fault tree is solved in terms of independent subtrees, it is a simple expansion
process to convert the minimal cut sets to their basic event representation. Since a reduced number of
tokens needs to be analyzed in the fault tree solution process, independent subtrees save large amounts
of processing time. Figure 18 shows an example fault tree with a module and an independent subtree.
In the example, Gate-3 also happens to be an independent gate.

5.10 Module Determination and Creation

The next step in the restructuring process is to find all modules in the fault tree. To perform this
step, IRRAS uses a temporary bit vector. The bit vector contains one bit for each event in the fault tree.
The first of these bit vectors keeps track of the events that are used in the fault tree. If complemented
events are used, then a second bit vector is allocated for the complemented events.

A vector is also created for each gate currently defined. These vectors will contain, in bit format,
the events used by each gate. We also define two vectors, TMP1 and TMP2, which hold intermediate
results. Finally, we define an array containing one number for each event. This number is a count of
the number of times each event is used in the fault tree.

Once the data arrays are created, we initialize the TMP1 vector and the event count array by
traversing the input list. For each input, we check to see if it is an event, and if so, we set its bit in the
TMP1 vector and increment the count for this event. If the event is complemented, then its bit is set in
the complemented vector. When all inputs have been processed, we eliminate any event that occurs as
both a complemented and a non-complemented event from the event vector list. These events cannot be
included in modules. Next, we process each gate and set the appropriate bits in each gate’s bit vector
to reflect the events used by that gate. When this process is complete, we are ready to find the modules
in the fault tree. Using the fault tree shown in Figure 18, the following initialized data structures would
be defined.

Ii— Event-1 -_I;:'l;ent-Z Event-3 Event-4 E\-'-ent-S Event-6 —.E_v.ent-7 Eventﬂ
| Used? 1 1 1 1 1 1 1|

i
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Event-1 Event-2 Event-3 Event-4 Event-5 Event-6 Event-7 Event-8

TopGate
Gate-1 1 1
Gate-2
Gate-3 1
Gate-4 1
Gate-3 1 1 1 “
Gate-6 1 1|
Gate-7 1 1 1

Event-1 Event-2 Event-3 Event-4 Event-5 Event-6 Event-7 Event-8 n
TMP1 1 1 1 1 1 1 1 1 |

TMP2 !I

“ Event-1 Event-2 Event-3 Event-4 Event-5 Event-6 Event-7 Event-8 ||

| Count 2 2 1 2 2 1 1 1

Using the TMP1 bit vector and the maximum number of events to be processed, we check to see
if an event’s bit is set. If the bit is set in the TMP1 vector for this event, then we lock at all uses of this
event to see if it occurs in combination with other events. We do this by initializing the TMP2 vector
to the current list of events to process, TMP1. We then loop over the gate vectors checking to see if the
current event is used by the gate. If it is used, then we perform a bit "AND" operation using the gate
vector and the TMP2 vector. The result of the operation is stored in the TMP2 vector. We continue this
process for each gate that uses the basic event. If at any time we find a gate that uses the event and is
a different type than the other gates that use the event or the TMP2 vector has no events set, we exit the
processing and continue with the next event. Using our data structures, the steps for Event-1 are as
follows.

(1)  Initialize TMP2 vector.

Event-1 | Event-Z | Evemt-3 | Event-4 | Event-5 | Evemt-6 | Event-7 Event-ﬂ
TMP1 1 1 1 1 1 1 1 1 |
TMP2 1 1 1 1 1 1 1 1 |

i
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. 2) The first gate to use Event-1 is Gate-1, therefore, perform bit "AND’ operation on Gate-1 and
TMP2 storing results in TMP2.

Il Event-1 Eve-;;—Z Event-3 Event-4 Event-5 Event-6 Event-7 Event-8
" TMP1 1 1 1 1 1 1 1 1
(3)

TMP2 1 1 |

The next gate to use Event-1 is Gate-7, therefore, perform bit "AND" operation on Gate-7 and
TMP2 storing results in TMP2.

ﬂ Event-1 Eve;;-Z Event-3 Event-4 Event-5 Event-6 Event-7 Event-8
il T™MP1 1 1 1 1 1 1 1 1
| TvP2 1 1

No more gates use Event-1, therefore, the result of the above process is a bit vector, TMP2,
containing those events that are always referenced together. We need to further check this list to ensure
that none of these events are used elsewhere in the fault tree. We achieve this by checking the count of
the number of times the event is referenced in the fault tree. If this count does not match the current
event’s count, then the event is removed from the list. In our example we see that Event-1 and Event-2
are in the TMP2 vector. Checking the count vector, we see that both events are used the same number
of times (twice) in the fault tree.

‘ If the remaining list is greater than one event, we create a new gate containing the events in the
list and change all gates that reference the current event so they reference this new gate instead. The
other events in the new gate are also deleted from any modified gate. Once this is done, we update our
TMP1 vector containing the current list of events to process. This is done by complementing the TMP2
vector and performing a bit "AND" operation with the TMP1 vector. This effectively removes any
events that we have put in a module from the list of events to be processed. In our example, we create
a module using Event-1 and Event-2, then update the faunlt tree to use this module. The temporary bit
vectors are updated as shown. Notice that both Event-1 and Event-2 are removed from the list of events
to be processed.

Ii Event-1 Event-2 Event-3 Event-4 Event-5 Event-6 Event-7 Event-8

TMP1 1 1 1 1 1 1
TMP2 1 i

The above operations continue until all events have been processed and no further restructuring
is possible. When IRRAS has completed this step, one more loop through the tree is made to combine
any gates that had all their inputs converted to a gate. This eliminates any single-input gates from the
fault tree.
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5.11 Independent Event Determination

The next step in the fault tree restructuring process is to determine which events are independent.
For this purpose IRRAS defines "independent” as only occurring once in the fault tree. This step is
performed by defining two bit vectors. Each time an event is encountered, a bit is set in the first vector.
If the bit is already set, then the corresponding bit in the second vector is also set. When complete, the
second bit vector represents the list of basic events that occur more than once. The events not in this list
are independent.

5.12 Independent Gate and Subtree Determination

The next step in the restructuring of the fault tree is to determine the independent gates and
subtrees in the fault tree. Independent subtrees are much easier to solve since they generate only minimal
cut sets. IRRAS processes independent subtrees separately from the rest of the fault tree.

To find the independent gates and subtrees, IRRAS again uses a recursive routine to traverse the
fault tree. IRRAS uses the data structures defined previously to check the inputs to each gate. If all the
inputs to the gate are independent events and the gate occurs only once, then it is marked as an
independent gate. If the input is a gate and has not been processed, then the routine calls itself to check
this gate. If all inputs to the gate are independent events or gates, then the gate is flagged as an
independent subtree. This results in a fault tree that has all independent subtrees identified.

5.13 Determining Gate Levels

The last step in the fault tree restructuring process is to determine the gate levels. The TOP gate
is defined to have level 0. Its inputs have level 1, the inputs to those gates have level 2, and so forth.,
The level of a gate is the number of gates one encounters after the TOP in going from the TOP to the
gate of interest. If a gate appears more than once in a tree, define the gate’s level as the largest of the
levels corresponding to the various places where the gate occurs. To determine the level of each gate,
a recursive routine is used. This routine keeps track of the level for each gate. Each time the gate is
encountered in the traversal of the fault tree, its level is checked against the current level. If the current
level is greater than the gate’s assigned level, then the gate’s level is set to the current level. The routine
exits early if a gate’s level is greater than or equal to the current level. This process continues until the
entire tree has been processed.

This information is used later in determining the expansion path for the fault tree. The expansion
path for a fault tree is the order in which the gates for a fault tree are solved. This expansion path can
significantly affect the time it takes to solve a fault tree. IRRAS attempts to determine the optimal
expansion path.
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5.14 Fault Tree Reduction

Once the fault tree is loaded and restructured, it is ready to be solved. This process consists of
a number of steps that convert the Boolean logic representing the fault tree to its expanded form
representing the desired minimal cut sets for the tree. In IRRAS, a fault tree may represent either a
system equation or a sequence equation. In either case, the same algorithm is used to solve the tree.

5.15 Cut Set Truncation

The exact solution of many large fault trees can prove to be prohibitive; therefore, various
methods have been developed to reduce the time required to solve a fault tree. IRRAS allows the user
to specify that a number of these methods be used in the fault tree solution. The first and most common
method is to eliminate any cut set whose probability falls below a specified truncation value. The second
method is to eliminate any cut set that has more than a specified number of unique events in it. The third
method is to eliminate any cut set that has more than a specified number of zone flagged events in it.
A zonme flagged event is an event that has been marked as representing a zone (location or area). In a
facility, a fire zone may represent a room with fire barriers around it. A security zone may represent
an area with certain security characteristics. This method is used in location analysis to allow for the
truncation on the number of zone events in a cut set. The last method provided in IRRAS for cut set
truncation is typically used in seismic analysis and allows the user to combine the first truncation method
with another criterion that checks to see if any event in the cut set is below a specified probability before
it is truncated.

All of the above truncation methods are supported by IRRAS. The user may also choose to solve
the fault tree exactly. No matter which methods are used, IRRAS attempts to take advantage of whatever
it can to simplify and reduce the amount of work required to solve a tree. The ways each of these
truncation methods is implemented will be discussed in detail as the process for the fault tree solution is
described.

5.16 Intermediate Result Caching

Fault tree solutions can easily generate enough intermediate cut sets to fiil up all available
computer memory. Therefore, a method is required to allow this data to be written out to a secondary
data storage area. IRRAS uses a disk caching technique to store the intermediate data. This allows for
the processing of large amounts of intermediate data. The limit is the amount of available disk space on
the computer being used. This also allows IRRAS to be run on a minimal computer without memory
beyond the 640K available to standard DOS applications. IRRAS does, however, allow the user with a
more powerful computer and additional extended memory to create a virtual disk and direct the
intermediate information that would have resided on the hard disk to the virtual disk. This will improve
the performance of IRRAS on large problems by a factor of 3 to 5 times. This overview will not attempt
to describe in detail how the cache software works. The performance of any fault tree reduction software
is quite dependent on the methods used to handle the large amounts of intermediate data; therefore, the
user should ensure that an efficient method is used.
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5.17 Fault Tree Cache Initialization

The first step in the fault tree reduction process is to take the fault tree logic that has been loaded
and restructured and store this logic in a format for efficient use and retrieval by the fault tree reduction
software. This process includes the creation and initialization of certain data structures containing
information that is used during the solution process to simplify and speed up the fault tree reduction
process. By including this data in a data structure and updating it as the fault tree is solved, IRRAS is
able to avoid many additional calculations.

Using the gate level information determined previously, IRRAS creates an ordered table such that
all gates for a given level appear before any gates for the next larger level. Any independent subtrees
appear after all nonindependent gates for the fault tree. This ordering defines the expansion path to be
used for solving the fault tree. As mentioned previously, the IRRAS algorithm is essentially a top-down
approach, but strictly speaking, the algorithm processes the fault tree first from the bottom up, then from
the top down. The algorithm is bottom up because we treat each OR gate as a mini fault tree and solve
them starting with the last gate or the bottom of the fault tree. When all OR gates up to the TOP gate
have been solved, IRRAS expands the TOP gate from the top down.

As the fault tree logic table is being created, IRRAS generates some information to be used during
the expansion process to help in cut set truncation. A bound can be calculated on the contribution of the
independent subtrees to the cut set probabilities. If the user has specified truncation on probability, this
bound can be used to eliminate cut sets earlier than otherwise possible. For now, let BPC denote this
Bound on the Probability Contribution. Calculate the BPC for any gate as follows. The BPC for a basic
event is its probability. The BPC for an AND gate is the product of the BPC’s of the inputs. The BPC
for an OR gate is the largest BPC of the inputs. Since the gate table is ordered by level, these
calculations can be performed one gate at a time, starting with the last gate and proceeding to the top of
each independent subtree.

To see how this works, suppose first that § is an independent subtree with only two inputs, 4 and
B, both basic events. Because § is independent, as defined in Sections 5.9 and 5.12, each of its basic
events appears only once, so 4 and B do not appear in any other part of the fault tree. Because basic
events are assumed to be independent in the statistical sense of Section 4.6, 4 and B are statistically
independent of each other and of the rest of the tree.

Any cut set that § contributes to will have the form (§ AND other terms). If S is an AND gate,
this form is (4 AND B AND other terms), and the probability of the cut set is P(4)P(B)P(other terms),
by independence. This equals BPC(S) X P(other terms), by the definition of BPC for an AND gate. If
instead § is an OR gate, any cut set that § contributes to will have the form (4 and other terms) or else
(B and other terms). The cut set probabilities are bounded by

max[P(4), P(B)] % P(other terms)
which equals BPC(S) X P(other terms), by the definition of BPC for an OR gate.
In either case, any cut set that § contributes to has probability bounded by the value of BPC for

S. The same idea is true if § has more than two inputs, and if they are not necessarily basic events but
may be independent gates instead. Therefore, if BPC for § is less than the truncation value, § can be
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eliminated from the tree. In any case, the BPC is calculated and stored so that it can be used to eliminate
cut sets earlier than otherwise possible.

If the user has chosen to truncate on size or zones a similar calculation can be performed on
independent subtrees to get a size contribution of the subtree to each cut set it appears in. If size
truncation is selected, then all basic events are counted. If zone truncation is selected, then only events
that are zone flagged are counted. At each AND gate, the size contributions of the inputs are added
together. For a qualified basic event the size is one. For a gate, however, the size may be larger than
one. At each OR gate, the size contribution of the smallest input is used as the size contribution of the
gate. Once these values are calculated, they are stored in the gate table for future use. The fault tree
is now ready to be expanded.

5.18 Fault Tree Gate Expansion

The process of solving a fault tree involves three basic steps. These steps are gate expansion,
Boolean absorption, and cut set truncation. In the first step, the gates of the fauit tree are expanded by
replacing them with their inputs. In the second step, the first four of the following identities are applied
to the cut sets:

() A*A =4

) A+ A*B=A

3) A*B*|A=(

) lIA = A

5) A*B+ A*/B=A (oot currently applied).

The first identity (idempotent relationship) prevents two identical events from appearing in the same cut
set. The second one (absorption relationship) is the most computationally difficult to apply. In terms
of set theory it consists of eliminating subsets, because A*B is a subset of 4. Computer programmers,
on the other hand, tend to think of the identity as eliminating supersets; A*B is regarded as a larger entity
than A because it has more tokens to manipulate. Both the subset and superset terminology can be found
in the literature, but this document will use only the term "absorption.” The absorption identity is used
to eliminate cut sets that are not minimal. The basis for using the Law of Absorption is that the top gate
has become a giant OR gate with the cut sets as inputs. If A and A*B are cut sets, the top gate contains
A + A*B, which can be simplified to A. The third identity (exclusion relationship) implies that no cut
set will contain both the failure and the success of an event. The fourth identity (double negation
relationship) states that the complement of a complemented event is the event itself. Identity number five
(exhaustion relationship) is not currently performed by IRRAS. It is important to note that IRRAS does
not currently calculate prime implicants (Quine 1959). Complemented events appear in the cut sets with
a "/" in front of the event name.

The final step, cut set truncation, involves the elimination of cut sets that fall outside user
specified truncation limits. There have been many different methods applied to performing these three
steps. Some codes use a top-down approach, while others use a bottom-up approach. Both approaches
have their strong points. IRRAS uses some features from each approach to optimize the fault tree
solution process.
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Using the fault tree logic definition generated previously, IRRAS begins expanding the tree.
Since OR gates increase the number of cut sets, the algorithm treats all OR gates in the fault tree as mini
fault trees. These trees are solved first, starting with the last nonindependent OR gate and proceeding
to the TOP gate of the fault tree. All absorption and truncation technigues are applied on these small
trees, eliminating cut sets as soon as possible. When the TOP gate is encountered, it is solved using as
input all the cut sets generated by solving the mini fault trees described above. The result of this
approach is to partition the large fault tree into many smaller subtrees that are easier to solve. The fewer
cut sets generated for the smaller trees will also tend to require less time to apply the absorption identities
and to truncate.

Note that the cut sets generated by the above process are in terms of independent subtrees. When
the TOP gate has been solved and all absorption has been performed, the independent subtrees are
expanded. This step requires no absorption; independent subtrees can only generate cut sets that are
minimal.

5.19 Cut Set Absorption

As the fault tree expansion occurs, cut sets are checked at each gate to see if they can be
eliminated. There are several ways a cut set may be eliminated during the expansion process. IRRAS
maintains the current bound on the probability contribution (BPC defined in Section 5.17) and size for
each cut set throughout the fault tree expansion. These contributions are updated depending on the type
of expansion being performed. By keeping current BPC values, IRRAS does not need to recalculate
these values each time the cut set is modified or expanded. Much computation time is saved by this
approach.

If the gate to be expanded is an OR gate, then IRRAS also compares the inputs to the OR gate
against the inputs of the cut set containing the OR gate. If there is a common event, then the reference
to the OR gate can be removed and the cut set need not be expanded further. The reason for this is that
any cut sets generated from an OR gate of this type will be absorbed later in the process anyway. The
following example demonstrates this process.

The cut set
GATE1 *# EVENT1 * EVENT2
and the following definition of GATE! as an OR gate with three inputs
GATE!1 OR EVENT1 EVENT3 EVENT4
will generate the following cut sets when expanded.
EVENT1 * EVENT2
EVENT1 * EVENT2 * EVENT3
EVENT1 * EVENT2 * EVENT4

Notice that the second and third cut sets are absorbed by the first.
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5.20 Boolean Absorption

The process of performing the Boolean absorption reduction can be a time-consuming operation.
The methods used in IRRAS are described in Corynen (1988). This method uses a set of bit tables to
determine those cut sets that can be absorbed by a given cut set. For a detailed description of the
process, refer to the indicated document. This method is very powerful and has good run-time
characteristics. In order to be most effective with this algorithm or any other one used for the Boolean
absorption process, the number of cut sets compared must be minimized. The expansion approach
described previously tends to generate smaller numbers of intermediate cut sets, minimizing the amount
of time spent on absorption.

5.21 Data Storage Considerations

Given the task to be performed in solving a fault tree, an optimal format for storage and retrieval
of the intermediate cut set data must be determined. Two obvious methods were considered in IRRAS.
First, since a large amount of time can be spent in the determination of sets to be absorbed, one option
is to store the intermediate data in a format that can be directly used by the absorption routine. This
format would be an array of bit vectors with each row of the array representing an event and each column
representing a cut set. This format was used in the first version of IRRAS and worked well for small
problems because the bit vector arrays could be easily contained in the computer’s fast memory. As
problem size increased and it became necessary to shift these arrays to disk, this method of storage
became difficult to manage efficiently.

The second alternative is to store the cut sets as an array of numbers representing the events in
each cut set. The first number is a count representing the number of events in the cut set. This number
would be followed by a probability value, a size value, and a list of numbers representing the gates or
events contained in the cut set. The list is terminated by a zero count number. This format is the one
used in the current version of IRRAS. It is simple and easy to store and retrieve from intermediate
storage. The process of gate expansion is also easily handled with this format. When absorption is
performed, IRRAS creates the array of bit vectors. As problem size increases, this format has proven
to be much more flexible and easy to manage than the first.

5.22 Sequence Cut Set Generation

Another area that must be considered when developing a risk assessment code is the accident
sequence analysis. Accident sequences are defined in IRRAS by developing event trees. IRRAS provides
a graphical editor to use in developing event trees. Figure 19 shows an example of an event tree
developed in IRRAS. Once the user has developed the event tree, IRRAS automatically generates the
sequence logic from the graphical event tree. The sequence logic is the list of systems that succeed or
fail during this accident sequence. These system failures and successes are top events of fault trees. This
logic is used by IRRAS to generate the cut sets for the sequence.

There are two methods that can be used to generate sequence cut sets. First, the cut sets generated

by solving the system fault trees can be used as input to the accident sequence algorithm. This method
simply combines the cut sets for each system as defined by the sequence logic. The second method is
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Figure 19. IRRAS event tree
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to create a fault tree for a sequence by combining the fault trees corresponding to system failures and
successes for the sequence. The fault tree reduction algorithms can then be used to solve the accident
sequence. IRRAS allows the user to select either method, but only the latter method will be discussed
here.

In IRRAS, accident sequences are defined using an event tree to indicate the failure or success
of top events. Each top event in the event tree is associated with a system fault tree. To solve the
accident sequence, IRRAS constructs a fault tree for those systems that are defined to be failed in the
sequence logic by creating a dummy AND gate with these systems as inputs. In Figure 19, the accident
sequence logic for sequence 9 is

LOSP * /RPS * AFW * /HPI * /PRV * CCS * LPR
Therefore, IRRAS creates the following failed systems fault tree

FAILED AND AFW CCS LPR

AFW TRAN
CCs TRAN
LPR TRAN

where AFW, CCS, and LPR represent the fault tree logic for Auxiliary Feedwater System, Containment
Spray System, and Low Pressure Recirculation system, respectively, and TRAN denotes a transfer to the
system fault tree.

IRRAS then solves this fault tree using the specified truncation values. This process results in
a list of cut sets for the failed systems in the accident sequence. IRRAS then uses the “cut set matching”
technique to further reduce this list of failed-system cut sets. This technique uses the cut sets determined
from solving the successful-system fault trees in the accident sequence logic to eliminate cut sets from
the list of failed-system cut sets. To do this, IRRAS first scans the list of failed-system cut sets and
assigns a value of FALSE to any basic event that does not appear in this list. Once this is done, the fault
tree representing the successful systems in the accident sequence logic is constructed, pruned by the house
events, and solved. The successful systems fault tree for accident sequence 9 is

SUCCESS OR RPS HPI PRV

RPS TRAN
HPI TRAN
PRV TRAN

where RPS, HPI, and PRV represent the fault tree logic for the Reactor Protection System, High Pressure
Injection system, and the Pressure Relief Valves, respectively. This fault tree models failure of the RPS
system, the HPI system, or the PRV system. The top event of the tree does not occur as part of accident
sequence 9. That is, none of the cut sets in the tree occur.

The minimal cut sets for the sequence remain after the successful-system cut sets are deleted.
There are a couple of points to note in this process. First, each sequence has an initiating event
frequency associated with it. If the user specifies a probability truncation value, IRRAS divides this value
by the initiating event frequency. This eliminates the need to handle the initiating event during the fault
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tree reduction phase. Second, during the processing of an accident sequence, certain pieces of equipment
or trains of a system may need to be either failed or ignored. IRRAS allows the user to specify a set of
house event flags to be associated with a particular sequence. These flags allow the user to automatically
prune the fault tree logic before it is solved by setting basic events to house events and reducing as
described in Section 5.7. The result is a fault tree with the specified components in the specific state
required by the sequence.
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‘ 6. QUANTIFICATION TOOLS FOR PROBABILITIES AND FREQUENCIES

This section provides an overview of fault tree and accident sequence quantification using minimal
cut sets. Vesely et al. (1981) and Fussell (1975) contain additional details and references for the
interested reader. The section is written in terms of failure probabilities, but is also correct if the term
"probability” or "failure probability” is replaced everywhere by "unavailability."

6.1 Quantifying Minimal Cut Sets

The individual cut set probabilities are determined by multiplying the probabilities of the
applicable basic events.

C = q,4,4, (6-1)
where
G = probability of cut set i, and
9 = probability of the k-th basic event in the ith cut set.

This follows from Equation (4-8) and the assumed statistical independence of the basic events.

‘ 6.2 Quantifying Fault Trees

The fault tree quantification process is performed in two steps: (1) calculation of individual cut
set probabilities, which was described above in Section 6.1, and (2) combining the cut set probabilities.
The exact probability of the union of the cut sets can be found, in principle, by Equation (4-6), where
each 4, is a cut set. This is normally much too cumbersome. Therefore, two approximations are often
used, the rare event approximation and the minimal cut set upper bound. Each of these approaches will
be discussed below. Examples are calculated in Sections A4 and AS of Appendix A.

6.2.17 Rare Event Approximation

A common approach to calculate the probability for a top event is to add together the probabilities
for the cut sets, where the cut set probability is given by Equation (6-1). Thus, the rare event
approximation is

5= LC . 2

i=1

This approximation is a good approximation when the cut set probabilities are small. In screening
analyses, when relatively large screening values are used to bound the component failure probabilities,
the rare event approximation can exceed 1.
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6.2.2 Minimal Cut Set Upper Bound ‘

The minimal cut set upper bound calculation is an approximation to the probability of the union
of the minimal cut sets for the fault tree. The equation for the minimal cut set upper bound is

s=1-Tl¢t-c) ©3)
i=1

where

S = minimal cut set upper bound for the system unavailability,
C, = probability of the ith cut set, and

m = number of minimal cut sets in the fault tree.

The minimal cut set upper bound is always less than or equal to 1. The input values for the
minimal cut set upper bound are probabilities. Barlow and Proschan (1981) show that Equation (6-3)
gives an upper bound on the exact probability of the top event.

The minimal cut set upper bound works well with fault trees containing only AND and OR gates
without complemented events or NOT gates. With noncoherent fault trees, that is, trees that contain NOT
gates and/or complemented events, the minimal cut set upper bound can produce results that are overly
conservative. The magnitude of the overestimation will depend upon the structure of the tree. In such
cases, other calculational techniques should be used such as the SIGPI algorithm (Patenaude 1987). In
most cases, the minimal cut set upper bound will produce reliable results.

Warning: When C, is very small (on the order of 1E-15), 1 - C is rounded off to 1.0. If this
happens for most or all of the (s, the product in Equation (6-3) will be too large, and the bound
S will be too small. Although § is an upper bound in theory, in practice it is not computed to
sufficient accuracy when the C’s are extremely small. In such a case the rare event
approximation, given by Equation (6-2), is better.

6.3 Quantifying Sequences

An accident sequence begins with an initiating event, which has a frequency f. The units of the
frequency are 1/time, and there is no theoretical upper bound on its possible value. This distinguishes
a frequency from a probability, which is unitless and bounded by 1.0.

After the initiating event, various systems in the plant are suppose to function in sequence.
Depending on whether they function or not, the sequence can proceed to different possible plant states.
Consider one of these systems. Given the assumed initiating event and the success or failure of the
systems that were invoked earlier in the sequence, the probability of the system’s failure is quantified by
a fault tree for the system. For each such sequence of interest, IRRAS constructs and simplifies the fault
tree for the entire sequence, by combining the fault trees for the failed systems and the negation of the
fault trees for the successful systems, as described in Section 5.22.
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bound or the rare event approximation. Then, the frequency of the sequence is the product /5. In this

Let § be the probability of the sequence fault tree, evaluated using the minimal cut set upper
' way, sequence frequencies are found.
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Table 1. IRRAS calculation types

7. EVENT PROBABILITY CALCULATION TYPES

The calculation type specifies the method to be used to calculate the basic event probability.

Thirteen types are available in IRRAS, and they are summarized in Table 1. The resulting probability
for Types 1 through 7 will be the mean used in the uncertainty analysis described in Section 9. Types
2, 4, and 6 are approximations of the exact formulas given by Types 3, 5, and 7.

Calculation Method

Probability

Lambda * Mission Time

1 - Exp(-Lambda * Mission Time)

Lambda * Min(Mission Time, Tau)
Operating Component with Repair (Full Eq)
Lambda * Tau / 2.0

1 + (Exp(-Lambda*Tau)-1.0) / (Lambda * Tau)
Base Probability + Probability

Base Probability * Probability

Set to House Event (Failed, Prob=1.0)

Set to House Event (Successful, Prob=0.0)
Ignore this Event (Remove it from logic)
Set to System Min Cut Upper Bound

02 = b o] \D 00 =3 Oh LA b U B s E

A description of each calculation type follows.

Calculation Type 1 takes the number specified by the user in the Probability field as the basic
event failure probability. This is the type used for demand probabilities.

Calculation Type 2 uses the number provided for A as the basic event failure rate per hour and
multiplies it by the basic event mission time expressed in hours. If the basic event mission type,
expressed in hours, is not input then the global or system mission time is used. The global
mission time is set by the user in the Utility Options module (Define Constants) or the Fault Tree
Analysis or Analyze Sequences module. A default mission time of 24 hours is provided by
TIRRAS until it is changed by the user. This calculation is the rare event approximation to the
actual failure probability for an operating component without repair during the mission time.
This approximation is relatively good for failure probabilities less than 0.1.

Calculation Type 3 uses the actual equation for failure probability for an operating component
without repair,

g=1-e
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where

q = failure probability of the basic event,
A = failure rate per hour, input as A\, and
¢ = mission time expressed in hours.

Calculation Type 4 is a rare event approximation for the failure of an operating component with
repair. The approximation is A times 7. It uses A as the per hour failure rate and 7 as a
user-specified time to repair in hours. If the mission time ¢ is less than 7, then A¥ is a better
approximation of the event probability; therefore, IRRAS uses A times the minimum of 7 and
mission time,

Calculation Type § is the actual equation for the failure probability of an operating component
with repair. The equation is

-y
T

)

where

g = failure probability of the basic event,

A = failure rate per hour, input as A, ‘
¢ = mission time expressed in hours, input as a default, and

T = average time to repair expressed in hours, input as 7.

Calculation Type 6 is the rare event approximation for the failure probability of a standby
component with a surveillance test interval. The equation used is

AT

1=

where

g = failure probability of the basic event,

A = standby failure rate per hour, input as A, and
T = surveillance test interval in hours, input as 7.

Calculation Type 7 is the actual equation for the failure probability of a standby component with
a surveillance test interval. The equation is
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where

g = failure probability of the basic event,

A = standby failure rate per hour, input as A, and
T = surveillance test interval in hours, input as 7.

Calculation Types 8 and 9 are used for sensitivity analyses. Type 8 allows the user to specify
a current case probability that differs from the base case by an exact amount. The amount to
change the base case probability by is entered in the probability field. Type 9 lets the user create
a current case probability that is a specified percentage of the base case. The percentage is
entered in the probability field.

Calculation Types T, F, and I are used to set basic events to house events. Calculation Type T
turns the basic event into a house event that always occurs (probability 1.0). Type F turns the
basic event into a house event that never occurs (probability 0.0). If the event states that a
component fails, T forces the component to fail while F forces it to succeed. Type I indicates
that the basic event is to be treated as if it did not exist in the logic for the fault tree. Setting an
event to a house event actually changes the logic of the fault tree, pruning appropriate branches

‘ and events from the fault tree. Therefore, the flags on the affected fault trees will indicate a need
to generate new cut sets rather than just requantifying existing cut sets. See Section 5.7 for
details on the processing of house events.

Calculation Type S indicates that the probability of the basic event is to be determined by finding
a system with the same name as the basic event. Then, use the minimal cut set upper bound for
this system as the failure probability for the basic event.

IRRAS will accept numbers in scientific or decimal format. For example, 1.E-4 and 0.0001 are
both valid inputs.

NOTE: When using the short-hand scientific notation, a decimal point must precede the
"E", thus 1E-2 will not be accepted but 1.E-2 or 1.0E-2 will. IRRAS will accept
an upper-case E or a lower-case e. Also, note that 1.0E-020 is not the same as
1.0E-02. This has caused confusion in the past.
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8. IMPORTANCE MEASURES

8.1 Types of Importance Measures

IRRAS calculates seven different basic event importance measures. These are the Fussell-Vesely
importance, risk reduction ratio, risk increase ratio, Birnbaum or first derivative importance, risk
reduction difference, risk increase difference, and the structural importance. These importance measures
are calculated for each basic event for the respective fault tree or accident sequence.

The ratio importance measures are dimensionless and consider only relative changes. The
difference definitions account for the actual risk levels that exist and are more appropriate when actual
risk levels are of concern, such as comparisons or prioritizations across different plants. For purely
relative evaluations, such as prioritizations within a plant, the ratios sometime give more graphic results.

The main importance measures are

e Fussell-Vesely importance, an indication of the percentage of the minimal cut set upper bound
contributed by the cut sets containing the basic event

® Risk reduction, an indication of how much the minimal cut set upper bound would decrease
if the basic event never occurred (typically, if the corresponding component never failed)

e Risk increase, an indication of how much the minimal cut set upper bound would go up if the
basic event always occurred (typically, if the corresponding component always failed)

e Structural importance, the number of cut sets that contain the basic event.

In IRRAS, the Basic Event Importance display lists the basic event name, its failure probability,
the number of cut sets in which the basic event occurs, and three of the six importance measures. The
user can choose to display either ratios or differences by setting a user constant. If the user selects ratios
then the Fussell-Vesely importance, risk reduction ratio, and risk increase ratio are displayed together.
Otherwise, the Birnbaum importance, risk reduction difference, and risk increase difference are displayed
together. The list can be sorted on any column in the display.

The exposition below is written in terms of fault trees and event probabilities. However, IRRAS
also can calculate importances for events in sequences. Recall that a sequence is simply a fault tree
preceded by an initiating event with frequency f, where f has units 1/time. The frequency of any event
in the fault tree is f times the probability of the event. Therefore, the ratio importances are unchanged
whether the event is part of a fault tree or a sequence. A difference importance for an event in a
sequence is f times the importance of the event in the fault tree. The maximum possible value of a
difference importance is 1.0 if the event is in a fault tree and f if the event is in a sequence. This
alternative formulation is indicated below by phrases in parentheses.

8.2 Calculational Details

This section contains the calculational definition of the importance measures. Examples are given
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in Section A6 of Appendix A. Both the ratio and the difference are discussed in the appropriate sections.
For the basic event under consideration, several notations are used repeatedly.

Fx) = minimal cut set upper bound (sequence frequency) evaluated with the basic event
probability at its mean value.

Fo) = minimal cut set upper bound (sequence frequency) evaluated with the basic event
probability set to zero.

F1) = minimal cut set upper bound (sequence frequency) evaluated with the basic event
failure probability set to 1.0.

8.2.1 Fussell-Vesely importance

The Fussell-Vesely importance is an indication of the fraction of the minimal cut set upper bound
(or sequence frequency) that involves the cut sets containing the basic event of concern. It is calculated
by finding the minimal cut set upper bound of those cut sets containing the basic event of concern and
dividing it by the minimal cut set upper bound of the top event (or of the sequence). In IRRAS, this
calculation is performed by determining the minimal cut set upper bound (sequence frequency) with the
basic event failure probability at its mean value and again with the basic event failure probability set to
zero. The difference between these two results is divided by the base minimal cut set upper bound to
obtain the Fussell-Vesely importance. In equation form, the Fussell-Vesely importance FV is

FV = [F(x) - FO)}/F(x)

8.2.2 Risk Reduction

The risk reduction importance measure is an indication of how much the results would be reduced
if the specific event probability equaled zero, normally corresponding to a totally reliable piece of
equipment. The risk reduction ratio is determined by evaluating the fault tree minimal cut set upper
bound (or the sequence frequency) with the basic event probability set to its true value and dividing it by
the minimal cut set upper bound (sequence frequency) calculated with the basic event probability set to
zero. In equation form, the risk reduction ratio RRR is

RRR = F(x)/F(0)

The risk reduction difference indicates the same characteristic as the ratio, but it reflects the actual
minimal cut set upper bound (sequence frequency) levels instead of a ratio. This is the amount by which
the failure probability or sequence frequency would be reduced if the basic event never failed.

The risk reduction difference (RRD) is calculated by taking the difference between the mean value and
the function evaluated at 0. In equation form, the risk reduction difference RRD is
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‘ RRD = F(x) - F(0)

8.2.2 Risk Increase

The risk increase ratio is an indication of how much the top event probability (frequency) would
go up if the specific event had probability equal to 1.0, normally corresponding to totally unreliable
equipment. The risk increase ratio is determined by evaluating the minimal cut set upper bound
(sequence frequency) with the basic event probability set to 1.0 and dividing it by the minimal cut set
upper bound evaluated with the basic event probability set to its true value. In equation form, the risk
increase ratio RIR is

RIR = F(1)/F(x)

The risk increase difference RID is calculated by taking the difference between the function evaluated at
1.0 and the nominal value. In equation form, the risk increase difference RID is

RID = F(1) - F(x)

‘ 8.2.4 Birnbaum Importance

The Birnbaum importance measure is calculated in place of the Fussell-Vesely importance
measure when differences are selected instead of ratios. The Birnbaum importance is an indication of
the sensitivity of the minimal cut set upper bound (or sequence frequency) with respect to the basic event
of concern. It is calculated by determining the minimal cut set upper bound (or sequence frequency) with
the basic event probability of concern set to 1.0 and again with the basic event probability set to 0.0.
The difference between these two values is the Birnbaum importance. In equation form, the Birnbaum
importance B is

B = F(1) - FQQ)
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9. UNCERTAINTY AND MONTE CARLO

The uncertainty analysis allows the user to calculate the uncertainty in the top event probability
resulting from uncertainties in the basic event probabilities. To use this option, the user must have
previously loaded or generated the cut sets and loaded the component reliability information and
distribution data. Bohn et al. (1988) contains an excellent discussion of uncertainty analysis. A very
brief overview is given here, with elaborations in the subsequent sections.

In an uncertainty analysis, IRRAS already has the top event expressed in terms of minimal cut
sets, either generated earlier or loaded from some other source. These cut sets depend on many basic
events, each of which has a probability described in terms of some parameter(s). For definiteness in this
explanation, suppose that a basic event probability depends on the parameter A. The value of A for each
basic event is not known exactly, but is estimated based on data or on expert opinion. The uncertainty
in A is quantified by a probability distribution: the mean of the distribution is the best estimate of A, and
the dispersion of the distribution measures the uncertainty in A, with a large or small dispersion reflecting
large or small uncertainty, respectively, in the true value of A. This distribution is the uncertainty
distribution of \.

For all the basic events, IRRAS randomly samples the parameters from their uncertainty
distributions, and uses these parameter values to calculate the probability of the top event. This sampling
and calculation are repeated many times, and the uncertainty distribution for the probability of the top
event is thus found empirically. The mean of the distribution is the best estimate of the probability of
the top event, and the dispersion quantifies the uncertainty in this probability. For an accident sequence
the process is the same, except the sequence fault tree is preceded by an initiating event, whose frequency
is also quantified by an uncertainty distribution. The term Monte Carlo is used to describe this analysis
by repeated random sampling. Two kinds of Monte Carlo sampling are simple Monte Carlo sampling
and Latin Hypercube sampling; they are described and compared in Sections 9.6 through 9.8.

9.1 Basic Uncertainty Output

The Monte Carlo procedure computes the probability distribution of a fault tree top event or
accident sequence using the assigned probability distributions for each basic event contained in the
minimal cut sets. By using the probability distributions for the basic events, the uncertainty in the system
unavailability can be calculated.

The first step in the process of computing the uncertainty in the minimal cut set upper bound is
to provide a measure of the uncertainty for each basic event contained in the minimal cut sets. IRRAS
then computes the minimal cut set upper bound for a set of random samples from the uncertainty
distributions of the basic events. After calculating the minimal cut set upper bound, IRRAS computes
the first four moments of the distribution and the 5th, 50th, mean, and 95th percentile values.

The moments are calculated as a basis for comparison of the calculated distribution with other
distributions (McGrath and Irving 1975). From the first four moments, the sample mean, sample
variance, coefficient of skewness, and coefficient of kurtosis can be calculated. To establish some
standard notation, the following symbols are used:
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n = the number of samples calculated.

x; = thdatavaluefori =1,2,3, ...n

The sample mean, given as %, can be defined as

]

=

and the sample variance, given as

[ (xi _2)2

1 n—l

§ =

The k-th sample moment about the mean is next defined in general as

m, = 5’_': A

1 n_l
Thus, from the third moment, the coefficient of skewness, §8,'?, is

w2 _ My
o= 2

s3

and from the fourth moment, the coefficient of kurtosis, §,, is

m
B, = —

s4
where s = the square root of §°.

The coefficient of skewness and the coefficient of kurtosis are generally used as measures for
comparison with the normal distribution. If the skewness is close to zero while the kurtosis is
approximately three, the normal distribution is a good approximation. A zero skewness value indicates
a symmetric distribution; a negative skewness indicates a long left tail, while a positive value indicates
a long right tail. If the kurtosis is greater than three, the distribution is more peaked than the normal
distribution, and has more weight in the tails. However, if the value is less than three, the distribution
is flatter than the normal, and has less weight in the tails.

9.2 Uncertainty Analysis Input Data

From the Failure Data area, we moved to the Uncertainty Data area using the arrow keys or the
tab key. The fields in this area that can be accessed from this menu are the current case distribution type,
a distribution parameter value, and a correlation class.
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Currently, IRRAS supports lognormal, normal, beta, gamma, chi-squared, exponential, uniform,
and histogram distributions for the Monte Carlo uncertainty analyses. The default distribution type is the
lognormal.

Most distributions can be defined with two statistical parameters, although some take more. The
first parameter is the mean failure probability and the second parameter is specific to the particular
uncertainty distribution. The mean failure probability is calculated from the data input in the Failure Data
area just discussed. For more clarity, IRRAS allows the user to input the parameters of the distribution
directly. It will check them for consistency with the mean.

Correlation classes, as explained in Section 9.5, are used to identify basic events whose failure
data are derived from the same data source. This information is used in the uncertainty analysis.
Correlation classes consist of four upper-case values. A blank correlation class indicates that there are
no data dependencies. When running the uncertainty analyses, the same sample value will be used for
all basic events with the same correlation class.

NOTE: The user must set up a correlation class numbering scheme for the basic events
in the data base. For example, correlation class 1 may be assigned to
motor-driven pumps fail to start, correlation class 2 to motor-driven pumps fail
to continue to run, correlation class 3 to check valves fail to close, and so on.
Currently, this scheme is not saved within IRRAS but may be included in the
future.

IRRAS provides more sophisticated ways of entering failure and uncertainty data that reduce the
amount of data input required and ensure consistency among like basic events. These techniques are
discussed in the IRRAS Reference Manual (Russell et al. 1992a).

9.3 Supported Continuous Distributions

At the present time, the following uncertainty distributions are supported: lognormal, normal,
beta, gamma, chi-squared, exponential, uniform, and histogram. The histogram distribution requires
detailed information to be fully specified. Each of the other distributions is described by its mean and
typically one additional parameter. Table 2 summarizes this information for each of the supported
distributions except for the histogram distribution, which is explained separately in Section 9.4. The
distributions in Table 2 are described in Sections 9.3.1 through 9.3.7. More detail about these
distributions can be found in Mood et al. (1974) and Hahn and Shapiro (1967).

One method for generating random numbers, called the inverse c.d.f. method, is used for several
distributions below, and therefore is described here. Let X denote a random variable, let x denote a
number, and let F denote the cumulative distribution function (c.d.f.) of X. It follows directly from the
definition

Fx) = PX < x)

that F(X) is a uniformly distributed random variable between 0 and 1. Therefore, generate U from a
uniform distribution between 0 and 1, and solve F(X) = U for X = FY(U).
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Table 2. Uncertainty distributions

Distribution Code Parameter
lognormal L 95% error factor
normal N standard deviation
beta B b in beta(a, b)
gamma G r in gamma(r)
chi-squared C degrees of freedom
exponential E -

uniform U upper end point

For example, if X is exponentially distributed with mean g, the c.d.f. is

Fix) =1 -e™®

Therefore, to generate an exponentially distributed random variable X, generate a uniformly distributed

random variable U and let X = FY(U) = -pln(1-U). Actually In(U) can be used instead of In(1-U),
because if U is uniformly distributed between 0 and 1, then so is 1-U.

The inverse ¢.d.f. method is only one of many methods of generating random numbers from a
specified distribution. For some distributions it is natural and fast, and for other distributions a different
method may be quicker. If the inverse c.d.f is hard to compute, for example if it must be found at any
point by numerical iteration on the (non-inverse) c.d.f., then the inverse c.d.f. method is not a fast way
to generate random numbers.

There is one application where the inverse c.d.f. method is very natural. This is in Latin
Hypercube Sampling (LHS), where stratified portions of the distribution must be sampled. For example,
if 20 points are to be sampled, one point must be below the 5th percentile, one must be between the Sth
and the 10th percentiles, one between the 10th and 15th, and so forth. It is easy to sample in this way
from a uniform distribution: For example, to sample a uniform (0, 1) distribution between its 10th and
15th percentiles, we must sample it and obtain a number between 0.10 and 0.15. Do this by letting U
be uniform between 0 and 1. Then let ¥ equal 0.10 + 0.05U, which is between 0.10 and 0.15. Then

X = FY(¥) is between the 10th and 15th percentiles of F, as required. For this reason, all Latin
Hypercube samples are generated in IRRAS using the inverse c.d.f. method.
9.3.1 Lognormal Distribution

X has a lognormal distribution if InX has a normal distribution. The parameters used in IRRAS

to describe the lognormal distribution are the mean of the lognormal distribution and the upper 95% error
factor. The mean value of the lognormal distribution, m, can be expressed as:
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wel ©-1)

where p is the mean and o is the standard deviation of the underlying normal distribution. Likewise, the
95% error factor (ef) for the lognormal distribution is given by

ef = 16450 (9-2)

where 1.645 is the 95th percentile of the standard normal distribution. The density of the lognormal
distribution is

fn) = 1 e ®-pF2’

x/2ro?

forx > 0.

In IRRAS, a random variable X is sampled from the lognormal distribution as follows. Equations
(9-1) and (9-2) are first solved for u and . A random variable Y is generated from a normal distribution
with mean u and standard deviation o, as explained in Section 9.3.2. Then X is defined as X = exp(¥).
This is the procedure for simple Monte Carlo sampling and for Latin Hypercube sampling.

9.3.2 Normal Distribution

The additional parameter to describe the normal distribution in IRRAS is the standard deviation
of the distribution, . The density function is given by

f0) = —L_g twine?
2n0”

where -co <x < 400,

IRRAS uses the Marsaglia-Bray algorithm, described on p. 203 of Kennedy and Gentle (1980),
to generate a normal(0, 1) random variable Z. Then X, a normal random variable with mean p and
standard deviation g, is defined as X = p + oZ.

For LHS sampling from a normal distribution, the inverse c.d.f. method is used, with the inverse
of the normal c.d.f. F-'(U) computed as follows. For 0.1 < U < 0.9, F™! is found by the algorithm

of Beasley and Springer (1977). For U < 0.1 0r U > 0.9, F™! is approximated by Algorithm 5.10.1
of Thisted (1988), due to Wichura. The approximation is then refined by one application of Equation
(5.9.2) of Thisted.
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9.3.3 Beta Distribution

The parameters of the beta distribution are @ and b. The probability density function is given by

1

fn) = [B(a,b)

] xa-l(l _x)b-l

for 0 < x < 1, where B(a,b) is the beta function. In IRRAS, the value in the uncertainty distribution
is b. The parameter ¢ is calculated from the mean value by the formula

a=pebl(l-p

where p = al/(a+Db) is the mean of the Beta distribution. Note that the mean of the Beta distribution is
between O and 1.

IRRAS generates a beta random variable using the fact that if X is x*(2a) and ¥ is x*(2b) and X
and Y are independent then X/(X + Y) has a beta(a, b) distribution. See Section 24.2 of Johnson and
Kotz (1970).

For LHS sampling, the inverse c.d.f. method is used, with the inverse of the ¢.d.f. computed by
numerical iteration (with the method of false position) on the beta c.d.f. The beta c.d.f. is evaluated
using the BETALI function of Press et al. (1986). Note, this way of generating the LHS sample is not
fast, and simple Monte Carlo sampling with a larger sample may be more efficient than LHS sampling
when many beta distributions must be sampled. Comparative tests have not been run.

8.3.4 Gamma Distribution

The parameters of the Gamma distribution are A and 7. The probability density function is given
by
N r1,on

S = f(T)Jc" e

for x > 0, where I'(r) is the Gamma function. In IRRAS, the value in the uncertainty distribution is r.
The parameter A is calculated from the mean value by the formula A = r/g, since the mean is g = r/A.

IRRAS generates a gamma random variable in two stages. First it generates a random variable
Y from a gamma distribution with the desired r and with A = 1. A rather inefficient algorithm is now
used, which will be changed in the next release of IRRAS, and described in the next revision of this
report. Once Y has been generated, the gamma random variable with parameter r and with the desired
mean p is defined as X = Y/A, with A = r/p.

For LHS sampling, IRRAS uses the fact that the gamma and the chi-squared distributions are
different parameterizations of the same distribution. TRRAS uses the inverse c.d.f. method described in
Section 9.3.5 to generate LHS samples from a gamma distribution.
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8.3.5 Chi-Squared Distribution

The chi-squared distribution is directly related to the gamma distribution, as follows. Let X have
a gamma(}, r) distribution. Then 2AX has a chi-squared distribution with 2r degrees of freedom, denoted
x*(2r). For this reason, the chi-squared distribution is an option in IRRAS only as a convenience to the
user. Anything that requires a chi-squared distribution can be accomplished using a gamma distribution.

The mean of a x*(k) distribution equals k and the variance equals 2k, for degrees of freedom k
> 0. Note that the mean of a chi-squared distribution determines the variance. This is not flexible
enough for most uncertainty analyses. Therefore, when IRRAS is asked for a chi-squared random
variable with k degrees of freedom and mean u, it generates a multiple of a chi-squared random variable,
Y = aX, where X is x*(k) and ¢ = w/k. This results in a random variable with mean p and variance
2p*/k. Exactly the same distribution would be obtained by specifying a gamma distribution with mean
wand r = k/2.

IRRAS generates the chi-squared random variable X by the inverse c.d.f method described at the
beginning of Section 8.3. The inverse function is found with a refinement of the Wilson-Hilferty
approximation. (See Section 5.10.2 and Eq. 5.9.2 of Thisted 1988.) This method may fail in the left
tail for small degrees of freedom. In that case, the inverse is found by numerical iteration (the method
of false position) on F, with F evaluated by the Peizer-Pratt approximation (Section 5.10.2 of Thisted
1988). IRRAS then multiples X by p/k, where p is the desired mean and % is the number of degrees of
freedom. This inverse c.d.f. method is used for both simple Monte Carlo and LHS samples.

9.3.6 Exponential Distribution

The exponential distribution is commonly used for modeling a time to failure, but it is not very
useful for modeling uncertainties, and may some day be dropped as an option in this part of IRRAS. One
reason for its use in modeling failures and its disuse in modeling uncertainties is that it has only one
parameter. Therefore the mean determines the variance. The exponential density is

fx) = he™

where the parameter A and the mean p are related by p = 1/A. Note that the exponential density is a
special case of the gamma density, with the gamma parameter r = 1. Alternatively, if Y is %*(2), then
X = Y/(2\) has a gamma distribution with » = 1 and mean p = 1/A, i.e. an exponential(\) distribution.
Therefore, anything that can be simulated with an exponential distribution can also be simulated with a
gamma or chi-squared distribution.

An exponential(\) random variable is generated by the inverse c.d.f. method, as explained at the

beginning of Section 9.3. This method is recommended in Section 6.5.2 of Kennedy and Gentle (1980)
for the gamma distribution with » = 1.
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8.3.7 Uniform Distribution

The mean of this distribution is M = (a+b)/2. The value in the uncertainty distribution in
IRRAS is b, the right (upper) endpoint of the distribution. The value for a is calculated by the equation
a = 2%M - b. The density function for this distribution is

_ 1
ﬂx)—b__a

fora <x <b.

IRRAS generates a uniformly distributed random number using the prime modulus multiplicative
linear congruential generator advocated by Park and Miller (1988). The modulus m is 2*-1 =
2,147,483,647 and the multiplier is 16807. This generates a sequence of m - 1 distinct integers before
repeating, in an order that appears random. To obtain real numbers between 0 and 1, the integer
obtained in this way is divided by m.

Having generated a random variable Y uniform between 0 and 1, IRRAS obtains a random
number uniform between a and b as X = a + (b-@)Y. This is used for both simple Monte Carlo
sampling and for LHS sampling.

9.4 Histograms

IRRAS allows for either a discrete or a continuous distribution under this option. The modeled
quantity is a probability A or A7, or a frequency fAr or fA7. When the PERCENT option is selected, the
distribution is discrete on up to 20 values; the percents, giving the degree of belief for each value, must
sum to 100. If the RANGE or AREA option is selected, the density is a step function covering up to 20
adjacent intervals. The function is constant within each interval, and the area under the entire function
must equal 1.0,

9.5 Correlation Classes

The practice of using the same uncertainty distribution for a group of similar components has
been common since the Reactor Safety Study (NRC 1975). The PRA Procedures Guide (Hickman 1983)
recommends this practice as well. Philosophical arguments have been given to support this practice or
used to give it credence. Apostolakis and Kaplan (1981) discuss this issue from a Bayesian perspective,
and they call it a "lack of knowledge" dependency. However, this dependency is broader than just a lack
of knowledge. It is present whenever the same data set is used for several components. It is not a
Bayesian or classical statistical phenomenon, but it is induced because of the way the data are used.

For example, suppose that a plant has two motor-driven AFW pumps. These pumps are virtually
identical, and therefore are modeled as having the same unavailability, g. The uncertainty distribution
for g is taken from some data base, and describes our best belief about the true value of g. Because the
two components have uncertainty distributions taken from the same source, if our estimate of g is too
high (say) for one pump, it will be also be too high for the other pump, by the same amount. Similarly,
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if our estimate is too low for one, it will be too low for the other by the same amount. The uncertainty
distributions for the two unavailabilities are perfectly correlated.

This correlation of the uncertainties must be distinguished from the independence of the basic
events. The two basic events (failures of the pumps to be available) are independent; that is, the
probability that one pump is unavailable is some number ¢, unaffected by whether the other pump is
available or not. However, our uncertainty about the value of ¢ is totally correlated for the two basic
events.

The user tells IRRAS of this uncertainty correlation by putting the two basic events in a single
correlation class. When g is sampled from its uncertainty distribution, that one value of g is assigned
to all the basic events in the correlation class. After the probability of the top event has been calculated,
on the next Monte Carlo pass a new (presumably different) value of ¢ is drawn from the uncertainty
distribution, and is assigned to all the basic events in the class.

Let us now examine the effect of total correlation in accident sequence analysis. Consider a
simple example involving a cut set with two components. Let g, and g, denote the unavailability of the
two components in the cut set. If the components are independent, then

Q = qlqz (9'3)
is the cut set unavailability.
As we begin the analysis, we can make one of two assumptions. First, we can assume that the
unavailability of each component is estimated from independent data sources. For example, if the first
basic event is failure of a pump and the second basic event is failure of a valve, the probabilities of these

basic events will be estimated from independent sources, and therefore the two probabilities have
independent uncertainty distributions. The expected value and variance of Q are given by

E(Q) = E(q,)E(q,) (6-4)
and
var(Q) = E@)E@)-[E@)E@)f . ©-5)
These equations follow from the independence of the uncertainty distributions.

If instead, the components are identical, then ¢, = ¢, = g, and Equations (9-4) and (9-5) reduce
to

E(Q) = E(g)E(g,) = [E@f (9-6)
and

var(©) = [E@] - [E@)] . Lt
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However, when the components are identical, Equations (9-6) and (9-7) are probably not correct. The
same source would presumably be used to obtain the uncertainty distribution for both unavailabilities.
Therefore, any value g that is used for one basic event should also be used for the others. Equation (9-3)
reduces to

Q=4 ,
s0 we have
E(Q) = E@) ©-8)
and
var(@) = E@) - [E@] . o9

A standard identity from statistics says that
E(@) = [E@P + var(g) > [E(@P

Therefore, Equation (9-8), the correct one, is larger than Equation (9-6), the incorrect one. This is why
the point estimate and the mean of the uncertainty distribution are not equal in PRAs. The point estimate
for the example cut set is the product of the basic event means, given by Equation (9-6), whereas the
mean of the cut set uncertainty distribution is given by the larger value in Equation (9-8). Similarly, the
variance should be calculated from Equation (9-9), not Equation (9-7). In typical cases, including any
case in which q is lognormally distributed, Equation (9-9) gives a larger value than Equation (9-7). The
effects are most pronounced when the distributions are highly skewed.

Ericson et al. (1990, page 12-8) suggests the following steps for grouping basic events into
correlation classes:

® Group all basic events by component type (e.g., MOV, AOV, MDP),

¢ Within each component group, organize events into subgroups by failure mode
(e.g., fail-to-start, fail-to-run),

e For time related basic events, group all events from each component failure mode
group into sets according to the time parameter value used to quantify the event
probability (e.g., 6 hours, 720 hours), and

e For demand related failures, no further grouping is necessary beyond the
component failure model level.

If different estimates are developed for components within the same component group (e.g., Service
Water Motor-Driven Pump, Residual Heat Removal Motor-Driven Pump), then these should be treated
as separate component groups.
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9.6 Overview of Simple Monte Carlo Sampling

The Monte Carlo approach is the most fundamental approach to uncertainty analysis. Simple
Monte Carlo simulation consists of making repeated quantifications of the top event value using values
selected at random from the uncertainty distributions of the basic events. For each iteration of the Monte
Carlo run, each basic event uncertainty distribution is sampled using a random number generator to select
the failure probability of the basic event. The top event probability or accident sequence frequency is
calculated. When this procedure has been repeated a predetermined number of times, the top event or
accident sequence results are sorted to obtain empirical estimates of the desired top event attributes such
as the mean, median, Sth percentile, and 95th percentile. A plot of the empirical uncertainty distribution
is often obtained. Figure 20 contains an example of an uncertainty distribution for an accident sequence.
For more information about the Monte Carlo technique the reader is referred to Hahn and Shapiro (1967).

Sequence A-D5 Cumulative Distribution

00 -
0.0£+00 1.0E-05

Probability

1991/09/12

Figure 20. Uncertainty distribution for an accident sequence.

To illustrate the Monte Carlo technique, consider a system with two components in series. Let
A denote failure of the first component and B failure of the second. The cut sets for the system are 4
and B, so the equation for the top event (system) is
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S=A4+B ‘

Let 4 and B have mean failure probabilities of 0.001 and 0.005, respectively. Also assume that
the uncertainty distribution for 4 is uniform from 0 to 0.002 and the distribution for B is normal with
standard deviation of 0.001. These distributions are shown in Figure 21 and Figure 22.

Figure 21. Uncertainty distribution for Component A

The point estimate for § is 0.006. Table 3 contains a random sample of size 10 for this example.
Column 1 contains the sample for component A which has a uniform uncertainty distribution. Column
2 contains the sample for failure of component B, and column 3 contains the sum of columns 1 and 2
which is the minimum cut set upper bound for the probability of failure of the system. The bottom row
is the average of the columns.
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0.001 0002 0003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Fallure Probability

Figure 22. Uncertainty distribution for Component B

‘ Table 3. Monte Carlo samples
T
A B A+B
0.60042 0.00500 0.00542
0.000856 0.00661 0.00747
0.00149 0.00570 0.00719
0.00109 0.00605 0.00714
0.00066 0.00420 0.00487
0.00024 ©.00409 0.00633
0.00066 0.00396 0.00462
0.00075 0.00293 0.00348
0.00037 0.00500 0.00537
0.00127 0.00597 0.00724%

0.00078 0.00515 0.00593
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9.7 Overview of Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) selects # different values from each of the k variables X1,...,Xk
in the following manner. The range of each variable is divided into » nonoverlapping intervals on the
basis of equal probabilities for the intervals. The n values thus obtained for X7 are paired in a random
manner with the n values of X2. These n pairs are combined in a random manner with the n values of
X3 to form n triplets, and so on, until n k-tuplets are formed. This is the Latin Hypercube sample. It
is convenient to think of the LHS, or a random sample of size n, as forming an n*k matrix of inputs
where the ith row contains specific values for each of the &k input variables to be used on the ith
evaluation of the cut sets.

To help clarify how intervals are determined in the LHS, consider the simple example used in
the previous section. We want to generate an LHS sample of size 5. The first step is to divide the
uncertainty distributions of 4 and B into S equal probability areas each containing an area of 0.2. For
A this is easy since it has a uniform uncertainty distribution. The points are 0.0004, 0.0008, 0.0012, and
0.0016. The areas are shown in Figure 23. The uncertainty distribution for B is a normal distribution;
it is harder to find the points that divide the areas into equal probability areas. Probability tables or a
calculator with an inverse normal calculation routine is needed. The four points which define the 5 equal
probability areas are 4.158E-3, 4.747E-3, 5.253E-3, and 5.842E-3. These are shown in Figure 24.

2 3

©.0008 0.0012
Failure Probability

Figure 23. Latin hypercube sample for Component A
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Figure 24. Latin hypercube sample for Component B

The next step is to generate a random permutation of the integers 1, 2, 3, 4, and 5 for each
component. For 4 we get (34 15 2}, and for B we obtain {4 1 3 2 5}. We then combine these two
together to obtain:

“ Computer Run Interval for A Interval for B
" 1 3 4

2 4 1
|| 3 1 3

4 5 2

5 2 5

These five cells are shown in Figure 25. The next step is to obtain random values for 4 and B
for each of the intervals. The first value for 4 lies in interval 3; thus, the value must be between §.0008
and 0.0012. A is generated as described in Section 9.3.7: A random number U is generated from a
uniform distribution between 0 and 1. Then A is defined as 0.0008 + 0.0004U. The corresponding
value for B lies in interval 4; thus the value for B must lie between the 60th and 80th percentiles of the
normal distribution. This is generated as described in Section 9.3.2: A new random number U is
generated from a uniform distribution between 0 and 1, and V = 0.6 + 0.2U is therefore uniform
between 0.6 and 0.8. Let F denote the standard normal c¢.d.f. Then ¥ = F'(V) is sampled from between
the 60th and 80th percentiles of the standard normal c.d.f. Finally B = 0.005 + 0.001Y is sampled from
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between the 60th and 80th percentiles of a normal distribution with mean 0,005 and standard deviation ‘
0.001. The following table summarized the random numbers in this case.

|L Computer Run Value for A Value for B Value for A+B “
1 9.454E4 5.398E-3 6.343E-3
2 1.512E-3 3.862E-3 5.374E-3
3 6.102E-5 4.898E-3 4.959E-3
4 1.827E-3 4.504E-3 6.331E-3
|| 5 7.068E-4 6.684E-3 7.391E-3 “
|| Mean 1.010E-3 5.069E-3 6.080E-3 “

<
€
@
c
8
£
]
O

X 5

20E-3 4.16E-3 4.75E-3 5.25E-3 5.84E-3 8.0E-3
Component B

0.0

Figure 25. Cells sampled in LHS example.
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‘ 9.8 Comparison of Simple Monte Carlo and Latin Hypercube Sampling

The following information is a comparison of Simple Monte Carlo simulation and Latin
Hypercube Sampling (LHS). The table contains output from IRRAS for the sample problem in the
previous section. Figure 26 contains a plot of the cumulative distribution function for each sample. The
results are very similar for these two methods. Notice the size of the samples for each. The LHS
method requires only a quarter of the sample size of ordinary Monte Carlo, for similar accuracy. This
must be balanced against the fact that for some distributions it takes longer to generate a random number
for an LHS sample than for a simple Monte Carlo sample. Nevertheless, LHS sampling can often
substantially reduce the time required for an analysis, while obtaining similar accuracy.

Table 4. Comparison of Monte Carlo and LHS for sample problem

Monte Carlo LHS
Random Seed 51530 27290
Sample Size 200 50
Point estimate 5.995€-003 5.995€-003
Mean Value 6.008E-003 5.994E-003
5th Percentile Value 3.890E-003 3.876E-003
Median Value 6.103€-003 6.320E-003
95th Percentile Value 7.783E-003 7.816E-003
Hinimum Semple Value 2.798E-003 2.789E-003
Maximum Sample Value 8.964E-003 8.605E-003
Standard Deviation 1.163E-003 1.265E-003
Skeuness -1.973€-001 -3.071E-001
Kurtosis 2.860E+000 2.747E+000
Elapsed Time 00:00:02.530 00:00:00.650
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— [Monte Carlo
LHS

Probability

v
-------

0.004

0.006

0.00; 0.008 0010
System Unavailability

Figure 26. Cumulative distribution plots for example using Monte Carlo and LHS.
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Appendix A
Fault Tree Quantification Example

A1. INTRODUCTION

This appendix contains a worked example of the reduction and guantification of a simple fault
tree. The minimal cut sets are obtained using a cut set algorithm and also using Boolean equations.
The minimal cut sets are then guantified using the rare event approximation, the minimal cut set
upper bound, and the inclusion-exclusion rule to obtain the exact solution. These quantification steps
are worked out in detail. Finally, basic event importance measures are calculated to show how the
calculations are done.

This appendix uses the notation + for U and * for N.

A2. FAULT TREE INPUT

The fault tree for this example is shown in Figure A-1. It contains a 2/3 combination gate.
The alphanumeric input for the fault tree is shown in the following:

Alphanumeric Fault Tree (Shown in Figure A-1

0P AND GATE1 GATE2

GATE1 2/3 GATES GATES 81
GATE2 OR 81 B3 B4
GATE3 OR B2 B4
GATEL AND B3 B5

Each row corresponds to a gate in the fault tree. The first entry is the gate name. The next entry is
the gate type. The remaining entries are the inputs to the gate.

Figure A-2 contains the fault tree with the 2/3 combination gate (GATE1) expanded into
AND and OR gates. The new gates are FT-N/M-1, FT-N/M-2, and FT-N/M-3. The alphanumeric
coding of the fault tree is shown below:

Alphanumeric Fault Tree with Expanded Gates (Shown in Fisure A-2

TOP AND GATE1 GATE2

GATE1 OR FT-H/M-1 FT-H/M-2 FT-N/M-3
GATEZ2 OR B1 B3 B4

GATE3 orR B2 B4

FT-N/M-1 AND GATE3 B3 B5
FT-N/M-2 AND GATE3 81

FT-N/H-3 AND B3 B5 Bi

CUT SET GENERATION (Top-down approach)
In this section the minimal cut sets are obtained using a top-down approach. The steps are illustrated

in detail so that the reader can understand all of the calculational details. In practice, several of the
steps can be performed together.
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Figure A-1. Example fault tree.
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Figure A-2. Example fault tree with 2/3 gate expanded.
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Step 1 (TOP

To start the algorithm the TOP gate is replaced by its inputs. If the TOP gate is an OR gate,
then each input becomes a row. If the TOP gate is an AND gate, the inputs are placed in the same
row. Thus, the first step is the following:

GATET GATEZ2

Step 2 (GATEI

In this step, GATE]1 is replaced by its three inputs. Since GATE] is an OR gate each input
becomes a row. This results in the following:
FT-N/M-1 GATE2

FT-N/M-2 GATE2
FT-N/M-3 GATEZ

Step 3 (FT-N/M-1

In this step, FT-N/M-1 is replaced by its inputs GATE3, B3 and B5. Only the first row was
modified since the gate is an AND gate. The results are:

B3 BS GATEZ2 GATEZ
FT-W/M-2 GATE2
FT-MN/M-3 GATEZ2

Step 4 -N/M-2

Next, FT-N/M-2 is expanded. It is an AND gate so it is replaced by its inputs in every row
that contains it. The results of this step are:

B3 BS GATEZ GATE3
B1 GATE2 GATE3
FT-N/M-3 GATEZ

Step 5 (FT-N/M-3)

Gate FT-N/M-3 is selected to process. It is also an AND gate and appears in only one row of
the table in step 4. Thus, no rows are added in this step. The gate is replaced by its inputs. The
results are:

B3 B85 GATEZ GATE3
B1 GATEZ2 GATE3
B1 83 85 GATE2

Step 6 (GATE3)

GATES is selected to be expanded next. GATES3 is an OR gate with two inputs. For the first
row in the table in step 5, GATES3 is replaced by one of its inputs. The row is then repeated and the
gate name replaced by its other inputs. The results of this step are:

B2 B3 B5 GATE2 (Replace GATE3 by B2.)
B1 B2 GATE2 (Replace GATE3 by B2.)
B3 B4 BS GATE2 (Replace GATE3 by B4.)
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B1 B4 GATE2 (Replace GATE3 by B4.)
Bl B3 BS GATE2 (Does not invelve GATE3.)

Notice that two new rows were added in this step.

Step 7 (GATE?)

In this step, GATE2 is processed. Notice that GATE2 appears in every row of the table in
step 6. GATE2 is an OR gate with 3 inputs. Thus, the number of rows will increase, but the
number of entries in each row will remain the same. The number of rows will be three times the
number in the table of step 6. That is, the table for this step will consist of 15 rows. The table for
this step is the following:

B2 B3 B5 BI

B1 B2 B

BZ B& B85 B1 (Replace GATEZ by B1.)
84 B1 B1

B1 B3 B5 81

B2 B3 B85 B3

Bl B2 83

B3 B4 B5 B3 (Replace GATE2 by 83.)
B1 B4 B3

B1 B3 BS B3

B2 B3 BS B4

B1 B2 B4

B3 B4 B5 B4 (Replace GATE2 by B&.)
B1 B4 Bé

Bl B3 B85 B4

Step 8§ (Idempotence A*4=

At this point, all of the gates have been resolved so that only basic events occur in the table.
The next step is to apply the Law of Idempotence, A*4 = A. The results are:

B2 B3 B5 B1 = B1 B2 B3 BS
B1 82 B1 = B 82

B3 B4 B5 BT = B1 B3 B4 BS
B4 B1 81 = BY B4

B1 83 85 81 = B7 B3 85

B2 B3 B5 B3 = B2 B3 85

B1 B2 B3 = B1 B2 B3

B3 B4 B5 B3 = B3 B4 BS

B1 B4 B3 = B{ B3 B4

B1 B3 B5 B3 = B1 B3 B5

82 B3 BS B4 = B2 B3 B4 85
B1 B2 B4 = B B2 B4

B3 B4 BS B4 = B3 B4 B5

Bi B4 B4 = B1 B4

B1 B3 B5 B4 = BT B3 B4 BS

Step 9 (Absorption A+(A*B)=A4)

The next step is the absorption step. That is, nonminimal cut sets must be eliminated, as well
as duplicate rows. In the‘following table, the rows that are eliminated have a line through them and
the reason it is eliminated is provided to the left. The results are:
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Bt B2

8i-52-82 Eliminated by 81 B2
8%-824-83-8% Eliminated by B1 B2
8i-82-84 Eliminated by BY B2
83-83-84 Eliminated by B1 Bé

84-B3-84-85 Eliminated by B1 B&
81828485 Eliminated by B1 B4

BY 83 85

81-23-B5 Repested cut set

B1 B&

83-B4 Repeated cut set
B2-83-84-8% Eliminated by B2 B3 B5
B2 B3 BS

B3 B4 BS

B3-84-B5 Repeated cut set

Step 10 (Final minimal cut

The remaining 5 sets are the minimal cut sets for this example. They are:

B1 B2
B1 B4
B B3 85
B2 B3 B5
B3 B4 BS

A3. BOOLEAN EQUATION FOR THE FAULT TREE

In this section the Boolean equation form of the fault tree is used to obtain the minimal cut
sets. The steps below are not the only way the equations can be combined and reduced. Many of the
steps illustrated below can be combined and performed simultaneously. These steps are presented to
illustrate the various concepts and show how they parallel the cut set algorithm illustrated in the
previous section.

The equation form of the fault tree is:

TOP = GATE1 * GATEZ2

GATE] = FT-N/M-1 + FT-N/M-2 + FT-N/M-3
GATE2 = B1 + B3 + B4

GATE3 = B2 + B4

FT-¥/M4-1 = GATE3 * B3 * B5

FT-N/M-2 = GATE3 * BY

FT-N/M-3 = B1 * B3 * B5

Step 1

The first step is to start with the TOP equation:

TOP = GATE1 * GATE2.
Step 2

In this step GATE1 and GATE2 are replaced by their inputs. This results in the following
equation:

TOP = (FT-N/M-1 ¢« FT-N/M-2 + FT-N/M-3) * (B1 ¢ B3 + B4).
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Step 3

In this step the three expanded gates (FT-N/M-1, FT-N/M-2, and FT-N/M-3) are replaced by
their inputs to yield

TOP = (GATE3 * B3 * BS + GATE3 * 81 + B1 * B3 * B5) * (B1 + B3 + B4).
Step 4

Next GATE3 is replaced by its inputs to obtain

TOP = (BY1 + B3 + B4) * [(B2 + B4)(B3*B5) + (B2 + B4) * B1 + BI*B3*B5].

At this point all gates have been replaced by their inputs, and the equation consists of basic
events only.

Step 5

The next step is to expand and combine the terms in the square brackets. This yields

TOP =, (B1 + B3 + B4) * (B2*B3%B5 + B3*B4*BS + BI1*B2 + B1*B4 + B1%B3*E5).
Sten 6

The terms in the first set of parentheses are distributed across the second set to yield

ToP = 81 * (B2*B3"BS + B3*B4*B5 + B1*B2 + B1*B4 + B1*B3*B5)
+ B3 * (B2*B3*B5 ¢+ B3*B4*B5 + B1"B2 + B1*B4 + B1*B3*B5)
+ Bé * (B2*B3*B5 + B3*B4*BS + B1*B2 + B1*Bé + B1*B3*B5).

Step 7

Each term is now expanded to yield
TOP = B1*B2*B3*B5 + B1*B3*B4*B5 + B1*B1*B2 + BI*B1*B4 + BI*B{*B3*BS

+ B3*B2*B3*85 + B3*B3*B4*B5 + B1*B2*B3 + BI*B3*B4 + B1*B3I*B3*B5
+ B2*B3*B4*B5 + B3*B4*B4™BS + B1*B2*B4 + B1*B4*B4 + B1*B3*B4*B5.

Step 8 (Idempotence)

The Law of Idempotence (4¥4=4) is now applied. This produces

TOP = B1*B2*B3*B5 + B1*B3*B4*B5 + B1*B2 + B1%Bé + B1*B3*B5
+ B2*B3*BS + B3*B4*BS + B1*B2*B3 + B1*B3*B4 + B1*B3I*BS
+ B2*B3*B4*B5 + B3*B4*BS + B1¥B2*B4 + B1*B4 + BI1*BI*B4*BS.

Step 9 (Absorption)

Finally, the nonminimal cut sets are eliminated, The terms that are eliminated are shown with
a line through them.

TOP = BA4p24R34R5 + BIABIRBLERE + B1¥B2 + B1*B4 + B1¥B3*BS
+ B2*B3*BS + B3*B4*BS + BIEB2EBE + BIEBIERL <
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+ B2%BILBLARE + BILBLAGS + BIEB2ERL + BIABL + RIAGIARLARS
Minimal Cut Set Equation

The final minimal cut set equation is

TOP = B1*B2 + B1*B4 + B1*B3*85 + B2*B3*B5 + B3*B4*BS5.

These are exactly the same minimal cut sets that were obtained in Section A2.

A4. CUT SET QUANTIFICATION

In this section the different ways of quantifying the minimal cut sets are compared.
Numerical results are treated in the next section. The objective is to illustrate the complexity of the
exact solution and also the Boolean algebra required in calculating it.

The minimal cut set equation is the starting point for the calculations. From Section A2 or
A3, we have

PITOP] = P[B1*B2 ¢+ B1*B4 + B1*B3*BS + B2*B3*BS5 + B3*B4¥*B5]

Exact Solution

The inclusion-exclusion rule, Equation (4-6) in the body of this report, is used to calculate the
exact solution. Basically, it is the sum of the probability of the individual sets, minus the sum of the
probability of all possible pairs, plus the sum of the probabilities of all possible combinations of three,
minus the probabilities of all possible combinations of four, plus the probability of intersection of all
five minimal cut sets. This calculation is shown in Table A-1.

From Table A-1 we see that the intersection of most of the sets contain common terms, e.g.,
B1 B2 and Bl B4 have Bl in common. The intersections must be reduced to simplest form by use of
the Law of Idempotence (A*4=A). The results of this are shown in Table A-2.

In most situations, the basic events are assumed to be statistically independent. That is,
P[AB]=P[A]JP[B]. The results of this step are shown in Table A-3.

Rare Event Approximation

The first term of the inclusion-exclusion rule is an upper bound for the probability of the TOP
event. For our example the rare event approximation is

PLTOP] = PIB1*B2] + P(B1*B4] + P[B1*B3*B3] + P[B2*B3*B5]
+ PIB3*B4*B5] .
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. Table A-1. Exact solution, Step 1

PLTOP] = PI(B1*B2)]
PL{BI*B4))
PI{B1*B3*B531
PI{B2*B3*85)]
P [{B3*B4*B51]

¢ &+ + ¢

PI{B1*B2} * (B1*B4)]
PI{B1*B2} * {B1*B3*B5)]
PI{B1*B2Y * {B2*B3*B53}]
PI{B1*B2) * {B3*B4*BS5)]
PI(BI*B4Y * (B1*B3*B53]
PI{B1*B4> * {B2*°B3*B5)]
PI{B1*B4) * {B3*BL*B5)]
PI{B1*B3*B5} * (B2*B3*B53}1
PI{B1*B3*B5) * (B3*B4*B5}1
PI{B2*B3*BS) * {B3*B4*B51}]

PI{B1*B2} * (B1*B4) * (B1*B3*B5)]
PI(BI*B2) * {B1*B4} * {B2*B3*B5)]
PI(B1*B2) * (B1*B4&3 * {B3I*B4*B5)}]
PI{B1*B2) * (B1*B3*B5) * (B2*B3*B5)]
PI{BI*B2) * (B1*B3*BS) * (B3*B4*B53}]
PI{B1*B2Y * (B2*B3*BS5) * (B3*B4*B5))
PI{B1*B4Y * (BI1*B3*B5) * (B2*B3*BS5)]
PI{B1*B4) * {B1*B3*B5) * (B3*B4*B53]
PI{BI*B&) * (B2*BI*B5) * (B3*B4L*B53]
PI{B1*B3*B5) * (B2*B3*B5) * {B3*B4*B5)]

L B EE K B B B A

PICBI*B2) * (B1*B4) * (B1*B3*B5) * (B2*B3*85)]
PICBI*B2) * (B1*B4) * (B1*B3*B5) * (B3*B4*B5)]
PIBI*B2Y * (B1*B4) * (B2*B3"B5) * {B3*B4*B51I
PI{B1*B2> * (B1*B3 B3} * (B2*B3*B5} * (B3*B4*B5)]
PI{BI*B4Y * (B1*B3*B3} * (B2*B3*B3} * (B3*B4*B5}}

%

PI{B1*B23 * {(B1*B4) * (B1*B3*B5) * (B2*B3I*B5) * (B3*B4*B5)1
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Table A-2. Exact solution after applying Law of Idempotence

PLTOP]

PIB1*82]
PIB1*B4]
PIB1*B3*85)]
P [B2*B3*B5]
P[B3*B4*B5}

+ 4 4+ &

PIB1*B2%B4]
P(B81*B2*B3*83]
PB1*B2%B3*B5)
PIB1*B2*B3*B4*BS]
PIB1*B3*B4*B5]
PIB1*B2*B3*B4*BS]
P[B1*B3*B4*B5]
P[B1*B2*B3*B5]
P(B1*B3*B4*B5]

P [B2*B3*B4*BS]

PIB1*B2*B3*B4*B5]
P [B1*B2*B3*B4*BS]
PIB1*B2*B3*B4*B5]
P [B1*B2*B3*B4*B5]
PIB1*B2*B3*B4*B5)
PIB1*B2*B3*B4*BS]
PIB1*B2*B3*B4¥B5]
PIB1*B2*B3*B4*B5]
PIB1*B2*B3*B4*B5]
P{81*B2*B3*B4¥*B5]

L N A

PIB1*B2*B3*B4*B3]
PIB1*B2*B3*B4*B3]
P{B1*B2*B3*B4*B5]
PIB1*B2*B3*B4*BS]
PIB1*B2*B3*B4*B5]

L

PIB1*B2*B3*B4*B5]

NUREG/CR-5964 A-12 December 1992 '



Quantification Example

. Table A-3. Exact solution, using assumed statistical independence of basic events

PLTOP] = PIB1]
P[B1]
P81l
PiB2l
PIB3]

v+ b

PIB1]
PB1]
PIB1
PIB1]
P81l
PIB1
PIB1I
PIB1]
PIB1]
PIB2l

PEB1]
P81
PIB1]
PiB1]
P81l
PIB1]
P[B1]
PIB1]
P81
e[

L K K B BE B K K

PIB1]
PIB1]
pIB13
pIB1l
P81l

8 5 @ 8

+

PIB11

% % % % % % & % % & % % % % T Y S E SR % % % %

% & % % %

%

PB82]
P[B4]
PIB3]
P B3]
PIB4]

p82)
PIB2]
PiB2]
PB2]
P[B3]
P[B2]
P B3]
P82)
P83}
PIB3)

PiB2]
P82}
P82l
piBs2]
P82l
PiB2)
piB2]
PB2]
P82l
PB2)

piB2]
PIBel
P82l
pIB2]
P82}

PB2]

% % % % 2 % % & % @

% % % & % % % C %D

& % % % %

5

PB5]
PIB5]
PI85]

PIBA]
PIB3]
PIB3]
PIB3]
PIBL]
PEB31
PIB4]
PIB3]
PIB4]
PB4]

P B3]
PIB3]
PIB3]
PIB3]
P [B31]
P [B31]
P [B31
PIB3]
PIB3]
P83}

PIB3]
PIB3]
PIB3]
PIB3]
P[B3]

P (B3]

Minimal Cut Set Upper Bound

% % & % % % % % & & % % % % % % T BB

% % % % %

%

P83)
PIB5]
P [84]
P[B5]
PB4]
P 85]
P B3]
P [B5]
PIB5]

PIBL]
PB4)
P[B4]
PB4]
PB&]
P[B4]
PIB&)
PIB4]
P [B4]
PB41

PiB&]
PIB&]
PB4]
P[B4]
PB4l

PB4

% % % % % % % & ¥ B

% % % % ¥

%

PIB5]
PIB5]

P 851
P B3]
P [B5]
PI83]
P [B5]
P [B5]
P[83]
P B3]
PB5]
PIBS]

P [B5]
P B5]
PIB5]
P [B3]
PIB5]

P (851

The minimal cut set upper bound is discussed in Section 6.2.2. For our example the minimal
cut set upper bound is shown in Table A-4.

. December 1992
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Table A-4. Minimal cut set upper bound calculations for example

PITOP] = 1 - (1 - PI{BI*B221) * (1 - PL{BI1*B4)]1) * (1 - PL{BI1*B3*8531) * (1 -
PI{B2*B3*B331) * (1 - PI{B3*B4*B531)

PI{B1*B4)] * PI(B3*B4*B5)]

PI{B1*B3*B33] * PI{B2*B3*B3}]
- PI{B1*B3*B53] * PI{BE*B4"B5)]
- PL(B2*B3*B531 * P[(B3*B4*B5}]

= P[{B1*B2}]
+ PI{B1*B43]
+ PI{B1*B3*B5)]
+ P[{B2*B3*B53]
+ PI{B3*B4*B5)])
- PI(BI*B2)] * PI{B1*B43)]
- PI{B1*B2>] * P[{B1*B3*B51]
- PI(B1*B2)] * PI{B2*B3*B5}]
- PI{R1*B23] * PI{B3*B4*B5)]
~ PL{B1*B4)] * PI{B1*B3*B5}]
- PI{B1*B4)] * PI{B2*B3*B5)]

+ PI{B1*B231 * PI{(B1*B4}] * PI(BI*B3*B5)]

+ PI{B1*B23] * P{{B1*B43] * P[(B2*B3*B3}]

+ PI{B1*B22]1 * PI{B1*B4)] * PI[{B3*B4*B5)]

+ PI{B1*B23] * P[(B1*B3*BS}] * PI(B2*B3*B5)]

+ PI{B1*B231 * PL{B1*B3*B53] * PI{(B3*B4*B5)]

+ PI{B1*B23] * PI{B2*B3*B53]1 * P[(B3*B4*B5)]

+ PI{B1%*B4)] * PI(B1*B3*B5)] * P[(B2*B3*B53]

+ PI{B1*B4>} * PI(B1*B3*B53]1 * P[{B3*B4{*B53]

+ P{{B1*B43] * PI(B2*B3*B5)] * PI{B3*B4*B5)]

+ PI{B1*B3*B53] * P[{B2*B3*B5)] * P{{B3I*B4*B5)]

- PI{B1*B2)] * PI{B1*B43] * PI{B1*B3*B5)] * PI({B2*B3"B5}]

- PI{B1*B2)] * PI{B1*B4)] * PI{B1*B3*B53] * PI{B3*B4*B5)]

- PI{B1*B231 * PI{B1*B4)] * PI{B2*B3*B5)] * P[(B3*B4*B5}]

- PI{B1*B2>1 * P[(B1*B3 B5)] * PI{B2*B3*B3)] * P[{B3*B4*B5)]
- PI{B1*B4}] * PI{B1*B3*B53] * PI({B2*B3*B5)] * PI{B3*B4*B5)]

+

PI{B1*B2}] * PI{B1*B4)] * P[{(B1*B3*B5>] * PI{(B2*B3*B53] * PIL{(B3*B4*B5)]
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‘ A5. NUMERICAL CALCULATIONS

This section contains numerical calculations illustrating the formulas developed in the previous
section. The basic event probabilities for our example problem are the following:

P(B1) = q, = 0.01
P(B2) = g, = 0.02
P(B3) = q, = 0.03
P(B4) = q, = 0.04
P(B5) = g, = 0.05

The cut set unavailabilities, denoted by C, are calculated below:

€, = P(BI*B2) = P(B1)*P(B2) = qq = 0.01*0.02 = 2.0E-4
€, = P(BI*BG) = P(B1)*P(B4) = gq, =0.01* 0.06 = 4.0E-4
C, = P(B1*B3*B5) = P(B1)*P(B3)*P(B5) = q,q,a, = 0.01 * 0.03 * 0.05 = 1.56-5
€, = P(B2%B3*BS) = P(b2)*P(B3)*P(BS) = q,qq, = 0.02 * 0.03 * 0.05 = 3.06-5
Ce = P(B3*B4*B5) = P(B3)*P(BL)*P(B5) = q,q,q, = 0.03 * 0.04 * 0.05 = 6.0E-5

Using the cut set unavailabilities, the rare event approximation and the minimal cut set upper bound
can be calculated. The rare event approximation is:

Rare Event Approximaetion = C, + C, + C; + C, + C; = 7.0506-4

The minimal cut set upper bound is:
Min Cut Upper Bound = 1 - (1-C,) * (1-C,) * (1-C3) * (1-C,) * (1-Cy)

1 - 0.9998 * 0.9996 * 0.999985 * 0.99997 * 0.9999
1 - 0.99929515 = 7.0485386E-4

The exact solution calculations are shown in Table A-6. Table A-5 compares the results of the three
calculation formulas.

Table A-7 shows the probabilities of the contributors (listed in Table A-4) for the minimum
cut set upper bound. A line-by-line examination shows that some lines of Table A-7 have certain
basic event probabilities repeated and that this is the only difference between Tables A-6 and A-7. A
corresponding comparison can be made of Tables A-3 and A-4.

Table A-5. Comparison of Results

Type of Calculation Unavailability
Min Cut Upper Bound 7.04854E4
Rare Event Approximation 7.05000E-4
Sum of st and 2nd order terms® 6.93076E-4
Sum of 1st* 2nd and 3rd order terms® 6.93196E4
Sum of 1st* 2nd* 3rd* and 4th order terms® 6.93136E4
Sum of all terms (Exact answer)* 6.93148E4

. a. See Table A-6 for details.
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Table A-6. Calculations for exact solution

Basic Events in Term Unavailability
+ B1 B2 2.000E-04
+ BY1 B4 4. 000E-04
+ BY B3 BS 1.500E-05
+ B2 B3 BS 3.000€-05
+ B3 B84 BS 6.000E-05
- Bt B2 B4 -8.000E-06
- BY B2 B3 BS -3.000E-07
- B B2 B3 BS -3.000E-07
- BY 82 B3 B4 BS -1.200E-08
- B B3 B4 BS -6.000E-07
- BY B2 B3 B4 BS -1.200E-08
- 81 B3 B4 BS -6.000E-07
- B B2 B3I BS -3.000E-07
- B1 B3 B4 BS -6.000E-07
- B2 B3 B4 BS -1.200E-06
+ B1 B2 B3 B6 BS 1.200E-08
+ BY B2 B3 B4 BS 1.200E-08
+ B1 B2 B3 B4 BS 1.200E-08
+ Bi B2 B3 B4 BS 1.200E-08
+ BT B2 B3 BL BS 1.200€E-08
+ B1 B2 B3 B4 BS 1.200E-08
+ BY B2 B3 B4 BS 1.200€-08
+ BY B2 B3 B4 BS 1.200E-08
+ B1 B2 B3 Bt BS 1.200E-08
+ Bl B2 B3 B4 BS 1.200E-08
- B1 B2 B3 B4 BS -1.200E-08
- B1 B2 B3 B4 BS -1.200E-08
- B1 B2 B3 B4 BS -1.200E-08
- B1 B2 B3 B4 BS -1.200E-08
- B B2 B3 B4 BS -1.200E-08
+ BY! B2 B3 B4 BS 1.200E-08
Sum of all terms (Exact Answer) 6.93148E-04
Sum of 1st Order terms 7.05000E-04
Sum of 1st and 2nd order terms 6.93076E-04
Sum of 1st, 2nd and 3rd order 6.93196E-04
Sum of 1st, 2nd, 3rd, and 6.93136E-04

4th order terms
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B1
B1

B2
B3

L K 2K K 4
L]
ey

B1
B
B1
B1
B1
B1
B1
81
B1
B2

B1
B1
B
B1
B1
81
81
B1
B1
B1

LB B K B IR AR

B
B1
B1
B1
B1

%+

B1

B2
B4
B3
83
B4

B2
B2
82
82
B4
B4
B4
83
B3
83

B2
B2
B2
B2
B2
82
B4
B4
Bé
B3

B2
B2
B2
B2
B4

B2

85
B5
85

B
B
82
B3
81
B2
B3
B5
B5
85

81
B1
B
B1
B1
B2
81
B1
B2
B5

B1
81
B1
B1
B1

B1

Basic Events in Term

Bé
B3
B3
B
83
B3
B4
B2
B3
B3

BS

B4
B3
B3
83
83
83
B3
B2

84
B3
83

B4

Table A-7. Probabilities of contributors to minimal cut set upper bound

Unavailability

B5
85
85
85
B5
BS
B3 85
B4 BS
B4 BS

81 B3 85
B2 B3 85
B3 B4 B5
B5 B2 B3
B5 B3 B4
B5 B3 B4
BS B2 B3
BS B3 84
BS B3 B4
B3 B85 B3

BY B3 B5
B1 B3 B5
B2 B3 BS
85 B2 B3
B5 82 B3

B1 B3 BS

B5
B5
B5
85

85
B4

B2
B3
B3
BS
BS

B2

B5

B3 B3
B4 BS
B4 BS
B3 B4 BS
B3 B4 BS

B3 85 B3

2.000E-04
4 .000E-04
1.500e-05
3.000E-05
6.000E-05

-8.000€-08
-3.000E-09
-6.000€-09
-1.200E-08
-6.000E-09
-1.200€-08
-2.400E-08
-4.500E-10
-9.000€E-10
-1.800E-09

1.200E-12
2.400E-12
4.800E-12
9.000E-14
1.800€-13
3.600E-13
1.800€-13
5.600E-13
7.200E-13
2.700E-14

-3.600€-17
-7.200E-17
-1.440E-16
-5.400€-18
-1.080€E-17

B4 BS 2.160€-21

TOTAL 7.0485386E-04

Quantification Example
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A6. IMPORTANCE MEASURES

Basic Event Probabilities

P(B1) = g, = 0.01
P(B2) = g, = 0.02
P(B3) = g, = 0.03
P(B4) = q, = 0.04
P(85) = g5 = 0.05
€, = P(B1*B2) = P(B1)*P(B2) = qq, =0.01%0.02 = 2.0E-4
C, = P(B1*B4) = P(B1)*P(B4) = q,q, = 0.01 * 0.04 = 4.0E-4
C, = P(BI*B3*BS) = P(B1)*P(B3)*P(B5) = g,q;q, = 0.01 * 0.03 * 0.05 = 1.5E-5
€, = P(B2*B3*B5) = P(b2)*P(B3)*P(B5) = q,q,Gs = 0.02 * 0.03 * 0.05 = 3.0E-5
C; = P(B3*B4*BS) = P(B3)*P(B4)*P(BS) = gyqG, = 0.03 # 0.04 * 0.05 = 6.0E-5

@=¢ +C,+Cy3+C, ¢ Cy = 7.0506-4

Fussell-Vesely Importance Measure

B1 - FV(B1) = (C1 + C2 + C3)/Q = (2.0E-4 + 4.0E-4 + 1.5E-5)/7.05E-4 = 0.8723
B2 - FV(B2) = (C1 + C&)/@ = (2.0E-4 + 3.E-5) / 7.05E-4 = 0.3262

B3 - FV(B3) = (C3+C4+C5)/@ = 1.05E-3/7.05E-5 = 0.1489

B4 - FV(B4) = (C2+C5)/Q = 4.0E-4 + 4.6E-4/7.05E-4 = 0.6525

B5 - FV9B5) = (C3+C4+C5)/@ = 1.05E-4 / 7.05E-4 = 0.1489

Risk Reduction Imporiance

For Bl, set g, = 0.0. Then we get

T, = P(B1*B2) = P(B1)*P(B2) = qq = 0.01 % 0.02 =0
C, = P(B1*B4) = P(B1)*P(B4) =qa, =0.01% 0.04 =0
C; = P(B1*B3*B5) = P(B1)*P(B3)*P(BS) = g,&q, = 0.01 * 0.03 # 0.05 = 0
C, = P(B2*B3*B5) = P(b2)*P(B3)*P(B5) = q,q,q; = 0.02 * 0.03 * 0.05 = 3.0E-5
£; = P(B3*B4*B5) = P{B3)*P(B4)*P(BS) = q,a.qs = 0.03 * 0.04 * 0.05 = 6.0E-5
Using these results, the risk reduction ratio is

RRR(B1) = 7.05E-4/(3.0E-5+6.0E-5) = 7.05E-4/9.0E-5 = 7.833,
and the risk reduction difference is

RRD(B1) = 7.05E-4 - 9.0E-5 = 6.15e-4.
Risk Increase Importance
For Bl, set ¢, = 1.0. Then we get
C, = P(B1*82) = P(B1)*P(B2) =aa =1.0 *0.02 = 0.02
C, = P(BI1*B4) = P(B1)*P(B4) =qgaq =1.0 *0.04 = 0.04
C, = P(B1*B3*B5) = P(B1)*P(B3)*P(B5) = g, = 1.0 * 0.03 * 0.05 = 1.56-3
C, = P(B2*B3*BS) = P(b2)*P(B3)*P(B5) = q,q,q; = 0.02 * 0.03 * 0.05 = 3.0€-5
Cs = P(B3*B4*B5) = P(B3)*P(B4)*P(B5) = q,q.qs = 0.03 * 0.04 * 0.05 = 6.0E-5

Using these results, the risk increase ratio is

NUREG/CR-5964 A-18
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RIR(BY) = 6.139E-2/7.05E-4 = 86.36,

and the risk increase difference is

RID(B1) = 6.159E-2 - 7.05E-4 = 6.089E-2.

Birnbaum Importance
B(B1) = 6.159E-2 - 9.0E-5 = 6.15E-5.

Structural Importance

B1 appears in three cut sets

Table A-8. Ratio importance measures

Num. Prebability Fussell- Risk Risk
of of Vesely Reduction Increase

Name Occ. Failure Importance Ratio Ratio
B1 3 1.000€-2 8.723€-1 7.832 8.611E+1
B4 2 4.000E-2 6.5264E-1 2.877 1.666E+1
B2 2 2.000E-2 3.261E-1 1,684 1.696E+1
B3 3 3.000€-2 1.489E-1 1.175 5.809€+0
BS 3 5.000€-2 1.489E-1 1.175 3.827e<0

Table A-9. Difference importance measures

Num. Probability Birnbaum Risk Risk
of of Importance Reduction Increase
dame Occ. Failure Measure Difference Difference
B1 3 1.000E-2 6.061E-2 6.169E-4 5.999€-2
BS 2 4. 000E-2 1.148E-2 4 ,.599E-4 1.102€E-2
B2 2 2.000E-2 1.948€-2 2.299€-4 1.125€-2
B3 3 3.000E-2 3.494E-3 1.049€-4 3.389E-3
BS 3 5.000€-2 2.097E-3 1.049E-4 1.993€-3
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‘ INDEX

The numbers shown are section numbers rather than page numbers. Terms that are in the table
of contents are not necessarily in this index. Section numbers in bold face contain definitions.

absorption 2.3, 5., 5.18, A2 "logical loop”
accident sequence See "sequence” minimal cut set §., 5.18, A2
AND 2.2.2,2.4,2.5,3.2 mutually exclusive 2.2.5, 2.2.6, 4.2, 4.3, 4.6
basic event 3.2 NAND 3.2
Boolean 2.4, 5,5.5 N/M 3.2
cd.f. 9.3 NOR 3.2
combination gate 3.2 NOT 2.2.3,24,2.5
complement 2.2.3, 2.5 NOT AND 3.2
conditional probability 4.2 NOT OR 3.2
circular logic See "loop” null set 2.1
correlation class 9.5 occur 2.5, 3.2
cut set 5. OR 2.2.1,2.4,25,3.2
difference 2.2.4 partition 2.2.6
disjoint 2.2.5 population 2.1
See also "mutually exclusive” probability 4.2
element 2.1 probability contribution 5.17
empty set 2.1 recursive 5.1 See also "loop”
equal reference set 2.1
for logical statements 2.4 sequence 5.7, 5.22, 6.3, 8.1
‘ for sets 2.1 set 2.1
event 2.1, 2.5, 3.1,3.2 See also adjectives, such as "empty set”,
event tree 5.7 "universal set"
exclusive See "mutually exclusive” statement 2.4
exhaustive 2.2.6, 4.3 statistical independence
expansion path 5.13 See independence
fault tree 3.1, 5., 5.7 subset 2.1
gate 3.2 top event 3.1
house event 3.2 transfer 3.2
idempotence 2.3, A2 uncertainty distribution 9., 9.4
identity set 2.1 undeveloped event 3.2
independence uncertainty distribution 9, 9.3, 9.4, 9.5
logical 5.9, 5.12, 5.17 union 2.2.1, 2.5
of basic events 3.2, 6.1 universal set 2.1
of uncertainty distributions 9.5 zero set 2.1
statistical 3.2, 4.6, 5.17, 6.1, 9.5 zone flagged event 5.15
inhibit 3.2

intersection 2.2.2, 2.5
inverse ¢.d.f. method 9.3, 9.3.4, 9.3.6, 9.3.7
level 5.13
logical loop 3.1, 5.5
See also "loop”
loop See “circular logic” and
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