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Abstract

Progress is reported for a comprehensive investigation of the scaling behavior of gas injection
processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity
segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series
of simulations and experiments. ‘

Use of streamtube to model multiphase flow is demonstrated to be a fast and accurate ap-
proach for displacements that are dominated by reservoir heterogeneity. The streamtube technique
is particularly powerful for multiphase compositional displacements because it represents the effects
of phase behavior with a one-dimensional flow and represents the effects of heterogeneity through
the locations of streamtubes.

A new approach for fast calculations of critical tie-lines directly from criticality conditions
is reported. A global triangular structure solution for four-component flow systems, whose tie-lies
meet at the edge of a quanternary phase diagram or lie in planes is presented. Also demonstrated
is the extension of this solution to multicomponent systems under the same assumptions.

The interplay of gravity, capillary and viscous forces on final residual oil saturation is
examined experimentally and theoretically. The analysis of vertical equilibrium conditions for
three-phase gravity drainage shows that almost all oil can be recovered from the top part of a
reservoir. The prediction of spreading and stability of thin film is performed to investigate three-
phase gravity drainage mechanisms. Finally, experimental results from gravity drainage of crude
oil in the presence of CO; suggest that gravity drainage could be an efficient oil recovery process
for vertically fractured reservoirs.
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1. Introduction

When gas injected into an oil reservoir at high pressure, a richly complex set of physical
mechanisms comes into play. Components transfer between oil and gas phases, viscous fingers form,
geological heterogeneities move fluids in wonderfully complicated ways, and capillary and gravity
forces drive flows. In this report, we examine the scaling of the interactions of those mechanisms.
The goal of the work is to provide a base of physical understanding upon which can be built the
design of gas injection processes for heterogeneous reservoirs. ,

In Chapter 2 we describe an efficient technique for calculating the performance of a gas
injection process in a heterogeneous reservoir. The method is a version of a streamtube technique,
in which the effects of heterogeneity in a two-dimensional porous medium are represented by flow
through a series of streamtubes while the effects of the displacement process, whether it is a mis-
cible flood, a waterflood or a compositional displacement, are represented by a one-dimensional
solution for that displacement process. Thus, this approach decouples the calculation of the phys-
ical mechanisms of the displacement process from the representation of the effects of macroscopic
heterogeneities. The effects of changing mobilities are included by updating the locations of stream-
tubes periodically. The technique works best for flows in which heterogeneities influence strongly
the flow path of injected fluids, a situation that is common in field-scale flows. We demonstrate
the approach for a variety of displacement processes and show that it is orders of magnitude more
efficient than conventional finite difference simulation.

In Chapter 3 we consider how multicontact miscibility develops in multicomponent systems.
Standard theory for development of miscibility is based on analysis of three-component systems,
and minimum miscibility pressures (MMP’s) or minimum enrichments for miscibility (MME’s) are
often calculated by mixing cell methods that determine when either the injection gas or displaced
oil lies on a critical tie line. Those methods fail for systems with more than three components
if development of miscibility is controlled by tie lines other than the injection or initial tie lines.
That situation arises for condensing/vaporizing gas drives, which arise in many CO; floods and
in the displacement underway at Prudhoe Bay, for example. In Chapter 3 we describe a new
technique for direct calculation of the MMP for such situations. The new method works well
for condensing/vaporizing gas drives, and it is significantly more efficient than other approaches
in widespread use. Also in Chapter 3 we report additional results of mathematical analysis of
multicomponent systems that will guide the development of a theory for systems with an arbitrary
number of components.

In Chapter 4, we examine in some detail how capillary, gravity, and viscous forces interact
to determine residual oil saturations. The goal here is to determine what conditions are required to
give low residual saturations and then to see how those conditions can be created by designing gas
injection processes appropriately. In the first part of Chapter 3 we develop a theoretical basis for
observations that both viscous forces and gravity forces can contribute to reduction of residual oil
saturations, and we report additional experimental observations that support the theory. Then we
consider the important area of three-phase flow. We examine when and how oil films form on water
in the presence of gas, and we consider how those films transport oil due to viscous and gravity
forces. Finally, we report experimental results of gravity drainage of crude oil in the presence of
high pressure COj. Those results suggest that high pressure gas injection processes can be used to
recover oil from fractured reservoirs.

The combination of experimental and theoretical results presented here is part of a com-
prehensive investigation of the scaling of gas injection processes for heterogeneous reservoirs. This
report raises as many questions as it answers, an inevitable situation for research that is thoroughly




“in progress.” Nevertheless the progress reported here represents a significant step toward the goal
of improved design capability based on understanding of the scaling of the underlying physical
mechanisms of flow.




2. Modeling Multiphase Flow in Heterogeneous
Media Using Streamtubes

Marco R. Thiele and Martin J. Blunt

2.1 Introduction

The primary objective of the streamtube approach is to enable fast, yet accurate numerical
solutions to displacements through strongly heterogeneous systems while retaining the details of
the underlying physical models seen in one-dimensional solutions. The fundamental assumption in
using the streamtube approach rests on the belief that field scale displacements are dominated by
reservoir heterogeneity: by capturing flow paths and their relative importance as one-dimensional
transport conduits between wells, while honoring the physical displacement mechanism along these
conduits, allows difficult enhanced oil recovery displacements to be modeled successfully. Fast and
slow flow regions in the reservoir can be represented using quasi one-dimensional streamtubes.
Streamtubes can be visualized as an array of pipes, having variable geometries and connecting
the injector and producer wells. The shape of each pipe (streamtube) is dictated by the reservoir
geology and, most importantly, each pipe is assumed to conserve mass: what goes into a pipe must
come out.

The motivation for this research originated from recent advances in the one-dimensional
theory of multicomponent, two-phase, compositional displacements [67, 30, 100] and a desire to
extend the sophisticated physical models to two-dimensional heterogeneous systems. Traditional
numerical solutions to two- and three-dimensional compositional problems are prohibitively expen-
sive, while returning less than satisfactory solutions due to substantial numerical errors. Motivation
for a fast numerical technique was also sparked by the now established statistical methods used in
reservoir description. Many equiprobable realizations of a particular reservoir, conditioned possi-
bly on log data, core analysis, and seismic data, allow probabilities to be attached to cumulative
oil recoveries, but processing the hundreds of geostatistical realizations using traditional reservoir
simulation techniques is numerically very expensive, if not impossible. The streamtube approach,
on the other hand, allows just that: capturing the first order effect of reservoir heterogeneity, while
requiring orders of magnitude less computation time, opening up the opportunity to very rapid
evaluation of displacement efficiencies and a statistical approach to reservoir forecasting [122, 123].

Streamlines and streamtubes are well established in the general field of subsurface fluid flow
modeling and have given rise to a large body of literature. Unfortunately, the groundwater and
petroleum literatures have evolved quite independently from each other and little cross referencing
has taken place on the subject. In part, this is due to the difference in the fundamental problem
the two fields are concerned with: regional, single phase flow with emphasis on aquatic chemistry in
groundwater mechanics versus confined, multiphase, multicomponent flow in petroleum engineering,.
Important contributions in the petroleum literature are due to Higgins and Leighton [54, 55],
Higgins et al. [56], Parsons {104], Martin and Wegner [84], Lake et al. [76), Emanuel et al. [38],
and Hewett and Behrens [53]. A comprehensive review of the relevant literature as well additional
details of the approach outlined in this report are given by Thiele [122] and Thiele et al. [123].




Streamtubes and The Riemann Approach

The method used for modeling modeling multiphase, multicomponent displacement mech-
anisms centers on the idea of a streamtube as a quasi one-dimensional object. Two-dimensional
solutions are then constructed by mapping one-dimensional solutions to the appropriate mass con-
servation equations along each streamtube. Because the streamtubes are treated as one-dimensional
objects, the conservation equations are solved using Riemann boundary conditions (for which an-
alytical solutions can be found) and mapped along streamtubes as Riemann solutions. For any
new time step, the solution along a streamtube is always found by integrating from 0 to tp + Atp
rather than from tp to tp + Atp. Mapping the one-dimensional solution in this manner along the
streamtubes is referred to as the ‘Riemann approach’ throughout the text.

Nonlinearity

The fundamental difficulty in solving the partial differential equations (PDE’s) governing
the flow through porous media is their nonlinear formulation. In other words, in order to account
for the relevant physics of fluid flow, the coefficients that appear in the governing equations (relative
permeabilities, viscosities, densities, etc...) become functions of the independent variables of the
problem, usually phase saturations and/or overall compositions. A special case occurs when the
coefficients are assumed constant with respect to the independent variables', as is done in unit
mobility ratio (M=1) flow. In that case the streamtubes are fixed with time and the flow is said to be
linear. To account for the inherent nonlinearity of all other displacements, the streamtube approach
periodically updates the streamtubes (i.e. solves the elliptic PDE for the streamfunction) and
maps the one-dimensional solution to the particular transport problem onto the new streamtubes
using the Riemann approach. This approach is different from the method introduced by Higgins

and Leighton [54, 55], where the streamtubes are assumed to be fixed and the nonlinearity is
accounted for by changing the flow rate of each streamtubes according to its resistance. The term
‘nonlinearity’ is used here to specifically identify the changing velocity field with time, as reflected
by the dependence of the total mobility coefficients in the elliptic PDE for the streamfunction on
saturation and/or compositions.

Class of Problems

The streamtube approach is meant to solve problems that are dominated by reservoir het-
erogeneity and convective forces. Only cross-sectional problems are discussed here, although there
are no dimensional limitations and the method can be used in areal, multiwell configurations as well
as in three dimensions®. In the examples considered here, solutions by the streamtube approach
are restricted to problems with constant initial and injected conditions (Riemann boundary condi-
tions). Finally, the one-dimensional nature of the streamtubes requires transverse flow mechanisms
(normal to the streamtube boundaries) to be of negligible importance.

! Although the coefficients may still vary spatially like permeability, for example.

2 Although not as easily derived as in two-dimensions, three dimensional streamtubes arise by considering the
intersection of stream surfaces [7}. Once a three-dimensional streamtube is defined, all the arguments with regard to
mapping one-dimensional solutions along a streamtube in two dimensions can be applied directly to a streamtube in
three dimensions.
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Figure 2.1: Possible boundary conditions of the streamfunction ¥.

2.2 The Mathematics of Streamtubes

Streamtubes can be found by solving directly for the streamfunction using [7]

o (10¥ a /10¥
% (X’a—) +a () =0 &1

where A, and ), are the total mobilities in the z and y direction given by

Np Np
kzky; kyk,;
do= Y =L 5 A=) L2 (2:2)
=1 Hi =1 Hi

j is the phase index, N, is the total number of phases present, k, and k, are the absolute perme-
abilities in the x- and y-direction respectively, k,; the phase relative permeability, and u; the phase
viscosity.

For cross-sectional domains the boundary conditions for Eq. 2.1 are particularly easy to
formulate (Fig. 2.2), since the flow rate between two streamlines is simply given by the difference
in value of the streamfunction associated with each streamline. Thus, since the top and bottom no
flow boundaries and are themselves streamlines, the difference in the value of the streamfunction
between the two must equal to the total flowrate. An obvious choice then is to set the bottom
boundary to ¥ = 0 and the top boundary to ¥ = Qota®. Similarly, a uniform rate distribution
along the inlet or outlet face must be given by a linear distribution of ¥ from 0 to Qotai- Thus,

‘I’in/out = YQtotal ; 0<y< 1. (23)

To find the equivalent of a constant pressure/total rate boundary condition in terms of the stream-
function it is necessary to consider the Cauchy-Riemann equation
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A constant pressure boundary states that gradient in the y direction must be zero. For a nonzero
coefficient A1 it follows that

_—=0 = —;:0. (2.4)

3Clearly, the opposite choice is just as good.




{a) Uniform Distribution

{b) White Noise Distribution

Figure 2.2: Streamtube geometries as a function of permeability correlation. From top to bottom:
(a2) homogeneous distribution , (b) white noise (no correlation), and (c) correlated permeability

field.

Total flow is automatically honored by the value associated with the top and bottom limiting
streamlines. The two possible boundary conditions for the the inlet and outlet end are summarized
in Fig. 2.1. Once the streamfunction has been solved for the particular heterogeneous domain of in-
terest, streamtubes are defined by considering two adjacent streamlines. A system of N streamlines
will define N — 1 streamtubes.

The advantage of using streamtubes versus streamlines as the fundamental object on which
to map a one dimensjonal solution is that streamtubes offer a visual interpretation of the local flow
velocity whereas streamlines do not. By tracing a single streamline from inlet to outlet nothing is
yet known about how fast a particle moves along that streamline. A streamtube on the other hand,
allows identification of slow and fast flow regions: thick sections of a streamtube correspond to slow
flow regions, thin sections to fast flow regions. The geometry of the streamtubes therefore captures
the distribution of the flow velocity imposed by the underlying permeability field as demonstrated
in Fig. 2.2. The correlated permeability field in Fig. 2.2 was generated using a moving window
algorithm [122].

2.3 Tracer Displacements

For tracer displacements the elliptic equation governing the potential flow field is decoupled
from the mass conservation equations. The problem is linear and consequently the streamtubes
are fixed in time and must be solved for only once. Two possible analytical solutions can be
mapped along streamtubes in the tracer case: (1) a no-diffusion solution given by an indifferent
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Figure 2.3: Example solution for the two dimensional domain by mapping the diffusion-free tracer
solution at ¢tp = 0.3 along streamtubes.

wave traveling at unit velocity, expressed mathematically as

_}J 1 forzp<ip
Cp(zp,tp) = { 0 forzp > tp (2.5)
and (2) a convection-diffusion solution given by
1 -1
Cp(zp,tp) = =erfc Ip— b3 (2.6)
2 ) _.D_]f,
Pe

Cp, zp, and tp are the usual definitions of dimensionless concentration, distance, and time, and Np,
is the Peclet number, a dimensionless number expressing the extent of physical diffusion/dispersion.
The larger the Peclet number the less diffusion/dispersion exists. Field-scale Peclet numbers can
range from 10-10,000 [6]. An example tracer solution for a heterogeneous reservoir of 250x100
grid blocks using 50 streamtubes and the no-diffusion solution (Eq. 2.5) is shown in Fig. 2.3.
Using Eq. 2.6, on the other hand, allows the addition of physical longitudinal diffusion to the
two-dimensional solution of Fig. 2.3. Example solutions at {p = 0.3 and three Peclet numbers
(Npe — o, Np. = 1000, and Np. = 100) are shown in Fig. 2.4. It is important to realize that
mapping Eq. 2.6 can not account for transverse diffusion.

Scale of the 2D Solution

Mapping a convection-diffusion solution onto the streamtubes attaches a length scale to the
heterogeneous system. For a low variance, second-order stationary, permeability field the Peclet
number may be expressed as [94, 45, 23]

1 L

S 7 M
0% L,ep

Npe x (2.7)

where o2 is the variance of the permeability field, L is the system length, and L, is a representative
length scale beyond which the system looks ‘diffusive’ (or Fickian). The question in applying in the
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STREAMTUBES - Pe = infinity

Figure 2.4: Including physical diffusion in M=1 displacement by mapping the convection-diffusion
equation along each streamtube. Examples at Np, — oo, Np, = 1000, and Np, = 100.

CD-model to field—scale streamtubes is whether a sub—field scale L;ep exists that allows the CD-
solution to hold along field-scale streamtubes. Considering that the streamtubes, by definition, will
conform to the flow units (heterogeneity) of the system, the assumption of treating each streamtube
as a pseudo-homogeneous unit that reaches a diffusive limit is not unreasonable. In other words,
a small L,ep, does not necessarily preclude the streamtubes to be on a field scale. For example,
successful matching of field tracer data using this approach has been demonstrated by Abbaszadeh-
Dehghani [1]. Thus, mapping the CD-model along field-scale streamtubes is an attempt to capture
sub-tube heterogeneities which are represented numerically by specifying an appropriate Peclet
number. It represents a ‘nested’ approach to modeling heterogeneities that dominate at different
scale: the streamtubes capture the large-scale heterogeneities of the reservoir while the CD-solution
models sub-grid block/sub-streamtube features.

Quantifying Numerical Diffusion

Mapping analytical solutions, such as Eq. 2.5 or Eq. 2.6, onto streamtubes results in two-
dimensional solutions that are completely devoid of numerical diffusion. Streamtubes solutions can
therefore be used to quantify the extent of numerical diffusion in other numerical solutions obtained
using finite differences or finite elements. An example of a such comparison is given in Fig. 2.5,
which shows the tracer solution without physical diffusion at tp = 0.3 compared to solutions with
no physical diffusion (but some numerical diffusion) obtained using Mistress, a BP research code
with flux corrected transport? [19] and Eclipse, a commercially available reservoir simulator with
single point upstream weighting. In the limit of a large number of streamtubes, the streamtube
solution is the exact limiting solution for the no diffusion case, and can be used to calculate the

*Using Courant-Friedrichs-Lewy (CFL) number of 0.2.




Figure 2.5: Comparison of concentration profiles showing extent of numerical diffusion in finite
difference simulators. Streamtube method versus Mistress, a BP research code with flux corrected
transport and Eclipse, a commercially available reservoir simulator with single point upstream
weighting and automatic time step selection.

Error - Mistress
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Figure 2.6: Spatial distribution of the error caused by numerical diffusion in the Mistress and
Eclipse simulations shown in Fig. 2.5.




spatial error
ACerr =] C(z,y)stubes — C(2,¥)pp | , (2.8)

where the subscript FD stands for finite difference. A spatial rendering of AC,y is shown in Fig. 2.6.
The results shown in Fig. 2.5 demonstrate that numerical solutions are clearly affected by numerical
diffusion, although the basic flow pattern dictated by the permeability field is arguably the same
in all cases.

2.4 Immiscible Displacements

When Higgins and Leighton [54, 55] introduced the streamtube approach as a method to
predict two—phase flow in a five-spot pattern, they reported excellent agreement with experimental
data for mobility ratios ranging from 0.083 to 754. Other authors [56, 33, 80, 84] also reported good
matches with either field or laboratory data for similar values of mobility ratios. All authors were
able to account for the nonlinearity inherent in the total velocity field by keeping the streamtubes
fixed and adjusting the flowrates instead. In this work, the waterflood problem is approached
differently and used principally to demonstrate the applicability of the proposed Riemann approach
to more difficult multiphase, multicomponent displacements.

The principal difference to work done by previous authors lies is in the mapping of the
one-dimensional solution along periodically changing streamtubes. In the Riemann approach, the
one-dimensional solution is treated as a solution to 3, Riemann problem, although the streamtubes
change with time. The solution along a new streamtube for the time level tp + Aip is not given
by an integration from ¢p to tp + Atp, as in conventional time-stepping algorithms, but rather
as an integration from 0 to tp + Atp, where the initial conditions are assumed to be constant
right and left states. Thus, the Riemann approach centers on treating each streamtube as a true
one-dimensional system on which the Buckley-Leverett solution is mapped repeatedly for different
times, the difference to the tracer case being that the streamtubes are now updated periodically.
The underlying assumption in the Riemann approach is that the fluid entering a streamtube remains
in the streamtube and exits only at the outlet end, even if the streamtube changes location and
geometry as a function of time.

Reasons for the Riemann Approach

A legitimate question is to ask what motivates the Riemann approach. The answer centers
on the attempt to capture the nonlinearities that exist in multiphase flow. Only three authors Maz-
tin et al. [85], Martin and Wegner [84], Renard [107] address the idea of updating the streamtubes
rather than using total flow resistance. Mathematically, updating the streamtubes is an appeal-
ing approach because local flow velocities are updated, and the original definition of a streamtube
as carrying a volumetric rate equal to the difference in the value of jts bounding streamlines is
maintained. However, updating the streamtubes poses one problem related to the initial conditions
associated with each streamtube: each time a streamtube is updated it must be initialized so that
the conservation equation(s) can be solved. The only reasonable possibility to assign new initial
conditions along an updated streamtube is to use the old, two-dimensional saturation distribu-
tion on the underlying cartesian grid. Because updating a streamtube literally means changing
its position in z-y space, it is easy to see that the new initial conditions will not correspond to
the old saturation distribution along the streamtube. The resulting hyperbolic problem that must
be solved then will be one with general type initial conditions. No analytical solutions exist for
such problems and the saturation distribution along the new streamtube can be moved forward
in time (1) numerically by using a standard one-dimensional finite-difference solution along each
streamtube [13], or (2) by using a moving interface, front-tracking algorithm [112, 32, 48, 14]. The

10




Riemann approach, on the other hand, completely circumvents the problem of initial conditions
that arises with streamtube updating. The two—dimensional solution is approximated by N one-
dimensional solutions along streamtubes that are treated as true Riemann solutions along changing
streamtubes.

The 1D Buckley—Leverett Solution

The one-dimensional Buckley-Leverett solution is well known and well documented in the
petroleum literature [16, 24, 77] and is generally used in its dimensionless form

05y w
|

ot =0, (2.9)

where tp = tus;/L and zp = ¢z/L are usual definitions of dimensionless time and distance respec-
tively, u; is the total (constant) Darcy velocity given by u; = ty + 4o, and fy is the fractional flow
of water given by

Uy 1
= = . 2.10
o T T R >

kro, krw, fo, and 1y, are the relative permeabilities and viscosities of oil and water as indicated by
the subscript®. The solution to Eq. 2.9 subject to Riemann conditions of the form

Sp; forzp <0
Sw(xp,o){ o teren >0 (2.11)

where the subscripts [ and r refer to the left and right constant states of the discontinuity at zp = 0,
can be found easily using the method of characteristics [132, 82]. Depending on the shape of the
fractional flow curve, fy, the solution can contain rarefaction waves and shocks, which are found
using the velocity constraint and the entropy condition [66]. A rarefaction wave is composed of
saturations having characteristic velocities given by

dzp dfw
T (2.12)
whereas a shock travels with a characteristic velocity given by
d U _ D
zp _ Ju = fy (2.13)

dip  SU_SD "

The superscripts U and D stand for upstream and downstream respectively. An example solution
for a two—phase problem with and end-point mobility ratio of 10 is shown in Fig. 2.7.

Validation of the Riemann Approach

The Riemann approach was tested by the following numerical experiment. Using a stan-
dard finite difference simulator (Eclipse), the velocity fields were stored for regular increments of
dimensionless time. From each velocity field, the corresponding streamtubes were then constructed
and used to find the saturation profiles by mapping a Riemann solution along the streamtubes for
that particular time. The saturation profiles obtained by this method were then compared to the
saturation profiles obtained by the direct Riemann approach.

The one—dimensional solution used to test the Riemann approach is shown in Fig. 2.7.
Although the end-point mobility ratio is 10, the shock—front mobility ratio is, in fact, only 1.36,

SEq. 2.10 assumes that the one-dimensional porous medium is homogeneous.
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Figure 2.7: Relative permeability curves (k. = S2 , k, = §2), corresponding fractional flow
function for a viscosity ratio of 10 (z, = 10, gy, = 1), and Buckley-Leverett analytical solution
used for testing the Riemann approach. The mobility ratio at the shock front is Mpocx = 1.36.

resulting in a more stable displacement than suggested by the end-point value alone. This is
generally true for many waterfloods with ‘reasonable’ relative permeability curves: the frontal
mobility ratio is of order 1 even though the end-point can be of order 10 or 100 leading to a weak
nonlinearity in the total velocity.

As demonstrated in Fig. 2.8, the Riemann approach agrees well with the mixed method
(Eclipse velocity field + Riemann approach), and both solutions have no numerical diffusion because
an analytical one-dimensional solution is used along the streamtubes. Figure 2.8 displays example
solutions at ¢tp = 0.2 and tp = 0.4. The upper row shows saturations maps obtained directly
from Eclipse; the middle row shows maps obtained using the velocity from Eclipse but mapping
the solution using the Riemann approach; and the last row shows profiles obtained by using the
Riemann approach only.

A direct comparison of saturation maps (Fig. 2.8) as well as the integrated response (Fig. 2.9)
demonstrate that the difference between the two methods (Eclipse velocity field + Riemann ap-
proach and direct Riemann approach) is indeed small, and the nonlinearity of the velocity field is
captured correctly by the direct Riemann approach. In fact, it is interesting to note that numerical
diffusion causes a larger difference in recovery between the two methods than the approximation
involved by using the Riemann approach. This conclusion can be drawn from the fact that the ve-
locity fields for the two recovery curves are identical and therefore the difference must be attributed
to numerical diffusion. That numerical diffusion has the upper hand in the Eclipse solution is also
suggested by the comparison of the saturation histories shown in Fig. 2.10. This numerical exper-
iment suggests that the error in the velocity field caused by the Riemann approach is indeed small
compared to traditional finite difference solutions. In particular, numerical diffusion is shown to
cause larger errors than the assumption used in the Riemann approach.

Convergence of the Riemann Approach

In the streamtube approach the conservation equation is not discretized and therefore there
is no Courant—Friedrichs-Lewy (CFL) condition to worry about. The question of how many times
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Figure 2.8: Saturation maps at times {p = 0.2 and ¢{p = 0.4. From top to bottom: profiles obtained
directly from Eclipse; profiles obtained by using the velocity field from Eclipse but mapping a
Riemann solution along streamtubes; profiles obtained by the method proposed in this work.
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Figure 2.9: Recovery curves for the three different solution methods used to generate the profiles
in Fig. 2.8.
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Figure 2.10: Displacement history at Atp = 0.1 intervals for a Buckley-Leverett problem with a
fractional flow given by Fig. 2.7.

the streamtubes must be updated to consider the solution converged arises naturally and is ad-
dressed by solving the previous problem repeatedly with an increasing number of streamtube up-
dates. Recovery curves for 1, 10, 20, 40, and 100 streamtube updates are shown in Fig. 2.11. It is
rather surprising to find that 20 solves are sufficient to consider the problem converged over a range
of two pore volumes injected (tp = 0.2). With only 20 solves, the new approach represents a reduc-
tion in computation time by two orders of magnitude compared to the thousands of solves needed
by a traditional finite difference simulator like Eclipse. For this particular problem (Menq = 10),
Eclipse required 1600 solves which translates into a speed-up of 8000% .

2.5 First Contact Miscible Displacements

Unstable first contact miscible (FCM) displacements in heterogeneous system have been
studied by many authors [5, 20, 49, 114, 128]. An extensive treatment of the subject was recently
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Figure 2.11: Recovery curves for for 1, 10, 20, 40, and 100 streamtube updates over two pore
volumes injected (tp = 2) showing that the problem can be considered converged if more than 20
updates are used. '

given by Tchelepi [121]. The strong interest in unstable FCM displacements is motivated principally
by the possibility of learning more about displacements which are near-miscible, such as gas and
carbon-dioxide flooding. The assumptions used in FCM flow isolate the convective part of the
displacement problem from any phase behavior considerations and allow to study the interaction
of reservoir heterogeneity and the nonlinearity of the total velocity field in determining sweep
efficiency. The absence of any phase behavior and multiphase flow aspects, on the other hand,
enhances the nonlinearity of the problem. Diffusive mechanisms, such as molecular diffusion and
pore scale mixing, are the only physical mechanisms available to mitigate the original mobility
contrast. As a result, FCM displacements are very challenging to simulate numerically and are
far more difficult than two-phase immiscible problems. High mobility contrasts lead to extreme
velocity variations and sufficient grid blocks must be used to ensure that numerical diffusion is as
close as possible to representing true physical diffusion at the grid block scale. Thus, physically
meaningful simulations of FCM displacements require substantial computer resources [121].

1D Viscous Fingering Solution

Unlike the two-phase immiscible problem, the ideal miscible case has a subtle one-dimensional -
solution. The solution to the governing PDE (with no-diffusion)

8Cp 0Cp _

_—t — . 2.
1 + 920 0 (2.14)
with initial data of the type
1 forzp <90
CD(IED,O){ 0 forzp >0’ (2.15)

gives rise to an indifferent wave solution traveling at unit velocity (as for the tracer case). For
favorable mobility ratios (M < 1), the ‘physical’ solution is indeed a wave traveling at unit velocity,
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although the wave is no longer indifferent but self-sharpening. For unfavorable mobility ratios, on
the other hand, the solution to Eq. 2.14 is misleading because it still gives a piston-like displacement,
when the system is in fact unstable. The problem, of course, is that the displacement model given
by Eq. 2.14 is unable to distinguish between stable and unstable displacements since it is linear
—by not having concentration dependent coefficients, the solution can not account for any viscosity
induced mobility contrast as a function of zp and ¢p. Furthermore, Eq. 2.14 has no characteristic
length scale, resulting in a sharp, but unstable front at all length scales and for all times. A
physically meaningful solution, on the other hand, would require some cut-off length scale across
which the frontal instability is mitigated.

Although adding a cut-off length scale can be done mathematically by retaining a second
order diffusion term, implying that the cut-off length scale is given by the diffusive length scale as-
sociated with Npe, it is unlikely that at the field scale molecular diffusion and pore level mixing are
first-order type physical processes that mitigate instabilities. Convective mixing at the macroscale,
such as viscous fingering and channeling are probably more important. To account for such phe-
nomena in an averaged, one-dimensional sense an analogy to two-phase flow was first proposed by
Koval [75]. In the Koval model, straight line relative permeabilities and a quarter-power mixing
rule are combined to define a flux function f(Cp) that models convective mixing of the fluids. The
governing PDE for Koval’s model is®

0Cp + 9f(Cb) _ 0

Otp dzp ’ (2.16)
where f(Cp) is given by .
1
f(Cp)= ——7—— - 2.17
(©o)= s (217)
Mg is the effective mobility ratio defined as
4
Me = (0.78 + 0.22MY4)" (2.18)

and M = po/us is the usual definition of the mobility ratio. For combining with streamtubes
-though, a better one-dimensional model to use is the Todd-Longstaff formulation [75). The Todd-

Longstaff model includes Koval’s model as a special case and is a single parameter function given
by

1
f(Cp) = i - (2.19)
1-C
1+ 158 (ﬁ)
If w is chosen as
In (0.78 + 0.22M1/4)
w=1-4— , (2.20)

InM

the Todd-Longstaff model is equivalent to Koval’s model. Setting w = 1 gives the piston-like, no-
diffusion solution, while w = 0 returns the ‘equivalent’ two-phase problem using straight line relative
permeabilities. Varying w therefore allows investigation of an entire range of possible solutions for
the unstable case. Example fractional flow functions and concentration profiles for an end-point
mobility ratio of ten are shown in Fig. 2.12.

The discussion on tracer displacements considered the diffusive length scale introduced by
the convection-diffusion model. Choosing a Peclet number introduces a representative length scale,
L,.p, beyond which the systems is said to be diffusive at the sub-streamtube level. On the other

$Koval’s original model also includes a heferogeneity factor H. This factor is set to H = 1 (homogeneous), since
the model is used only to capture viscous fingering in an averaged one-dimensional sense along streamtubes.
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Figure 2.12: Fractional flow curves and corresponding velocity profiles for M = 10 and different
values of w in the Todd-Longstaff model.

hand, if a viscous fingering model is used along streamtubes, such as the Todd-Longstaff model,
then the scaling argument no longer rest on a diffusive length scale’. The most convincing physical
argument for attaching a length scale to the two-dimensional streamtube solution is to consider
each streamtube as a ‘homogeneous’ medium that will attain a Fickian limit in the unit mobility
ratio case, but will generate viscous fingers for M > 1.

Two-Dimensional Solutions

Fig. 2.13 shows example M = 10 solutions through 250x100 block cross sections with
varying degree of heterogeneity at tp = 0.4. A value of w = 0.725 was used in each case (equivalent
to Koval’s model) to capture the viscous fingering induced mixing along each streamtube. The
comparison with the Mistress solution in each case raises the interesting question whether the
streamtube solutions and the Mistress solutions are indeed on the same scale. All Mistress solutions
have some viscous fingering features, whereas all the fingering in the streamtube solutions is assumed
to take place within the streamtubes and captured in an averaged one-dimensional sense. As a
result, it could be argued that the streamtube solution is probably representing a larger scale than
the Mistress solution. :

Total recoveries for the six different permeability distributions are summarized in Fig. 2.14.
The recovery for the very short correlation length system (PERM 5) is expected to be good,
since it amounts to the recovery predicted by the one-dimensional Koval solution. For the other
cases, the recovery curves tell an interesting story, particularly for the permeability fields with a
heterogeneity index (HI) of HI = 0.0625 (PERM 2) and HI = 0.64 (PERM 3). The heterogeneity
index originated from the work of Gelhar and Axness [45] and has been used by other authors since
[86, 5, 114]. HI is defined as

HI =odt . (2.21)

where of , is the variance of the Ink-field and A, is the correlation length in the z-direction.
The higher HI, the ‘more’ heterogeneous the system is said to be. The heterogeneity index is an
attractive parameter because it combines information about the variability of the permeability field
(o,,) with information about the correlation structure of the heterogeneity (A.). The traditional

7 Although it is possible to argue that the size of viscous fingers may be scaled by Lrep.
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Figure 2.13: Concentration maps for M = 10 displacements in six different, 250x100 block hetero-
geneous reservoirs.

Dykstra-Parson coefficient (Vpp) can be recovered from HI by recalling that
Ok = —1In(l - Vpp) . (2.22)

The HI = 0.0625 (PERM 2) permeability field has a correlation length of A, = 0.25, but only a
standard deviation of o1, = 0.5. In other words, the system is only mildly heterogeneous and
although there are preferential flow channels, the streamtube solution sees a rather homogeneous
reservoir, whereas the Mistress solution allows fingers to grow along these channels. The predicted
recoveries are, accordingly, higher for the more homogeneous streamtube solution and lower for
the viscous fingering dominated Mistress solution. The interesting point about this displacement is
that it identifies a flow regime in which the streamtube fails to capture the dominant displacement
mechanism: field scale fingering induced by mildly heterogeneous systems.

The much more heterogeneous HI = 0.64 (PERM 3) case, on the other hand, behaves
quite differently. Heterogeneity is clearly the dominating factor in this displacement, which the
streamtube method is able to capture. Mistress also resolves the heterogeneity, but the many fingers,
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Figure 2.14: Recovery curves for the displacements shown in Fig. 1.12.
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Figure 2.15: Example of the convergence of the 2D solution for the ideal miscible case for end-point
mobility ratios of 5 and 10 over two pore volumes injected. The permeability field is 125x100 blocks.

channels, and numerical diffusion cause sufficient ‘mixing’ to lower the mobility contrast and lead to
a substantially higher overall recovery. The flow channels in the Mistress solution are thicker than
those present in the streamtube solution, and coalesce leading to higher recoveries. Mistress also
had some numerical difficulties with this particular field due to the extreme permeability contrasts,
causing the run time to exceed 14000 Cray seconds. Thus the truncated recovery curve. In the
remaining cases, the streamtube and Mistress recoveries match, demonstrating the ability of the
streamtube approach to capture overall recovery and the main displacement features.

Convergence

As was mentioned previously, the streamtube approach does not have the equivalent of
a CFL condition: there is no numerical limitation to the size of the time step and the solution
is always numerically stable. Instead, the question of whether the solution has converged must
be addressed explicitly through the number of times the streamtubes are updated to capture the
nonlinearity in the total velocity field. A solution is considered converged when the overall recovery
does not change with increasing number of updates over a fixed total time ¢p.

All the solutions presented in this chapter implicitly used ‘sufficient’ updates for a converged
solution. Fig. 2.15 shows overall recoveries as a function of mobility ratio and number of streamtube
updates for the one of permeability fields used in Fig. 2.13. In both cases, M = 5 and M = 10, the
solution can be considered converged by using between 40 and 100 streamtube updates over two pore
volumes injected. In fact, the big difference in recovery occurs by going from a single solve (tracer
case) to 10 updates. Even by using only 20 updates an acceptable solution can be obtained, with
breakthrough predicted correctly. Compared to the many thousands of pressure solves required by
Mistress, the speed-up in finding the solution is by two orders of magnitude. Herein lies the great
advantage of the streamtube approaches. Although it makes strong assumptions in generating the
two-dimensional solutions and does not capture the subtleties of viscous fingering, it is nevertheless
able to find solutions that contain all the main features imposed by the heterogeneity and return
accurate overall recoveries, particularly breakthrough times, using orders of magnitude less CPU
time than a traditional finite difference or finite element approach.




Applications

The real power of the streamtube approach lies in its ability to produce solutions that cap-
ture the main features imposed by the underlying permeability field while using orders of magnitude
less CPU time than traditional simulation techniques. Its strength is not in resolving the details
of the displacements, although the control on numerical diffusion may suggest it, but in being able
to produce accurate recoveries very quickly. As such, it is ideally suited for a statistical approach
to reservoir forecasting. A large number of statistically identical permeability realizations can be
processed to generate a spread in recovery for a particular combination of reservoir geology and
displacement mechanism. The streamtube approach may also be used as a filter: the permeability
fields that returned the maximum and minimum recoveries can be singled out and used in a much
more expensive finite-difference simulation to confirm the uncertainty. '

The speed of the streamtube approach can be used in many ways, but becomes particularly
appealing when a parameter space of interest includes reservoir heterogeneity, in which case many
simulations are required to obtain a statistically meaningful answer. An example of a parameter
space that has received considerable attention recently [121, 5, 128, 114] has been in the area
of unstable displacements through heterogeneous systems. In its most simple representation, the
parameter space is given by the end-point mobility ratio (instability) and heterogeneity index HI
(heterogeneity), although HI is clearly not a completely satisfactory parameter for quantifying the
complex geologic structure of a real reservoir. Nevertheless, HI can give some indication of the
degree of heterogeneity of the reservoir, particularly if it is used in a statistical sense. A partial
sweep of the parameter space is shown in Fig. 2.16. There are 30 recovery curves for each of the
six M-H1I pairs. Mobility ratio increases from left to right and heterogeneity increases from top to
bottom. All underlying permeability fields have 125x50 grid blocks.

Fig. 2.16 is particularly interesting in that it quantifies how nonlinearity in the velocity field
and heterogeneity interact, but does so statistically, rather than using a single recovery for each
case. As a result, the weakness of HI as a parameter is traded for a more convincing spread in
recovery given by the 30 curves for each case. Some interesting observations may be made from
Fig. 2.16: (1) Nonlinearity and reservoir heterogeneity interact to create a spread in recovery that
increases with increasing mobility ratio and increasing heterogeneity; (2) of the two parameters,
heterogeneity is clearly the dominant factor in establishing recovery, although an increasing mobility
ratio causes the spread between minimum and maximum recovery to increase slightly; (3) the most
important conclusion to be drawn comes from realizing that the recovery areas partially overlap
from one case to the next. A higher heterogeneity index or mobility ratio does not automatically
lead to lower recoveries compared to a system with lower heterogeneity or mobility ratio, although
on average this conclusion does hold. For example, an M = 5-HI = 0.86 pair exists that will return
a higher recovery then an M = 10-HI = 0.86 pair.

The 180 recoveries of Fig. 2.17 would have taken a prohibitively long time using a traditional
finite difference approach. Instead, if the streamtube approach is used as a filter for the 180 images,
the number of solutions required to establish firmly the spread in recoveries is just six — two per
case — as shown in Fig. 2.17.
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Figure 2.16: 180 recovery curves used in partially sweeping the M- H I parameter space to determine
how nonlinearity and heterogeneity interact.
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Figure 2.17: Confirming the spread in recoveries predicted by the streamtube approach by running
Mistress on permeability fields associated with the maximum and minimum recoveries for each case
predicted by the streamtube approach.
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2.6 Compositional Displacements

Effects of phase equilibrium add a substantial degree of complexity to compositional dis-
placements over those of two-phase immiscible and ideal miscible flow. The local equilibrium
assumption requires a flash calculation for each grid block at every time step, while the tradi-
tional difficulties associated with numerical diffusion and frontal instabilities remain. Simulations
become enormously expensive and yet may yield less than satisfactory solutions. Compared to
the ‘simple’ physics described by two-phase relative permeabilities in immiscible displacements or
the quarter power mixing rule in ideal miscible displacements, phase equilibrium and its coupling
to multiphase flow poses daunting numerical difficulties. Because of the large computation times
involved, compositional simulations are often run on coarse grids and have substantial amount of
numerical diffusion, and can be very difficult to distinguish whether a particular feature is gen-
uinely part of the solution and the physics of the problem or whether it is simply an artifact of the
numerical scheme. The problem of numerical diffusion is particularly subtle in compositional sim-
ulation because it interacts with the phase behavior to alter displacement performance, sometimes
substantially [68, 129, 101].

The streamtube approach is a powerful tool for investigating compositional displacements.
With a one-dimensional solution known, the two-dimensional solution for a heterogeneous system
can be constructed with the same ease as the tracer, immiscible, or ideal miscible case. Further-
more, because the one-dimensional solution may be calculated numerically using a large number of
grid blocks, or analytically for some special cases [67, 30], numerical diffusion is minimized or even
completely absent. Computation times are reduced dramatically, since beyond the savings result-
ing from the comparably small number of streamtube updates required to capture the nonlinear
convective part of the displacement, all the phase behavior is contained within the one-dimensional
solution that is mapped along the streamtubes. In other words, the phase behavior is completely
decoupled from the underlying cartesian grid used to solve for the local flow velocity, and flash
calculations are no longer necessary for each grid block. The streamtube also has the substantial
advantage of being always numerically stable. Its simple formulation, particularly the decoupling
of the phase behavior from the flow field, makes for very robust simulations. The only issue, as in
in the displacements described previously, is the number of times the streamtubes must be updated
to capture the change in the total mobility field. The simplicity of the streamtube approach is in
stark contrast to traditional compositional simulation, which faces significant numerical difficulties,
particularly in strongly heterogeneous systems, where extreme differences in local flow velocities
impose very small time steps and convergence problems.

Three-Component Solution

As in the displacement mechanisms discussed previously, applying the streamtube technique
to model compositional displacements in heterogeneous systems centers on the availability of a
one-dimensional solution. Substantial progress on analytical solutions has been reported recently
(67, 30, 100, 66, 29, 89, 88], and analytical solutions have been presented for multicomponent
problems that have constant initial and injected conditions (Riemann conditions) with either no
volume change on mixing [67, 66] or volume change on mixing [30, 29]. For an extensive treatments
on the subject the reader is referred to the dissertations of Johns [66] and Dindoruk [29].

An example of a high volatility intermediate (HVI) ternary system is given by CH4/CO2/C1o
at 1600 psia and 160°F. The name ‘high volatility intermediate’ refers to the strict ordering of
the K-values, Kcn, > Kco, > Kc,,, for all compositions and the fact that the intermediate com-
ponent K-value is greater than one (Kco, > 1). This means that CO; will preferentially reside
in the more mobile gas phase. A HVI-system can give rise to either a condensing or vaporizing
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Figure 2.18: UTCOMP one-dimensional numerical solutions using 100 and 500 grid blocks and
a third order TVD-scheme to control numerical diffusion, for the CH4/CO3/Cio-condensing gas
drive.

drive depending on the initial and injected compositions. The displacement of a 30/70 C H4/Ci0-
oil by pure CO,, for example, is a condensing gas drive. Example numerical solutions for the
CH4/CO2/Cro-system found using 100 and 500 grid blocks and the third order TVD-option are
shown in Fig. 2.18. The reason for finding the one-dimensional solution to the CH4/CO,/Cio-
system numerically was to guarantee consistency in the phase behavior representation between the
one-dimensional solutions used along the streamtubes and the two-dimensional‘reference’ solutions
found using the same compositional simulator in 2D. The numerical simulator used here was UT-
COMP (Version 3.2, 1993) [125], an implicit pressure, explicit saturation (IMPES) type, isothermal,
three-dimensional, compositional simulator developed at the University of Texas at Austin. The
numerical solutions in Fig. 2.18 capture all the the essential shocks in this condensing gas drive, and
particularly the 500-block solution has an acceptable level of numerical diffusion. For streamtube
modeling purposes, the total mobility profile is the most important piece of information, because it
indicates the strength of the nonlinearity of the total flow velocity and directly ties into the solution
of the streamtubes. For this particular case, although the end-point mobility ratio is approximately
8, the mobility ratios across the two fronts, which are separated by a long rarefaction wave, are
approximately 2 and 3. In other words, the mobility contrast is reduced considerably by the phase
behavior alone. To what extent numerical diffusion may affect total mobility is already anticipated
by the disappearance of the leading mobility front due to numerical diffusion in the 100 grid block
solution.
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Figure 2.19: Two-dimensional, 3 component condensing gas drive in a 125x50 heterogeneous block
reservoir at tp = 0.3 and ¢tp = 0.5. The one-dimensional solution is shown in Fig. 1.17.

2D Solution - 500 Blocks, TVD

An almost diffusion-free compositional solution through a heterogeneous domain can now
be found by mapping the 500 grid block, third order, total variation diminishing (TVD) solution
along streamtubes. Composition and saturation maps for a 125x50 block heterogeneous reservoir
at tp = 0.3 and tp = 0.5 are shown in Fig. 2.19. As expected, the fronts are clearly visible and,
although the end-point mobility ratio is M = 8, the displacement does not suffer from ‘instabilities’.
The reason for the stability, of course, is that the phase behavior mitigates the initial mobility ratio
contrast by creating two weaker fronts which are separated by a long rarefaction wave.

Figs. 2.20 and 2.21 compare the two-dimensional UTCOMP solution found using a third-
order TVD scheme to the streamtube solution; Fig. 2.20 compares composition and saturation
profiles at {p = 0.4, whereas Fig. 2.21 compares only the gas saturation profiles from tp = 0.1
to tp = 0.6. The agreement is very good, particularly considering that UTCOMP required ap-
proximately 5000 Cray seconds per 0.1PV injected, whereas the streamtube solution required ap-
proximately 2-3 Cray seconds, a speed-up factor by three orders of magnitude. Both solutions
clearly capture the same overall flow characteristics imposed by the underlying heterogeneity field.
Fig. 2.20 and Fig. 2.21 are encouraging, because they suggest that the streamtubes can be combined
successfully with a one-dimensional compositional solution to model a two-dimensional displace-
ment at a significantly reduced cost, with the error introduced by the Riemann approach remaining
sufficiently ‘small’, and thereby not significantly altering the displacement mechanism.

Although the comparison is good and the streamtube solution looks like a ‘sharper’ UT-
COMP solution, a noticeable difference is the more stable behavior of the UTCOMP solution. This
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Figure 2.20: Comparison of the streamtube solution with the UTCOMP solution at tp = 0.4. The
UTCOMP solution was found using a third-order TVD scheme.

difference raises an important question: is the more stable finite difference solution an artifact due
to numerical diffusion, or a genuine physical phenomenon, possibly resulting from mixing due to
viscous crossflow? Considering that the number of blocks in the main direction of flow is only
125, and that a TVD-scheme in 2D does not result in them same numerical diffusion control as in
1D, it is possible that numerical diffusion is the main reason for the more stable looking UTCOMP
solution. Two additional simulations were performed in an attempt to answer this question: (1) a
UTCOMP solution was found for the same 125x50 grid but using a one-point upstream scheme to
show the effects of numerical diffusion more clearly, and (2) a diffused one-dimensional composi-
tional solution was mapped along the streamtubes in an attempt to include numerical diffusion in
the streamtube solution®.

(1) - 125x50 1Pt Upstream Solution

Fig. 2.22 compares the UTCOMP one-point upstream weighting solution, to the streamtube
solution. The degradation in the UTCOMP solution is considerable compared to the TVD solution,
and most importantly, the solution now looks even more stable. The fronts are much more diffused
and breakthrough occurs later still than in the TVD solution. Fig. 2.22 is strong evidence that
the mitigation of the original mobility contrast in UTCOMP solutions is due to numerical diffusion
rather than to crossflow.

8 A simulation with a refined 250x100 grid and a third-order TVD scheme, while maintaining the same heterogeneity
structure, was attempted using UTCOMP as well. Unfortunately, computation costs approached 70,000 Cray seconds
(= 20kr) per 0.1 PV injected, forcing the simulation to be terminated.
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Figure 2.21: Comparison of the evolution in time of the gas saturation. The streamtube solution
was found using a 500 grid block one-dimensional solution, while the UTCOMP solution was found
using a third-order TVD scheme.




Figure 2.22: Comparison of the evolution in time of the gas saturation. The streamtube solution
was found using a 500 grid block one-dimensional solution, while the UTCOMP solution was found
using a single-point upstream weighting scheme.
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Figure 2.23: One-dimensional UTCOMP solution using 100 grid blocks and one point upstream
weighting. Fach solution represent an increment of Atp = 0.1.

(2) - Diffused Streamtube Solution

The UTCOMP solutions with TVD and single-point upstream weighting strongly suggest
that the frontal instability is mitigated substantially by numerical diffusion. Thus, it should be
possible to find a ‘diffused’ one-dimensional solution along the streamtubes that would lead to a
solution similar to the one obtained using finite differences. The one-dimensional solution used in
the streamtube solution so far was obtained using 500 grid blocks and a third-order TVD scheme,
which produced a solution with relatively sharp fronts. But given the fact that only 125 blocks are
present in the main direction of flow and that a TVD scheme in two-dimensions does not necessarily
have the same numerical diffusion control as it does in one dimension®, a one-dimensional solution
using only 100 grid blocks and single point upstream weighting was mapped along the streamtubes.
A difficulty associated with mapping a ‘diffused’ one-dimensional solution is that the solution is no
longer scalable by zp/tp, as is shown in Fig. 2.23. There are 10 curves in Fig. 2.23, each representing
a solution at time increments of Atp = 0.1 starting from tp = 0.1. The solution clearly tends to
‘sharpen-up’ with time, although even at {p = 1.0, the solution is still suffering from numerical
diffusion. To capture the time dependence of the diffused, one-dimensional solution in Fig. 2.23,
the solution was mapped along the streamtube for the corresponding time interval. Thus, the first
curve was used in the streamtube simulator to find solutions in the range of tp = 0.0 and ip = 0.1,

°In general, any method that is TVD in two dimensions will be at most first-order accurate, although the accuracy
can be increased to second-order if Strang splitting is used [82].
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the second curve for solutions between tp = 0.1 and tp = 0.2, etc. Although this approach is only
a rough attempt to include longitudinal ‘numerical’-type diffusion into the streamtube solution, it
does mitigate the mobility contrast.

Fig. 2.24 shows a comparison of the UTCOMP saturation maps to the saturation maps
obtained from the streamtubes using the more diffused 100 grid block one-dimensional solutions
with single-point upstream weighting. The streamtube displacement is indeed more stable (compare
with Fig. 2.21), and it is apparent from this comparison that by adding ‘numerical diffusion’ to the
streamtube solution, the finite difference solution can be approximated. It is important to mention
at this point that the diffused one-dimensional solution mapped along the streamtubes can, at best,
approximate only longitudinal numerical diffusion. Clearly, the UTCOMP solution will also have
transverse diffusion, which cannot approximated by the one-dimensional solution. The remaining
difference between the streamtube solution and the UTCOMP solution then, could be attributed
to transverse diffusion. A supporting argument to this effect is that the streamtube solution still
sees a higher mobility and corresponding higher frontal velocities. Transverse numerical diffusion
would effectively slow the leading shock velocities. Finally, it is important to remember that for
compositional displacements numerical diffusion interacts with phase behavior to alter composition
paths in a way that changes phase saturations and therefore phase mobilities.

Fig. 2.25 shows a summary of the gas saturation maps for the various cases discussed previ-
ously. Two key issues are summarized in Fig. 2.25: (1) numerical diffusion, both longitudinal and
transverse, and resulting phase behavior effects substantially mitigate the original instability of the
displacement and (2) the streamtube solution with the sharp, 500 grid block solution may in fact be
considered as the limiting no-diffusion solution to the three component problem. The large differ-
ence in computation times, 3000-10000 Cray seconds per 0.1 PV injected depending on numerical
scheme and grid size for UTCOMP versus the 2-3 Cray seconds for the streamtube solution, clearly
makes the streamtube solution very attractive, despite the underlying Riemann assumption used
in mapping the one-dimensional solutions along the streamtubes. Fig. 2.25 is interesting in that
it shows how numerical diffusion is able to mitigate the instability of the displacement, and it is
likely that both UTCOMP solutions in Fig. 2.25 are not converged solutions. Increasing refinement
and time-step reduction would probably reveal extensive viscous fingering.

Fig. 2.26 shows the same three component, two-phase displacement through a less hetero-
geneous system (X = 1.00, o1, x = 0.5,HI = 0.25). The interesting feature of Fig. 2.26 is that while
the single-point upstream solution shows no viscous fingering whatsoever, the same solution using
a third-order TVD scheme is able to retain sufficient mobility contrast to show some fingering in
the channel. The streamtube solution, of course, is not able to reproduce any viscous fingering,
but it captures the main flow path and the primary features of the displacement at a much lower
computational cost.

2.7 Concluding Remarks

The underlying assumption in applying the streamtube method to describe multiphase, mul-
ticomponent flow in heterogeneous porous media is that field scale displacements are dominated by
reservoir heterogeneity and convective forces. Flow paths are captured by streamtubes, the geome-
try of which reflects the distribution of high and low flow regions in the reservoir. Each streamtube
is treated as a one-dimensional system along which solutions to mass conservation equations for
different displacement mechanisms can be mapped. The streamtube approach effectively decouples
the ‘channeling’ imposed by the reservoir heterogeneity from the actual displacement mechanism
taking place. In other words, regardless of the displacement type, the assumption is that there are
predefined flow paths that will dominate the two-dimensional solution. The fluid velocity along
these flow paths is reflected by the geometry of the streamtubes, and the inherent nonlinearity in
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Figure 2.24: Comparison of the evolution in time of the gas saturation.

was found using a single point upstream, 100 grid block 1D solution while the UTCOMP solution
was found using a third-order TVD scheme on a 125x50 grid.

The streamtube solution




UTCOMP - TVD, 125x50

Figure 2.25: Summary of gas saturation maps at {p = 0.5. From top to bottom: UTCOMP solu-
tions with single-point upstream weighting, UTCOMP solutions third order TVD schme, stream-
tube solution using a 1D, 100 blocks, single-point upstream solution, and streamtube solution using
a 1D, 500 grid block-TVD solution.

the underlying velocity field is captured by periodically updating the streamtubes.

One-dimensional solutions are mapped along the streamtubes using a ‘Riemann approach’
— each streamtube is treated as true one-dimensional system with constant initial and injected
conditions, allowing to time-step by integrating from tp = 0 to tp = {p + Atp. This approach
allows analytical and numerical solutions to hyperbolic conservation equations (found using Rie-
mann boundary conditions) to be mapped along periodically updated streamtubes. The reason for
using the Riemann approach is to avoid difficulties associated with general-type initial conditions
along streamtubes, in which case solutions could be found only numerically for each time step,
either using a finite-difference approach or a front-tracking type approach. General-type initial
conditions along streamtubes arise by updating the streamtubes while keeping the spatial satu-
ration/concentration /composition distribution fixed. Initializing each new streamtube using the
old saturation/concentration/composition distribution clearly produces initial conditions that are
problem specific and of general-type.

Solutions for (1) tracer flow, (2) two-phase immiscible flow, (3) first contact miscible flow,
and (4) two-phase, multicomponent flow are presented. For tracer flow the streamtubes are fixed
in time and the Riemann approach is equivalent to time stepping from ¢p to tp + Atp. The only
assumption in finding two-dimensional solutions involves neglecting transverse diffusion/dispersion
mechanisms, and in the limit of a piston-like front a diffusion-free two-dimensional solution is
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Figure 2.26: CH4/CQ2/C10 displacement in a mildly heterogeneous system showing the suppréssion
of viscous fingers due to numerical diffusion.

found that can be used to quantify the error introduced by numerical diffusion in traditional
simulation methods. Longitudinal physical diffusion can be added explicitly by mapping a CD-
solution for a given Peclet number along streamtubes. Using the CD-solution is also an example of
representing two different scales of reservoir heterogeneity: the large-scale heterogeneity captured
by the geometry of the streamtubes and a smaller scale heterogeneity within each streamtube
quantified indirectly by the Peclet number.

In the two-phase immiscible case the velocity field becomes a function of saturation and
the streamtubes are updated periodically as the flood progresses. The Riemann approach is used
to map the Buckley-Leverett solution along streamtubes, where the error due to the Riemann
approach is argued to be less than the error introduced by numerical diffusion in a traditional
finite difference solution. The key result though, is the convergence of the streamtube approach in
orders of magnitude less matrix inversions (velocity field updates) than traditional solutions. By
capturing the overall heterogeneity structure only a few streamtube updates (less than 20 over 2
pore volumes injected) are necessary to predict overall recovery correctly.

Applying the streamtube approach to first-contact miscible flow raises the challenging ques-
tion of the ‘correct’ one-dimensional solution to be used. Scaling arguments are used to suggest
that streamtubes that gave rise to a Fickian limit for M = 1 displacements (tracer flow) should
now see a viscous fingering flow regime for unstable M > 1 first contact displacements. Thus, a
Todd-Longstaff model is used to capture the sub-streamtube viscous fingering regime. The stream-
tube method is again able to predict recoveries using orders (2-3) of magnitude less computation
time than traditional simulation approaches. 180 recoveries are found to show how nonlinearity
and reservoir heterogeneity interact to define the uncertainty in overall recovery, and the useful-
ness of the streamtube approach as a fast filter is pointed out. Only permeability fields returning
maximum and minimum overall recoveries in the streamtube approach need to be used to confirm
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the spread in recovery using an expensive finite difference/finite element simulation.

For compositional displacements the streamtube approach is shown to be particularly pow-
erful due to its simplicity, robustness, and speed. The speed-up compared to traditional finite
difference approaches can range from 3 to 5 order of magnitude. The streamtube method is used
to asses how good traditional numerical solutions to compositional displacements really are, partic-
ularly in view of numerical diffusion interacting with phase behavior calculations. The key result
is the demonstration that numerical diffusion can substantially reduce the mobility contrast in
traditional finite difference solutions.

2.8 Conclusions

Fast, accurate, and robust solutions. The streamtube approach produces fast, accurate, and
robust solutions to displacements that are dominated by reservoir heterogeneity. Streamtube
geometries capture the impact of heterogeneity on the flow field, while the one-dimensional
solutions mapped along them retain the essential physics of the displacement mechanism.
Speed-up is by two to three orders of magnitude for two-phase immiscible and first contact
miscible displacements and four to five orders in two-phase compositional displacements.
The absence of any convergence criteria as well as capturing all the essential physics of the
displacement (like phase behavior) in the already present one-dimensional solution leads to
particularly robust solutions.

Statistical reservoir forecasting. The speed of the streamtube approach makes it an ideal tool
for statistical reservoir forecasting: hundreds of geostatistical images can be processed in a
fraction of the time required by traditional reservoir simulators. Application to first contact
miscible displacement show a substantial uncertainty in overall recovery due to the combined
effects of reservoir heterogeneity and the inherent nonlinearity of the displacements. As
reservoir heterogeneity and nonlinearity increase so does the uncertainty in overall recovery.
The streamtube approach allows to quantify this uncertainty, which can then be confirmed
by a more expensive traditional approach by using only the two geostatistical images that
produces maximum and minimum recoveries. Although the streamtube method makes strong
assumptions in generating the two-dimensional solutions, the uncertainty in recovery due to
heterogeneity is shown to be substantially larger than the error introduced by the Riemann
approach.

Weak nonlinearity of ¥. For all displacements, the necessary updates of the streamtubes to
converge onto a solution are shown to be many orders of magnitude less than the equivalent
number of pressure solves in traditional numerical simulation approaches. As a result, updat-
ing the streamtubes only periodically (20-40 times per 2 pore volumes injected) and using a
one-dimensional solutions that captures the essential physics of the displacement is sufficient
to give accurate overall recoveries.

Decoupling of phase behavior from 2D grid. The streamtube approach becomes particularly
powerful for multiphase compositional displacement. All the phase behavior is now contained
in the one-dimensional solution that is mapped along the streamtubes, completely decoupling
the underlying cartesian grid used to specify reservoir heterogeneity from phase behavior
considerations. This is different from traditional approaches to reservoir simulation, which
perform a flash calculation for each grid block at each time step. As a result, the streamtube
approach makes for very robust solutions in the case of compositional displacements.

Impact of numerical diffusion on compositional displacements. Numerical diffusion is ar-
gued to have a significant role in reducing the mobility contrast in traditional finite difference
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solutions of compositional displacements. By comparing streamtube solutions to finite dif-
ference solutions it is shown that the original mobility contrast is substantially reduced by
the presence of numerical diffusion. Reservoir heterogeneity, phase behavior, and numerical
diffusion may be so dominant in compositional displacements as to force-only slow conver-
gence due to progressive grid refinement. Two to four times the refinement used.in FCM
displacement may be necessary in compositional displacements, particularly if a single-point
upstream weighting scheme is being used, to see the equivalent improvement in the solu-
tion. As a result, compositional displacements on coarse grids obtained using a single-point
upstream weighting scheme are not likely to result in converged solutions.




3. Interaction of Phase Behavior and Flow in Porous
Media

In this chapter, we describe our continuing effort to analyze the interaction of phase behavior
with multiphase flow in porous media. In Section 3.1, we present a new approach for fast calculations
of critical tie lines directly from the criticality conditions. This technique is then applied to the
determination of the minimum miscibility pressure (MMP), at which one of the key tie lines to the
displacement becomes critical. In Section 3.2, we show that a “global triangular structure” arises
for four-component flow systems whose tie lines meet at the edge of a quaternary phase diagram,
or lie in planes. We also demonstrate that the solutions can be easily extended to multicomponent
systems under the same assumptions. The analysis reported here represents significant progress
toward the goal of an unambiguous definition of MMP for multicomponent displacements.

3.1 MMP Calculation from Critical Tie Lines
Bruno Aleonard

It has been shown that calculating minimum miscibility pressures from flash calculations
has limitations due to inherent convergence problems of flash routines near critical points [4]. In
particular, it can be difficult to obtain converged solutions for tie lines in the neighborhood of these
points. Yet, a precise knowledge of these tie lines is essential in describing the development of
multicontact miscibility. In this subsection, we demonstrate a different approach to the problem by
determining directly critical tie lines. In order to determine critical tie lines, we need to define the
criteria for determination of critical point. We make use of the method of Heidemann and Khalil
[51], which we review in the section that follows.

3.1.1 The Method of Heidemann and Khalil

The objective in Heidemann and Khalil’s paper [51] is to determine the critical temperature
and pressure of a system of fixed composition. As expressed by Gibbs [47], a mixture is stable in
a single phase state if for every transition from a system So (Zo, Vo, 710, -, 7 No) to a neighboring
system S (T,V,n1,--+,nN):

N
A—Ag+ Py(V - Vo)~ Zp,‘o(n,’ - n,'o)] >0, (3.1)
To

t=1
for an isothermal variation and:
[A — Ao+ SQ(T - TO)]Vo,njo > 0. (3.2)

This last condition is satisfied if the heat capacity at constant volume is positive which will be as-
sumed for our systems. Similar conditions could be written with the Gibbs, instead of Helmholtz,
free energy function. It is preferable though to use temperature and volume as independent vari-
ables, along with mole fractions, for pressure-explicit equations of state such as the Peng-Robinson
equation. Helmholtz’ free energy is then the most convenient thermodynamic function to consider.
Eq. 3.1 is automatically satisfied for pure dilations of So. Increasing volume and the number of
moles of each component correspondingly by multiplying them by the same constant does not affect
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the nature of the system but merely its size. This would not constitute a new fluid state and will
not provide new critical points. We can therefore impose on Eq. 3.1 the following condition,

AV =0, (3.3)
with which Eq. 3.1 simplifies to
N v
{A - Ag — ZﬂiOAni] > 0.
=1 Tﬂv%

Now, the chemical potential may be defined as

" ( 3A)
0= = .
' oni/ vy, Mg

The Helmholtz free energy can then be expanded in a Taylor series

N
A—-Ag— oA = An;An;
0 ;”0 n]To% :ZE (an,()n_,) AN
+ ,3' ZZZ (anzan e ) An;AnjAny

+ o(An‘*). (3.6)

The single phase stability criterion, Eq. 3.4, requires that this quantity be positive for all An. In
other terms, the quadratic form defined by the matrix

, . d’A
Q= (qz'j);ssggg = (anjani)% W (3.}7)

must be positive definite. But at the limit of ‘stabz'lz'ty, where critical points lie, the second-order
term disappears and the quadratic form must be rank deficient. The form thus is merely positive
semi-definite, and we must have

det(@) = 0. (3.8)

Therefore, there must exist a nonzero vector An such that
QAn=0. (3.9)

Except for a few pathological cases, the rank of ¢ will be N-1 at critical points, so that the set of
An vectors solutions to Eq. 3.8 is of dimension 1.

Critical points should also fulfill a stability condition. For the positivity criterion to be
satisfied, the dominant term in Eq. 3.6 must be of even order. Therefore, the second criticality
condition can be written as:

C= }:ZZ ( Bidn; ank) AniAnjAn; = 0, (3.10)

for the vectors An that satisfy Eq. 3.9.

The calculation of the partial derivatives of the Helmholtz free energy is dependent on the
equation of state chosen. Originally, Heidemann and Khalil preferred the Soave-Redlich-Kwong
equation. In this report, we opt for the Peng-Robinson equation of state, which is widely used for
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representation of multicontact miscible gas/oil systems. In any case, since both equations are cubic
and pressure-explicit, the method remains very much the same.
The terms of the quadratic form @ and the cubic form C can be derived from the following

relations )
A _ Olnf;
() = 2 (), a1
and 5 )
A _ 0%1n fk
(an,-an,-ank) =ET (an,-an,-) ’ (312)

where fugacities are known functions for the Peng-Robinson and SRK equations.

In their paper, Heidemann and Khalil considered a mixture of known composition. Starting
from an initial guess in volume, Eq. 3.8 determines an equation for temperature, which can be
solved numerically by iterative methods. Once a temperature has been found, the null space of the
quadratic form Q can readily be obtained: a set of non-zero vectors which verify Eq. 3.9 is thus
computed. Leaving out those pathological cases where @ would degenerate to a rank less than N-1,
by further imposing the condition Any = 1 on the last component, a unique solution is obtained.
Eq. 3.10 is then checked and another guess on volume is made if the condition is not satisfied.
Two one-dimensional searches, one outer loop on volume and one inner loop on temperature were
thus applied. It was then easy, having reached convergence, to calculate the critical pressure from
pressure-explicit equations of state.

3.1.2 Critical Tie Lines

A stable system represents a minimum of the Helmholtz free energy A. If there exists
another state for which A can take a lower value, the system will evolve to that new state. For
example, a one-phase system may switch to two-phases. The schematic in Fig. 3.1 shows what
happens when a two-phase mixture approaches a critical point.

The one-phase Helmholtz energy is plotted against a single variable for simplicity’s sake,
here a mole fraction. It can be shown that a two-phase state has to lie on a straight line, since
A is then a linear combination of the chemical potentials of the two pure species, and that the
straight line has to be tangent at both ends at (z; and z2) mole fractions to the original one-phase
curve. In the interval where the two-phase value of A is less than it would be in single-phase state,
the two-phase solution is more stable. Also, the straight line on the diagram is exactly a tie line,
joining the liquid and vapor compositions z; and z;.

Let us now examine what happens at a critical point. The mole fractions z; and z, coalesce,
and the straight line is in fact {wice tangent to the single-phase curve. In more mathematical terms,
A'(zy) being kept equal to A’(z2) as the critical point is approached:

’ A
A”((El) — xh_I& A (xl) A (xz)
Al(ar)m AN(z3) Tz — 4

= 0. (3.13)

As z, approaches z;, the tie line (z1,z;) tends towards a critical tie line and its approximation to
the single-phase curve will be at least of order 3, as seen from Eq. 3.13. Moreover, since a local
behavior of odd order around the critical point would violate the positivity criterion (Eq. 3.4), the
approximation of A by its tangent must be of order 4 at least.

A similar argument can be given for multicomponent systems and applied to the determi-
nation of critical tie lines. An, as found from Eqgs. 3.9 and 3.10, is a direction in composition space
along which the Helmholtz free energy A at a critical point is closest to the tangent hyperplane:
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Figure 3.1: Helmholtz free energy plots with phase splitting and critical behavior




the approximation is at least of order 4. If, as is most often the case, the quadratic form @ is of
rank N — 1, such a direction is unique, and it defines therefore the critical tie line, by the same
argument as above. Having already obtained An, it was thus straightforward to determine the
critical tie line around a critical point.

A verification of the approach was performed for a ternary system. Additional details of the
technique and tests of its performance are given by Aleonard [4]. In particular a system containing
methane (C;), and pseudo-components Cy4 and Cs+. Properties of the components are also given
by Aleonard. Fig. 3.2 shows the ternary phase diagram of the system at 3650 psia and 200°F.

The binodal curve is calculated with CMGPROP. The method for calculating the critical
point set out by Aleonard [4] was only slightly adapted for ternary mixtures by eliminating the guess
on zg. Once again, the critical point is shown to coincide graphically with its position obtained
from the flash calculations of CMGPROP. The critical tie line is also tangent to the binodal curve,
as it should be, which illustrates well the accuracy of the method.

3.1.3 Determination of the MMP: a New Method for Four-Component Systems

If critical tie lines at different critical points can be calculated , then it is possible to
determine at which pressure one of the key tie lines that control displacement behavior (injection,
initial or crossover) becomes critical. For purely condensing or vaporizing gas drives with four
components, where miscibility is controlled by either the injection or initial tie lines, the following
procedure can be applied: '

1. Make a guess on pressure.

2. Initiate a loop on the location of the critical point. This would be a one-dimensional search
along the critical curve for a four-component system (2o in the cases studied here).

3. At the chosen pressure and critical point, determine the critical tie line.

4. Depending on whether the process is controlled by the injection or initial tie line, compute the
distance from the reservoir oil or injection gas composition to the critical tie line determined
above.

5. Minimize that distance on the location of the critical point by closing the inner loop and
going back to 2.

6. If the distance is not small enough, return to step 1.

Obviously, the distance will tend to decrease first with pressure, reach zero at the MMP and then
increase as the critical locus recedes behind the controlling tie line. Moreover, the same method
can be applied to ternary systems.

For condensing/vaporizing gas drives, in which miscibility is controlled by the crossover
tie line, the method is slightly modified. In this example, we consider self-sharpening systems, in
which the crossover tie line must intersects both the initial and injection tie lines [66]. For such a
four-component displacement, at any given pressure, the set of critical tie lines form a ruled surface
that will be intersected, except in a few cases, by the injection tie line. The intersection corresponds
to a particular critical tie line whose distance to the initial tie line can then be calculated. Because
the crossover tie line must meet both the injection and initial tie lines, that distance should be zero
for the pressure (MMP) at which the critical tie line determined becomes the crossover tie line.
Thus, the following steps were taken:

1. Same as above.

41




C4/C5,/C5, System at P=3650 psi,T=200 F

Figure 3.2: Critical tie line for a ternary system.




Table 3.1: Component Properties of Four-Component Model (System 1).

Component M, P, T, w
‘ (psia) | (°F)
CH4N, 16.0 | 671.17 | -117.07 | 0.0130

Coy 41.0 | 769.81 | 142.79 | 0.1592

Csy 189.0 | 322.89 | 775.00 | 0.6736

Cso+ 451.0 | 171.07 | 1136.59 | 1.0259
Component Interaction Parameters

CH4N, Cz+ Cs+ C3o+

CH4N, 0.0000 } 0.0286 | 0.0258 | 0.2000
Coyp 0.0286 | 0.0000 | 0.0607 | 0.1268
Cs+ 0.0258 | 0.0607 { 0.0000 | 0.0000
Cso+ 0.2000 | 0.1268 | 0.0000 [ 0.0000

Same as above.
At the chosen pressure and critical point, determine the critical tie line.

Compute the distance between the critical tie line and the injection tie line.

o s e N

Minimize that distance on the location of the critical point by closing the inner loop and
returning to step 2. In most cases, the minimum distance should be zero since the injection
tie line is very likely to meet the ruled surface of critical lines.

6. Iterate on pressure if the distance between the critical line found and the initial tie line is too
large.

7. A critical tie line that intersects both the initial and the injection lines is thus found. It is
then the crossover tie line, and the prevailing pressure is the MMP.

3.1.4 Determination of the MMP: Example 1

The proposed algorithm was tested for a four-component system studied by Johns et al.
[66]. In that study, the enrichment required for development of miscibility was determined (ap-
proximately) by obtaining a sequence of solutions in which the crossover tie lines approached the
critical locus. That procedure was time consuming because flash calculations for tie-lies near a
critical point often converged slowly (or not at all). The critical properties of the components are
given in Table 3.1. That displacement is controlled by the crossover tie line, which is an unique tie
line that intersects the initial and injection tie lines. Fig. 3.3 represents the distance computed in
step 6 in the last algorithm, between the critical tie line that intersects the injection tie line, and
the initial tie line. The unit of length is the side of the tetrahedron in the phase diagram.

As could be anticipated, the distance first decreases with pressure untilit reaches 2 minimum
close to zero at the minimum miscibility pressure and then increases. It is also remarkable that the
behavior is almost linear, with large slopes so that evaluation of the MMP is easy. Also, at fixed
pressure, computations were much faster than for the flash method.

The MMP thus estimated is close to the value found by extrapolation of the flash calculation
[4] at 4025 psia. The phase diagram is drawn at 4025 psia and 200°F in Fig. 3.4. The critical tie
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Figure 3.3: Distance between the initial tie line and the critical tie line that intersects the injection
tie line.

44




Critical Point

- CH4N»>

Two-Phase Envelope
Critical Locus

------ o~ |nitial Tie-Line
---e--- Injection Tie-Line

— ——~ Crossover & Critical
Tie-Line

Figure 3.4: Phase diagram at 4025 psia (MMP) and 200°F (system 1).
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Table 3.2: Component Properties of Four-Component System

Component | M, T P, T, w
(psia) | (°F)
CH, - 16.04. | 667.8 | -116.63
Cy - 30.07 | 707.8 | 90.09
Ce 86.18 | 430.6 | 453.63
Cie 226.448 | 205.7 | 830.91

Component |- Interaction Paramete
CHy | Cy Ce

CHy - 0.0000 | 0.0000 | 0.0250
Ca 0.0000. { 0.0000 | 0.0100
Ce 0.0250 | 0.0100 | 0.0000
Cie - 0.0350: | 0.0100 | 0.0000

-Component Compositions

CH, Cs Ce

Injection | 0.3500 | 0.6500 { 0.0000.
Initial - 0.2000- |.0.0000 | 0.4000

line that intersects both the injection and initial tie lines is shown.

3.1.5 Determination of the MMP: Example 2

Johns [66] gives another example of a four-component system (C;/Ca4/Csy/Csoy) With
injection and reservoir compositions, whose miscibility is controlled by the crossover tie line. Table
3.2 summarizes the compositions and:the critical properties of the system. In this system again,
the solution pathway shocks from and to the crossover tie line, which means again that the latter
intersects both the injection and initial tie lines.

A plot similar to Fig. 3.4 enabled accurate determination of the MMP (see Fig. 3.5), here
2244 psia at 200°F. The phase diagram is also given:at the MMP in Fig. 3.6. The intersection of the
crossover tie line with the initial tie line is not shown because the tie line extensions are too long.
Here again, the proposed method allows direct determination of the MMP with the calculations
that do not suffer from the slow convergence often observed in flash calculations near a critical
point.

3.1.6 Summary

A rigorous method to determine critical tie lines was given, based on the analysis of criti-
cality conditions already presented. Essentially, the vector An as defined by Heidemann and Khalil
gives the direction of critical tie lines. This knowledge, independent of any flash computations, al-
lows an accurate determination of minimum miscibility pressures for at least ternary and quaternary
systems.

The method provided here is simple, yields results similar to the flash method, but is much
faster and more accurate. Problems of multiple solutions were not encountered. The method was




0.35

0.30

0.25

0.20

|Illl|ll||l|lll[

Distance

0.156

0.10

0.05

IIIII]IIIIIIII

oool . v ol v b by s b M b b ey
2000 - 2050 2100 2150 2200 2250 2300 2350 2400
Pressure (psi)

Figure 3.5: Distance between the initial tie line and the critical tie line that intersects the injection
tie line.

47




Critical Point

Two-Phase Envelope
Critical Locus

Initial Tie-Line
Injection Tie-Line
Crossover & Critical
Tie-Line

Figure 3.6: Phase diagram at 2244 psia (MMP) and 200°F (system 4).




demonstrated for systems in which the crossover tie line intersects the initial and injection tie lines.
Similar techniques could be used in systems where the crossover tie line is determined by rarefaction
surfaces. The technique demonstrated in this section can be applied to systems with an arbitrary
number of components, if the relevant crossover tie lines can be identified. In the next section,
we present results that suggest how that problem can be solved for systems with more than four
components.

3.2 Global Triangular Structure in Four-Component Conserva-
tion Laws

T. Johansen !, B. Dindoruk and F. M. Orr, Jr.

3.2.1 Introduction

Interactions of equilibrium phase behavior with multiphase flow lie at the heart of displace-
ment processes in which oil is displaced from a porous medium by a gas mixture, by a surfactant
mixture, or by water containing dissolved polymer. So-called multicontact miscible gas/oil displace-
ments, for example, rely on chromatographic separations, which result when phases with differing
equilibrium compositions flow at different velocities, to achieve high displacement efficiency. Simi-
lar compositional effects play key roles in chemical flooding processes. In any oil recovery process,
hundreds of chemical components are present, but for the purposes of analysis, the phase behavior
is always represented in terms of a small number of pseudocomponents, often only three. Recent
research has indicated, however, that three-component descriptions of many processes do not reveal
all the important aspects of the physical mechanisms, and hence it is desirable to increase the num-
ber of components included in the representation of the flow behavior. In this paper, we analyze
the mathematical structure of Riemann problems for enhanced oil recovery processes when four
components are present, and we show that under certain assumptions, the problems reduce to a
series of simple geometric constructions that involve planar surfaces of tie lines. The displacement
behavior on those surfaces is closely related to that obtained for ternary systems. For such systems,
therefore, solutions to multicomponent flow problems can be found easily.

For one-dimensional, dispersion-free flow in which components do not change volume as
they transfer between phases, the conservation equations are

aC;  OF; _ .
-6—t + -5; =0, t=1,n. (3.14)

where t is a dimensionless time, and x is a dimensionless distance. C; is the overall volume fraction
of component i given by

p
C; = ZC;J‘S]', i=1,n, (3.15)
i=1
and F; is the overall fractional flux of component i,

Ttp
F; = 2 ¢i;j fi 1 =1,n.. (3.16)
i=1

In Egs. 3.15 and 3.16, ¢;; is the volume fraction of component ¢ in phase j, and §; is the saturation
of phase j. The overall volume fractions satisfy

S Ci=1, (3.17)

i=1

!Norsk-Hydro, A.S., Oslo.
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Figure 3.7: Composition space and two-phase region.

so only n. — 1 of the conservation equations are independent. In addition, the phase saturations
satisfy

Tip
> 85 =1 (3.18)
=1
While we restrict the analysis in this paper to systems without volume change, we note the
the principal results concerning tie line geometry also apply when components change volume as
they transfer between phases [29].
Eq. 3.14 is derived on the assumption that any phases present are in chemical equilibrium.
To complete specification of the problem, therefore, phase equilibrium information must be given.
In the discussion that follows, it will be convenient to supply such information in two ways. One
way is to specify equilibrium ratios, or K-values, defined as

K= iz1n. (3.19)
Ci2
In general, the K-values are functions of composition. They may be obtained from an equation of
state, for example.

A second way to provide information about phase equilibrium is to specify the geometry of
tie lines and then also describe the location in composition space of the surface of phase composi-
tions. Equilibrium compositions are then given by the intersections of tie lines with the equilibrium
surface.

In the analysis that follows, we consider flow of four components that form up to two
phases in some region, @, of the space, I, of physically allowable compositions in which C; > 0 and
Ci + C2 4+ C3 < 1. A central assumption is that the phases present at any spatial location are in
chemical equilibrium. We also assume that the flow is isothermal and that the equilibrium phase
behavior is independent of the pressure change that occurs due to the pressure gradient associated
with flow. Fig. 3.7 shows a sketch of the composition space and a typical two-phase region.

Much of the behavior of the flow problems considered here is governed by the properties of
tie lines, which in four-component systems are straight lines in the three-dimensional space that
connect pairs of points on the boundary of ®. Those points represent the compositions of the
equilibrium phases. Through each composition point in & passes one and only one tie line, so that
the interior of ® is densely packed with tie lines. We assume that tie lines do not intersect inside
T (C; > 0 and C; + C; + C3 < 1), though the extensions of tie lines can and do intersect on the
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boundaries (C; = 0 and Cy 4+ C3 + C3 = 1). (For a discussion of problems that arise when tie lines
intersect in the interior of the composition space, see [65].) Egs. 3.15 are the equations of the tie
lines. For two-phase flow, Eqs. 3.15 can be written as functions of 57 only, where S can be viewed
as a parameter that specifies location along the tie line. When 0 < 5y < 1 the overall composition
lies within ®, and when S; > 1 or S1 < 0 only a single phase forms. In the analysis that follows,
extensions of tie lines to compositions outside I' will also prove useful.

We assume that @ is sufficiently regular that each tie line intersects the boundary of ®
exactly twice. Therefore the surface of ® must be divided into two parts (hence its designation as
the binodal surface), one associated with the liquid phase (oil) and the other associated with the
second phase. The second phase may be vapor in the case of gas/oil displacements or another liquid
phase for surfactant flooding processes. At some temperatures and pressures, the liquid and vapor
portions of the binodal surface of ® meet at a locus of critical points at which the compositions
and all the properties of the two phases are identical. In Fig. 3.7 that critical locus is labeled P.
When a critical locus is absent, as is the case in gas/oil displacements when the pressure is low,
the surfaces of ® may intersect any or all of the surfaces of the composition space.

Riemann problems for Eq. 3.14 have been studied by many investigators from both engineer-
ing and mathematical points of view. On the engineering side, the focus has been on understanding
the chromatographic separations that then can be used to design efficient oil recovery processes.
In the context of describing the mechanisms of those processes, Eqs. 3.14 (or the equivalent mo-
lar conservation equations when volume change is included [36]) have been solved repeatedly for
ternary systems by investigators of alcohol flooding, surfactant flooding and gas displacement pro-
cesses, and the theory of three-component flows is largely complete. An extensive set of references
to that literature is given by Johansen [61]. Investigations of four component problems have been
limited to gas/oil displacements. Four-component solutions were first reported by Monroe et al.
[89], and the properties of those solutions and many others were subsequently explored in detail by
Dindoruk [29] and Johns [66] (see also [67, 30, 100]). Four-component solutions were also reported
by Bedrikovetsky [8] for displacement processes with constant K-values. All those investigations
showed that a solution to a Riemann problem, which can be represented as a sequence of shocks
and rarefactions that generate a path through the state space, I', must lie on surfaces of tie lines
illustrated in Fig. 3.8. One surface is associated with the left state (injection composition) and the
other with the the right state (initial composition). This paper provides additional evidence that
it is the geometry of tie lines in those surfaces that controls the structure of solutions.

On the mathematical side, much work has been devoted to questions of existence and
uniqueness and to describing the wave structure of solutions. Investigations that have much in
common with the problems considered here have been reported by Johansen and Winther [63, 64,
65). '

In the analysis of polymer flooding [63, 64] and three-component, two-phase flow problems
[65, 66], it has proved useful to rewrite the problem in terms of dependent variables that yield an
eigenvalue problem for a triangular matrix. In that form, the analysis of wave structure is much
more straightforward than it is for the eigenvalue problems associated with Eqs. 3.14. In this paper
we employ the same strategy: we ask under what circumstances can a problem with triangular
structure be obtained by a suitable model representation. We then consider what types of phase
behavior produce triangular structure and show that only a small set of phase behavior types is
allowed. However, we show that the types that do produce triangular structure are consistent with
simplifying assumptions commonly used to describe the behavior of surfactant and gas/oil systems.
It is also important to note, however, that the models considered here are always hyperbolic, even
if the structure is not triangular [124].

For triangular models, the solution path in I lies on a sequence of easily defined surfaces of
tie lines, and the solution wave structure can be described in a straightforward manner. While the
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Figure 3.8: A quaternary phase diagram with ruled surfaces of tie lines.

assumptions required to make the problem triangular are fairly restrictive, the properties of the
resulting solutions provide considerable guidance about solutions to more general problems, and
hence the structures described here are a useful step toward understanding of truly multicomponent
flows by extending the techniques employed in the analysis of multicomponent polymer flows [64].

In the sections that follow, we state and prove a theorem about tie line geometry. We then
show that expressions for eigenvalues and eigenvectors can be obtained easily for four-component .
conservation equations with global triangular structure, and we examine the wave structure of
solutions. We show that triangular structures result when equilibrium K-values are independent
of composition. We conclude with a discussion of other approximate phase behavior models that
would also yield triangular structure.

3.2.2 Global Triangular Structure

It is convenient for analysis to write the conservation equations in terms of the properties
of tie lines, which control solution structure and behavior. To do so, we represent the equation of
a general tie line as

C3 = ) ﬁ(§7 77)01 + 0(5’ 77)’ (3’21)
where o and [ are slopes of the tie line, and ¢ and ¢ are intercepts with the C7 = 0 face. £ and ¢

are new dependent variables that determine the location of some point in I'. Substitution of Egs.
3.20 and 3.21 into Egs. 3.14 yields the model formulation,

ou ou
5 + A(u)-a—z =0, (3.22)

where u = (C1,£,7)T and

-;77—+ —) '(Fra—oi + %) -

on ¢ ot
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D= (argg +5¢) (O + 37) -
(e + ) (5 + 30) (320
(gﬁ g‘z - ‘;—‘;%) (3.27)
G228

We assume that the mapping (Cy,£,7) — (C1,C2,C3) is 1-1, and therefore, that D # 0.
We now ask what conditions are required for the matrix A(u) to have triangular structure
for all composition points within the two-phase region. It is apparent that Eq. 3.22 has global

triangular structure if and only if either
L=0 (3.29)

or
M=0 (3.30)

We now examine tie-line geometries for which either of the conditions for triangular structure
(Egs. 3.29 or 3.30) holds. To do so we define the functions a, 3, ¢, and 8 in terms of £ and 7. The
geometry of the parameterization is illustrated in Fig. 3.9. We choose 7 to be the slope of a tie
line in the C3 = 0 face. For simplicity of description only, we assume that > 0. Let v(7) be the
intercept of the tie line with the C; axis. Let C; = g(C3,7) be any smooth function such that its
graph in the C) = 0 face passes through the point (0,7(n),0). We choose the second parameter {
to be the value of C3 where a tie line in the interior of I’ intersects the C; = 0 face. A point on the
g curve then determines a single tie line in the interior that intersects the C; = 0 surface at the
point Cy =0, Cz = g(§,n), C3 = ¢£.

Tie lines that intersect this curve also intersect the C3 = 0 face at points P(§,n) =
(a(&,n), b(€,n), 0), where a and b are smooth functions of £ and #. Fig. 3.9 shows the geome-
try of the tie-line representation. A general tie-line PQ (Fig. 3.9) is given, therefore, by

Ci = -sa, (3.31)
C: = g+s(g-b), ' (3.32)
Cs = &+ st (3.33)

where s is a parameter that determines position along the tie line. Elimination of s gives

b—
C, = ~—Ici+g, (3.34)

G = 5cl+g (3.35)
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Figure 3.9: Representation of tie lines.

Comparison of Eqs. 3.34 and 3.35 with Egs. 3.20 and 3.21 gives definitions for a, 3, ¢, and 6,

algn) = HEDZEED) (336)

#&n) = g(&m), (3.37)

§
B(&,n) T (3.38)

0(&n) = ¢ (3-39)

We now state and prove a key result of this paper:
Theorem 1. A problem has global iriangular structure if and only if either

(i) All tie-line extensions intersect the Cy/C> edge of the quaternary diagram,

or

(ii) All tie-line extensions lie in planes spanned by two intersecting tie lines that lie in the C3 =0
and Cyq = 0 faces of the quaternary diagram.

The geometries of tie lines that result in triangular structure are illustrated in Fig. 3.10.
Substitution of Egs. 3.36-3.39 into Eq. 3.27 indicates that Eq. 3.29 is satisfied if and only if

% =0 or %?7; =0. (3.40)
The condition on 8a/8n would require that the tie lines lie in a plane that intersects the C5 = 0
face in a straight line at constant a. It would be physically impossible for tie lines in the Cy; = 0
face to do so, however, so we exclude this case on physical grounds.

The condition that dg/8n = 0 would require that all the tie lines at constant £ intersect
the Cy = 0 face at constant g = C3. If g # 0 the resulting tie line geometry would produce tie lines
that would intersect in the two-phase region, a physically unacceptable situation that we exclude
because it violates our fundamental assumptions. If g = 0, all tie lines would intersect at the Cs
axis. That situation is already included in part (i) of the theorem. Hence we focus our attention
on Eq. 3.30.

Substitution of Egs. 3.36-3.39 into Eq. 3.28 indicates that Eq. 3.30 is satisfied if and only if
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Figure 3.10: Triangular tie-line geometries.
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Oa (.0 ab
7 (55—% +b-— g) =g (3.41)
Proof: We assume first that the model has global triangular structure (Eq. 3.30 is satisfied).

If 3a/0€ = 0 then 0b/0¢ must also be zero according to Eq. 3.41. That can happen only
if all tie lines corresponding to a given 7 pass through a single point which must lie on the C;/C,
axis, because tie lines that lie in both the C3 = 0 and C4 = 0 faces must pass through it. Hence,
that point must be A(#%) in Fig. 3.10, and (1.i) follows from triangularity.

If 8/ # 0, (except possibly at isolated points), Eq. 3.41 can be written for fixed  (and
for £ #0) as

db a
dg _g(e) _ of %
¢ ¢ £%

Let the right side of Eq. 3.42 be £R(£). It follows that

(3.42)

w©=¢lK+ [ RO (3.43)

where K is a constant. Differentiation of Eq. 3.43 gives an expression for dg/d¢, which can be
differentiated again to obtain an expression for d2g/d£2. Substitution for R(£) and dR/d¢ in that
expression gives

d’¢ ad (db) (3.44)

€%~ £d€ \da

According to Eq. 3.44, if d?g/d¢? = 0 then db/da is a constant, which can only be true if a
and b lie on a straight line. That line must be the tie line in the C3 = 0 face with slope 7, as Fig.
3.10 shows.

The final part of the proof is to show that if (1.i) or (1.ii) is satisfied, then the model has
triangular structure. If (1.i) is true, then da/0¢ = 8b/8¢ = 0, and Eq. 3.41 is trivially satisfied.
Hence, Part (i) is proved.

If (1.ii) is true, then

b(&,m) = na(€, 1) +¥(n), (3.45)

and

9(&m) = &(0)é + v(n), | (3.46)

where x(7) is some smooth function. Differentiation of Eqs. 3.45 and 3.46 followed by substitution
into the left side of Eq. 3.41 gives na da/d€, which is also the value of the right side of Eq. 3.41.
Hence, the condition for triangular structure is satisfied, and Part (ii) is also proved.

3.2.3 Wave Analysis for Triangular Models

In this section, we derive the basic wave properties for the planar tie lines of part (ii) of
the theorem. The analysis is essentially the same for part (i) (tie lines that meet at an edge). The
details of some of the expressions differ, but the key results are the same. A detailed analysis for the
tie line situation of part (i) is given by Johansen [62]. We note only in passing that ternary models
of surfactant phase behavior make use of “Hand’s rule” [77], in which tie lines extend through one
corner of the diagram, exactly the situation included in part (i). Thus, the results obtained in this
section could be applied to obtain analytical solutions to a four-component model of surfactant




flooding in which salinity or cosolvent concentration is represented as a component separate from
the traditional oil, water, and surfactant components.

Substitution of Eqs. 3.45 and 3.46 into the expressions for a, 8, ¢ and 6 (Eqgs. 3.36-3.39)
allows evaluation of the entries in A(u) (Egs. 3.24-3.26),

D = E(Cy+p)Ci+h), (3.47)
G = E(F,+p)(Ci+h), (3.48)
H = E(F +h)C1+p), . (3.49)
where
2
a
P = Th ’ 3.50
E%& —a ( )
h ( - ) : (3.51)
€5 —a
(68 -a) (¢85 - @
E = )a3( 4 ) . (3.52)
The matrix, A(u), now becomes
8F; Ak 8F;
C1 F?EL n
Aw=| 0 &2 U |. (3.53)
0 o g
where £(Cy - Fy) 90
St~ )oedg
U= DaZ 9ndn’ (3.54)
We now consider the rarefaction waves associated with the eigenvalues of A(u),
F h
A on, , _H+tp , _ Fi+ (3.55)

léﬁ; 2T Ci+p T+

Rarefaction waves corresponding to A; take place at constant values of £ and 7, and hence they
represent variations along fixed tie lines. These waves correspond, therefore, to rarefaction waves
of the scalar conservation equation,

aC, 6F1(013£0a770) =0

5 + E ’ (3.56)
for constant & and 7o. Eq. 3.56 is an analog of the familiar Buckley-Leverett equation.
The rarefaction waves for A, are determined by
dC1 6F1 df 6F1 d17 _
(31 = ) F d¢ dr ' On dr 0. (3:57)
dn
U e 0, (3.58)
(A ——A)@—O (3.59)
3 2 dT - b .




where 7 = z/t. It follows that the A, waves take place at constant values of 7. For 5 = 7o, these

waves are determined by
4 £ 4C1(€) | dF(C1,&,m0)
(A1 = A2) & + it =

Next we consider shock waves for a planar surface of tie lines (1.ii). The classical Rankine-
Hugoniot shock balances are

0. (3.60)

A(CT -y = Ff - FF, (3.61)

A(aPCE + ¢ — aFCF + ¢R)
= ol F{ + ¢* — o' FF + ¢F, (3.62)

A(BLCE + 6% — BFCTF 4+ 67)
= BLFL + 6L — BRFR 4 9R, (3.63)
where L and R refer to the upstream and downstream sides of the shock, and A is the shock velocity.
It is clear that Egs. 3.61-3.63 can be satisfied with (& = ¢F and 9l = nf. These are the
tie-line shocks that correspond to the scalar conservation equation, Eq. 3.56. Rearrangement of Eq.
3.61 shows that when a shock connects a composition in the single-phase region with a composition
in the two-phase region, the single-phase composition must lie on the extension of a tie line, as

several investigators have shown [79, 52, 36].
When ¢L #£ €7 we define

L _ 4R L _ pR
th_@¢"—¢ pp_0°-6
K= o W = e (3:64)

Elimination of FZ or F® from Eqgs. 3.62 and 3.63 gives expressions for the shock velocity,

= CLTKLR = CRyELR

FL + hLR FR + hLR

T CT¥hLR = CEy IR

Substitution of the definitions of o, 8, and 6 (Eqgs. 3.36, 3.38, 3.39) along with the expressions for
b and g that define planar tie lines (Eqs. 3.45 and 3.46) into Eq. 3.64 shows that ALR = LR jif
€L £ ¢R and 5L = 5!, which is therefore a sufficient condition for Egs. 3.61-3.63 to be satisfied.
Thus, shocks satisfying Eq. 3.65 are contained in the tie-line surfaces. That result is consistent
with the observation that a shock that connects any two compositions in the two-phase region
(which therefore lie on two different tie lines) can only occur if the extensions of the two tie lines
intersect [66, 67]. As Fig. 3.10b shows, all the tie lines that lie in the plane at constant % intersect.
The statement that tie lines connected by a shock must intersect is also true for systems with any
number of components, whether or not components change volume as they change phase [29, 30].

We summarize these results in the following
Theorem 2. Rarefaction and shock waves corresponding to Ay take place along fizred tie lines,
whether or not the model has triangular-structure. The rarefaction and shock waves corresponding
to Ay are contained in the tie-line planes at constant values of 1.

A similar result holds when the global triangular structure results from tie lines that extend
through an edge of the quaternary diagram [62]. Thus, we have shown that when a model is
triangular, the shock and rarefaction surfaces coincide.

In the analysis so far, only tie-line waves and waves with constant 5 and varying £ have been
considered. As Fig. 3.8 illustrates, however, solutions to four-component Riemann problems lie on

A

(3.65)
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two surfaces of tie lines, one associated with the initial tie line (left state), and another associated
with the injection tie line (right state). The behavior of the second surface is determined by waves
associated with the A3 eigenvalue,

dCl 3F1 dé' 3F1 dT] _
(A1 = As3) 7 + 9 dr + Gn dr 0, (3.66)
» dg dn
A2 — A3)— — =0. .
(A2 3)dT+Ud-r 0 (3.67)
When a Az shock exists, it is defined by .
hLR = kLR, £L # ER’ nL # ﬂR (368)

For such waves, both £ and 7 will change across the shock [62], and again, the tie lines connected
by the shock must intersect [66, 29]. If the surface of tie lines associated with those waves is also
planar or consists of tie lines that extend through an edge of the four-component diagram, then
the model system will be triangular for the second surface as well. In that case, Theorems 1 and 2
still apply if we choose another of the faces of the quaternary diagram in which to parameterize the
tie lines. Hence, triangular structure in that representation is also equivalent to tie-line surfaces
that are planes, though the new set of planes is “orthogonal” to the planes already discussed. The
solution to a Riemann problem is constructed, therefore, by finding the two surfaces of tie lines,
which intersect in a unique tie line known as the crossover tie line [89]. If the system is doubly
triangular, the crossover tie line can be found easily as the intersection of two planes [29]. If,
however, the problem structure is not triangular, shock and rarefaction surfaces, in general, will
not coincide.

3.2.4 Constant K-Values

In this section we examine a phase equilibrium model, equilibrium K-values that are inde-
pendent of composition, that shows triangular structure. K-values are approximately independent
of composition for gas/oil systems when the pressure is low enough (at a given temperature) that
no critical points appear in I'.

If K-values are constant, then the surface of liquid compositions is given by

4 4
Y KiCi=)_Kica=1, (3.69)

=1 =1

and the vapor surface is given by
4 4
Ci E Ci2
Z = =y"2=1. (3.70)
=1 Ki i=1 Ki
Elimination of C4 from Egs. 3.69 and 3.70 with Eq. 3.17 shows that both surfaces are planes.

To show that Theorems 1 and 2 apply, we need only show that tie lines for constant values
lie in planes like that shown in Fig. 3.10b. To do so, we consider three vectors: &, the direction of
a tie line in the C3 = 0 face, €}, the direction of a tie line in the C4 = 0 face that intersects the
first tie line, and €, that of a tie line in the interior of I' that also intersects the first tie line. Those
vectors are

& = (K1 — 1)4, 8 + (K2 — 1)c5, &, (3.71)
-’f = (Kl ot 1)6{1€1 + (Kz - 1)C£1€2
+ (K3 — 1)c}y &, (3.72)
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Figure 3.11: Composition route for displacement of a C5/C4 mixture by a C,/C, mixture with
Kl = 1.5, Kz = 28, K3 = 0.4, and K4 =0.01.

& = (K1 = 1)ey & + (K2 — 1)c5, &
+ (K3 = 1)ci,&3. (3.73)

The tie line can be chosen by selecting ¢t,. The remaining compositions are determined by selecting
an intersection point on the tie line in the C3 = 0 face and solving the equations of the three tie
lines simultaneously. The three vectors lie in the same plane if &; - (€ x €;) = 0. Direct evaluation
of the algebraically complex expressions verifies that the tie lines that intersect the tie line in the
C3 = 0 face do form a plane. In fact, the constant K-value system is doubly triangular. Hence, the
solution composition path lies entirely on planar surfaces in such systems.

Fig. 3.11 shows the composition path for a constant K-value system with K; = 1.5, K, =
2.8, K3 = 0.4, and K4 = 0.01 [29]. The injection composition is a mixture of components 1 and
2 and the initial mixture contains all components except component 1. According to Theorems
1 and 2, the solution composition path must lie entirely on two planes of tie lines that contain
the initial and injection tie lines, and the crossover tie line is the intersection of those planes.
Dindoruk showed that such systems can be characterized conveniently in terms of the properties of
the envelope curve of the tie lines that lie in each of the planes [29]. In this example, the A2 and
A3 waves are both self-sharpening, and hence, rarefactions can occur only on the three tie lines. In
the example shown, however, a rarefaction appears only on the crossover tie line; the other two are
missing because rarefactions there would violate wave compatibility requirements. Details of the
analysis that leads to the set of compatible waves and shocks that make up the solution are given
by Dindoruk [29]. Compositions, gas saturations, and wave velocities of the points labeled in Fig.
3.11 are given in Table 3.2.4. _

Composition profiles for the solution are shown in Fig. 3.12. Those profiles illustrate the idea
that the displacement consists of a series of composition waves that are sorted in K-value order
[29, 66]. Component 2, which has the highest K-value, appears in a fast-moving, leading bank.
Components 3 and 4 present in the initial mixture disappear in a sequence of trailing evaporation
shocks.

Because the entire solution consists only of shocks and one rarefaction along the crossover tie
line, the solution is quite easy to construct once the crossover tie line is identified. The shocks from
the initial and injection tie lines to the crossover tie line are intermediate discontinuities that satisfy
conditions equivalent to the familiar Welge tangent construction for a Buckley-Leverett problem.
Thus, solutions can be found easily for displacements in which tie-line surfaces are planar.
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Table 3.3: Method of characteristics solution for a quaternary displacement with K,
2.8, K3 = 0.4 and K4 = 0.01.

H

1.5, Ky =

Composition Gas Wave
Composition (Volume Fraction) Saturation Veloéity
Label a | & | & | ¢ | (vol Fraction) M)
a 0.0000 | 0.0000 | 0.8690 | 0.1310 0.0000 1.0795
b 0.0000 | 0.5483 | 0.4173 | 0.0344 0.5994 1.0795-1.0548
c 0.4911 | 0.2200 | 0.2729 | 0.0160 0.7334 1.0548
d 0.4982 | 0.2267 | 0.2614 | 0.0137 0.7727 0.8348
e 0.6342 | 0.3527 | 0.0000 | 0.0131 0.9804 0.8348-0.3642
f 0.6406 | 0.3594 | 0.0000 | 0.0000 1.0000 0.3642
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Figure 3.12: Composition and saturation profiles for a four-component displacement with constant
K-values.
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Figure 3.13: Composition and saturation profiles for a five-component displacement with constant
K-values.

The idea that constant K-values create planar tie-line surfaces can be applied to systems
with more than four components. For example, Fig. 3.13 shows composition profiles for a system
with five components. The system is the same as that described in Figs. 3.11 and 3.12 except that
another component with K4 = 0.2 has been added, and Component 4 has been renamed to be
Component 5 with K5 = 0.01. Also, the injection fluid is pure Component 1. Table 3.2.4 reports
key values of composition, gas saturation, and wave velocity for the solution shown in Fig. 3.12.
- In this system, two crossover tie lines are present. The addition of another component with a
relatively low K-value adds another slow-moving evaporation shock to the solution. Details of the
construction of the solution shown in Fig. 3.13 are given by Dindoruk [29]. The solution shown in
Fig. 3.13 demonstrates that the properties of systems with triangular structure can be exploited to
advantage in the construction of solutions with more than four components.

3.2.5 Other Planar Systems

While systems with constant K-values provide very useful guidance about the structure of
multicomponent flow problems, they cannot be used to investigate multicontact miscibility [100, 67]
because no critical points are present. It is still possible, however, to take advantage of the properties
of triangular structure to study multicontact miscibility. Specifying K-values, whether they are
constant or they are determined from an equation of state, determines both the tie-line geometry
and the location of the binodal surface. It is possible, however, to specify the binodal surface
independently from tie-line geometry, an approximation that will be reasonable if tie lines in the
actual system lie in surfaces that are nearly planar. Direct calculation with the Peng-Robinson
equation of state for mixtures of CO» with normal alkanes, for instance, indicates that such surfaces
are, in fact, nearly planar. Consider, for example, the phase diagram shown in Fig. 3.14. It shows
a two-phase region that has critical points in the C; = 0 and C3 = 0 faces. A locus of critical
points in the interior of I' connects the critical points in the faces. Suppose now that tie lines for
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Table 3.4: Method of characteristics solution for a five component displacement with K; = 1.5
K;=28,K3=04, Ky =0.2 and K5 = 0.01.

?

Composition Gas Wave
Composition (Volume Fraction) Saturation Velocity
Label a | & | a | a | a |mlFaton|

a 0.0000 | 0.2500 | 0.2500 | 0.2500 | 0.2500 0.0000 1.0922
b 0.6000 ‘ 0.6167 | 0.1559 | 0.1270 | 0.1004 0.5634 1.0922-1.0548
c 0.8345 | 0.0000 | 0.0800 | 0.0531 | 0.0324 0.7334 1.0548
d 0.8466 | 0.0000 | 0.0766 | 0.0490 | 0.0278 0.7727 0.8348
e 0.9184 | 0.0000 | 0.0000 | 0.0613 | 0.0203 0.8789 0.8348-0.7239
f 0.9798 | 0.0000 | 0.0000 | 6.0000 { 0.0202 0.9463 0.7239-0.2117
g 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 1.0000 0.2117

this system lie in two sets of planes, each of which is tangent to an envelope curve. The envelope
curve for one set (E; in Fig. 3.14) lies in a vertical plane normal to the C1/C; axis. The second
envelope curve (E; in Fig. 3.14) lies in the C3 = 0 plane. The shapes of the envelope curves can
be chosen to match tie-line slopes approximately to experimental data or to phase compositions
calculated with an equation of state. K-values can be calculated by finding the intersections of tie
lines in the various planar surfaces with the phase envelope.

Tie-line geometries like those of Fig. 3.14 allow straightforward construction of solutions.
The crossover tie line can be identified easily as the only tie line common to the planes in which the
initial and injection tie lines lie. Displacements in which one of the three key tie lines is a critical
tie line will be multicontact miscible {100, 67).

3.2.6 Summary

The analysis given provides additional evidence that the geometry of tie lines controls the
behavior of solutions to one-dimensional Riemann problems for multicomponent, two-phase flow.
If and only if tie lines are arranged so that they meet at a point on one edge of a four-component
phase diagram, or tie lines lie in planar surfaces, shock and rarefaction surfaces coincide. In such
situations, analysis of wave structures is straightforward, and solutions for arbitrary left and right
states can be constructed easily.
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Figure 3.14: A doubly triangular system with variable K-values.




4. Interaction of Gravity, Capillary and Gravity
Forces in Heterogeneous Systems

In this chapter, we examine the interplay of forces that control the distributions of the resid-
ual oil in the pore space. Consider, for example, a near-miscible gas injection process in a fractured
reservoir. Because the process is not quite miscible, and there exists initial water, three-phase flow
occurs. Capillary forces created by the interfacial tension (IFT) act to hold the oil in the reservoir
rock, while the density differences between gas and oil drives oil to the bottom part of the reservoir.
The relative magnitudes of the capillary, gravity and viscous forces govern the distribution of oil
and gas phases in a reservoir, and consequently, the oil recovery mechanisms. Thus, understanding
the interplay of capillary, gravity and viscous forces is of considerable importance to the description
of near-miscible gas injection process performance.

In Section 4.1, we report a study of the influence of gravity and viscous forces on the residual
oil saturation in a two-phase system. Qur pore-level models suggest that the gravity and viscous
forces are additive in determining the final residual oil saturation. Experimental observations
from sandpacks support our models. In Section 4.2, we present results from a theoretical and
experimental investigation of three-phase flow and gravity drainage. We discuss the roles of the
spreading coefficient (C,) and the Bond number ratio (@) in the process of three-phase gravity
drainage. Our experiments and theory show that we can recover almost all oil from the top part
of a reservoir if the system is water-wet and has a value of « greater than 1. Furthermore, we
present an argument that near-miscible gas injection processes can be used to create situations
with @ > 1. We also examine the contribution of crevices in the pores to oil drainage processes.
In Section 4.3, we detail the prediction of the spreading and stability of thin hydrocarbon films
based on the analysis of intermolecular forces. Lifshitz theory is used to evaluate the intermolecular
interaction. That analysis is used to determine when oil films can be expected to permit gravity
drainage to reduce remaining oil or condensate saturations to low values. Finally, in Section 4.4, we
report experimental results for gravity drainage of crude oil in the presence of CO; at high pressure.
These results demonstrate that gravity drainage can be an effective oil recovery mechanisms from
fractured reservoirs.

4.1 The Effects of Gravity and Viscous Forces on Residual Oil
Saturation

Dengen Zhou

4.1.1 Introduction

Tertiary oil recovery or aquifer remediation processes attempt to recover oil that is trapped
by capillary forces. Displacement of a hydrocarbon phase by water alone is an immiscible displace-
ment that cannot completely recover oil from reservoirs due to the interplay of capillary forces with
heterogeneities of the media. Two types of heterogeneities are commonly dealt with: pore-level het-
erogeneity and macroscopic heterogeneity. Pore-level heterogeneity, such as pore size (grain size)
and pore structure variations, controls the amount of oil left after the injected fluid has swept a
zone, whereas macroscopic heterogeneity determines zones that the injected fluid sweeps. In numer-
ical simulation of a displacement process, macroscopic heterogeneity can be represented directly by
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assigning different rock properties (permeability and porosity) to certain grid blocks, given knowl-
edge of the detailed structure of the medium. Because of the complex nature of pore entrapment
mechanisms, however, the effects of pore level heterogeneity are represented by empirical correla-
tions. One of the empirical correlations is the capillary desaturation curve (CDC), which defines
the relationship of the residual oil saturation and the physical properties of a system. Accurate
representation of the dependence of the CDC on fluid and rock properties is of great importance
for simulations of enhanced oil recovery and spilled oil clean-up processes, because these processes
must reduce the residual oil saturation to relatively low levels. This work describes theory and
experiments that demonstrate the relative contributions of gravity, viscous and capillary forces in
the correlation of residual oil saturation and the physical properties of water-wet systems.

The physical properties of a system are commonly represented by a capillary number, which
is usually defined by one of the following equations

(4.1)

(4.2)

and a Bond number defined by
(4.3)

B= a : (4.4)

where pu,, is the viscosity of the displacing phase, v is Darcy velocity, \7p is the pressure gradient,

k is permeability, R is the radius of the grains composing the porous medium, Ap is the density
differences between the fluids, and ¢ is the interfacial tension (IFT) of the system. According to
Darcy’s law, the capillary numbers (N and N,p) are related by No2 = N /kry, where k,, is the
relative permeability of the displacing phase. The use of N or N in the literature depends on
the application to specific situations. Ny, for example, is likely to be used to correlate results of
experiments with constant injection rates, whereas N, may be used to describe flows with constant
pressure drop. In this work, however, we find that even for processes with constant injection rates,
N_; is a more appropriate form to represent the ratio of viscous forces to capillary forces. The
Bond numbers B and Np are related by the correlation of the permeability (k) and the grain sizes
(R) of a medium. k

There are two CDC’s for a displacement system, depending on the continuity of the displaced
fluid [77, 91, 134, 135]. A discontinuous nonwetting phase is more difficult to displace from a
medium than a continuous nonwetting phase [77, 91]. In this work, we focus our attention on the
displacement of continuous nonwetting phase from a porous medium, which is commonly involved in
oil recovery processes with an oil bank. CDC’s are generally obtained from laboratory measurements
[43, 74, 91, 119], although attempts have been made to predict CDC’s by statistical [78, 134] or
deterministic theories [77, 115, 135]. Studies of CDC’s have been largely focused on the balance
of capillary and viscous forces [77, 109, 115, 134], which is measured by the capillary number.
Consequently, gravity effects are neglected in CDCs used in most simulators of enhanced oil recovery
processes, even though some studies [91, 130, 131] have shown that gravity effects can be significant.
In this work, we examine the combined effects of gravity and viscous forces on oil entrapment in
porous media, and we define conditions under which gravity forces can be neglected or must be
included in the analysis.




4.1.2 Entrapment mechanisms

In order to identify the factors that influence oil entrapment during immiscible displace-
ments, we first review entrapment mechanisms. Mohanty et al. [87] investigated the physics of
oil entrapment in water-wet media, and identified two entirely different entrapment mechanisms,
namely, a snap-off process that traps oil in a pore and a by-pass process caused by competition of
flows between pores. Using detailed experimental observations, Chatzis et al. [17] determined that
approximately 80 percent of oil is entrapped by snap-off processes and 20 percent by the by-passing
processes for consolidated, water-wet media.

Snap-off occurs in pores with large aspect ratios, the ratio of pore body and pore throat
diameters. The large aspect ratio creates a significant lower wetting-phase pressure at the pore
throat than that in the pore body. Hence, the wetting phase flows towards the pore throat, and
forms a collar that grows and eventually breaks the nonwetting phase. Roof [109] derived a static
criterion for snap-off in noncircular capillary tubes, based on the capillary force balance at the pore
throat and the pore body. A noncircular capillary tube was used as a model of the irregularities
of pores and the roughness of solid surface of the medium. Ransohoff et al. [106] extended Roof’s
static analysis to include the effects of viscous flow resistance in the water filled corners of the
capillary tube. For a system shown in Fig. 4.1a, they obtained the static criterion for snap-off,

Rb Z CmRoRt,

Ro - Rt
where C,, is a dimensionless interfacial curvature, which is a function of the cross-sectional geome-
tries, R, is the pore neck radius, and R; and R; are the hydraulic radii of the pore throat and pore
body respectively, as shown in Fig. 4.1A.

To include the dynamic effects of viscous flow, Ransohoff et al. [106] and Gauglitz ef al.
[44] calculated and experimentally measured the time required to transport enough fluid into the
pore throat to have snap-off, and compared it to the time for the nonwetting phase to flow through
the pore throat. If the time of transporting enough fluid to form a collar is less than the time
required for the nonwetting phase to flow through the pore throat, snap-off would occur.

The random nature of the sizes and locations of pores in porous media incorporating the
interconnections among the pores generates flow competitions among pores. The displacing fluid
in the fast low pores can trap oil in pores in which flows are slow. This mechanism is referred
to as by-passing. Pore doublet models (PDM) have been used both theoretically [17, 77] and
experimentally [17] to demonstrate the by-pass mechanism. The PDM is based on the assumption
that well-developed-Poiseuille flows compete in two parallel flow paths (pores) with different sizes
(see Fig. 4.1B). The flow velocity in each flow path can be obtained by combining Poiseuille’s law
and the Young-Laplace equation [77]. The ratio of the velocities is an indication of the amount
of fluid trapped in one pore. For an imbibition process, capillary forces draw the displacing phase
into the smaller pore, while viscous forces make the fluid flow more rapidly in the larger pore. The
result of this competition is that at low injection rate, the oil in the large pore would be trapped,
with the reverse being true at high rates. Chatzis and Dullien’s experiments [17] on a model of
neck-bulge-neck pores showed that oil was trapped by the by-passing process.

By-passing processes can also be represented by network models for studies of entrapment
mechanisms in porous media [9, 39, 40, 41, 130, 135]. Network models represent porous media by
networks of pores with different sizes and connectivities. Another approach, percolation theory,
has also been used to represent the random nature of the porous media, in which the flow path
is fully random. In its original form, percolation theory represented only two-phase displacements
when capillary forces dominate the flow process, and it did not account for the continuity of the
flow path. Invasion percolation theory was then introduced to include both the randomness of the
medium and the continuity of the fluids. In the following subsection, we review briefly effects of

(4.5)
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Figure 4.1: Commonly used snap-off model(A) and pore doublet model (B).

gravity in invasion percolation theory as well as the experimental results that demonstrate effects
of gravity on residual nonwetting phase saturation.

Gravity Effects on Entrapment

The first theoretical investigation of gravity effects was reported by Wilkinson in an invasion
percolation study [130]. Wilkinson neglected the snap-off process, and assumed that the nonwetting
phase is only trapped by the by-passing process. Correlation lengths for both viscous and buoyancy
forces were introduced to measure the relative magnitudes of viscous and buoyancy forces compared
with capillary forces in the medium. A dimensionless viscous correlation length was defined as

_Lum Nd)-vﬂ“v)
b =22 (35 , (46)

where L., is the maximum length of oil clusters in the system during a viscous displacement, R
is the grain size (radius) of the medium, k,, = kkr,,/R? and v is a percolation exponent (v = 0.88
for three-dimensional percolation). They also defined a gravity correlation length (£¢),

§G — _{/%m o(..B;.u/(1+u), (47)

where B is the Bond number [91, 130], and Ly, is the maximum length of oil clusters in the
system when gravity forces dominate. For gravity-dominated flow, the residual oil saturation S,,
was related to the gravity correlation length by

N 0+8) /v
- ) x B?, (4.8)

Sor — Sor <_'
*\&.
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where A = (1 + 8)/(1 + v), which is a percolation constant (A = 0.77 for three-dimensional per-
colation), B is also a percolation constant of 0.45 for three dimensional percolation, and S, is
the residual oil saturation at very low capillary number and Bond number. For viscous-dominated
cases, the residual oil saturation was correlated as

1\ @+8)/v 2\
8% — Sor (E—V) x (]Zwl) : (4.9)

For situations in which both viscous and gravity forces act, Wilkinson [130] assumed that capillary
and gravity forces were additive, and that the residual oil saturation depends on (N /ky + B) .

Blunt et al.[9] developed a network model to calculate the percolation constant for invasion
percolation processes. For both imbibition and drainage processes, Blunt et al. showed good
agreement between network simulations and percolation theory when the processes were dominated
by gravity forces. They also demonstrated numerically that gravity forces (represented by the Bond
number B) behave the same as viscous forces (Nc2). For cases in which both gravity and viscous
forces are involved, Blunt et al. proposed an effective correlation length to correlate the residual
oil saturation. The effective correlation length is defined as

11,11

¢ L & &’
where L is the length of the system. For a porous medium of relatively large size, 1/L =~ 0, and
hence

(4.10)

1 1 1
=R =t —. 4.11
e TG (#.1)
In terms of capillary and Bond numbers, the residual nonwetting phase saturation is
8% — Sor (( By )/ 049 4 N;’/(1+v))(l+v)/ v (4.12)

Eq. 4.12 indicates that the effective correlation length theory does not give a linear combination.
Thus, for cases in which both gravity and viscous forces act, there are two very different correlations
for residual oil saturations. We shall note that these correlations are two extrapolations of the
invasion percolation theory, not from rigorous derivations. The pore-level models described in the
next section support the linear combination of gravity and viscous forces in determining residual
oil saturations.

Experimental studies [91, 92] indicate substantial effects of gravity on residual nonwetting
phase saturation in glass-bead packs. The experiments were performed with beads of different
diameters to obtain a wide variation of Bond numbers. Morrow et al. [92] correlated their results
against a linear combination of N; and B,

Sor = f(Ne + 0.001413B). (4.13)

This correlation agrees with Wilkinson’s results, although Wilkinson’s theory neglected the snap-off
process. In the following section, we demonstrate theoretically that there is a linear combination
of gravity and viscous forces for both snap-off and by-passing processes.

4.1.3 Extended REV-Scale Models

Previously available models of snap-off and by-passing neglect the influence of gravity. In
this section we extend such models to include gravity. In the following derivation of equations, we
assume that the interface between oil and water phases is always in equilibrium, so that we can use
the Young-Laplace equation to represent the pressure difference across an interface. Flow of both
phases is assumed to be well-developed Poiseuille flow, and therefore, Poiseuille’s law or Darcy’s
law is used to represent viscous pressure drops.
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Snap-off Model

In past studies of snap-off processes, oil blob sizes were assumed to be smaller than the pore
size. That assumption is known to be violated in displacements in real porous media. For example,
Chatzis [17] observed the blobs could be several pore sizes in extent. In our analysis, we consider
an oil blob occupying two pores in the vertical direction (see Fig. 4.2a). However, the analysis is
not limited to two-pore lengths and could be easily extended to multipore arrangements. Consider
the situation shown in Fig. 4.2, in which water flows into the pore from the bottom. We assume
that water phase wets the walls with a film whose thickness remains constant in the pore body but
varies in the pore neck. The pressures in the phases at the pore throat (A) are

P,=P+ 9}%‘-’- — AP,y — poglL, (4.14)
and
P, = P; — APy, — puwgL, (4.15)

where P, is the pressure of the wetting phase at location (B), Ry is the pore body radius, C,, is the
dimensionless interfacial curvature in the pore body and AP,, and AP, are the viscous pressure
drops of the oil and the wetting phase. Because of the continuity of the wetting phase, the wetting
phase can reach the pore throat through other neighboring pores. Therefore, we use Darcy’s law
to calculate the viscous pressure drops for both phases. AP, and AP, are then expressed as
APuy = (puwvwLl)/(Fkry), and APoy = (pov,L)/(kkyso). Thus, the pressure difference between the
two phases at the pore throat (A) is

AR = (Bo= P = S0 4 (pu - polol + Bt - B,
At the pore throat, we can also obtain the pressure difference between the two phases from the
Young-Laplace equation,

(4.16)

o o
R. R, |
where R, is the oil throat radius, and R, is the radius of the oil neck (see Fig. 4.2b).
Now we consider the following situations: AP; > AP and AP; < AP;. When AP, > APy,
the fluids would flow in such a way as to reduce AP, to keep the two forces in balance. In order to
decrease AP,, the system would either increase R; or decrease R,. It is impossible to increase R;
much further, because of the solid pore structure. Thus, the system would reduce R,. To reduce
the value of R,, capillary forces pump the wetting phase into the pore throat. Consequently, a
wetting phase collar ring would forms at the pore throat [106]. The formation of the collar ring
reduces the value of R;, and results in snap-off. However, when AP; < AP, the system becomes
stable. In order to balance the pressure difference in this case, the system would either reduce
R; or increase R,. Reducing R; is impossible, because the viscous pressure difference AP; would
push oil into the pore throat and the interface moves outward to increase R;. Thus, increasing the
effective value of R, is the only solution. To increase the effective value of R,, the capillary forces
push the wetting phase away from. the pore throat and there is a reduced wetting phase at the pore
throat. Therefore, there would be no snap-off. In summary, we argue that snap-off would occur if
AP, > AP;. We then obtain the following condition for snap-off tp occur,

AP, =(Po— Py)2 = (4.17)

o o _ Cno Pl PoVoL

—_———> — w — L . 4.18
Rt Ro - -Rb + (p po)g + kkru} kkra ( )
Because v, has positive values, the condition simplifies
o o _ Cnpo PVl
- = > 2™ 4 (p - L 4.19
-Rt Ro - Rb + (pw po)gI/ + kkrw * ( )
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(a) (b)

Figure 4.2: Vertically oriented snap-off model (a) and detailed pore structure (b).

or

k R, CmRt>
e, — —— . .
Ncl + krwB = RtL krw (1 Ro Rb (4 20)

Eq. 4.20 suggests that mobility ratio would have minimal effect on the final residual nonwetting
phase saturation, which agrees with experimental observations [2, 119].
If we set Ng = 0 and N = 0, Eq. 4.20 simplifies to
CmRtRo

Ry > —mie 21
*= R, - R: (421)

which is the same as Eq. 4.5.

Doublet Model

For vertically oriented doublet pores as Fig. 4.3 shows, we write down the pressure drops
from point B to point A for each pore as following for a upflow (on the assumption that the tubes
are cylindrical)

_ 8uyviLy + 8povi(L = L) 20

Apr = V7 B 7t Lipuwg + (L — L1)pog, (4.22)

and
8uwv2L2 8#0’02(L - Lg) 20
= - — L- 4.2
Aps B + B 7, T Lopud t (L — L2)poy, (4.23)
where R; is the radius of tube i, and L; is the distance the displacing fluid flows in tube ¢, L is the
length of the tubes, and v; is the flow velocity in tube i. Since the two pores have common junctions,
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Figure 4.3: Vertically oriented pore doublet mode

the pressure drops Ap; and Ap; must be equal, Ap; = Ap;. Therefore, we obtain the following
expression in which the average velocity (v,) of the doublet pores is v, = (R3v, + R3v;)/(RE + R3).

. ‘ 2k R
Ncm-*-(ll—lg)——f-?-NB: f (1__1_

T RITH TR (424
where I; = L;/L, pir = fio/thw, f = R}/RZ, and
m = (1 - pr) ((1 +f- %Z—f)llf - %12) + pr (f(l +f- Z—z) - -Z—Z) : (4.25)

The permeability of the PDM is defined as (R} + R3)/8 from Poiseuille’s law.

To simplify the arguments, we assume the radius of pore 1 is smaller than that of pore 2,
R, < R,. Capillary forces draw the wetting phase into the smaller pore (pore 1), and viscous forces
make fluid flow more easily in the larger pore (pore 2). At the same time, gravity forces reduce
the velocity difference between pores. Reduction of viscous forces slows the flow in the larger pore,
and results in more oil trapped in the larger pore. If the oil in pore 2 were completely trapped, we
would have the following parameters: v, = 0,; = 1 and [ = 0, and m = f(1+ f). Because the
value of m decreases with increasing value of vq, the system must have a value of m smaller that
f(1+ f) to avoid entrapment of the nonwetting phase in pore 2 completely. Thus, the nonwetting
phase would be trapped in pore 2 completely, if m > f (1+ f). Rearrangement of Eq. 4.24 gives

2k Ry
< — —_—— .
Na+CNp< CRIL(l Rz)’ (4.26)
where C = 1/(1 + f)%

For a given system, Eq. 4.26 indicates that the nonwetting phase in the larger pore would
be trapped due to by-passing when the combined effects of gravity and capillary forces are less
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than a certain value. The relative magnitude of gravity forces and viscous forces depends on the
value of C, which represents the heterogeneity of the system. C = R}/(R? + R2)? is the relative
permeability of the displacing phase (the wetting phase), and can be derived as following with an
assumption that displacements in the tubes are piston-like,

R kR?  Q

C: = = —_——
(Rf+ R3)*  k(RI+R}) Q@

(4.27)

where k; and k are the permeabilities of tube 1 and both tubes, @; and @; are the flow rate in
pore 1 and the total flow rate in both pores. According to Darcy’s law, Q1 = Ak,wk/(p0®/0!),
and Q; = Ak/(p0®/d!) for a given flow area A and potential gradient 3®/8!. Therefore,

Q _ iy
=l s g (4.28)
Q. T TaR
and ok R
c TW < krwm—(1 - = - .
Net+ kroNp < brug = (1= 2 (4.29)

Thus, Eq. 4.29 also suggests that a linear combination of the capillary and Bond numbers can
be used to state a criterion for by-passing. Here again, the coefficient of the Bond number is the
wetting-phase relative permeability.

Summary

In both snap-off and doublet models, we obtain criteria for entrapment of the nonwetting
phase in porous media in terms of linear combinations of capillary and Bond numbers. Comparison
of Egs. 4.20 and 4.29 indicates that they have similar forms. In both cases, the relative contributions
of capillary and Bond numbers are determined by the relative permeability of the displacing phase.
Using the relationship between N, and N, we obtain the following equations for snap-off and
by-pass processes.

k R, 2R
< e (1-=_Z2 .
and 2k R
< 2 (1 - =Y )

The simplicity of Eqgs. 4.30 and 4.31 suggests that N, is a more appropriate definition of capillary
number than N.; even for processes with constant injection rates.

4.1.4 Experiments

Experimental studies [91, 92] provide some evidence that a linear combination of capillary
number and Bond number determines residual oil saturation. However, the Bond numbers were
changed by varying the sizes of the beads used in packing their columns. We now investigate
whether use of the linear combination is reasonable if we change Bond number by the variation
of IFT and density differences of the fluids. In this section, we report results from experiments
designed to examine these parameters.

All displacements were conducted in the same sand-pack column. The Bond number was
varied by using different IFT’s and density differences of the fluids. Fig. 4.4 is a schematic of the
experimental apparatus. The HPLC pump provided constant injection rates ranging from 0.1 to
8.0 cc/min. The length of the sand-packed porous medium was 119.0 cm and the diameter 1.95
cm. The permeability was 48.5 Darcy and the porosity, 0.256. We used pre-equilibrated mixtures
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Figure 4.4: A schematic diagram of the experimental setup.

of brine, iso-octane (iCg) and isopropanol (IPA) to generate fluid pairs of wide range of IFT and
densities differences, This system has:been well studied [92]. Four tie-lines were used to obtain
IFTs varying from 0.1 to 38.1 mN/m and densities from 0.11 to 0.33 g/cc, which correspond to a
range of capillary and Bond numbers from 10~° to 10~3. Table 4.1 lists the measured properties
of the fluids used.

All the imbibition displacements were conducted ‘with initial wetting phase saturations.
These were established by first injecting the nonwetting phase into the top of the column that was
fully saturated with the wetting phase. The initial wetting phase saturation varied from 0.19 to 0.26
of pore volume. The large variation of initial wetting phase saturations were results of large varia-
tions in mobility ratios in different runs. In this range of initial wetting phase saturation, repeated
experiments showed that this variation of initial wetting phase saturation did not influence the
residual nonwetting phase saturation. Therefore, the differences in the residual nonwetting phase
saturation are the results of the capillary and Bond number variations. To study the directional
effects of gravity forces, we conducted displacements by injecting the wetting phase from either
bottom or top of the column. We refer to displacement from the bottom as gravity-favorable and
that from the top as gravity-unfavorable, because the gravity forces stabilize the displacements

fluid IFT Ap Np Viscosity (cp) | Viscosity (cp)
system | (mN/m) | kg/m3 | (wetting) (nonwetting)

#1 38.1 330 [4.2x10°° 0.98 0.48

#2 441 305 |33x10°° 2.80 0.49

#3 1.07 220 1.0 x 10~* 3.25 0.52

#4 0.10 110 | 5.2x 10™* 2.60 0.70

Table 4.1: Properties of the fluids used in this work

74




fluid | flow rate S; Sor S; Sor Ny
system | (cc/min.) | favorable | favorable | unfavorable | unfavorable

#1 0.5 0.19 0.181 6.6 x 10=°
#1 1.0 0.22 0.257 1.4 x 1077
#1 2.0 0.23 0.181 0.19 0.248 | 2.7x 1076
#1 4.0 0.23 0.181 0.19 0.248 5.4 x 10
#1 8.0 0.20 0.171 0.24 0.19 1.1 x 10-3
#2 0.1 0.24 0.16 3.4x10°°
49 0.5 0.25 0.152 1.6 x 10~5
) 1.0 0.26 0.19 3.3 x 10°8
#2 2.0 0.26 0.138 0.27 0.15 6.7 x 10~5
#2 4.0 0.24 0.124 0.22 0.123 1.3x 104
#2 8.0 0.25 0.10 0.27 0.11 2.7x 104
#3 0.1 0.25 0.12 1.6 x 10~°
#3 0.5 0.25 0.11 0.24 0.178 8.5 x 1075
#3 1.0 0.25 0.14 1.7x 104
#3 2.0 0.24 0.10 0.22 0.11 32x10*
#3 4.0 0.20 0.086 0.14 0.09 6.2 x 104
#3 8.0 0.22 0.067 0.23 0.07 1.3x10°3
#4 0.1 0.23 0.096 14 x 10~4
#4 0.5 0.25 0.08 6.9 x 1074
#4 1.0 0.25 0.067 1.4x 1073
#4 2.0 0.23 0.048 2.8 x10°2
#4 4.0 0.23 0.038 5.5 x 10~3
#4 8.0 0.25 0.02 1.0 x 10~2

Table 4.2: Summary of the displacement results

when injected phase enters the column from the bottom. Table 4.2 summarizes the experimental
results from both gravity-favorable and unfavorable displacements.

In all the displacements, we observed little additional recovery shortly after breakthrough,
an observation that is consistent with the idea that the sand-pack was strongly-water wet. Following
the common practice, we plot the final residual oil saturation against the capillary number alone for
all displacements in Fig. 4.5. Apparently, the experimental data cannot be reasonably correlated
by the capillary number alone. The experimental results also indicate, therefore, that gravity forces
and the flow directions affect the residual nonwetting phase saturations.

Discussion

In the definitions of capillary number (N,;) and Bond number Np, five variables are in-
volved: the injection rates (v), the IFT (o), the density difference (Ap), the viscosity of the wetting
phase (), and the permeability of the medium (kk,,,). In the experiments described in the pre-
vious section, we varied IFT and density differences, and injection rates to obtain a wide range of
capillary and Bond numbers. To check the other parameters, we review the experimental results of
Morrow and Songkran[91] and Morrow et al.[92]. In both studies, they varied the capillary number
and Bond number by changing different bead sizes and injection rates. Changing bead size changes
the permeability of the bead pack. The permeability of a beadpack can be related to the bead size
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Figure 4.5: The Correlations of residual nonwetting phase saturation with the capillary number
alone for all displacements.

through the Kozeny-Carman equation

k ?

X .

where A; is the specific surface area per unit solid volume, for spherical bead 4, = 3/R, K, is the
Kozeny constant, which is approximately equal to 5 for bead packings, and ¢ is the porosity of the
packing, which is about 0.38 for bead packings. Therefore, the permeability of a bead pack can be
simply related to bead size as

k = 0.00317R2. (4.33)

Thus, the correlation given by Morrow and Songkran [91] and by Morrow et al. [92] can rearranged
in terms of Ng as
Sor = f(Na 4 0.445Np). (4.34)

Comparison of Eq. 4.34 with our theory indicates that the wetting-phase relative permeability at
the trailing edge of the displacement front is about 0.445, which is consistent with the reported
measurements for a mimilar system [91, 92] (k. = 0.5).

We used a procedure similar-to that used by Morrow and Sougkran [91], and obtained a
least-squares fit of our residual oil saturations from gravity-favorable displacements with an effective
number defined as N. = N + ¢Npg. As Fig. 4.6 shows, a straight-line correlation on the semi-log
plot exists when ¢ = 0.5. The value of ¢ is the relative permeability of the wetting phase according
to Eqgs. 4.20 and 4.29. This value is very close to the measured relative permeability by Morrow
and Songkran [91] on a similar system. Again, our experiments suggest that a linear combination
of the capillary and the Bond numbers correlates the residual oil saturations, and the appropriate
coefficient is the wetting-phase relative permeability.
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Figure 4.6: Correlation of the residual oil saturations and the sum of the capillary and Bond
numbers for gravity-favorable displacements.

Using the same value of ¢, we correlated all our experimental results, as Fig. 4.7 shows, for
both gravity-favorable and gravity-unfavorable displacements. At high values of N, the correlation
is excellent, while it is less satisfactory when N, is small. The difference between the gravity-
favorable and unfavorable displacements may result partly from the accuracy of the flow rate and
permeability measurements, because the subtraction of the two numbers enhanced the significance
of the measurement error when these two values are comparable. In general, the correlation is good
and we obtain the following correlation of the residual oil saturation with the capillary and the
Bond numbers.

0.01227
N, a1+ 0.5N, B ).
Fig. 4.8 shows a comparison of the experimental data and the correlation given by Eq. 4.35.
Fig. 4.8 also demonstrates the significant directional effects of gravity forces on residual nonwet-
ting phase saturations. For a system with gravity forces comparable with viscous forces, gravity-
favorable displacements have much lower residual oil saturation than do.gravity-unfavorable dis-
placements. This directional effect of gravity forces on residual oil saturation shows that gravity
forces can reduce the residual oil saturations, as well as macroscopic sweep efficiency [136].
For a given system, it would be useful to determine which forces are most important.
Therefore, we rearrange the linear combination to obtain

Sor = 0.02 + 0.050500g( (4.35)

Apgk
N. = No(1+ =255, (4.36)
w?
The relative magnitudes of N2 and Np in a system can be reflected by the gravity number
Apgk
N, = . 4.37
9% Tuo (4.37)
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Figure 4.7: Correlations of Residual oil saturations and the sum of capillary and Bond numbers
from percolation theory and best-fit of the experimental data.

When N, > 1, the Bond number is the dominating factor, whereas when Ny < 1, capillary number
is the controlling parameter in determining the residual oil saturation.

We should note that the gravity number (Ny) is proportional to the medium permeability.
Thus, flow in a high-permeability medium will have larger gravity effects than that in a low-
permeability medium. To illustrate this concept, let us compare typical oil-spill and oil recovery
situations. The permeability of a typical soil is about 50 darcy, water viscosity is around 1073N *s
(1 cp), and the flow rate can be estimated to be 1 ft/day, which is about 3.5 x 10-%m/s. We
also assume that the density difference is about 300kg/m® and the IFT is about 40 x 1073N/m.
The gravity number (N,) is about 2.5, that is, the gravity forces are larger than the viscous forces
in typical spilled-oil clean-up processes. For a waterflood oil recovery process, however, with a
permeability of the order of 100 md and the same fluid properties, the gravity number is about
5x 10~3. Thus, the effects of density difference and flow direction will be more important in oil-spill
applications than in typical waterflood situations.

Conclusions

In this work, we presented two different models of oil entrapment mechanisms, and exper-
imental results from oil displacements with gravity forces assisting and impeding the oil recovery
processes. We draw the following conclusions:

1. We demonstrated theoretically and experimentally that a linear combination of gravity
and viscous forces can be used to correlate residual nonwetting phase saturations for both gravity-
favorable and gravity-unfavorable displacements.

2. Changing the value of capillary and Bond numbers by varying interfacial tension, density
difference and injection rate give similar effects on residual nonwetting phase saturations in our
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Figure 4.8: Comparison of the correlation with experimental data (lines are correlations and dots
are the experimental data).

experiments.

3. When gravity forces are comparable to or larger than the viscous forces, gravity-
unfavorable displacements have significantly higher residual nonwetting phase saturation than
gravity-favorable displacements.

4. Because soils have much higher permeabilities than oil reservoirs, gravity effects on
residual nonwetting phase saturations are much more significant in spilled-oil clean-up than in oil
recovery processes.

4.2 Three Phase Flow and Gravity Drainage in Porous Media

Dengen Zhou and Martin Blunt

4.2.1 Introduction

The displacement of oil by gas in the presence of water is an important recovery process in
gas injection processes and similar ideas apply in the cleanup of contaminants spilled below ground.
The displacement of oil by gas under gravity (gravity drainage) occurs in oil reservoirs when the
gas cap expands as the pressure drops, when oil condensate forms, or when gas is injected into
the gas cap. Three phase flow is also seen when natural gas, nitrogen, carbon dioxide or steam
are injected into the field to displace oil. In an environmental context, the spilling and leakage of
hydrocarbons and organic solvents can be significant contributors to groundwater contamination.
The low solubility of these products means that they are often present in their own phase. An
oil that is less dense than water, such as a fuel, will migrate downwards until it rests above the
water table. The effects of water table movement, capillarity and gravity will smear the oil in
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a region above and below the water table, where both air and water are also present. Artificial
lowering of the water table by pumping results in the displacement of oil by air through a wet soil.
This again is a gravity drainage process. Since the work of Dumore and Schols [35] , it has been
known that gravity drainage in water-wet rock can lead to a high oil recovery, with residual oil
saturations of a few percent in the presence of immiscible gas and water, which is much lower than
the residual oil saturation in the presence of water alone. Further studies on sandstone cores, bead
packs and sand columns [18, 71, 127] confirmed these results. It was suspected that the high oil
recovery was due to drainage through films of oil that lie between the water and the gas in the pore
space. This film drainage has been observed directly in two dimensional etched glass micromodels
by Kantzas et al. [72], Oren et al. [97], Oren and Pinczewski [96], Kalaydjian [69] and Soll et
al. [113]. Tt was shown by Oren et al. [97], Vizika [127] and Kalaydjian [70] that systems with
a positive spreading coefficient, which means that the oil spontaneously spreads over a water/gas
interface, would experience film drainage and high recoveries, whereas nonspreading systems would
see lower recoveries. It was suggested by Kantzas et al. [72] that the recovery could be determined
by the stability of the oil film, which is controlled by capillary and intermolecular forces, rather
than the spreading coefficient alone. In this work, we investigate the fundamental mechanisms of
oil recovery in three phase flow, in water-wet porous media, starting at the molecular scale, and
provides a predictive theory of gravity drainage. The principal issues are: (1) the thickness and
stability of thin oil films controlled by intermolecular forces; (2) the thickness of oil layers during
drainage; (3) the flow rate in these layers; (4) the final oil recovery and fluid distribution. We will
show that for a spreading system (typical of most fluids in polluted soil and oil reservoirs), the
oil layer provides pressure continuity for the oil phase, thus preventing it from being trapped. Oil
can drain rapidly by swelling these layers to occupy the crevices and roughness in the pore space.
However, the final oil saturation can be essentially zero, with the oil confined to thin, molecular
films. In vertical capillary/gravity equilibrium, where the oil density is less than that of water,
there is a finite height above the water table (or the water/oil contact) where the ‘connected oil
saturation is zero. This height is determined solely by the height of the oil bank, and the surface
_ tensions and densities of the fluids, but is independent of the pore size distribution. Non-spreading
systems do not allow drainage of oil layers and give lower recoveries from gravity drainage. These
findings are confirmed by a series of experiments on sand columns and capillary tubes.

4.2.2 Does Oil Spread on Water?

With three phases present in a porous medium, it is possible for oil to spread between water
and gas in the pore space. This phenomenon is determined by the spreading coefficient C,

Cs = Yow — Ygo = Yow> (4-38)

where Y50, Ygo and Yo, are the gas/water, gas/oil and oil/water surface tensions respectively
measured on the fluids before they are brought into contact with each other. If Cs > 0, the contact
line between the three phases is unstable and the oil spreads, as Fig. 4.9 illustrates. Most solvents,
hydrocarbons and crude oils (see p. 104, Table 5 of [93]) do have a positive spreading coefficient.
In this work we will distinguish between an oil film, a few nanometers across, and an oil
layer which may occupy crevices in the pore space and be microns thick. On a flat substrate, the oil
eventually forms a film of approximately molecular thickness, between 0.5 and 5 nm across. This
behavior is consistent with everyday experience: gasoline spilled on a puddle of water, for instance,
will spread until it forms a thin, iridescent film on the water that is only of order a molecular
diameter across. The water/gas interface containing this oil film has a much lowered effective
surface tension for which, if there is no pressure difference across the film, the effective spreading
coefficient is zero or negative [3, 46, 110]. The thickness of an oil film can be predicted by calculating
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Figure 4.9: Distributions of three fluids in contact.

the van der Waals forces between the water, oil and gas. Our computation of the film thickness is
similar to the work of Oren and Pinczewski [95], although we use the complete expression for the
van der Waals force [?]. We have shown [11] that on a flat surface most hydrocarbons form a film,
whose thickness depends on the capillary pressure and displacement history. The same behavior has
been predicted for wetting films [57]. The film provides pressure continuity for the oil phase. This
means that isolated oil ganglia, trapped and surrounded by water, can become connected during
gas injection, when the gas contacts the oil. However, we will show that the drainage rate through
these films is far too slow to account for the oil recoveries observed experimentally. Thicker oil
layers in crevices of the pore space must provide channels for more rapid drainage. The calculation
of film thickness using van der Waals forces is presented in Section 4.3.

4.2.3 Configuration of Three Phases in the Pore Space

Oil films in a cylinder

Fig. 4.10 shows the schematic arrangement of fluid in a cylindrical concavity of the pore
space. Water wets the solid. Oil is intermediate-wet and occupies a film of thickness ¢, while the
gas, being nonwetting, fills the center of the cylinder. The equilibrium film thickness is found from
the augmented Young-Laplace equation

Ygo Vg0
ego = Ho(t - = li, — .
Prgo = T(t) + 722 = () + 22 (439)

where Py, is the gas/oil capillary pressure, w is the water film thickness, rg, is the radius of
curvature of the gas/oil interface and II,(¢) is the disjoining pressure that accounts for the influence
of intermolecular forces on the oil [27]. A positive disjoining pressure is equivalent to a repulsion
between the gas and the water, leading to swelling of the oil film, whereas II,(¢) < 0 corresponds
to an attractive force that makes the film thinner. At distances greater than a few molecular
diameters, the main contribution to the disjoining pressure comes from the dispersive, van der
Waals force, which gives a small positive II,(t) for ¢ greater than approximately 10 nm for most
alkanes. For t less than around 10 nm, the intermolecular forces are controlled by steric forces,
can be very large and are significant compared with the curvature term in Eq. 4.39. A similar
expression can be written for the pressure difference between the oil and water phases

Moow = My(w) + 122 (4.40)

3
Tow
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Figure 4.10: Distribution of three fluids in a cylindrical region of the pore space.

where II,,(w) is the disjoining pressure of the water film. Fig. 4.11 shows II,(t) + 740/7g0 Plotted as
a function of t for an n-octane/water/gas system with a representative water film thickness of 10
nm on a quartz capillary of radius 500 zm. The computation of II,(¢) is described in our previous
work [?] and is accurate if r4o >> 1. For t less than 10 nm, the intermolecular forces are most
significant, whereas when t becomes close to r — w, the second term in Eq. 4.39 diverges. Stable
solutions are found when both Eq. 4.39 is obeyed and dP,.4/dt < 0. As indicated in Fig. 4.11,
there is a narrow range of capillary pressures, just above v4,/7g4, , for which a film of thickness
between 24 nm and 242 nm is stable, due to the long-range influence of van der Waals forces.
At higher capillary pressures, the film collapses to molecular thickness. Such thin films are also
observed on convex (protruding) surfaces. If we lower the capillary pressure below 7,,/74,, there is
no stable solution unless the oil occupies the whole of the cylindrical cross-section and there is no
gas present. This spontaneous filling of a pore throat is similar to the snap-off mechanism, which
has been described before [87, 109]. The maximum oil film thickness on a cylindrical concavity can
be hundreds of nanometers. While this is much thicker than a molecular film, it is still more than
three orders of magnitude smaller than the radius of curvature of the solid surface.

Oil layers in an angular crevice

Fig. 4.12 shows the distribution of oil, water and gas in a square crevice. From geometrical
considerations, an oil layer is present if 740 > 7oy. From the augmented Young-Laplace Eqs. 4.39

and 4.40 this means that P I P 1
cow — 1y > cgo — o. (4.41)
Yow Ygo

If we consider thick oil layers, with w and ¢ taken to be 100 nm or more, the disjoining pressures
will be negligible, in which case the inequality above reduces to

Peow > P, cgo
Yow Ygo

(4:42)

If the oil/water pressure difference is much larger than the gas/oil pressure difference, it is possible
for a thick oil layer to occupy most of the crevice. A large oil/water capillary pressure forces the
water into the corner, while a relatively low gas/oil capillary pressure allows a thick oil layer to
develop. This can be true for any angular or sharp groove in the pore space. Since pore sizes are
typically in the range of 1 um to 100 pm or more, oil layers several microns across can exist. If,
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Figure 4.11: IIo(¢) +7g0/7g, computed as a function of oil film thickness, t, using the van der Waals
intermolecular force.

however, the inequality (Eq. 4.42), is not obeyed, only a film of molecular thickness will be stable,
where the disjoining pressures in Eq. 4.41 become significant.

To recap: on locally flat or convex portions of the pore space, the oil film thickness is a few
nanometers; a cylindrical concavity, with a radius of several 100 microns, can support films tens to
hundreds of nanometers across; whereas for sharp or angular crevices, layers several microns thick
will form if the oil/water capillary pressure is much larger than the gas/oil capillary pressure. If
the spreading coefficient is negative, a three phase contact line is stable, as shown in Fig. 4.9, and
no oil films are seen.

4.2.4 Drainage Rates
Predicted rates

Fig. 4.13 shows the vertical arrangement of water, oil and air (gas) in a capillary tube.
There are two oil ganglia separated by an air bubble of height h. If there is a film of oil that
connects the two blobs, there will be pressure continuity in the oil phase which allows the upper
ganglion to drain into the lower one under gravity. Since the air has a low density, the pressures
in the two ganglia are approximately equal when drainage starts. The gas/oil interfaces at z = 0
and z = h are assumed to be hemispherical caps of radius r, with a total curvature of 2/r. Thus
the gas/oil capillary pressure is approximately 27go/7. In a capillary tube of square cross-section,
the fluid configuration is shown in Fig. 4.12. If Pego = 2740/7, then the gas/oil radius of curvature,
Tgo = /2. Water will also occupy the corner, but as we increase 2, the oil/water capillary pressure
will rise, forcing water further into the corner. Thus, for large values of h, the oil can occupy almost
all the corner of the tube, resulting in rapid drainage. For smaller values of A, the water occupies
more of the corners, and the drainage rate is lower. The calculation of drainage rates in capillaries
of square and circular cross-section was reported in our previous work [133].
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Figure 4.12: The arrangement of water, oil and gas in a square crevice.

solid

Table 4.3: Fluid properties for the experiments presented

Experiments | 7oa(mN/m) | pu — polke/m’) | polke/m®) | po(kg/(ms)) | a
Mineral oil 54 157 1 833 0.005 8.9
Fig. 4.14 38.1 310 690 0.00048 4.03
Fig. 4.15 4.41 305 690 0.00049 0.47

Despite its simple geometry, the analysis for a cylindrical capillary is less straightforward.
There is no obvious force balance on the oil film and the oil pressure is not easily determined.
Pego = 2740/7 implies a thin, molecular film and a negligible drainage rate. However, when the tube
is held upright, gravity forces instantaneously lead to an increase in oil pressure. Moreover, small
vibrations can perturb the pressure in the oil and gas phases. 7,,/7 is only 42 Pa in the experiments
we perform, compared with the atmospheric pressure of 10° Pa. To match the experimental results
below, it appears that the oil pressure rises to make P.;, & 7g0/7 and the oil film swells to reach
its maximum stable thickness.

Experimental confirmation

We tested our predictions for the drainage times by performing a series of experiments with
glass capillary tubes. We first filled the tube with water. Then oil was introduced into the tube at
one end to form the lower oil blob. For runs without a lower oil ganglion (hy = 0) this step was
omitted. Water was subsequently drained out of the opposite end to allow air to enter the tube.
By controlling the amount of water that drained out, we controlled the height of the gas bubble,
h. The last step was to allow some oil into the tube, above the gas. The tube was then placed
vertically and we recorded the time for all the oil in the upper ganglion to drain. We conducted
experiments for high (iso-octane and distilled water) and low (a mixture of iso-octane, water and
iso-propanol partitioned into two phases) oil/water surface tensions. The fluid properties are shown
in Table 1. For a capillary tube of circular cross-section with r = 500 um, hz = 0 and b = 2 cm, it
took three weeks to drain 0.8 mm? of iso-octane from the upper ganglion. The uncertainty in our
measurement of the oil volume was 0.4 mm3. This is the same system for which we performed the
intermolecular force calculation in the previous section. An oil film of thickness t=310 nm would
give this drainage rate. Our predicted oil film thickness from the previous section is 242 nm, which
is consistent with our measurements.

We then performed a series of experiments in a capillary tube of square cross-section with
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Figure 4.13: Fluid configuration in a capillary tube with square cross section at the beginning of
drainage. ‘

a side of length 150 pm. We repeated the experiment for various values of h; and h. In each
experiment the volume of oil above the gas was 0.225 mm?.

Fig. 4.14 shows the results for the system with a high interfacial tension (IFT). The triangles
are the drainage times for different values of A when there is no initial oil bank (k2 = 0) and
the squares are the drainage times for the same fluids for various & and A2 = 4 cm. Increasing
h reduces the drainage time. The solid and dotted curves are our predicted times. The only
unknown parameter in the prediction is the conductance constant for the oil layer. This was
estimated to match the experimental results — only one parameter was used to match both curves.
The agreement between experiment and theory is good. Notice that the minimum drainage time
is just a few minutes, or several thousand times faster than in the capillary tube, even though the
tube is smaller for this experiment. The reason for this is that the oil can form a much thicker
layer (up to 15 um across) in the corners of the tube than can be supported on a smooth, concave
interface (only around 200-300 nm).

Fig. 4.15 shows the results from the low IFT system in the same capillary tube. Again
the agreement between experiment and theory is good. The drainage times are longer because the
viscosities of the water and oil phases are higher than for the high IFT fluids. We performed the
same experiments with a mineral oil that has a negative spreading coefficient. In this case there
was no drainage of the oil, since a spreading film was never established. On square capillaries with
a side of 1 mm or larger, droplets of the oil were observed to fall down the glass, like rain droplets
on a window pane. However, this phenomenon is only seen for large droplets and large capillaries
and is unlikely to be significant in porous media. Real porous media do contain angular or sharp
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Figure 4.14: Comparison of measured and predicted drainage times in a capillary tube of square
cross-section for a system with a high oil/water surface tension.

crevices that can support thick oil layers of order microns across during gravity drainage. This
provides a mechanism for relatively rapid displacement of oil. Flow rates across flat surfaces or on
uniformly concave interfaces are much slower. In all cases there is agreement between the predicted
and measured flow rates.

4.2.5 Vertical Equilibrium
A critical height

We now analyze the fluid distribution in vertical capillary/gravity equilibrium, at the end
of drainage, for systems with a positive spreading coefficient and for oils less dense than water.
Consider again the arrangement of fluid illustrated in Fig. 4.12. Since there is no direct contact
of water by gas, to the gas phase, oil and water combined appear to be the wetting phase. This
means that the gas/oil capillary pressure can be represented as a function of total liquid saturation
(So + Sw), as first suggested by Leverett [83] and confirmed by Parker et al. [102]. In contrast,
when C's < 0, oil remains in the system as lenses and is influenced by both oil and water separately.
As shown by Kalaydjian [69], this results in a gas/oil capillary pressure that is a function of both
Sw and S, rather than S, + S, alone.

Fig. 4.16 shows gas, oil and water in vertical equilibrium. z = 0 is defined as the level at
which oil is first mobile, or continuous, through the soil or rock. z = H corresponds to the height
at which gas is first continuous. Above z = H all three phases may be continuous. This diagram
corresponds to the arrangement of nonaqueous phase pollutant resting on the water table, or oil
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Figure 4.15: Comparison of measured and predicted drainage times in a capillary tube of square
cross-section for a system with a low oil/water surface tension.

and gas in a reservoir. Where the phases are connected we can write down expressions for the
pressures as a function of height
Py, = —zpung, . (4.43)

where P, is the water pressure, g the acceleration due to gravity and we define P, = 0 at 2 = 0.

Similarly we may write :
PO = P:ow — Z2po09, (4'44)

P.q:ngo+P:ow—Hp0g—(z—H)pgga (4'45)
where P* and P*

0 ~go are the threshold capillary pressures for oil invasion into water and gas invasion
into oil respectively. The capillary pressures are

Peow = Po — Py = Pl + 2(pw — 0)9, | (4.46)
cho':Pg—PQ=P¢:qo+(z"H)(po_pg)g' (4'47)

If the spreading coefficient is positive, the gas/oil capillary pressure is a function of the sum
of the water and oil saturations. The oil/water capillary pressure, where water is the wetting phase,
is a function of §,,. We assume that the functional forms of both capillary pressures are the same,
but multiplied by their respective surface tensions, which control the relative strength of capillary
forces [7, 83].

Preow = Yowd (sw) + I, (4.48)

cho = 7goJ(3w + 50) + 11, ‘ (4'49)
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Figure 4.16: A schematic of the arrangement of water, oil and gas in vertical equilibrium.

where J is a capillary pressure function that represents the curvature of the fluid interfaces as a
function of saturation. In terms of the microscopic configuration of fluid, shown in Fig. 4.12, J(S,)
in Eq. 4.48 is 1/r4y, and J(Sy + S,) is 1/r4, However, this argument is completely general and
does not rely on any particular model of the pore level fluid distribution. The threshold capillary
pressures can be written P, = YouwJ™ and P, = ¥4,J* , where J* is the curvature necessary
for a phase to first enter the porous medium. The capillary pressure decreases with wetting phase
saturation [7]. Hence

J(5w) > J(Sw + So). (4.50)

This is equivalent to stating that rg, > 7, for an oil layer to exist in Fig. 4.12. From Eqs. 4.48
and 4.49 the inequality above becomes

Pcow ",Hw > cho . Ho.

Yow Ygo

Notice that this is identical to Eq. 4.41. By using a capillary pressure analysis, or by considering
the microscopic arrangement of fluid in a pore, we arrive at the same inequality for continuity of
the oil phase. We substitute Egs. 4.46 and 4.47 into 4.51 to find

_ I
z iPo—ngg >a
9

(4.51)

» e > (4.52)
(- H) - 555y
where _
o= Jowle~ Py (4.53)

Vg0 Pw = Po’
Thus, o is a property of the fluid surface tensions and densities. This expression, without accounting
for disjoining pressure, was first derived by Kantzas et al.[72]. For a bulk phase to be present, the
disjoining pressures will be negligible and we may write

> a. (4.54)
z —
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Figure 4.17: The distributions of water, oil and gas in vertical equilibrium. (a) for a < 1; (b) for
a =1; and (c) for a > 1.

For 0 < a < 1, the inequality above is always obeyed, which means that connected oil
exists at all heights above the oil bank. If o > 1, there is a finite height at which oil in thick layers
cannot exist, which means that oil must reside in thin films a few nanometers across, where the
disjoining pressures are significant. The oil saturation of this film will be at most 0.01% and may
be considered negligible. The critical height z. at which the oil saturation becomes virtually zero

* _ oH H
S G o
For systems with « > 1 the minimum oil saturation is zero. In contrast, residual oil
saturations in the range 0.1 to 0.5 are encountered in water-saturated porous media [34]. Lowering
the water table in a region polluted by free product, or gas cap expansion into a waterflooded
reservoir, will mobilize this trapped oil and allow some of it to be recovered by direct pumping.
Fig. 4.17 shows schematic graphs of saturation versus height for different values of a.
Fig. 4.17(c), for > 1, demonstrates how the connected oil saturation decreases to zero at some
critical height z.. Above z, the fluid distribution is governed by the gas/water capillary pressure
(the sum of Eqs. 4.46 and 4.47). The gas/water interfaces will be covered with an oil film, giving
a lowered effective gas/water surface tension and an effective spreading coefficient that is approx-
imately zero [3, 110]. For continuity of the water phase at z = z, the effective gas/water surface
tension must be 7., + Ygo-

(4.55)
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How much oil can be trapped?

If gas displaces connected oil, there is no mechanism for the oil to become trapped and the
oil saturation above z, will be zero. If gas displaces trapped oil, such as waterflood residual oil in a
reservoir, or immobile product just below the water table, oil can remain trapped if it has not been
directly contacted by gas. This interpretation is consistent with sand column experiments which
showed better recoveries for gravity drainage from continuous oil than for drainage of hitherto
residual oil [71].

In this section we will consider gravity drainage of previously discontinuous oil. An indi-
cation of the amount of oil that can remain trapped is the water saturation at 2.. Trapped oil at
z = 2, is contained in ganglia completely surrounded by water that has not been displaced by gas.
At heights above and below z less oil will be trapped. Above z., the water saturation is lower and
more oil will have been contacted by gas. Below z. the mobile oil will have reconnected previously
trapped ganglia. If we know the three phase capillary pressures, we can calculate the oil and water
saturations. One possible parameterization for the capillary pressure function J is [15]

J(Sy) = J*S~YA, (4.56)

where J* represents the threshold entry curvature [22], S is the wetting phase saturation and A
is a constant that depends on the pore structure of the medium and is generally in the range 0.2
1.0 [81]. Other expressions for the capillary pressure have been proposed [102, 126). The capillary
pressure we use has no irreducible or residual water saturation [81]. We could allow an irreducible
water saturation, but we do assume that all the oil filled pores can be accessed by gas.

We use Eqs. 4.46, 4.48, 4.53 and 4.56 to find the water saturation as a function of height

2(po — Py)g -
S, =142 _fe2 . 4.57
( aJ*Ygo ) ( )

and at z = z., from Eq. 4.55

_ H(po = pa)g |~
Sw(ze) = (1+ m) . (4.58)

If we increase H, the water saturation at z. decreases, as illustrated in Fig. 4.18. This
means that the trapped oil saturation at z. decreases and the gravity drainage process is more
efficient. If we take typical values for a polluted sandy soil: H = 0.1 m, J* = 10* m™?, a = 4,
A =1, py —pg = 10° kgm=3, p, — p; = 700 kgm™2 and 7y, = 0.02 Nm~?, we find S, = 0.47, which
could allow some oil to be trapped. However, if the pore size distribution is uniform, very little oil
remains trapped, even for small values of H, as demonstrated in sand column experiments [71]. In
contrast, a large oil bank in a water-wet reservoir, with the same values as above, except J* = 10°
m~?! and H = 100 m, gives S,, as less than 1%. The residual oil saturation at 2. must therefore be
much less than 1%. Oil is only trapped if we have a mixed-wet or oil-wet system.

If we have a nonspreading system, three phase contact lines between the phases are stable,
oil films and layers do not form and oil can remain trapped. The recovery from gravity drainage
will be lower than for systems with C, > 0 with the same value of .

Experimental confirmation

Several investigators have performed gravity drainage experiments, where gas displaces
water and residual oil, or oil and residual water, under gravity [11, 18, 35, 71, 72, 127] and have
shown that final oil saturations as low as 1% are possible. These very good recoveries have been
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Figure 4.18: A schematic of water saturation variation with the increases in the height of oil bank.

explained by the drainage of oil layers between the gas and water [69, 70, 97, 96, 113]. It has been
shown that lower final oil saturations are seen for systems with a positive spreading coeflicient than
for nonspreading oils [70, 97, 127]. However, none of these authors made quantitative predictions
of the variation of recovery with fluid properties.

We performed experiments in sand columns of two heights: a long column of 97.5 cm, and
a short column of 47 cm. Both columns had a diameter of 2 cm. They were filled with a clean,
well-sorted sand with a mean grain diameter of approximately 0.3 mm, a permeability of 48 D and
porosity of 0.28.

The sand column was first fully saturated with water. The top and bottom valves at the
end of the column were then both opened to allow the invasion of air and the free drainage of
water. We waited at least 24 hours until no further water was produced. 30 cm® of oil was then
slowly poured into the top of the column to represent the migration of draining oil towards the
gas/water contact. Oil accumulated at the bottom of the column and was allowed to drain out
freely. Periodically, air at just above atmospheric pressure was pumped into the top of the column
to displace the oil bank. This exercise stopped when there was no further production of fluids. No
further oil was recovered after two weeks of drainage.

For a nonspreading mineral oil (Drakeol 5), we found that 14 cm® remained in the long
column and 9 cm® remained in the short column. Zhou and Blunt [133] conducted the experiment
described here for spreading systems with various values of a. By using Corey type capillary
pressures, Eq. 4.56, the amount of oil left in the columns could be matched using A = 0.92, a value
previously measured on a well-sorted sand by Lenhard and Parker [81].

Fig. 4.19 plots the results for both the spreading and nonspreading oils. There is little
change in oil saturation for the short column. This is because the critical height 2. is above the top
of the column for most of the experiments, and thus it is difficult to distinguish between o < 1,
o > 1, spreading and nonspreading systems. For the long column, however, the average saturation
at the end of the experiment decreases from approximately 16% for a = 0.47 to 8% for a = 4.0.
The difference in recovery for the two columns represents the amount of oil remaining in the upper
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Figure 4.19: The amount of oil remaining in the sand columns as a function of a.

portion of the long column which varies from 14 1for @ = 0.47 to 1+1% for a = 4.0. For a spreading
system, the final oil saturation well above the oil/water contact changes by a factor of twelve with
o . The oil remaining can be predicted successfully, as shown in Fig. 4.19. For large o the amount
left is zero to within experimental error. The nonspreading oil (the points to the right in Fig. 4.19)
gives a poor recovery, even though it has a large value of a, because in this case oil can be trapped.

Discussion

The critical parameter that determines oil recovery by gravity drainage for a spreading
system is a, which is a property of the fluid system alone and independent of the porous medium,
as long as it is water-wet. For most fluids o > 1, which means that above a critical height the
residual oil saturation can be zero. However, if surfactant flooding is used to displace oil in the
presence of gas, this will dramatically decrease 7., and a will be less than 1. This will mean that
in vertical equilibrium, appreciable quantities of oil can be retained above the oil/water contact.
The recovery of oil from gravity drainage is most efficient for large a, which can be achieved by
lowering the gas/oil surface tensjon. In oil reservoirs, the natural gas may be almost miscible with
the oil, leading to very low values of v4,/(po — py) and an extremely high oil recovery.

4.2.6 Conclusions

The mechanism of gravity drainage is transport through thick oil layers sandwiched between
water and gas, which occupy the crevices of the pore space. These layers form spontaneously if the
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spreading coefficient is positive. In the experiments we performed, nonspreading systems did not
form oil layers and gave poorer recoveries.

The distribution of oil, water and gas in vertical equilibrium for a spreading system is
controlled by the parameter a, Eq. 4.53. Typically & > 1, and there is a finite height above which
the oil saturation can be zero, apart from thin molecular films. This height is a function only of the
fluid densities and surface tensions and is independent of the soil or rock type. For a < 1, which is
seen for surfactant floods, a large quantity of oil can be contained above the oil bank.

4.3 Predicting the Spreading and Stability of Thin Hydrocarbon
Films |

Darryl H. Fenwick

4.3.1 Introduction

In the previous section, the importance of oil films to three-phase gravity drainage was
established, and experimental results were reported that show that low saturations can be achieved.
In this section we examine the fundamental forces that create and maintain oil films. The goal of
this work is to establish a physical explanation for transport of oil at low saturations, whether that
transport is due to viscous forces or gravity forces, and to provide understanding of the physical
mechanisms that can be used in the design of gas injection processes to create conditions at which
that transport is possible.

One of the first recorded experiments concerning the spreading of oil on a water surface in
the presence of air was performed by Benjamin Franklin [120] in 1770. Franklin observed during an
ocean voyage that as the cooks dumped their greasy water overboard, it had the effect of smoothing
the wake of the ships. Inspired, Franklin performed an experiment on Clapham pond in London,
where on a windy day he poured a small amount of oil on the rough pond, which rapidly spread out
and covered nearly half an acre, smoothing the surface of the pond. Franklin found it remarkable
that the same oil that remains in droplets when placed upon a marble table could spread so rapidly
to such a small thickness when placed upon water. It may not have been apparent to Franklin
at the time that this phenomena is caused by very subtle intermolecular forces that govern the
interfacial tensions. Interestingly, since he knew the volume of oil which he placed upon the water,
and he approximated the area that the oil covered, he could have made 2 calculation as to the
thickness of the oil film. If he had, the thickness would of been on the order of 1 nanometer, which
would’ve given Franklin remarkable insight into the size of molecules for his time.

Due to the effort of Franklin and the many scientists that followed him, it is common
knowledge that many hydrocarbons will spread on water. Many oils, such as mineral oil or n-
decane, will not spread on water. The spreading of oil on water in the presence of air is determined
by the equation that defines the initial spreading coefficient,

st = Yow — (790 + '7ow) ’ (4.59)

where 7;; is the interfacial tension between phases ¢ and j. Fig. 4.20a shows that Eq. 4.59 is simply
a force balance at the three phase contact line of water/oil/gas. If § I > 0, then there is no contact
angle 0 that balances the forces in the horizontal direction. Hence, the oil will spread.

When oil molecules are allowed to occupy the gas/water interface, either through the spread-
ing of the oil over the water or through adsorbtion from the vapor phase, then the gas/water in-
terfacial tension is reduced and is defined as an effective gas/water interfactial tension, 7;,,. It is
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the lowering of the gas/water interfacial tension that causes the smoothing of the waves observed
by Franklin. When the three phases are at equilibrium, the equilibrium spreading coefficient can
be defined as

5§ = 7;11/ = (Y90 + Yow) - (4.60)

If 5°7 = 0, then the contact angle 6 will be zero, and the oil will reside in a flat film (Fig. 4.20b).
If $° < 0 and §7 > 0, then the oil will spread initially, but a finite contact angle 6° exists such
that the oil will be found in blobs connected by thin films that occupy the gas/water interface
(Fig. 4.20c). The latter is found to be the case for benzene [3] as well as pentane, hexane, and
heptane [26].

When gas contacts oil in a water-wet porous medium, which occurs during gas injection into
a water-wet oil reservoir, the three phases will behave in the same manner as Benjamin Franklin
observed. If the initial spreading coefficient of the oil is positive, the oil will spread between the
water and gas. The equilibrium configuration will depend on 57, as indicated in Fig. 4.20. The
initial spreading coefficient has important implications for the recovery of oil from porous media. In
many experiments simulating gas injection processes, final oil saturations as low as 1% have resulted
from the displacement of oil in the presence of both water and gas. It has been suggested that this
high recovery is because of the existence of a layer of oil between the water and gas phases, making
a continuous channel through which the oil can drain ([10], {?], [12], [18], [73], [99], [98]). In gas
condensate reservoirs, the condensed fluid will also be found in continuous films between the water
and gas. Since 74, will be small, the initial spreading coefficient will most likely be positive. The
condensate can also be recovered by drainage through the layers between the water and gas. For
CO: injection as well, 7y, will be small as miscibility is approached, and 57 may increase positive
values, creating continuous oil films. This may be another method in which CO; helps to increase
recovery.

Therefore, a positive spreading coefficent enables the oil to be connected down to very low
saturations through the thin films between the water and gas that results in a low residual oil
saturation. The stable thickness of the oil film also has consequences for the recovery of oil. If the
equilibrium thickness of an oil film is found to be very small, such as the molecular size film that
Benjamin Franklin might have found, then the drainage of oil through the thin film is expected to
be much slower than a thicker film [10].

Of course, one cannot approximate a porous medium by the surface of a pond. Most oil
reservoirs are at elevated temperature, which can affect the interfacial tensions (and consequently
ST and §°9). The presence of the rock can affect the intermolecular forces that govern the spreading
coefficients. Water salinity can also affect the initial and equilibrium spreading coefficient. Also,
the surfaces in porous media are not flat, but contain many corners, edges, grooves, and asperities.
The curvature of the water surfaces may enhance or diminish the stability of thick films of oil to
exist. Also, Dong et al. [31] demonstrated that oil is capable of imbibing between water and gas in
the corners of the pore space. The imbibition of oil is constrained by the curvature of the oil/water
interface and the angle of the corner where the oil might imbibe. Because oil imbibition into corners
is dependant upon pore geometry, it may not be the more common method for oil to be established
in films between water and gas. However, this phenomena may help to explain certain experimental
results (such as Dumoré and Schols [35]). This section will not discuss oil imbibition into corners.

This section presents an analysis of the intermolecular forces that determine the initial and
equilibrium spreading coefficients and the stability (i.e. the equilibrium thickness) of hydrocarbon
films on water in the presence of gas. Lifshitz theory (see [37]) is used to evaluate the intermolec-
ular interactions. Lifshitz theory uses quantum field theory to provide an exact expression of the
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Figure 4.20: (a) A blob of oil initially resting on water in the presence of gas, (b) the configuration
of the three phases when 57 = 0, (c) The configuration when S? > 0, and S¢? < 0.
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energy and force across thin films. The expressions can only be solved for simple geometries, such
as the semi-infinite slab configurations in Figs. 4.21a and 4.21b. For even simple systems such as
those depicted, the equations are very complex. Thus, most authors use approximate forms when
calculating intermolecular interactions ([57], [58], [59], [95], [105]). Hirasaki [58] used an approx-
imate form for the Lifshitz theory equations and an equation to approximate the intermolecular
interactions at very small film thicknesses (discussed in Section 4.3.2) to predict the initial and
equilibrium spreading coeflicients with good accuracy. Here, the full expression will be used to
predict the behavior of several of the n-alkanes as well as benzene and cyclohexane.

The spreading and stability for flat hydrocarbon films, such as the film in the experiment
of Benjamin Franklin and shown in Fig. 4.21a, will be considered first. Systems more applicable
to porous media will consequently be discussed. The influence of an underlying solid underneath
the water depicted in Fig. 4.21b will be investigated. The effect of water salinity and temperature
on flat films will be demonstrated. Finally the influence of curvature on film stability will be
considered. First, a brief introduction to Lifshitz theory and the concept of disjoining pressure is
required.

4.3.2 Calculation Procedure

The full expression of the energy for the system depicted in Fig. 4.21a is expressed as [37],

B0) = o 3 (B02) [T o - At esp(-206.1vE10)
+ p (In(l - A12As; exp(—2p€al\/ez/c))) dp.

1=V€1/€2—1+P2’ 3 =1/€3/€2 — 1+ p?,

$1—p $3—p A __31—}761/62 X _33—P€3/€2

Aqg = Azg = = =
1 si+p 2 s3+p 12 81+ perfey’ 3 s3 + pesfer’

€1, €3, €3, are functions of the imaginary frequency i,, where £, = 2rnkT/h (n=1,2,3, ...), k is
Boltzmann’s contant, T is absolute temperature, c is the speed of light, 27h is Plank’s constant, p is
an integration variable, and ¢ is the dielectric permittivity of the material. The summation is over
integral values of n, and the prime on the summation means that the first term in the summation

should be multiplied by 1/2. Most authors approximate the energy of the configuration shown in
Fig. 4.21a as,

A3

where Ajq3 is called the Hamaker constant. A comparison of Eq. 4.61 and Eq. 4.62 demonstrates
that A3 is a function of film thickness and temperature, and is not a constant value. However,
the Hamaker constant approaches.a constant value for very small film thicknesses.

The derivative of the energy with respect to the thickness gives the force [37],

kT 24 3/2.,3 [® 2 1 -1
F(i) = pe € §n/1 p [A12A32 exp(2p€nli/ez/c) — 1]

n=0

, 1 -1
+ p"([A = exp(2p§nl\/—/6)—1] )dp-
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Figure 4.21: (a) Two semi-infinite slabs of materials 1 and 3 separated by medium 2 of thickness I.
(b) Additional layer of material 4 of thickness b on material 1.
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Eq. 4.61 and Eq. 4.63 can be solved given the dielectric permittivity € as a function of electromag-
netic frequency for materials 1, 2, and 3. The behavior of €(if,) for the materials in the system
will determine the disjoining pressure curve. (The form of € (¢£,) for the molecules discussed in this
section can be found in [59] and [103].) The dielectric permittivity is also a function of tempera-
ture. Unfortunately, the variation of ¢ with temperature is not well defined. Hirasaki [58] made
approximations to find the variation of the disjoining pressure with temperature, which will be
discussed later. Increasing salinity also affects the values of €(i€,) for water ([108]), and thus the
disjoining pressure curve.

For the case of Fig. 4.21b, where material 4 is covering material 1, the expressions for energy
and force are the same as Eqgs. 4.61 and 4.63, except that

Aor = Agy + Ay exp(—bsy/l)
17 1+ Azl exp(—bsa/l)’

where s4, Agy, and A,y are analagous to the expressions given above.
A well known and useful term, the disjoining pressure II is simply the opposite of the force,

oF
II= a7 = ~F(l). (4.64)
The oil disjoining pressure is found in the augmented Young-Laplace equation for the capillary
pressure between gas and oil,

cho = 2H7go + H'(l)o,

where P, , is the gas/oil capillary pressure, v is the interfacial tension, and 2H is the mean curvature
of the interface between the phases. The disjoining pressure can be thought of as the additional
pressure a film of fluid exerts to promote its stability. Thus a positive disjoining pressure indicates
that the thin film can support a difference in pressure beyond that which the curvatures between
the two phases would indicate.

The condition of stability for the system depicted in Figs. 4.21a and b is [28],

o1,
ol

that is, the pressure difference between the two bulk phases must intersect the disjoining pressure
curve where the slope is negative. It is important to note, however, that Eq. 4.61 and Eq. 4.63
approximate the molecules as single points in the medium. Thus, when the thin film approaches
the size of the molecule, the equations deviate from the true values.

The deviation from Lifshitz theory is due to structural forces ([21], [28]). Structural forces
account for the finite-sized molecular effects on the behavior of the thin film. Due to the very
complex nature of finite-sized molecular interactions, very few forms for the structural forces exist.
A semi-empirical exponential decay expression for structural forces has been proposed ([21], [60]),

P,

Cgo

= Hm

<0,

I,(I) = Aexp(~l/a), (4.65)

where o is the characteristic molecular size of the film. Since the energy of the system at zero
thickness is equal to the initial spreading coefficient (see [10], [25]), the constant A is equal to
S§T/o. Eq. 4.65 is usually added to the general Lifshitz expression (Eq. 4.64) up to a given decay
length. However, the energy of the system is not continuous if this is the case, which is unphysical.
Thus, a scheme has been developed that combines the structural forces to the continuum disjoining
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pressure equation such that the energy is a smooth function. This expression approximates the
structural forces well. Unfortunately, the initial spreading coefficient of the system must be known.

Hirasaki [58] has also derived an expression for the structural force of a thin film by assuming
that under molecular thickness, the film behaves like a two dimensional gas. This assumption allows
an expression for the structural forces to be obtained by using the 2-D van der Waals equation of
state.

_ A123 2(121 k_T( v (v ))
L =-Gert v "% oot 2\m, ! (4.66)

For Eq. 4.66, A3 is the Hamaker constant evaluated at small thickness I*, v is the specific volume
of material 2, and a, and b; are the 2-D van der Waals equation of state parameters. The transition
from structural forces to the continuum model occurs when the two curves intersect. This approach
works well in predicting the initial and equilibrium spreading coefficients of many systems. However,
the energy is also discontinuous at the intersection of the two curves. Eq. 4.66 gives an expression
of the structural forces that contains more physical insight than the semi-empirical Eq. 4.65. Later,
a comparison of the results using the two expressions will be made.

‘ Once the expression for the disjoining pressure as a function of length is evaluated, the
initial and equilibrium spreading coefficient of the system can be determined. The initial spreading
coefficient is given by ([90]),

ne*) . '
ST = lim I'dir’. (4.67)
l—o00 T1(i=0)
Eq. 4.67 allows us to predict the spreading coefficient given II (/). Consequently, any change in
€ (i€,) or temperature will affect SI. The equilibrium spreading coefficient is given by ([90}),

leg
—_ 1 317
§°1 = _ /oo Wdl’ + (1), - (4.68)
The subscript eq indicates the values should be evaluated at equilibrium. Thus, Eq. 4.68 shows
how the equilibrium spreading coefficient varies as the thin film varies in thickness. If an initial
and equilibrium spreading coefficient for a given system is known, Eqs. 4.67 and 4.68 can be used
to determine whether a reasonable characterization of the intermolecular forces has been found.

4.3.3 The Behavior of Flat Films - No Curvature

Several authors have already investigated the stability of flat hydrocarbon films such as
those depicted in Figs 4.21a (where material 1 is water, material 2 is oil, and material 3 is water
or a gas) [108], [59], [26], [60], [58]. However, each approach had its limitations. Richmond et al.
[108] and Del Cerro and Jameson {26] used a numerically dangerous and unnecessary interpolation
procedure in obtaining e (i£,). Hirasaki [58] and Hough and White [59] used an approximate form
of Eq. 4.61 accurate only for small film thicknesses (< 5nm). Israelachvili [60] used an approximate
form of Eq. 4.61 as well as an approximate form of € (i¢,). Only Hirasaki [58] included an expression
for the structural forces.

Fig. 4.22 and Fig. 4.23 presents the disjoining pressures for a water/hydrocarbon/air system
for several of the n-alkanes using Eq. 4.66 and Eq. 4.65 respectively for the structural forces. For
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Figure 4.22: The disjoining pressure at 20°C as a function of film thickness for various n-alkanes
using Eq. 4.66. Inset shows the disjoining pressure at large thicknesses.
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Table 4.4: Comparison of results with experiment using different forms for the structural forces
(Eq. 4.65 and Eq. 4.66) at 20°C.
All values in mN/m
Exp. Decay Hirasaki Experimental
s’ See St Seq S’ Seq
pentane 6.14 | -0.04 | 6.39 | -0.04 | 6.10 | -0.50
hexane 351 | -.52 | 3.31 |-0.55 | 3.40 | -0.50
heptane 1.40 | -0.96 | 0.92 | -1.12 | 1.20 | -0.70
octane 0.35 | -1.35|-1.25 | -2.10 { -0.80 | -1.90
decane -3.36 | -3.06 | -4.65 | -4.89 | -3.40 | -3.90
dodecane |-5.79 | -4.54 | -6.77 | -6.86 | -5.80 | -6.10
benzene 9.57 | -445 | 4.71 | -2.17 | 8.9 -1.6
cyclohexane | -2.86 | -3.68 | -3.32 { -4.34 | -2.95 | -4.16

Fig. 4.23, o was set to the value used by Hirasaki [58], which was 2.3 A. The decay length was
chosen to be 1.50, which is a reasonable value [60]. Fig. 4.23 demonstrates the limitations of using
the semi-empirical Eq. 4.65. Although the energy is a continuous function, the d13301n1ng pressure is
not. Also, the alkanes exhibit seemingly unphysical behavior as the film approaches 1A. However,
Table 4.4 indicates the simplified equation does agree well with the more physically based Eq. 4.66
and with the experimental results (taken from [58]), with the exception of decane and dodecane.
These alkanes have S > S!, which is not physically possible. Note that the results for octane
for the exponential decay structural forces used an initial spreading coefficient of 0.15mN/m (
§¢¢ = —0.85mN/m) from the Girifalco and Good data taken from Hirasaki [58]. Note also that the
data using the structural forces in Eq. 4.66 predict that at room temperature octane and heavier
alkanes do not spontaneously spread on fresh water, but the lighter alkanes do spread.

Figs. 4.22 and 4.23 indicate that, for values of P., that we find in typical petroleum
reservoirs (~ 5,000 Pa), the equilibrium film thickness of the hydrocarbons examined are on the
order of molecular size or smaller. This has important consequences for film conductivity, which
would be extremely low at such thicknesses. Note that the strength of the structural forces (the
pressure scale is in MPa) can maintain the small film up to extreme pressure differences, which
indicates that in gas injection processes or gas condensate reservoirs where oil can spread, a layer
of oil between the water and gas will always be present.

Fig. 4.24 demonstrates that if P, were near 0.2 Pa, pentane could have a , stable film
thickness in the region of 55 nm. It is well documented that pentane exhibits strange behavior when
placed on water [26]. The disjoining pressure curve for pentane demonstrates how the equilibrium
thickness (and correspondingly the equilibrium spreading coefficient) can vary under subtle changes
in pressure. If the capillary pressure were to drop even further, hexane, heptane, and octane could
also form stable, thick films up to 100 nm. Such low capillary pressures are unlikely to exist under
reservoir conditions.

4.3.4 The Influence of Underlying Rock

In water-wet reservoir rocks, the water will reside on the rock grains, possibly in very thin
films. To determine whether the rock influences the stability of the hydrocarbon films, calculations
were made for the configuration depicted in Fig. 4.21b, where material 1 is now crystalline quartz,
material 4 is water of thickness b, material 2 is octane, and material 3 is air. The behavior of
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Figure 4.25: Disjoining pressure at 20°C of octane for quartz/water/octane/air system with varying
water film thicknesses.’

pentane, heptane, and hexane on quartz can be inferred from the calculations.

Fig. 4.25 shows the disjoining pressure of octane for various water film thicknesses. Hi-
rasaki’s [58] expression for structural force was used for Fig. 4.25. If there is no water, the disjoining
pressure is always positive, and octane will wet the quartz surface in the presence of air. The same
will be true of all hydrocarbons. If there is a 10 A film of water on quartz, thick octane films from
2 nm and above can exist up to capillary pressures up to 20,000 Pa. For a 20 A film, P.,, must
be below 1,500 Pa before thick films of 20 nm and above can be found. Above the peak capil-
lary pressures, the octane films can only be found at the small thicknesses stabilized by structural
forces. Of course, an octane film must be established first before it may reside in thick films. The
calculation of $! for the curves in Fig. 4.25 indicates that octane does not spread at 20°C. However,
the initial and equilibrium spreading coefficients are found to increase (87 = 0.7, 59 =—1.6 at
10 A). The smaller alkanes will be able to maintain stability at large thicknesses at higher values
of P,,. In general, for a water-wet porous media, the thickness of water films on the rock grains
will be greater than 50 A due to the very strong structural forces of water [21]. Thus, the influence
of the solid on the stability of the oil will be minimized, and the hydrocarbon films will most 11kely
be of monomolecular thickness. However, for those particular cases where the water film is 20 Aor
less, or non-existent, the oil film may be 1 to 100 nm thick, depending on the composition of the
oil and the disjoining pressure.
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Figure 4.26: Disjoining pressure for several alkanes between air and 2M NaCl water.

4.3.5 The Influence of Salinity on Hydrocarb/on Films

Richmond et al. [108] indicated that the addition of salt to water would change the dielectric
permittivity. Their calculations showed that the change to € (if,) results in a dramatic change of
the behavior of hydrocarbon films on water. However, their expression for the dielectric permit-
tivity used an incorrect interpolation method. Fig. 4.26 gives the disjoining pressure curve for a
water/alkane/air system with 2M NaCl dissolved in the water. Note that a different expresssion for
€ (i€, from the previous calculations is used, which tends to overestimate slightly the ability of the
alkanes to maintain thick films. The results show that at 2M NaCl solution, octane forms stable,
thick films of water without the influence of structural forces. The results also indicate that the
initial spreading coefficient for 2M water/octane/air is positive ( refer to Eq. 4.67). Thus, the ad-
dition of NaCl can significantly change the behavior of water/hydrocarbon/vapor systems. Heavy
alkanes may be able to spread on water and form thick layers, which will enhance the connectivity
of the oil and increase the flow of oil through the films. The calculations also show that nonane
will spread and form stable layers on 2M NaCl water, though this result can be questioned because

the dielectric permittivity used is not precisely known. ‘
If more salt is added to the water, the heavier alkanes can spread and begin to form stable
layers. Fig. 4.27 indicates that tetradecane can spread and form stable, thick layers, for a 4M NaCl

water. Note again that this result is uncertain due to the poor description of € (if,). However, the
trend of increasing S and film stability with increasing salinity is evident.
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Not to Scale

Figure 4.28: A smoothly curved quartz grain of radius R with a water layer of thickness b separated
from a gas by a layer of oil.

4.3.6 The Influence of Temperature

Hirasaki [58] investigated the effects of temperature on the wetting behavior of hydrocar-
bons on poly(tetrafluoroethylene) (PTFE). He found that the equilibrium spreading coefficient was
affected strongly by the change in temperature. §¢ for hexane was found to go to zero for tem-
peratures above 60° C. The equilibrium spreading coefficient of octane increased to zero at 125
°C. §¢ of decane was zero at 180°C. No calculations were made for hydrocarbons on water. The
behavior of hydrocarbon films upon water can be expected to be similar, but not exactly like the
behavior on PTFE. More work on the influence of temperature on the spreading and stability of
hydrocarbons is forthcoming. '

4.3.7 The Influence of Curvature on Hydrocarbon Films

Surfaces in porous media do not resemble Fig. 4.21. Reservoir rocks are characterized by
rough surfaces with many corners, crevices, edges, and protrusions. Unfortunately, equations for
the disjoining pressure do not exist for such complex geometries. However, valid approximations
for many smoothly curved surfaces are available. Fig. 4.28 is a depiction of a curved quartz grain
with a radius of curvature R with a water film coating the surface separated from a gas by a thin
film of oil. If R > I, an expression for the disjoining pressure for curved surfaces @ can be written
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® (1) = 2H7, + I (1),

where 2H for a convex spherical quartz surface as depicted in Fig. 4.28 is,

__ =2
T R414b

The condition for stability for the curved surface is,

2H

=P, @' < 0.

Fig. 4.29 shows the results for quartz/water/octane/air at various values for R for Ygo = 21mN/m
and b = 504, using Eq. 4.70. When there is no curvature, thick, stable films can exist as evident by
the inset picture. When there is a convex curvature, the disjoining pressure becomes negative until
the structural interactions dominate at small thicknesses. Thus, for large thicknesses of octane to
exist, the condition P, < 0 must exist, which for reservoir conditions is unlikely. Hirasaki [57]
found in his work that thick, wetting water films can be collapsed due to convex curvature of the
solid substrate. This work extends this conclusion to oil films as well.
For a concave spherical curvature 2H,

2

20 = 0, (4.71)
an increase in the stability of thick oil films is found. Fig. 4.30 demonstrates how the disjoining
pressure can vary with thickness for concave surfaces. The P, required to reduce a thick film
of octane to monomolecular size is much greater than the same film if no curvature existed. In
addition, if P, , decreases such that it falls below ®, then the oil/gas curvature must decrease, and
the concave body will fill with oil. The increase in ® beyond 20 nm, evident for the R = 1000 nm
curve (but existing for the other curves as well at larger thicknesses) is caused by the denominator
in Eq. 4.71. Although &' < 0, the presumption of instability is misleading. As [ — R, at the point
where &' changes sign the oil will spontaneously fill the concave body (much like snap-off of water
in a pore throat).

Thus, curvature of the solid surface has the effect of supporting (concave curvature) or
hindering (convex curvature) the existence of large thicknesses of oil films between water and gas.
One can then expect in a porous medium where oil films exist (S/ > 0) that in the corners and
edges of the pore space, thick films of oil may be found, but over flat surfaces, protrusions, or
asperities, the oil films may be only a few molecules thick. The oil film thickness will also vary
with the water salinity and the temperature of the reservoir.

4.3.8 Conclusions
From the work performed, several conclusions can be drawn.

(i) The initial and equilibrium spreading coefficients for various conditions can be predicted with
good accuracy given the temperature and the dielectric permittivity of the materials.
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Figure 4.29: Disjoining pressure at various convex curvatures for quartz/water/octane/air system
at 20°C with 504 water thickness and 740 = 21mN/m.
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(ii) Pentane, hexane, heptane and benzene are predicted to spread on fresh water at 20°C. In-
creases in water salinity or temperature can cause heavier alkanes to spread on water. Thus,
at reservoir conditions, many hydrocarbons may have a positive initial spreading coefficient
between water and gas.

(iii) Hexane, heptane, and benzene will form stable layers of monomolecular thickness on fresh
water at 20°C. Pentane most likely will form stable monomolecular films at those conditions,
but some films of larger thickness may exist.

(iv) Increases in temperature or water salinity may allow stable, thick films of hydrocarbons to
form on water. This has important consequences for the drainage of oil through thin films.

(v) I the underlying water layer becomes thin, then the intermolecular forces of the solid surface
become important. The effect of the solid substrate tends to increase the spreading coefficient
and the equilibrium thickness of the oil film.

4.4 Gravity Drainage of Crude Oil in the Presence of Carbon
Dioxide

Dengen Zhou

Our recent experiments and theoretical analysis have demonstrated that gravity drainage
at low interfacial tension could be an efficient oil recovery mechanism from vertically fractured
reservoirs [111]. However, the analysis was based on experimental data from model fluid systems,
such as a binary liquid mixture of C; and nCy used by Stensen et al. [116]. The question that one
would ask when we apply the analysis to field design is whether the complex nature of crude oil
leads to drainage behavior different from that of model systems. There is little data in the literature
about crude oil drainage for injection gases that exhibit multicontact miscibility. One such gas is
CO,. In this section we report results of experiments to determine whether transfers of components
between COs-rich and oil-rich phases can lead to gravity drainage of crude oil. We have designed
an experimental apparatus to investigate the effects of the development of miscibility at various
pressures and temperatures on the drainage rates and final crude oil recovery in the presence of CO3.
In this section, we report our preliminary experimental results for gravity drainage of Means /crude
oil in the presence of high pressure CO5.

When CO; is injected into a reservoir, mass transfer will occur between the CO, phase and
the crude oil, because of the large solubilities of some hydrocarbon molecules in CO3, and also the
solubility of CO; in the crude oil. This mass exchange leads to the variations of phase properties
such as interfacial tension and densities, which would alter the relative magnitudes of the gravity
and capillary forces and influence the drainage rates of the oil phase. Gravity forces drain the
heavier phase (crude oil) out of the rock, while capillary forces and the end effect tend to keep oil
in the rock. The magnitude of gravity forces is proportional to the absolute length of the core.
Therefore, relatively long cores are needed to investigate gravity drainage mechanisms in a way
that is suitable for oil reservoirs. Our experimental setup was designed to use 2-ft long cores, which
are significantly longer than the cores used in some past studies of gravity drainage experiments
[116, 118].

4.4.1 Experimental Setup

Fig. 4.31 is a schematic of the gravity drainage apparatus. The use of a visual cell enables
us to measure the volume of oil drained at any given time without disturbing the system. The
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Figure 4.31: Schematic of the gravity drainage rig

drainage apparatus was designed to operate up to 7,000 psia and 200°F. Fig. 4.32 shows the inside
arrangement of the drainage cell. The annular space between the core and the cell wall is about 1
mm, a space that simulates an open fracture through which oil and gas can flow. We attempted
to minimize the volume ratio of this space and the rock matrix in order to observe similar mass
transfer mechanisms as in oil reservoirs. The inside dimensions of the drainage cell are height of 2
ft and a diameter of 2.5 in. In order to avoid oil displacement when gas flows into the cell, the cell
was designed to allow gas flow into the cell from both ends.

Means stock tank crude was used for our preliminary studies, because it has been relatively
well characterized in our laboratory [117, 50].

4.4.2 Experimental Procedures

Because we are using stock tank oil, we can saturate cores at room temperature and pressure.
We first saturated the core with water by evacuating it and then allowing water to imbibe into the
core. Weighing the core before and after saturation gave the pore volume. The core was then moved
into the core holder for oil displacements to establish initial water saturation. We considered the
initial water saturation to be reached after injection of 1.5 pore volume of crude oil, at which time

“the water production was small although it had not completely stopped. The amount of water
produced was used to calculate oil saturation. The core was then weighed again to check the
material balance.

The cell and CO, were then preheated to the desired temperature before inserting the
saturated core into the drainage cell. The core was kept in the drainage cell for two days before the
introduction of CO, in order to be sure that temperature equilibrium was achieved in the drainage
cell.

Pure CO, was then introduced into the cell to replace the oil in the annulus. At present
stage, the pressure in the cell is controlled manually by periodically introducing additional CO;
into the cell. However, we are in the process of modifying the system to keep the pressure constant
automatically.




Figure 4.32: Schematic of the gravity drainage cell

The difference in density between the CO; and the oil creates a gravity driving force for oil
drainage. That force is opposed by capillary forces which depend on the interfacial tension of the
gas/oil system. That interfacial tension changes as components transfer between the phases and
the oil swells as the CO- dissolves in it. Thus, the experiment determines whether the component
transfers lead to significant recovery of crude oil.

4.4.3 Results

We have conducted two drainage experiments at different temperatures and pressures. Fig.
4.33 shows the crude oil recovery curves. Experiment 1 was performed at room temperature (72.5
°F) and relatively low pressure (900 psi) in a 500 md sandstone core. After three weeks of drainage,
there was about 27% of original oil in place (OOIP) recovered. The experiment was stopped after
six weeks of drainage. There was little additional oil recovered in the last three weeks. No additional
oil was recovered when we blew down the system to ambient pressure. The calculations of the phase
properties presented below show that the interfacial tension was relatively high (about 4.0 mN /m).
Therefore, this low recovery is not surprising.

In experiment 2, the temperature was elevated to 120°F, and the pressure was kept at 1500
psia for the first five weeks and jumped to 1700 psia in the last week of the experiment. Two recovery
periods were observed in this experiment. Drainage was fast in the first week of drainage, and then
it slow down in the remaining four weeks. That behavior is consistent with the observations of
Schechter et al.[111]. Comparison of experiments 1 and 2 suggests that gravity drainage is faster
and more efficient at the higher temperature and pressure. At same temperature, we recovered
additional 6 % OOIP when the pressure was increased from 1500 psia to 1700 psia. This additional
recovery indicates that gravity drainage at high pressure is more efficient in the pressure range
of the experiments, presumably because interfacial tension was lower at the higher pressure, and
because solubility of CO; in the oil increased somewhat. Experiment 2 was terminated by blowing
down the pressure from 1700 psia to ambient pressure in about 20 minutes. We collected additional
5% of oil with a lighter color than the crude oil. Thus, we recovered 50% of OOIP from experiment
2.
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Figure 4.33: Recovery curves for experiments 1 and 2

4.4.4 Discussion

Oil recovery from gravity drainage is the result of interactions between capillary forces
created by interfacial tension and gravity forces from the density difference of the gas and oil
phases. The relative magnitudes of capillary and gravity forces determine the efficiency of a drainage
process. The ratio of the capillary to gravity forces can be represented by the inverse Bond number
Ngl, defined here as

[
-1 . k
N3' = ApgH (4.72)
where c is a scaling constant for a given medium (c is about 0.2 for most of the media), o is interfacial
tension, Ap is the density difference between oil and gas phases, & and ¢ are the permeability and
porosity of the medium, and H is the height of the core.
Fayers and Zhou [42] proposed the following equation to correlate the remaining oil satu-
ration (S,,) at the end of a drainage process to the corresponding value of N El by scaling the
capillary pressure curves.

Sem = Ng* (2= N5') (1= Sur) + Sor (4.73)

where S, is the irreducible oil saturation. They used 0.25 as S, in correlating their experimental
data collection. _

To estimate the corresponding values of N 5! for our experiments, we performed calculations
of the phase properties for the Means/CO; system. The Peng-Robinson equation of state (PR-
EOS) was used to calculate phase densities. Interfacial tensions were calculated with the Parachor
methods. Detailed compositions of stock tank Means reported by Stessman [117] were used in these
calculations. Figs. 4.34 and 4.35 show the calculated densities and interfacial tensions of the oil-rich
and COz-rich phase at 72.5°F and various pressures. Figs. 4.36 and 4.37 show the same calculation
for the high temperature and pressure experiment. Our calculations indicate that the interfacial
tensions were not ultra-low (103 mN/m) but were about 1 mN/m. Using 0 = 4.0 mN/m, Ap =
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Figure 4.34: Calculated densities of Means/CO2 mixture at 72.5°F and various pressures

400 kg/m?3 for experiment 1 and 0 = 0.5 mN/m, Ap = 180 kg/m3 for experiment 2, we obtained
the corresponding Ngl values as 0.23 and 0.14 for experiments 1 and 2 respectively. Fig. 4.38
shows the comparison of the two experiments and the correlation proposed by Fayers and Zhou.
Although the remaining oil saturation is slightly larger than the correlation, the trend agrees well
with the earlier comparisons.

The recovery results shown in Fig. 4.38 suggest that substantial recovery of oil from fractured
reservoirs is possible by CO; injection. If fracture heights larger than 2 ft exist, for example, inverse
Bond numbers will be lower still and better recovery efficiency can be expected. Furthermore, if the
porous medium is not strongly water wet, then injection of water will yield poor recovery, because
imbibition will be relatively inefficient. Even if the porous medium is water wet, the film drainage
mechanisms discussed in this chapter can lead to improved recovery after water injection. Thus,
there is considerable evidence that the use of gas injection processes in fractured reservoirs should
be investigated further.

4.4.5 Conclusions

From the preliminary experimental results and calculations of the phase properties of
Means/CO; systems, we draw the following conclusions. :

(i) Crude oil can be efficiently recovered by gravity drainage in the presence of CO; at relatively
low pressure (1500 psia), in which the interfacial tension between oil and CO, rich phase is
not necessarily ultra-low.

(ii) Final crude oil recovery can be related to the inverse Bond number of the model systems,
although the Means/CO; fluids were not pre-equilibrated.

(iii) Additional oil can be recovered by blowing down the system pressure after a drainage process,
and the recovered oil is lighter than the original crude oil.
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Figure 4.35: Calculated interfacial tension of Means/CO, mixture at 72.5°F and various pressures
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Figure 4.36: Calculated densities of Means/COQ, mixture at 120°F and various pressures
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5. Summary

This report outlines research results in three areas:

(1) representation by streamtube method of displacement processes in heterogeneous reservoirs,

(2) improved methods for rigorous calculation of minimum miscibility pressure for multicomponent
systems, and

(3) improved understanding of the interplay of gravity, viscous and capillary forces that control
formation of residual oil saturations.

The computational approach described in the first area builds on much previous work on

use of streamtubes to describe flow in heterogeneous reservoirs. The approach used here combines
updating of streamtubes, which represents the effects of mobilities that changes as the displace-
ments proceed, with use of a one-dimensional representation of flow within a streamtube. The
one-dimensional flow solution contains all the representation of the physical mechanisms. For ex-
ample, compositional effects of phase behavior can be represented in the one-dimensional solution.
The decoupling of the representation of local displacement process mechanisms from the calcula-
tions of the effects of heterogeneities means that predictions of process performance with orders
of magnitude less computer time than is required for conventional finite difference simulations.
While the approach is certainly an approximation, the examples given suggest that the errors as-
sociated with the approximation are not severe. Indeed, the fact that the method is not affected
by numerical dispersion is a significant advantage.

The procedure outlined in area (2) for calculation of minimum miscibility pressures or en-
richmernts (MMP’s or MME’s) is a significant step toward the formulation of a completely rigorous
method for calculation of the conditions required for multicontact miscibility for multicomponent
systems. In addition, the analysis given of the mathematical structure of the coupling of multi-
component phase equilibrium with multiphase flow points the way toward completion of the multi-
component theory. That theory demonstrates clearly the limitations of development of miscibility
that rely on use of ternary phase behavior.

In area (3) we report results of a wide-ranging investigation of the fundamentals of multi-
phase flow in which gravity, capillary, and viscous forces interact to determine displacement process
performance. In particular, we focus on the conditions required for the formation of films of oil
between gas and water, because those films provide flow paths for oil that are essential if oil satu-
rations are to be reduced to low values. It is understanding of those mechanisms that will enable
us to design gas injection processes that create the conditions required for efficient displacement of
oil by gas in the presence of water. Finally, we report the first results from experiments to demon-
strate that gravity drainage of crude oil can be obtained using high pressure CO,. The preliminary
results give us confidence that appropriately designed gas injection processes can lead to significant
recovery of oil from fractured reservoirs.

The results discussed in this report are but part of a broad-ranging examination of the
scaling of the physical mechanisms that control displacement performance in gas injection processes.
The work in progress includes experiments to delineate physical mechanisms and test models, and
simulations to explore combinations of physical mechanisms that are difficult or impossible to
study experimentally. Predictions of process performance at field scale will inevitably make use of
simulation. It is the goal of this project to make those simulation predictions based on analysis of
the physics of the flow rather than on empirical models that may not represent scaling behavior
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accurately. Therefore, a significant part of the research effort is aimed at fundamental description
of the capillary, gravity and viscous-driving forces that move multicomponent fluids and phases in
heterogeneous reservoirs. It will be improvements in understanding of the scales on which those
mechanisms operate that give us the tools we need to design more effective recovery processes for
very heterogeneous reservoirs.
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