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Abstract

Nuclear Magnetic Relaxation Studies of Semiconductor Nanocrystals and Solids

by

Joseph Robert Sachleben

Doctor of Philosophy in Chemistry

University of California at Berkeley

Professor Alex Pines, Chair

Semiconductor nanocrystals, small biomolecules, and 13C enriched solids have

been studied by analyzing the relaxation properties of theh nuclear magnetic resonance

(NMR) spectra. More specifically, for the first time, details of the structure of the surface

of semiconductor nanocrystals was obtained. The surface structure was deduced from high

resolution 1H and 13(2 liquid state spectra of the thiophenol ligands on the surface of the

nanocrystals, which were assigned using standard 2-dimensional liquid state techniques.

Intensity calibrated 1H NMR spectra were recorded as a function of nanocrystal radius, and

the surface coverage by thiophenol was found to be low, varying from 5.6% and 26% as

the nanocrystal radius changed from 11.8 to 19.2/_,. The longitudinal and transverse

relaxation times of the 1H and 13C resonances of the thiophenol ligands show that the

spectra are homogeneously broadened and that the broadening increases as the nanocrystal

radius becomes smaller. This suggests that the thiophenol ligands are rotating with respect

to the nanocrystal surface and that the correlation time of this motion increases with

decreasing radius. The internal motion is estimated to be quite slow with a correlation time

greater than 10-8 sec -1. The temperature dependence of the 1H transverse relaxation times

was anomalous. These relaxation times decreased with increasing temperature. In addition,

the surface thiophenol ligands are shown to react to form a dithiophenol when the

nanocrystals were simultaneously subjected to 02 and ultraviolet light.



We present a method for measuring 14N-1H J-couplings in small biomolecules by

measuring the rate of scalar relaxation of the second kind. These couplings are related to

molecular conformation. By measuring the 14N longitudinal relaxation time and the

difference in the 1H transverse and longitudinal relaxation rates, the 14N-1H J-couplings

can be determined. The method is demonstrated on pyridine and the small peptide oxytocin.

To measure the relaxation times in crowded spectra with overlapping peaks in 1D, we

present new selective 2D T1 and T2 experiments. The results show that the technique is

viable; however, relaxation effects due to chemical shift anisotropy and modulation by

strong coupling interfere with the technique.

Finally, we demonstrate the possibility of carbon-carbon cross relaxation in 13C

enriched solids. 13C magic angle spinning exchange experiments performed on

polycrystalline samples of 13C2 Zinc Acetate and 13C3 L-Alanine show correlations

between the resolved carbon sites in the molecule which grow at a rate proportional to the

distance between the carbons. This occurred even though spin diffusion through the

protons was quenched by high powder. Normal mechanisms for cross relaxation are

inefficient in rigid solids because the fluctuations of the intercarbon vectors have a very low

amplitude and a very high frequency on the NMR scale. For this reason, the cross

relaxation is explained by a dynamic mixing of the eigenstates caused by the motions of the

nearby protons. Additionally, the quenching of normal H cross relaxation leaves open the

possibility to observe higher order effects and we have observed the presence of two spin

dipolar order between the 13C nuclei, which is explained by a third order perturbation

theory.
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Chapter I: Introduction:
Quantum Mechanics and NMR

Section 1.1: Introduction

Nuclear Magnetic Resonance (NMR) Spectroscopy has successfully addressed

numerous chemical problems since its invention five decades ago. These successes have

been due to the detailed chemical information the experiment provides and the flexibility

of the technique that allows the researcher to develop clever methods of extracting this

information. The information provided by the technique ranges from gross structural

correlations between the resonance frequency of the nucleus and its position in the

molecule under study to detailed structural and motional information about the system. In

this thesis, we will present relaxation studies that will provide us with detailed structural

and motional data about semiconductor nanocrystals, biomolecules, and 13C enriched

solids.

However, in order to understand these relaxation measurements, a knowledge of

quantum mechanics is necessary. Especially important is understanding how to simplify

the quantum mechanical equations so that intuition is developed and results are quickly

obtained. Conversely, it is also important to understand when these simplifications are

• correctly applied so that one does not obtain incorrect results. This chapter will deal with

methods of obtaining approximate solutions to the quantum mechanical problems that
Q

describe NMR. To begin this discussion, we must introduce quantum mechanics in terms

of the density matrix.



Section 1.2: Quantum Mechanics and the Density Matrix

In quantum mechanics, the state of the system is describable by either a state

vector (wavefunction) or a density matrix. The state vector provides information about

the system by assuming the existence of a quantum mechanical ensemble of identically

prepared systems. I will assume in this thesis that the reader is familiar with quantum

mechanics in terms of state vectors. Such a description is convenient when one is dealing

with single particles such as a single electron or a single atom, but it becomes

burdensome when one needs to deal with a real macroscopic sample. In such a sample, a

statistical mechanical ensemble is needed along with the quantum ensemble to describe

the system because the macroscopic sample can be thought of made up of an ensemble of

quantum systems. The density matrix most naturally describes such a system.

The density matrix is defined as

p= ___PilW, >< _P,I, (eq. 1.2.1)
i

where IWz> is the wavefunction for the ith quantum mechanical system in the sample, Pi

is the probability that the ith quantum mechanical system occurs in the sample, and the

summation is over the statistical mechanical ensemble that describes the sample. As an

example, for a gas at iow pressures and high temperatures (an ideal gas), IWi > refers to

the state of the ith atom andPi is the probability an atom has that state in the gas. All

observable properties are related to the density matrix by .

<Q> = Tr(pQ), (eq. 1.2.2) "

where Tr indicates the trace, and <Q> is the expectation value of the observable operator

Q1.

......................................................................................................... .it ......rli_......................................fir............................ill]l.....



In two cases it is easy to compute the density matrix of the system under study.

The first is the density matrix of a pure state, which means that only one quantum

mechanical system occurs in the sample. Then, the density matrix is

p =1_ >< _1. (eq. 1.2.3)

If the wavefunction is written as a linear combination of a complete set of eigenvectors,

I_P>- _ail_0i >, (eq. 1.2.4)
i

the density matrix is,

p= __,__,a,bil_, > < _p./I
i j

i j

where ai, bi, and cij are complex numbers. So if the wavefunction of the system is

known, the density matrix can be simply and superfluously found. The diagonal matrix

elements of the density matrix, G, are referred to as the populations while the off-

diagonal matrix elements, c_, are the coherences. If the I_0_> are eigenvectors of the

Hamiltonian, the diagonal elements refer to the populations of the energy levels and the

- off-diagonal terms provide information about the phase relationship of those members of

the system that are in superposition states. In a pure state, this phase relationship is
ii

perfect, and the quantum states add without cancellation.

The second easy calculable case is that for a system at equilibrium, where, with

the density matrix written in the eigenbasis of the Hamiltonian, we know that the off-



diagonal matrix elements are zero, because at equilibrium there is no phase relationship

between the superposition states (the random phase assumption which is a definition of

equilibrium2). This random phase assumption is equivalent, as we will show later, to

saying that at equilibrium the macroscopic state of the system is time independent. The

diagonal elements are the populations of the energy levels which are given by the

Boltzman distribution. Thus, all the c0 are determined by

0 ifi¢ j
cu = , (eq. 1.2.6)e if i= j

where Z is the partition function, which is given by

Z = Tr(e-_M). (eq. 1.2.7)

The density matrix for an equilibrium state is more succinctly written in terms of

operators 1,3-5 as

p = e-aH/Z. (eq. 1.2.8)

These formulae for the equilibrium density matrix tell us that to find the density matrix

we need to diagonalize the Hamiltonian and then determine the exponential operator in

equation 1.2.8. In many cases, the Hamiltonian only needs to be approximately

diagonalized leading to a good approximation of the equilibrium density matrix.

It is common in high-field NMR to approximate the density matrix by keeping

only the largest part of the Hamiltonian. In a large magnetic field, the i_,teraction between

the nuclei and the magnetic field dominates all others. This allows us to approximate the



!
Harnlltonian (note that this is a semiclassical Hamiltonian, because we are only dealing

with the spin degrees of freedom), in frequency units, as

- H --too/,, (eq. 1.2.9)

u.

where Iz is the operator for the z component of the nuclear angular momentum, and COois

the Larmor frequency, which is given by

co. = _,Bo. (eq. 1.2.10)

In this last equation, y is the gyromagnetic ratio of the nucleus, and Bo is the external

magnetic field strength. We can substitute equation 1.2.9 into equation 1.2.8 in order to

approximate the density matrix as

p = eO"J'/Z. (eq. 1.2.10)

However, under normal experimental conditions 1/]]=kT>> too (the high temperature

approximation), which allows us to approximate the density matrix by expanding the

exponential to first order as

p= (1+ fltooI,)/Z. (eq. 1.2.11)

This approximation also alIows us to evaluate the partition function, Z, in equation

• 1.2.11 by recognizing that every diagonal element of the exponential operator is almost 1,

which makes the partition function equal to the number of nuclear states,

Z = 21 + 1. (eq. 1.2.12)



Combining equations 1.2.11 and 1.2.12 and neglecting the physically unimportant term

proportional to the identity operator, we get

(-,0o
p = I,. (eq. 1.2.13)

kT(2I+l)

Thus, a sample of spins at equilibrium in a large magnetic field has a density matrix

proportional to the z component of nuclear angular momentum, which is equivalent to

saying that at equilibrium, the spins tend to align with the large external magnetic field.,

as we would expect 3.

Now that we can find the density matrix in a few simple situations, we need to

discover how the density matrix evolves with time. The time-dependence of the density

matrix is determined by the Liouville-von Neumann equation,

Op =-i[tt,p]. (eq. 1.2.14)
&

This equation can be formally integrated to give p as a function of timel'3,5'6;

p(t) = e-_'p(O)e +_' . (eq. 1.2.15)

In order to produce equation 1.2.15, I had to assume that the Hamiltonian is not a

function of time. In general, this assumption is reasonable, because I can always make the

Hamiltonian time-independent. Practically, however, it is many times inconvenient to
Ib

consider a time independent Hamiltonian, and it then becomes necessary to find a

solution to equation 1.2.14. Many times, equation 1.2.14 is easier to deal with by making

the rotating frame transformation. Assume



H(t)= Ho + Hi(t), (eq. 1.2.16)

where H 0 is the Zeeman interaction and Hl(t) is a smaller internal interaction, for

example the dipole-dipole interaction, chemical shift interaction, quadrupole interaction,
a

ect. If we make the transformation p" = e_*'pe -_°' and H_ = e_°'Hle -_°', equation 1.2.14

becomes

_'_'_=-i[H;,p']. (eq. 1.2.17)at

This transformation will allow us to concentrate on the weaker internal interactions

without the interference of the fast Zeeman oscillations. At short times, tbis equation can

be integrated by successive approximations 7 as follows:

[ . f ,

_ocgO*(t') dt' = -t_otH; (t' ),O*(t' )]dt' (eq. 1.2.18)3t'

p'(t)=p'(O)-i_[H_(t'),p*(t')]dt' (eq. 1.2.19)

We now assume that the time change is small enough thatp*(t)- p'(t' ), which allows us

substitute the right side of equation 1.2.17 into itself for p" (t'). Iterating in such a fashion

twice, and only keeping terms up to second order, we find that

p*(O=p'(O)-i_o[H;<t'),p'<O)]dt'-_o_o'[H:(t'),[H:(t"),p'(O)]]dt"dt'. <eq. 1.2.20)
F,

As we have just shown, short time approximations to the Liouville-van Neumann

equation can be found. Unfortunately, long time solutions are much more difficult to



produce. The normal solution to this problem in the NMR community is to make an

effective, time-independent Hamiltonian that correctly describes _e long time behavior

of the density matrix. Once we find this time-independent Hamiltonian, we simply need

to evaluate equation 1.2.15. Thus, the question of how to calculate the long time behavior

of the density matrix is effectively the same as the question of how to correctly calculate

an effective Hamiltonian, and when to appropriately apply this Hamiltonian.

Section 1.3: Average Hamiltonian Theory

Since its introduction to the NMR community in 19688,9, Average Hamiltonian

Theory has been a popular method of calculating effective Hamiltonia. It has been used to

describe the effects of multiple pulse sequences, composite pulses, spins experiencing

constant wave (cw) radio-frequency (rf) irradiation, and many other important problems.

The basic idea in average Hamiltonian theory is to replace the true propagator

U = Te -_', (eq. 1.3.1)

where T is the Dyson time ordering operator, with an effective propagator

U,¢ = e-i-a" (eq. 1.3.2)

which is governed by the average Hamiltonian, H, over the period tc. Average

Hamiltonian Theory is a method for calculating this average Hamiltonian. The average

Harniltonian will depend on the initial and final times, unless the original Hamiltonian is

periodic and observation is performed stroboscopically with the period of the

Hamiltonian.



tl h t3 t4 t_.3 in.2 tn._ tn

< tc "_

, FIG. 1.3.1' Above is a graphicalrepresentation of a Hamiltonian that changes discretely n times. Hk is the

kth Hamiltonian which lasts for a time tk. The total time which this time-dependent Hamiltonian acts on

the system is te. In the limit that the tkS become infinitesimal, the Hamiltonian become continuously time-

dependent for the time to.

There are two limiting cases for the time dependence of the Hamiltonian: discrete

and continuous time dependence. We will begin by finding the average Hamiltonian for a

Hamiltonian that has a discrete time dependence, which means that the Hamiltonian stays

constant for a time period, ti, at which time it suddenly changes to a new Harniltonian

(see figure 1.3.1). In the case where the Hamiltonian discretely changes n times, the

propagator is a product of propagators for each time period,

U = U_U,,_,...U2U1

where Ui , H,, and ti and refer to the propagator, the Hamiltonian, and the length of

duration of the ith period. This product of exponential operators can be expressed as a

single operator by use of the Baker-Campbell-Hausdorff relation,

eaee=exp{A+B+½[B,A]+_([B,[B,A]]+[A,[A,B]]+...}, (eq. 1.3.4)



I

to find that the average Hamiltonian that guides the evolution over the entire period,

t_ = tl + t2+...+tn__ + tn. (eq. 1.3.5)

I

This average Harniltonian is

!

= _co) + _(1) + _(2)+... , (eq. 1.3.6)

where

_c0)= _{Htt_ + H2t2+...+H__ltn_1+ H, tn}, (eq. 1.3.7)

-_(t) = __..U,{[H2t2,H_t_]+ all other commutators}, (eq. 1.3.8)

and

-_(2) = _62V" {[H3t3, [H2t2,H_tt]]+ [Hl t_, [H2t2,H3t3]l

+½[H2t2,[H2t2,H_t_]] + ½[Httt,[Httt,Hzt2]]+... }. (eq. 1.3.9)

This series can be truncated as long as IIH211½t_ < 1, in which case the higher order terms

clearly go to zero.

This convergence criterion would initially seem to indicate that Average

Hamiltonian Theory is a short time approximation, but it is also applicable to periodic

Hamiltonians where the cycle time and the strength of the perturbing Hamiltonian is

small enough that IIH211½t_ < 1. A periodic Hamiltonian is one that returns to itself every

tc, or, mathematically,

H(t) = H(t + ntc). (eq. 1.3.10)

10



Under these conditions, the average Hamiltonian over a cycle can be calculated. This

Hamiltonian dictates the evolution of the density matrix over the same cycle time, thus

implying that measurement of any observable must be performed stroboscopically and

synchronously with this time. This rigid requirement of stroboscopic observation has led

to some misuses of Average Harniltonian Theory, as we will present later.

If the Hamiltonian is cyclic and continuously time dependent, Average

Hamiltonian Theory is still applicable, but we strbstitute the continuous analogs of

equations 1.2.7-1.2.9 into equation 1.2.6. These new definitions of _(0) through _c2) are

-_o) =77,1f£"H(tl)dq, (eq. 1.3.11)

-_o, =-_i7_,_o"fo'[H(tz),H(tl)]dtldtz, (eq. 1.3.12)

and

_C2} _ A_ fie= 6,,Jo _' f_l {[H(t3),[H(,2),H(tl)]]

+[H(t 1),[H(t2),H(t3)]]}dtldt2dt _. (eq. 1.3.13)

These equations are found by making all the times in equations 1.3.7-1.3.9 small so that

the sums are replaced by integrals.

As an example of the use of Average Hamiltonian Theory, we will calculate the

average Hamiltonian to first order for a single quadrupolar spin (I>1/2) in a large

magnetic field. In this calculation, we will assume familiarity with spherical tensors 1A°A1

The total Hamiltonian for this system, H, is

11



H = Hz + He, (eq. 1.3.15)

where

Hz = -co01, (eq. 1.3.16)
.

and

2

n=c=Z= (-1) P,q_mTl.,_. (eq. 1.3.17)
m=-2

Transforming equation 1.2.17 into the Zeeman interaction representation by

rio. = UHo.U-1, (eq. 1.3.18)

where

U = e"_°_ , (eq. 1.3.19)

removes the static Zeeman interaction and makes the quaclrupole interaction time-

dependent for a density matrix in the same interaction representation. This can be proven

by substitution into the Liouville-von Neumann Equation (equation 1.2.14). In this

interaction representation, our Hamiltonian is now time-dependent, and we can apply

average Hamiltonian Theory by substituting /4Q into equations 1.3.11-1.3.12. First, we

need to explicitly write down /4o"

2

ff'IQ -" C Q Z (-l'_m pQ °ita°dz"r'Q o-i°_odz\ *.1 .__m t. _2,m _
gft .,_--2

12



where we have used the identity 12

e'*'Be-a = B + [A,B] + ½[A,[A,B]] + -_[A,[A,[A,B]]]+... (eq. 1.3.21)

and the commutation relation between Iz and the spherical tensors 1,1°'11,

[lz,T_,m] = mT_,m. (eq. 1.3.22)

Notice that we have Fourier analyzed the time dependence of the quadrupolar

Hamiltonian by using spherical tensors. Substituting equation 1.3.20 into 1.3.11, and

using the orthogonality relationship between Fourier components 13,

[ei_O,e_O,dt= _oo if n =-m
0 [.0 otherwise' (eq. 1.3.23)

we find the zeroth order average hamiltonian to be

_(o) = CQRQ TQ2,0 2.0. (eq. 1.3.24)

Next, we need to find the first order average Hamihenian by evaluating equation

1.3.12 after the substitution of 1.3.20,

2 2

g(1) (c_)2 _., E m+. a Q Q O dtflt 2 (eq. 1.3.25)= (-1) -''°'°'' .2 G
n=-2m=-2

13



This can be done by first carrying out the integrations, to find that

q

We then substitute this into equation 1.3.25, to find

• _ tR QRQ rTo`_(1) C 2=--/2"_'ot 2,0 2,0L 2,0,T2,0]

2 2
( 1)- ,.,Q -,_

PQ _o` rTo` T O` 1+2i ___--IX2,oR__m[T_,o,T_m]}. (eq. 1.3.27)+i
m=-2 m=-2
m_O m_O

The commutators are evaluated by expanding the product of spherical tensors14:

J-j+j'

uj.mv:,., = _._7_7< j,j',m,m'lJ, M > U1.M, (eq. 1.3.28)
J=lj-j'_

where Nj is a normalization constant, < j,f,m,m'lJ, M > is a Clebsch-Gordan

coefficient, and Us._t , vs.M , and Us,Mare spherical tensors. This expansion of the

product of spherical tensors then implies that the commutators in equation 1.3.27 can be

written as

J=4

[T2.m,T2,m.]= _ {< 2,2,m,m' IJ, M > - < 2,2,m' ,mlJ, M >}T:,M (eq. 1.3.29)
J=0

The symmetry relation of the Clebsch-Gordan coefficients x°,

< j,j',m,m'lJ, M >= (-1) J.:-_ < f,j,m',mIJ, M >, (eq. 1.3.30)

14



immediately implies that the J=0,2,and 4 do not occur in the expansion of the

commutator, and equation 1.3.29 becomes

[T2.,,,,T2.,,,,] = _ < 2,2,m,m' 13,M > T3._ - _ < 2,2,m,m' I1,M > 7"1._. (eq, 1.3.31)

In table 1.3.1, we tabulate the commutators needed to evaluate equation 1.3.27 and we

after using these commutators, we find that the flu:storder correction to the average

Hamiltonian is

1 Q Q OQR Q aTQ 2 :_,Q_,Q Q Q oH<I>=_-_,c_{_[_?(4R_jR2.-1 +-'2,2 2._, 3.0-_,"2.,"2.-,- R_,2R_.-2)T_.o]

4_F_,Q po TQ Q Q Q
--_'?t"2,0"2,2" 3,-2 + R_,oR_,-2T_,2]

,_ /[-_roQ DQ TO Q _2 _2
-- _'_"_"__ I.,,2,0,,2,1_3,-i "1"R2,oR_,-1T3j ]

2 /'g'rt,QRQ,I-o RQRQ T Q1_-W%/3"t'_2,o 2,1_1,-1-t _,0 2,-1 uJ'" (eq. 1.3.32)

Now that we have found the Average Hamiltonian, we can calculate the time-dependence

15



of the density matrix of a quadrupolar nucleus. Notice, however, that Average

Hamiltonian in this case is not so simple to use because it is not diagonal in the Zeeman

basis. In the following sections, we will deal with equation 1.3.32 and its consequences.

Section 1.4: Problems with Average Hamiltonian Theory

In the previous section, we calculated the average Hamiltonian to f'n:storder for a

quadrupolar nucleus in a large magnetic field. We found that the f'_rst order correction

contained terms that are off-diagonal in the Zeeman basis. Unfortunately, these off-

diagonal terms imply that techniques like Double Rotation(DOR) and Dynamic Angle

Spinning(DAS), which narrows the solid-state quadrupolar resonance of odd 1/2 integer

quadrupolar nuclei, should not work 1517. The common explanation for this is that

equation 1.3.32 must be reaverage with respect to the large zeroth order average

Harniltonian to produce the correct average Hamiltonian. When this is done, all the off-

diagonal terms are lost, and equation 1.3.32 becomes

_'o) c__Q_f__r __..(4R_IR__I +R_ZRQ )T_0__2 rpQ_Q o _Z Q--- 2ta 0 t-V 5LN, 2.2 2.-2 . N t _"2.1"2.-1-R_.2R2,-2)T_,o] • (eq. 1.4.1)

Even though this last step is nonintuitive, it gives the correct equation for the f'trst order

average Hamiltonian of a quadrupolar spin in a large magnetic field.

However, this extra needed step gives rise to two predictions in a gedanken

experiment. Assume that the sample of quadrupolar nuclei rotate fast enough about the

magic angle to average out the zeroth order term. In this case, two predictions are made

depending on whether the off-diagonal terms are kept of discarded. At variance with this

ambiguity, static perturbation theory only predicts the result without the off-diagonal

terms. 18 We have performed a set of simulations for the NMR transition of a single-

crystal sample, containing equivalent uncoupled quadrupolar nuclei of spin 3/2, and
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spinning about the magic angle at various rotation rates. 19 The spectra in figure 1.4.1

were calculated using three differen_ methods: a full diagonalization procedure (referred

to as "exact"), using the average hamiltonian _c:sult presented in the previous section, and

- using the static perturbation result, which is the same as the average Hamiltonian result

with the off-diagonal terms dropped (a sum of equations 1.3.24 and 1.4.1). The results

clearly show the failure of Average Hamiltonian Theory to provide even an approximate

description of the system when the spinning speed becomes comparable to the

0I-[z 2kHz 50 kI-Iz

l j

_l
12 6 0 -6 -12 1.2 .6 0 -.6 -1.2 1.2 .6 0 -.6 -1.2

Frequency (kHz)

FIG. 1.4.1: Exact, Static Perturbation Theory, and Average Hamiltonian Theory simulations of the NMR

transitions of a single-crystal sample, conta', ing equivalent uncoupled quadrupolar nuclei of spin 3/2, and

spinning around the magic angle at three different speeds. The spinning speeds (VR=0,2, and 50kHz), are

selected to fall in the ranges 0-V2Q/VZ,V2Q/vZ-VQ,and VQ-VZ,showing three different behaviors of the

Average Hamiltonian Theory result. The Static Perturbation Theory simulations were performed in the

laboratory frame using a nontilted diagonal Hamiltonian containing the Zeeman interaction and the

quadrupolar interaction truncated to second order. The simulation was performed by Philip Grandinetti.
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quad_polar coupling, while Static Perturbation Theory is in go_ agreement throughout

the range of experimental parameters.

In the next few sections of this thesis, we will give a general and coherent

framework for treating the effects of higher-order terms in perturbation expansions of

common problems that arise in NMR. Although this may be done by dynamic methods

(i.e., by going to the rotating frame and using Average Hamiltonian Theory), it is simpler

to use static diagonalization methods, since the Hamiltonian is time independent. The

usual perturbation expansions for the diagonalization are formulated in terms of matrix

elements. 1 We will reformulate these in terms of operators decomposed into irreducible

tensors. Two different methods, Static Perturbation Theory and Van Vleck

transformation, will be given. Two methods are introduced, because Static Perturbation

Theory is useful for systems with a finite number of energy levels and the Van Vleck

transformation is adapted to highly degenerate (e.g., dipolar broadened) systems. With

these two computational techniques, we will generate effective Hamiltonians and

interaction frames that are suitable for analyzing averaging experiments. We will also

discuss the proper conditions under which Average Hamiltonian Theory can be applicd

and the difficulties involved in extending this approach to include sample motion.

Section 1.5: Static Perturbation Theory in Terms of Irreducible Tensors

In its usual formulation, Static Perturbation Theory I provides an expansion for the

eigenvalues and eigenstates of a perturbed operator (which in our case will be the spin

Harniltonian possibly including the radio frequency magnetic field). The results to second

order in the nondegenerate case are summarized by the following formulae:

H = H C°)+ H <1), (eq. 1.5.1)
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HIv.i >= Ejlvj >, H(°)lJ >= E_°)1J>' (eq. 1.5.2)

Ej - E_°>+ E_'>+ E_2>+..., Ivi >-I j > +Iv_') > +..., (eq. 1.5.3)
)

E_I)=< jlH(1)Ij >, (eq. 1.5.4)

E)z) = _._< jlH°)lk >< klH(1)lJ > (eq. 1.5.5)F(o) _(o)
k,_./ ,-,j - .'-'k

Iv_a)>= _ <E_°)klH(a)l-"-'t_(°)j > Ik >. (eq. 1.5.6)

These formulae for the matrix elements can be rewritten in terms of operators as follows:

H = VDV -1, (eq. 1.5.7)

D = H (°)+ D C1)+ D(2)+.--, V = 1+ V cx)+..., (eq. 1.5.8)

D°)= _lj > EJI) < jl (eq. 1.5.9)
J

D(2>= ,_=lj > EJ2)< jl, V(_)= _,,Iv__)>< jl, (eq. 1.5.10)
j i

where D and DC_)are diagonal operators and V is a unitary transformation. These

equations give the operators in terms of matrix elements and, in general, there is no

convenient way of simplifying them. However, in the case of NMP,., the Zeeman

• interaction H (°) is a linear combination of lz angular momentum operators, and H °) is

the superposition of the various local interactions which have simple expressions in

irreducible tensor form. The matrix element <klHC_)lJ > in equations 1.5.1 to 1.5.6 can
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be simplified by using the Wigner-Eckart Theorem 1,1°.11and the selection rules that it

implies to find pure irreducible tensor expansions for the D and V matrices.

We will demonstrate this procedure with the case of a quadrupolar nucleus in a

large magnetic field, the same system with which we demonstrated the Average

Hamiltonian Theory calculation. Again we have

H c°)= -COolz (eq. 1.5.11)

and
!

2

H °)= C e _ (-I)"/__,,,T_,,,. (eq.1.5.12)
m---2

To find the first order correction to the effective Hamiltonian, we need to substitute

equation 1.5.12 into 1.5.4 and find

EJ1)= Ca(-1)'R__. < jIT_,,,Ij >. (eq.1.5.13)

The Wigner-Eckart Theorem implies the general selection rule for irreducible tensors,

< klT2,,,Ij >= 6k,j+,,, < j + mlTz,,Ij >, (eq. 1.5.14)

which immediately implies that only the m=0 irreducible tensor contributes to this term.

Placing the EJ1)into equation 1.5.10, we find that

D(_) o Q-" CQR_,oT2, O, (eq. 1.5.15)
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as we had found with Average Hamiltonian Theory. Next we find D (2>by substitution

into equation 1.5.5 which will ultimately be used in equation 1.5.10, to find

Ej2> cg _(_I).,+.,R__.p__.,E<jlT_.Ik><klT_.,Ij>= `o--_ ' . (eq.1.5.16)
m,_,, :.k k - j

,t

The selection rule (equation 1.5,14) restricts the summation over k in equation 1.5.16 to

those terms where k=j+m' and k=j-m. This restriction then implies that the sum over m

and m' is restricted to m+m'=0 giving

RQ RQ
EjZ>=_c/.._._`o,_., a,-. 2,,,,< jlT_,,,Ij-rn><, j-mlT_,_.,Ij >. (eq. 1.5.17)

.,.0 m

This equation can be further simplified by using a rearrangement of the closure

relationship,

Ij-m>< j-ml= 1- _lk><kl, (eq. 1.5.18)
*_j-m

to find

c2 _Q _Q TQ TQ

m(2) =_ m E *"2'-m""2'm'2'm'+2'-m,o-7 , (eq. 1.5.19)m.o m

which we can write in terms of commutators as

v

12 12 12 Q

D(2_= c..._.g`oo_., R_,.,R_,_.,[T2_,,,,T2,,,,]. (eq. 1.5.20)
• m>0 m

If commutators are replaced by their values in table 1.3.1, we find that this equation is

equivalent to that found in equation 1.4.1. Thus, by using static perturbation theory, we

naturally arrive at the correct form for the Hamiltonian correct to second order without
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the confusing and wrong ideas of a second averaging with respect to the first order

interaction.

Finally, we will calculate the fn:st order tilting matrix, V°), for this example. We

substitute equation 1.5.12 into 1.5.6 and use both the selection rule and the rearranged

closure relation to find
i,

iv_,)>= _c_g_,_(_l)mR__'T_lj >. (eq.1.5.21)
",_0

Thus the tilting matrix becomes

VO) c_ pQ TQ= - ,o"7_ (-i)'.__"2,,,• (eq.1.5.22)
",e0

Inthissection,we haveshownhow tocorrectlycalculateeffectiveHamiltonians

up tosecondorderfornon-degeneratesystems.ThisStaticPerturbationmethodcanbe

usedfordegeneratesystems,aslongasthenumber ofenergylevelsremainssmall.

However, forhighlydegeneratesystems,thistechniqueisintractableand alternate

methodsmustbeused.We presenta methodbasedon theVan Vlecktransformation2°

andapplyittothecaseofhomogeneousdipolarbroadeninginasolid19.

Section 1.6: Van Vleck Transformation in Terms of Irreducible Tensor

Operators

The Van Vleck transformation, which was first applied by Van Vleck to
*i

molecular spectroscopy calculations, 2° is a perturbative method used to block diagonalize

an operator having groups of degenerate eigenvalues. Block diagonalization mea,s that

no off-diagonal elements connect states of different unperturbed eigenvalues. However,
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no restrictions are set inside each eigenspace, which may be fiighly degenerate. In an

operator formalism this is def'med by

" H = H _°)+ H C1_= WDW -1, (eq. 1.6.1)
J

[HC°),D] = 0, (eq. 1.6.2)

WW -1 = 1, (eq. 1.6.3)

where here we denote the tilting matrix by W to indicate that it does not completely

diagonalize the Hamiltonian. As in Static Perturbation Theory, the perturbation expansion

can be written in operator form. The expansion of D is identical to equation 1.5.9, and it

is convenient to expand W as

eZ"'e z°, (eq. 1.6.4)W = e_°' ...,

where the S_")are Hermitian operators whose magnitudes decrease as (IH(1)I/IH(°_I)".

This expansion is at variance with previous treatments, 2°,21 but it simplifies later

calculations. Keeping terms up to the second order, equation 1.6.1 is expanded as

H(°)+ D(_)+ D(2)+...

= {1-iS(2_+...}[1-iS (I)+(iS(l)) _ / 2...]

×(H (°_+ H(1))[1+ iS (1_+ (iS(l))2 / 2...]

x{1+ iS(2_+...}, (eq. 1.6.5)
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which upon collecting terms of the same order becomes

D(_)= H (_)+ [H¢°),iSV)], (eq. 1.6.6) "

Dt2)= [H°),iS °)] + ½[[Ht°),iS(1)],iS¢n] + [H(°),iS (2)] (eq. 1.6.7)

These operator equations do not define the D(") and S (') in a unique way. Aside from the

trivial case of adding Hcm to S °), which is equivalent to multiplication of the eigenstates

by a phase factor, another operator that commutes with H Cmmay be added to S <1_to

generate another solution. There is no easy way to solve equations 1.6.6 and 1.6.7 in

general. Van Vleck gave the initial solution for the Dc"_and S C"_terms of matrix

elements, from which it is eventually possible to yield the expansions for D and W in

terms of irreducible tensors. 2° However, in some special cases, it is possible to directly

generate an irreducible tensor solution to equations 1.6.1 to 1.6.3.

For the case of homogeneous dipolar couplings, the Harniltonian is divided as

H (°)= Hz = -o.)o__,I_ = -Wol z, (eq. 1.6.8)
i

H(x)= Ho = _ H_i'
i<j

-- Z C_J)Z ,,r-'.,,v"..2.-"-_'(ii)"r@2.,.= Z 11,., (eq. 1.6.9)
i<j ,. m

where i and j label the spin sites, and the P(_J) and 7"(_J)•.2.-,, -2," are the usual lattice and spin

parts of the dipolar coupling. The decomposition of H o into H",,, 'hich was introduced

by Jeener, 22is equivalent to the usual dipolar alphabet formalism, 7 and can also be used
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to represent the quadrupolar interaction treated in sections 1.3 and 1.5 of this thesis. The

H,, have two useful properties, which are the keys to solving equations 1.6.6 and 1.6.7 in

terms of irreducible tensors:

[Iz,H,,,] = mH, (eq. 1.6.10)
ii

and

[Iz,l"[H,,,]=(__,m,,)(1-iH,,,,). (eq. 1.6.11)
n Pl n

If we set H °) = HD= _ H, in equation 1.6.6, we see that the expression for D (1)
m

has nonsecular contributions (m_0) coming from H °). Since D (Dcommutes with H (°),

as must all the D(n) by definition (equation 1.6.2), the commutator, [H(°),iS(I)], must

cancel the nonsecular terms. Using this constraint, equation 1.6.8 and 1.6.10 can be

combined to obtain a simple solution for S°):

sc,,=__., H-
_'*_o m ' (eq. 1.6.12)

and thus,

D(1)= Ho (eq. 1.6.13)

which is the known first order correction. The solution for higher orders follows the same

- general procedure: the lower-order terms are inserted, the secular parts are assigned to

D (n), and the S Cn)is tailored to cancel the nonsecular parts by using equation 1.6.11 in the

commutator [H(°),iSC'°]. For instance, to find the second order expressions from equation

1.6.7, we first introduce S(_),given by equation 1.6.12, into the first two terms:
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[HC1),i$<1_]+ ½[[H<°),iS°)],iS <1_]

,  oq.1.6.14
and we identify the secular terms as those with re+n=0. Thus

D<2_-__x._Oo_, '[H-'_' Itm] , (eq. 1.6.15)
m>O m

2_,_ m 2 + ,,,,,,.,,,,o_m(m - n) ) (eq. 1.6.16)

Higher-order corrections, though more complicated, can be computed in a similar way.

Expressions for the Van Vleck transformation expansion to second order have

already been found, 22 but the tilting operator, S <1),was not given and the method could

not be easily extended to higher orders. A method similar to the Van Vleck

Transformation operator expansion was previously 23 used to compute S<'. For

homogeneously coupled spin-l/2 nuclei the second-order' term, D<2),analogous to

equation 1.6.15, was shown to contain two different parts obtained when expanding the

sums over the nuclear indices in the commutators. 22,23The f'n'st part contains two spin

contributions, of the ICz° + Iz(i)type, that only induce a shift of the transition and commute

with Dc_)= H0. The second part contains three spin contributions that do not shift the line

and do not commute with H0.

The Van Vleck Transformation method is not restricted to the dipolar case and

can be applied, for instance, to the quadrupolar case treated previously. The prerequisite

for efficient use of the Van Vleck Transformation is the possibility of expanding the
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perturbation, H <1_,into contributions which satisfy the commutation relation in equation

1.6.10. Indeed, the results of the two methods are identical for this case and, for higher-

order contributions, the Van Vleck Transformation provides the results in a much simpler

• way. However, in other cases, this transformation may be cumbersome for second-order

calculations (for instance, when different spins are involved) or not even tractable if we
,i

are interested in a full diagonalization of a degenerate Harniltonian.

Section 1.7: Explanation of the Difficulties with Average Hamiltonian

Theory

We will now discuss why Average Hamiltonian Theory gave incorrect results for

the case of the quadrupolar nucleus in a large magnetic field taken to second order. We

begin by describing in what sense AHT provides the "correct answer". As was shown in

section 1.3, when using Average Hamiltonian Theory, one must first convert the

HamiltoniatL,

H =-c001 z + Hp,,_, (eq. 1.7.1)

into the rotating frame,

ffl(t) = e i_u_Hp,,e -'_ = _., H,e -_m'_°' (eq. 1.7.2)
m

where it becomes time-dependent, and then average it with Average Hamiltonian Theory

• over the Larmor period, tc=2y_0, to obtain the effective Hamiltonian

= _(0_ + _<1)+ _(2)+..., to whatever order is necessary. To the first-order average

Hamiltonian, one obtains 19,24,
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_f [H_,,,,H,,,] _ _ [_H0,Hm]+ (eq. 1.7.3)
_'=H°+;,,0 moo0 m,0 moo0 ""

The problem with the Average Hamiltonian Theory approach to truncation comes from

the assumption that all the observable transitions are actually being observed. This

assumption coupled with the stroboscopic nature of Average Harniltonian Theory results

in a folding of multiple quantum transitions into the single quantum spectrum. To

_2 6 6 :6 a'2
Freq_cy 0d-lz)

Fig. 1.7.I. Exact,StadcPerturbationTheory(SPT),andAverageI-lamUtonianTheory(AHT)simulationsof

theNMRspectrumof a staticsingle-crystalsample,containingequivalentuncoupledquadrupolarnucleiof

spin3/2.TheSPTpropagatorwascalculatedasin figure1.4.1butusingthe tiltingoperatorV expandedto

f'trstorder.Thedwelltime in all threesimulationsis equalto theLarmorperiod.Theverticalscalehasbeen

expanded525timesfull scaleto showthe smallZeeman"forbidden"transitionsfoldedintothe zS/'n= +1

spectrum.Thesimulationwasperformedby PhilipGrandinetti.
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emphasize these points an additional set of exact, Static Perturbation Theory, and

Average Hamiltonian Theory simulations sampled at multiples of the Larmor period was

performed, and is shown in Fig. 1.7.1. In all three simulations the spectrum consists of

• three main Zeeman allowed transitions and three Zeeman forbidden transitions of much

less intensity which arise from multiple-quantum transitions that are folded into the
m

spectral window. Both Average Hamiltonian Theory and Static Perturbation Theory

correctly reproduce all of the frequencies and amplitudes of the exact simulation.

However, while the Zeeman forbidden multiple quantum transitions can be

unfolded in the exact and Static Perturbation Theory simulations simply by increasing the

spectral window, this is not the case in the Average Hamiltonian Theory simulation

which must be sampled at multiples of the Larmor period. The multiple quantum lines in

the Average Hamiltonian Theory simulation cannot be unfolded with a dwell time shorter

than the Larmor period, and in place of Average Hamiltonian Theory, Floquet Theory25

is needed to separate the signal contributions from the different transition orders.

Floquet Theory, as described by Maricq26requires the calculation of an additional time-

dependent operator, P(t), to yield the effective propagator in the rotating frame,

O_(t) = P(t)e -_', (eq. 1.7.4)

which is valid at all times. When compared to the propagator obtained from Static

Perturbation Theory or Van Vleck Transformation in the rotating frame,

Uvvr(t) = e-i'_°_zWe-_°'Wt = e-_'°*_zWei'°°_zW*e-'wzrw'', (eq. 1.7.5)

where

D*= D + toIz = D(x)+ D C2)+..., (eq. 1.7.6)
i
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i

one can see the equivalence of these two approaches by setting P(t)= e-i_zWei_'W t

and "H= WD'W t. Note that under conditions of stroboscopic sampling at multiples of t_,

both propagators reduce to the Average Hamiltonian Theory propagator with the effective

Hamiltonian given by equation 1.7.2, which is equivalent to a second-order expansion of
,J

WD'W* ,

"H= WD*W t = D a_ + Dc2_+ i[DCl>,Sm]+... (eq. 1.7.7)

Thus, the truncated Hamiltonian obtained from Average Hamiltonian Theory is correct,

but, of course, results in spectra that would never be observed in practice since the typical

bandwidth of an NMR spectrometer is too small to allow signals over many megahertz to

be aliased into the spectrum. It should be noted, however, that Static Perturbation Theory

has an advantage over Floquet theory that the perturbation expansion of W in irreducible

tensor form allows one to analytically separate the signal contributions from the different

transition orders, thus avoiding the short dwell times needed to prevent aliasing of the

multiple quantum transitions. When only Zeernan-allowed transitions are needed, W

can be simply 1, and only the calculation of D is required. Floquet theory, however,

requires the additional calculation of P(t) even for Zeeman-allowed transitions.

In the last several sections, we have attempted to present a general and consistent

framework for calculating the higher-order terms in the perturbation expansions used in

NMR. We have shown that Average Hamiltonian theory must be carefully applied and

that many times it is better to approach problems in NMR by using Static Perturbation

Theory or the Van Vleck Transformation as we have illustrated in several examples. By

exploiting the fact that the Zeeman interaction, a linear combination of Iz operators, is the

dominant interaction in NMR, irreducible-tensors expansions for the tilting matrix, V,

and the effective Hamiltonian in the tilted frame, D, are obtained. Irreducible tensor
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operators simplify these calculations since their commutation l"elationships with Iz are

simple and the matrix elements can be obtained using simple selection rules. Once V is

known, one can work in a diagonal frame where operators are modified and consequently

• display unusual properties. Coherent averaging techniques, such as Average Hamiltonian

Theory, can then be applied in this diagonal frame in the same manner as they are when
t,

no tilting is present. In addition, the perturbative expansion of V allows the NMR signal

to be "filtered" according to Am, thus avoiding aliasing problems when using small

spectral widths and allowing certain sets of transitions to be singled out for study. We

will use these ideas in the next couple of sections in order to determine the excitation

Hamiltonians for both the simple Am = +1 case and the more complicated overtone case.

We will be applying the tilting matrix in order to cast our equations in the diagonal frame

and in this frame applying Average Hamiltonian Theory to zeroth order to find effective

Hamiltonians for the duration of the pulse.

Section 1.8: Generation of an Effective Hamiltonian using Static

Perturbation Theory or the Van Vleck Transformation

The description of the evolution and observation of a quantum mechanical system

is greatly simplified by choosing a reference frame in which the Hamiltonian is the

diagonal or block diagonal form. Furthermore, when applying coherent averaging

procedures it is often necessary to introduce an interaction representation that, like a

propagator, is more easily dealt with in a diagonal basis. Thus, if an exact diagonal form
¢1

is available for the Hamiltonian, all the calculations can be carried out in the

- corresponding diagonal reference frame. However, if only approximate diagonalizations

are available, it is important to know to what extent this affects the various operations to

be carried out. As we shall see, for a given system, different levels of approximation may
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be necessary depending on the kind of observation and irradiation procedures involved in

the experiment.

The general procedure for producing an effective Hamiltonian is to write the

desired equations in the diagonal frame, which is called the tilted frame, and then

introduce the required perturbation expansions. If the Hamiltonian is diagonalized by a

decomposition like that in equatiou 1.6.1, any operator A transforms to the tilted frame

by the following operation:

A --->A'= WtAW. (eq. 1.8.1)

In the particular case of the Hamiltonian, we have H --> H ° = D. In NMR, where the

main contribution to the Hamiltonian is the Zeeman interaction, the analysis is simplified

by two arguments. First, the transformation in equation 1.8.1 is simplified by a

perturbation expansion of the operator W in terms of irreducible tensors. Second, the

Harniltonian, H° = D, retains the general structure of the I z manifolds since it is reduced

to the Zeeman interaction in zeroth order. This last statement is important because it

implies that any NMR experiment can be analyzed with the same concepts and tools

(rotating frames, averaging techniques, multiple quantum coherences, etc.) that are

currently applied to the usual situations (where only first-order expansions without tilting

are used). Thus, the system can be described by an effective Hamiltonian, given in the

Zeeman eigenbasis by H" = D. However, in this new representation, all the operators we

usually deal with, such as the density matrix, and the radio frequency couplings, are
h

modified by the tilting and may display some unusual properties.

Let us demonstrate this in the simple case of the observation of the free-induction

decay. If the initial density matrix is p(0) and the observable is I x, the signal is given by

M(t) = Tr[e-_'p(O)e_'Ix]
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= Tr[p'(O)e_"I_e-_"], (eq. 1.8.2)

" and the second expression can be reinterpreted as the signal in a Zeeman eigenstate basis

with a purely diagonal Hamiltonian, H °, but with a modified initial density matrix and
II

observable. The various possible transitions between levels of H°define the frequency

spectrum of M(t), where the amplitudes are proportional to the matrix elements of I x.

Thus, the usual Am = +1 selection rule associated with the pure I x operator does not

apply in general.

However, in standard NMR experiments, the signal is observed with a tuned

circuit that selects a band of frequencies around some definite Am value. Although a

general Fourier analysis of M(t) is not easy, the perturbation expansion of the tilting

operator, W, in irreducible tensor form provides a simple decomposition as a function of

Am. For instance, by expanding W of equation 1.6.4 to first order, and then I x by using

equation 1.8.1, M(t) is

M(t)=Tr[p'(O)e _ 'lxe -_ ']+Trip (O)e_ '[Ix,iS(_)]e -_ *], (eq. 1.8.3)

where the S C1)terms have been regrouped into a commutator. To zeroth order in W, the

usual Am = +1 rule applies, and to a small error in the amplitudes, we can thus calculate

the Zeeman spectrum using the untilted operators and the diagonal effective Hamiltonian,

H', which can be approximated to any given order. This picture, in which H° and W are

not expanded to the same order, is well suited to NMR experiments, where the frequency

resolution can be very high, but the amplitudes of the signals are seldom very accurate.

The addition of the time-dependent perturbation to the Hamiltonian can be

handled in a similar manner provided the magnitude of the time-dependent perturbations

small compared to the time-independent part of the Hamiltonian. We will first
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demonstrate this for the case of rf irradiation near the Larmol: frequency. In the tilted

frame, the Hamiltonian for an rf field of magnitude 20)¢ = 2 _¢ along the X-axis in this

frame can be written as

H_(t) = 20),/cos(0)/)I x
11

"_"(e'_"+ e-"_)(('. +/-) + Z [(I++/-)'Hm]l,
m,0 _o J (eq. 1.8.4)

where the second expression was obtained by again expanding the tilting operator, W, to

first order using equations 1.8.1, 1.6.4, and 1.6.12. As in the procedure used in the

untilted Zeeman case, 7,26the effect of the pulse is analyzed in a rotating frame, defined

by the unitary transformation e -i_#z•

A" --->A ° = e-i_z W *AWe_ . (eq. 1.8.5)

This representation is the "rotating tilted frame," which should not be confused with the

"tilted rotating frame" introduced in the analysis of multiple-pulse experiments. 12'27The

transformed density matrix po(t) does not contain any high-frequency components,

because it evolves under the Hamiltonian

H ° = H" + colz. (eq. 1.8.6)
i,

Notice that since I z and H ° commute, H ° is reduced to the offset and the local

interactions. The effective rf Hamiltonian is obtained from the static parts of equation

1.8.4 after transforming to the tilted rotating frame and by using
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e _I" = e+'_I±, (eq. 1.8.7)

and

-jam z ioMz _-imeot • re H,,,e = e rim,. (eq. 1.8.8)
ql

By keeping the static parts of equation 1.8.4, we are averaging the Hamiltonian over a

single Larmor period. This yields the effective rf Harniltonian in the rotating tilted frame

H_ : eoe(I x + 4-_,(-[I.,H_2]+[I_,H2])), (eq. 1.8.9)

which can be simplified by using the relation [l±,H,a] = 0 to

H; = o9_(Ix + 2-_,([lx,H2 - H_2])). (eq. 1.8.10)

We have shown the basic formalism for using Static Perturbation Theory and the

Van Vleck Transformation to produce an effective Hamiltonian. Even though the simple,

illustrative example of a rf irradiation at the Larmor frequency has been shown, we want

to apply this technique to a more interesting and less well understood problem: the

excitation of the 14N overtone.

Section 1.9: Excitation of the 14N Overtone
q

The 14N overtone is the weakly allowed transition between the +1 and -1 states of

the spin 1 14N nucleus. Developing techniques for exciting and narrowing this transition

is important for studying biomolecules and polymer., ,__the solid state, because many of

these materials contain nitrogen and 14Nis its most common isotope. Thus structural

35



B0

Fig. 1.9.1 the external magnetic field B0. The laboratory z direction is defined along the external magnetic

field, and the x direction is perpendicular to z and in the plane def'med by the z axis arid the direction of the

ff magnetic field.

information could be obtained through the use of a naturally abundant nucleus that is

almost ubiquitously present in these systems. Exciting the overtone removes the

megahertz wide first order quadrupolar broadening of the normal 14N z_n=+l

transition. Thus, the overtone transition would have a second order powder pattern, as do

the central transitions of odd half integer quadrupolar nuclei, which could then be

narrowed by the DOR and DAS techniques 1517 providing high-resolution 14N spectra of

biomolecules or polymers.

Such a transition is excited by applying an rf field oscillating at twice the 14N

Larmor frequency. Thus the Hamiltonian during the pulse is

H = Hz + Ho.+ HRF, (eq. 1.9.1)

where

Hz =-COo/z, (eq. 1.9.2)
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HQ= CQ_(-1)'R2_mTzm, - (eq. 1.9.3)
8I

and

. /-/Re= -war(I x sin 0 + Iz cos 0)cos(2Wot). (eq. 1.9.4)

As can be seen in figure 1.9.1, 0 is the angle between the large external field and the rf

coil. Notice in equation 1.9.4, that the rf field is oscillating at twice the Larmor frequency.

As we did before, we must put this Hamiltonian in the rotating, tilted frame by

using the transformation

• • . 0 (Ve,,,,,,_,.) (eq. 1.9.5)H --, H ° = e-"°°azV*HVe ''°°°z- ie-"°°°zV*-_

Before, we used a slightly different rotating, tilted frame transformation, but they are

essentially the same, because the extra term in equation 1.8.5 just cancels the Zeeman

interaction, which we had already dropped in the earlier example. Using this

transformation, we find

= v Hip, (eq. 1.9.6)
m>0 m

where

. H'RF= e-i°_'t_V*HwVei_" . (eq. 1.9.7)

Expanding the tilting operator, V, to first order and substituting for HRF from equation

1.9.4 gives
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H,_,,.= -_R,_ {e-'_z (½(I+ +/_)sine+ Iz cos O)e"_*

+e-"%g_[½(I. + l_)sinO+ IzcosO, V_l']e'°'*g'}cos(2COot). (eq. 1.9.8)

This equation is simplified by substituting for V°) from equation 1.5.22 and then using

equations 1.7.7 and 1.7.8 to find the static parts, which is effectively applying Average

Hamiltonian Theory to zeroth order. We then find that

H'RF=-2-_-{(R2.,T2._2-R2._,T2.2)sine+(R2.2T2._2-R2_2T2,2)cose}. (eq. 1.9.9)

The Hamiltonian during the pulse is

H* = CoR2,or2.o+'_-7_-_R2"Rz-'tT2'-m'T2"]
m>o m

,_,cQ_,{(R2,T2' .-2-R2-,Tz.2)sinO+(R22T2-2-R2.-2T2.2)c°sO}.. . (eq. 1.9.10)

The first order quadrupole shift, CoR2.0T2,0 does not directly effect the + 1 to -1 transition,

and will be dropped from any further consideration. The second order quadrupole shift,

o,0c_-'____R2'_R2'-"[T2'-m'T2'm], does effect the overtone, but we will assume that the rf field
m>0 m

strength is large enough that it can be neglected. Unfortunately, to neglect the nutation

due to the second order quadrupole interaction means that the if-field strength must be

much greater than the quadrupole coupling constant. This approximation is an unrealistic

in most cases, however, we will see the general behavior of the overtone by this

simplified treatment.
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Some aspects of the Hamiltonian during the pulse can be made more intuitive by

writing this Hamiltonian in terms of fictitious spin-l/2 operators. 28"32Using the identity

for a spin-1 that

T2._. = I_-' + iI_-3, (eq. 1.9.11)

where 1-3 indicates a coherence between the +1 and -1 states of the spin-1 nucleus.

Substituting these identities into equation 1.9.9 gives

H' =_,_,,c_,_,{[(R2.2+ P_._2)cosO+(R2.,-R2_,)sinO]l_ -3

-i[(R2,2-R2,_2)cosO+(P_,, + R2_,)sinO]l_-'}. (eq. 1.9.12)

Notice that this Hamiltonian can be rewritten as

H* = _C_oA{cos @I_-3 -sin @I_-3}, (eq. 1.9.13)

where

A= I[(R2,2 + R2,_2)COS0 + (R2,1-R2_l)sin O]2- [(R2,2 - R2,_2)cosO+ (R2,1+ R2,_l)sin0]2 ,

(eq. 1.9.14)

(eq. 1.9.15)
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and

sin_ = _ .....

(eq. 1.9.16)

By rotating the Hamiltonian given in equation 1.9.13 by _ about 1-3I_ , we find that

This equation will allow us to simply analyze the effect of the pulse, because now its

effect is a rotation about the I_-3 axis.

In order to examine the effect of the rf pulse on the overtone transition, we will

calculate the magnetization immediately after the pulse. As discussed in section 1.2, the

expectation value of the magnetization is

i -/Ht /Ht i
M¢oi_(t+ tp) = Tr[e p(tp)e l,oU] (eq. 1.9.18)

where i = x,y, specifying which component of the magnetization detected, tp is the rf

pulse length, t is the time after the pulse during which the overtone undergoes free

precession, H is the Hamiltonian that governs the free precession which we assume to be

the sum of the Zeeman and Quadrupole interactions, and l_oitis the observable angular

momentum in the coil. There are two possible expressions for l_o_t depending upon

which component of the magnetization is measured:

i

l_Xo_z= Iz cos0 + Ix sin 0 (eq. 1.9.19)
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and

I_rit= I z cos 0 + Ir sin 0. (eq. 1.9.20)

It is most convenient to calculate the magnetization in the rotating tilted frame, where the
Q

magnetization is given by

• • • ' ° •i /Dr _ -/Dr
M',oit(t+ tp) = Tr[p'(tp)e I',o_e ], (eq. 1.9.21)

where

l::_t = e-ia'°°zVtl' l/,_i_°°z ' r,'-- "coil" " = Icoil+ L',oil,-- JJ_ , (eq. 1.9.22)

D ° = D + iO_oIz = DC1_+ D _2_+..., (eq. 1.9.23)

and p'(tp) is the density matrix after the pulse in the rotating tilted frame. By

substituting equations 1.9.20 and 1.9.20 into 1.9.22, keeping only those terms that

oscillate at twice the larmor frequency, and then using equation 1.9.11 to write the

resulting equations in terms of fictitious spin 1/2 operators, we find

I_*o,x = ¢Ix - sin ¢_Ir } (eq. 1.9.24)

and

B

ca A{sin ¢1_-3 + cos ¢I_-3}, (eq. 1.9.25)l_oX=--dT,

where A, cos¢, and sin_ are given by equations 1.9.14-1.9.16.
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Now thattheobservableisdetermined,we needtofindthedensitymatrixinthe

rotating,tiltedframe afterthepulse,p'(tp),which isfound by propagatingthe

equilibriumdensitymatrix,writteninthesameframe,withtheHamiltonianduringthe

pulse:

p'(tp)= e_It"e'_"'p"'(0)e_"'e"_¢t''. (eq.1.9.26) "

The Hamiltonianduringthepulse,H", isgivenby equation1.9.16,and theinitial

densitymatrixis

p" (0) = _11-3 (eq. 1.9.27)
3kT z •

This equation is the same as found in section 1.2 because, to lowest order, all the

transformations that we have made commute with I_-3. Carrying out the operations

indicated in equation 1.9.25, we find

p'(tp)- co° [(sin ¢_I_-3 + cos _/_-3)sin(co,H/p) + I_-3cos(co,Htp)] (eq. 1.9.28)3kT t,

We have now found everything that is needed to substitute in equation 1.9.21 and

determine the overtone spectrum. Since we are most interested in determining the

overtone excitation efficiency, we will only calculate the magnetization at tp, which is

given by

*i
M_oit(tp) = Trip" (tp)Icoii]. (eq. 1.9.29)

By substituting equations 1.9.24 or 1.9.25 and 1.9.28 we can calculate either the x or y
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Table 1.9.1: Spa¢ial Tcnsors for the axially symmetric case as defined by Itaeberlen 27.

II,

componentsofthemagnetizationafterthepulse.Thesearegivenby

M_a (t.) = -_, A(sin # cos ¢_- sin # cos ¢0sin(r.o,#tp) = 0 (eq. 1.9.30)

and

Ca

M_,i_(t,)=-_rA(sin 2_+cos 2 t_)sin(to,#t,)=-T_rAsin(co,#t,). (eq. 1.9.31)

where we have used the orthogonality relations of the fictitious spin 1/2 operators.
I-_ I-3

Tr[li "Ik ]=8_. k to find these equations. Equation 1.9.17 defined

¢°_¢°a A' a_ocof_ . 2_(.O09MHz)(IMHz) 02.a_'ca Alp = tp, which is of order ---_, _p= zz.s96Mm OOus=)=.(.O.#tp = _'"T- _0

Thus even if we apply a pulse that is ten times longer, we are in the small pulse limit,

which will allow us to approximate

c_ ,o_c_A2tM,oa(tp) = -3-r¢ AoJ,#tp = -_ p. (eq. 1.9.32)

This equation is what is needed to analyze the excitation efficiency of the overtone

transition.
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Fig. 1.9.2:Definitionof theanglesotand 13for the axiallysymmetricquadrupoleinteraction.X,Y, Z are

laboratoryframedixcctionwhereZ is definedin the directionof theexternalmagneticfield. Vzz is the

directionof theZ principleaxisof the quadrupoleinteraction.

We will examine the overtone excitation of a sample with an axially symmetric

quadrupole interaction for the cases with the rf coil parallel and perpendicular to the

external magnetic field (0=0 or 0=-_). For an axially symmetric quadrupole

interaction, the spacial tensors needed to find A, cos C, and sin _ axe given in table

1.9.1. The angles a and ]3 which appear in table 1.9.1 are defined in figure 1.9.2. With

these tensors we can show that

A = _ V_ sin2fl, (eq. 1.9.33)

i

¢ = 2c¢, (eq. 1.9.34)

and

3 ¢°s_c°_
M,roi_.0-0(tp) = -._ _-¢-_0tpsin4 fl (eq. 1.9.35) "

or the rf-coil along the external magnetic field. If the rf-coil is perpendicular to the

magnetic field, we then find that
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FIG. 1.9.3: The excitation efficiency of the 14N overtone as a function of 13,the polar angle (defined in

Figure 1.5).where the quadrul_lar tensor is axially symmetric a.) The excitation profile when the if-coil is

oriented along the external magnetic field, b.) The excitation prone when the if-coil is perpendicular to this

field. Mc_t is in units where W tp = 1.

A = _ Vzz sin/3 cos ]3, (eq. 1.9.36)

= ez, (eq. 1.9.37)

and

M r 3 _,_
coit,o=_(tp) = z6 kr-'_'otpsin2flcos2fl • (eq. 1.9.38)
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Intensity of the overtone transition as a function of the orientation angle for a fixed, short

pulse length is shown in figure 1.9.3.

If the sample is polycrystalliae, it is not obvious whether the direction of the rf-

coil is going to effect the total intensity of the overtone transition. To determine this, the

magnetization must be averaged over all crystallite orientations:

(M_,,(tp))= _ _Mcroi,(tp)sin[3d_d_x. (eq. 1.9.39)
a---0/3=0

Performing this average on equations 1.9.35 and 1.9.38, we find

\M Y
o-o M y (tp)]= i'6 k-y-ff_,tp (eq. 1.9.40)

and thus the total overtone intensity does not depend on these two rf-coil orientations.

However, the shape of the observed powder pattern will depend upon the coil orientation,

because different crystallites are excited which then will oscillate at different frequencies.

In this section, we have shown how the formalism presented earlier can be used to

find an effective Hamiltonian that allowed us to examine the excitation of the 14N

overtone. We have shown that it is possible to excite the overtone in a polycrystaUine

sample and we have presented a formalism that can be expanded to determine the

nutation effects due to the second order quadrupole interaction that we have ignored and

the effects of spinning the sample. Thus the idea of an effective Hamiltonian is useful for

determining the time dependence of the density matrix and thus the quantities actually

observed in an experiment. However, all the time-dependent Hamiltonians that we have

examined so far have be under our control. They have been due to either an artificial

frame transformation or application of a coherent rf field. We have ignored the effects of
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incoherent fields on our sample. These fields will lead to relaxation of the spin system

and will be treated in the next section.

- Section 1.10: Relaxation Theory

So far in this thesis, we have learned to calculate the interaction of nuclear spins

with large, static magnetic fields and radio-frequency fields. To do this analysis, we

calculated an effective Harniltonian which then led to the time dependence of the density

matrix. The initial condition for these calculations was always that the spins were in

equilibrium with the rest of the lattice and thus was at the same temperature as the lattice

(see the derivation of equation 1.2.13)• However, we never examined how the nuclear

spins came to be in equilibrium with the lattice. The examination of the process by which

nuclear spins reach equilibrium is called relaxation theory, and was first analyzed by

Bloembergen, Pound, and Purcell 33,and then later refined by Redfield and others 3438.

By analogy with what occurs in atomic systems, we would expect the relaxation

of the nuclear spins to be due to the coupling of the nuclear spins to the radiation field,

and thus the lifetime could be calculated using Fermi's golden rule 1. However, as shown

by Abragam in his book 7, this effect is much too small to explain the relaxation times

actually seen. Bloombergen, Pound, and Purcell have shown that the appropriate

explanation for nuclear relaxation is the interaction of the nuclei with motions of the

molecules in the sample, which is normally referred to as coupling to the lattice. The

nuclei interact with these motions through the modulations of the dipole-dipole

interaction, chemical shift interaction, quadrupole interaction, ect that the motions create.

• In order to describe the coupling between the nuclei and the motions, we will present

Redfield theory which describes the relaxation of every element in the density matrix.

This theory will only be appropriate to describe the relaxation where the coupling to the
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lattice is weak. We will ignore the other case. We will treat He motions of the lattice

classically and the nuclear system quantum mechanically ( a serniclassical treatment).

With a semiclassical treatment, the nuclear spin Hamiltonian is partitioned into a

large time-independent term, which contains the Zeeman interaction and all the static

internal interactions, and a much smaller time dependent term, which contains the
-¢,

coupling to the motions of the lattice:

H(t)= Ho + Hi(t). (eq. 1.10.1)

As we did in sections 1.2 and 1.8, we can now go into the rotating frame to remove the

effects of the time-independent Hamiltonian and find a short time approximation for

p*(t),

(eq. 1.10.2)

where

p" (t) = e-UC*'p(t)e_*' = e-_°'V*p(t)Ve _' = e-W'p(t)e z°', (eq. 1.10.3)

and similarly

H_ (t) = e-_'H1 (t)e _°'. (eq. 1.10.4)

In both of these equations, we have neglected the effect of tilting. If we take the

derivative of equation 1.10.2 with respect to t, we find

a,o'(t)
-z[H 1(t),p (0)]- _0[HI (t),[H_ (t'),p*(O)]]dt'. (eq. 1.10.5)Ot
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Both the Hamiltonian and the density matrix are independent statistical quantities in this

formalism, thus the Hamiltonian, H_(t), must be averaged over the motions of the

" sample. This average can be made to disappear, because any part of it that does not

average to zero can be included in H 0. This implies that the f'trst term on the right hand

side of equation 1.10.3 is zero and this equation becomes

ap'(t) , ,
------- = -f0[nt (t),[n;(t'),p'(O)]]at'. (eq. 1.10.6)0t

If the motions that are responsible for the time dependence of/-/1"(t) have a correlation

time that is much shorter than the interval over which we want to calculate the change of

the density matrix, then the upper limit on the integration can be extended to infinity,

because the contribution to the value of the integral beyond the correlation time is

negligible. Secondly, if we assume that the coupling to the lattice is weak, we can replace

p'(0) by p'(t). This assumption is equivalent to assuming that the time over which we

observe the change in the density matrix is much shorter than T2. These assumptions are

referred to as the coarse graining approximation, because they limit our ability to examine

the density matrix for times such that tc << t << T 2. Within this approximation, equation

1.10.4 becomes

ap'(0
= -_o[H_(t),[H_(t' ),p'(t)]]dt'. (eq. 1.10.7)0t

Because of the semiclassical treatment of the lattice, this equation relaxes towards an

infinite temperature condition, equal probabilities of all states; however, if the full

quantum mechanical treatment is performed 7, it can be shown that the correct equation is
ill

obtained by replacing p°(t) with p'(t)-p,q(t). We will make this substitution in all

49



further equations. A matrix element expansion of the corrected version of cquadon 1.10.7

is the Rcdficld equation; however, we find that an operator expansion of this equation is

more convenient.

To find the operator equation, the interaction Hamiltonian between the spins and

the lattice, H1(t), is expanded in terms of irreducible tensors,
,m

Hi(t) = Z__C,__,(-1)mR__m(t)Z,'.m, (eq. 1.10.8)
i 1 m

where i labels the different possible interactions between the spins and the lattice (the

dipole-dipole, chemical shift, and quadrupole interactions are most commonly

responsible for relaxation),and l and m label the rank and order of the tensors., which

are written in the laboratory frame. The R[_re(t) are functions of time because of the

motions of the lattice. Substituting equation 1.10.8 into 1.10.7, we find

-f'vvc:Z "'" ' " '" ""- (-1) Rt,_.,(t)Rr,_.,,(t' -= )[Tt,_m(t),[T;.._m.(t),p'(t) p2q(t)]]dt',
o3 t is t.r m.m'

(eq. 1.10.9)

i * -iDt,'_i iDt

where Tt.m(t)=e lt,me . If we substitute t' t+x and expand ""= Tt,m(t) in a Fourier

series,

iiI . • r

Tt.m(t)= _ ,.r -,_,,.t,As.me (eq. 1.10.10)
¥

equation 1.10.9 can be written as

i,r t",r'

Op*(t) = -Z Z Y--.Z S(o;_..-o4.,,'-''a_'+m'ti''ot.r.m,m'(O);'.,,.)[A,.-m,[Ar.-m.,p*(t)-p*,q(t)]],
0 t i,g l,l' m,m' r,r'

(eq. 1.10.11)
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where

II

"c)>ei_;_d'_, (eq. 1.10.12)" = 5(CiC_R,_.(t)Rr._..(t +" '
0

is the spectral density of the motion and ( ) explicitly indicates that an ensemble average

over all initial and final configurations must be performed. In equation 1.10.11, we have
r r*

kept only those terms with (.0_.,,=-ogr.,,. because the other terms are oscillating too

rapidly to contribute to the integral of this equation. This equation gives us the rate of

change of the density matrix, however, we do not directly observe the density matrix in

an experiment. We measure the rate of change of some observable, Q, which is given by

(:ol0<Q> =Tr
Ot

=-__E_. , (-1) ''.'' i" r "" i., • _ •co,_..-_,,., J,.r.,.m.(O),:'.,.)T,{[ar;'_,.,[m,._,,Q]]( p (t) p,q(t))},
i,£ I,t m,m' r,r °

(eq. 1.10.13)

where we have used the identity Tr([A,[B,C]]D)= Tr([B,[A,D]]C). This equation is the

most general operator form of the Redfield equation. It is much more general that what

will be needed in this thesis and we will simplify it by working with only a single

" relaxation mechanism at a time and neglecting the important cross-correlation effects.

Under these conditions, the summations over the i's and l's are not needed and m = -m'.

This simplifies equation 1.10.13 to

O<Q> {[ " " " )}Ot =--_'_ZS_'-'-_f.-'J'(w':'-'ITr A;:'m'[At'-"Q]](P (,)-p,q(t) , (eq. 1.10.14)
tit r , r '

51



m r2,m
ill' i ,: i i i |lu , ,_ u ,, i ,,i ,,,,m_

o  { zSz- +
+1 "T'½(I±Sz+ IzSe )

..........
Table1.10.1:Definitionof SphericalTensorOperatorsusedto describethe Dipole-DipoleInteraction. t

where

" i(J,,,(co,._m)= C2R,._,(t)R,.,(t + _))e'°_r'-"dv. (eq. 1.10.15)
o

The correlation function in equation 1.10.15 is given by

(C2R,,_m(t)R,,.,(t + "c))= I C2R',--(t)R_,'(t + "c)p(f_(t):_Z(t+ $))df_(t + "c),
a(t+_r)

(eq. 1.10.16)

where p(fZ(t):fZ(t + 'r)) is the conditional probablitiy to go from orientation fZ(t) at time,

t, to fZ(t + 1:) at t + _:. This correlation function is a real function when the conditional

probablity is a real, even function. This constriant is true for any symmetric motions of

the molecule under study and is always true when the molecule is undergoing isotropic

reorientation. Equation 1.10.14 can be used to derive the longitudinal and transverse

relaxation times T1 and T2, respectively, for different circumstances.

As an example, we will derive the longitudinal relaxation time, T1, for the case of

two resolved spins relaxed by the dipole-dipole interaction. In this example, the static

Hamiltonian is
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r
i

Ho = D = _otIz + ¢Os$z (eq. 1.10.17)

and the fluctuating Hamiltonian responsible for the relaxation is

111= Co__.(-1)*t_,_.(t)T2, . , (eq. 1.10.18)
M

o

where

Co --2yty s, (eq. 1.10.19)

R=,.(,)=4gY=,.(o(0,_(0)
r(t) 3 , (eq. 1.10.20)

and the 7'2.,_ are given in table 1.10.1. The Y2.m(O(t),f_(t)) are spherical harmonics

describing the orientation of the internuclear vector whose length is r(t) by the polar

angle O(t) and the azimuthal angle ¢(t). We can now go into the interaction frame
Y r .

defined by equation 1.10.17 and find T_.m, A_.,,,,and co_,,_.

• (T2,o(t) = IzS z -¼ l.S_e -'(_''-'°')' + l__.e ,

A_°,o='k/'_fl =zSz A_,o= -'_2 I+S_, A_2o _4_ I S12 - +_

o , _ ( )0)2, 0 = O, (.02, 0 = COl --CO s , (.02, 0 =- 021 --CO s ,

T;,4.,(t)= -T-½{I4.Sze"n_''+ lzS4.e'n"'}, (eq. 1.10.21)

A_°.4.,= T-½14.Sz , A_.4.,= -T-½Iz S4.,
b

0 1
('02,+1 "- "}'O)I' 0")2,4"1"_- +(£)S'

1 "n(col+cos)t
T_,_a( t) = -_I4.S±e

,_o =__,s,,
0co_,_,=+(co,+o_,).
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Since we are calculating the longitudinal relaxation rate, the observable, Q, is I z, and

equation 1.10.14 becomes

t

a<IZ>,, o, =-Jo(o)r_{[4o,tA_°.o,_1](o'_,_-p:,<,_1}

-.,"o(_,-_,,)r,'{[A.l.o,tA_.o,,,_1](p"(0-p,;(,_)}

-Jo(,.,,,-,,,,)r,-{[4.o,t4.o,_,z_](,o"<,>-,,,,;<,>)}

-J1 (¢.o,,)Tr{[A_.,,[A_°._,,Iz]](p* (t)- p,'q(t))}

-J,(_,)r,{[A_._,.r4,,_,l](p"<,_-p:,<0)}

-J,(o.,,)rr{[A,.;.,,t4.-,,,',1](P"<,_-p.;_,_)}

-J,(_,,)rr{[AL_,,t4.,,_,l](p"_,>-p,;¢,>)}

-J_(o.,,+o,,)rr{[4_.t4__.,':l](,o'<,_-,o.;_,>)}

-J2(°_'+ °_s)Tr{[A_-2'[A_°'2'Iz]](P'(t)-P"q(t))}.(eq. 1.10.22) "

Assuming I and S are spin ½, we can use the definitions in equations 1.10.21 and the

commutators defined in table 1.10.2 to find

cg<Iz >cgt= -P(< Iz > -< Iz >eq)- o(< Sz > - < Sz >eq ) , (eq. I. I0.23)
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where

- P = _[Jo(r-.o,-COs)- 3Jl(co,,)+ 6]2(cot + cos)], (eq. 1.10.24)

" °'= _[-JoCcot- cos)+ 6J2( co, + cos)], (eq. 1.10.25)

and

j ,. _(Y_.m(O(t),O(t))Yzm(O(t+ "¢),Ott+ "¢)))ei_..,dz.,,,(co,._,) = -_ (- 1)"C__ r(t) 3r(t + "t)3

(eq. 1.10.26)

Equation 1.10.23 is one of the two coupled equations describing the system. The entire

systems of equations is best described in matrix form, Louisville space, as

cgt_,(Sz). = p)_(Sz)_(Sz),q . (eq. 1.10.27)

These equations are the Solomon equations.

. Spin 1/2 Commutators

[Iz,I+l=+-L.

[I.,l_]=2Iz

[Zs_,t_s.]=lz- Sz
[&s+,/_s_]=Xz+Sz
tt ,, , , , H ,

Table1.10.2:Spin1/2Commutatorsusedin derivingrelaxationequations.
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Equation 1.10.23 makes the interesting prediction that tile measured longitudinal

relaxation rate depends on the exactly how the experiment is performed. There are three

distinct experiments that can be performed. First, the I spin can be inverted while the S

spin is saturated. Under these conditions, the equation of motion of the I spin is

( ) "8 < I_ > = -P < IZ " - < IZ "eq ' (eq. 1.10.28)dr

and the magnetization recovers with a rate p. To determine what happen in the other two

cases the relaxation equation, defined in equation 1.10.27, must be integrated. This is

done by diagonalizing the rate matrix and then solving the resulting differential equation.

The rate matrix can be diagonalized in the two spin case with the unitary transformation

The inverse of this transformation is

= 2" 1 1 " (=q. 1.10.30)

Using this unitary transformation, the solution for the differential equation in equation

1.10.27 is

o

!

,,\ z ,,,_,_-(/z).,)+ (e-(a+°)' e-(a-°)')((Sz)_ -(Sz),,)].
=

(eq. 1.10.31)

The equation for Sz is found by exchanging the roles of Iz and Sz in equation 1.10.31.

The second experiment that can be performed on this system is the simultaneous
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resolved homonucle_ system, the expected recovery of the system is

(Izl = (Iz),q(1- 2e -(p+_)') (cq. 1.10.32)

and

(Sz) = (Sz),,(1- 2e-0'._)'). (eq. 1.10.33)

In this case, the system recovers monoexponentially with a rate p + o'. If only the I spin

is inverted, initially {Iz)=-(Iz),, and (Sz)= (Sz),q . The expected recovery of the

system is now

(Iz)= (Iz),q(1-e -('.°)' -e -0''')') (eq. 1.10.34)

and

(Sz>=(Sz>,,(1-e -0'+_)'+ e-O'-')'). Ceq. 1.10.35)

Now the I magnetization recovers biexponentially. So as we can see the measured T1

depends upon which experiment is performed. Thus caution must be used when

• attempting to interpret this parameter.

Throughout this first chapter, we have shown how to calculate the effect of static

and time dependent Hamiltonians on a spin system. The static interactions we now know

how to deal with include interaction with the large external magnetic field used in NMR

as well as the smaller internal interactions, such as the dipole-dipole coupling, quadrupole

coupling, and scalar coupling (J-coupling). We have also determined how to calculate the
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effects of time-dependent interactions, such as interaction with the oscillating rf-field

used to excite the spins and random time-dependent interactions that lead to relaxation of

the spin system back to equilibrium. The rest of this thesis will be investigating relaxation

processes in nuclear magnetic resonance spectroscopy. These relaxation processes will be

investigated in semiconductor nanocrystals, biological molecules, and 13C enriched
1

solids. By measuring the relaxation properties of these materials, we will determine both

dynam.ic information about the motions of the molecules and also structural information

that will that will constrain the geometry of the molecules.
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Chapter 2: NMR Studies of the
Structure and Surface Dynamics of

Semiconductor Nanocrystals

Section 2.1: Introduction to Nanocrystals

A novel form of matter which has recently received much theoretical and

experimental interest is the nanocrystal. A nanocrystal is intermediate in size between the

molecular and the bulk causing its physical properties to become size dependent. 1,2For

example, the energy at which light is absorbed depends on the radius of the nanocrystal.

The size dependence of the properties of the nanocrystal has lead to the realization that they

might be tuned for technological purposes; 3,4 however, before these nanocrystals can be

used in devices the relationship between the structure of the nanocrystal and its properties

must be understood. In this chapter, we present NMR studies of cadmium sulfide

nanocrystals capped with thiophenol molecules in order to obtain structural information

about these nanocrystals.

The structure of the nanocrystal can be loosely divided into two parts, the surface

and the core (or interior). Our studies address only the surface of the nanocrystals, which,

not surprisingly, plays an important role in determining many of size dependent properties

• of the nanocrystal. For example, trapping of the optically produced hole, the fluorescence

of the nanocrystal, the surface energy and hence the phase diagram all depend upon the

structure of the surface. In addition, it is necessary to synthetically manipulate the

nanocrystal surface to achieve solubility in a wide variety of organic solvents. Thus, a

study of the organic molecules bound to the sarface of the nanocrystal is crucial to

understanding these systems. Despite its importance, the surface structure of these particles
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has so far received relatively little attention. We will approach tla_is important problem by

examining the solution state 1H and 13C NMR of the thiophenol molecules bound to the

surface, which will tell us not only about how the thiophenols are bound to the surface, but

also about their motions on the surface.

Section 2.2: 1H NMR Results of Thiophenol of CdS Nanocrystals

We have used one- and two-dimensional solution state 1H-NMR to characterize the

organic molecules bound to the surface of CdS nanocrystals. To perform the solution state

studies, Vicki Colvin synthesized pyridine soluble, thiophenol capped nanocrystals using

inverse micelles according to standard procedures, 5 except that they were not annealed and

thus their interior was poorly crystalhne. The non-annealed samples were used because

annealing is performed in quinoline at high temperatures, which greatly complicates the

NMR spectra. NMR samples of nanocrystals were prepared by dissolving 5 mg of CdS

I ' I ' I i I ' I ' '

8.80 8.40 8.00 7.60 7.20

Frequency (ppm)

Fig. 2.2.1: 1H NMR spectrumof an ll.SA CdSNanocrystalin d5-pyridineat room temperature.The

samplewas preparedby dissolving5 mg of drypowderof nanocrystalsin 0.5 ml of 99.99%deuterated

solvent. The spectrum was taken at a 1H Larmour frequency of 400 MHz on a Bruker AM400

spectrometer.
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nanocrystalsin0.5ml of100% ds-pyridine.400 MHz IH-NMR spectrawererecorded

withina week ofparticlesynthesisatroom temperaturewithBrukerAM-400 andAM-

400X spectrometers.

Infigure2.2.1isa representativeprotonNMR spectrumofa.thiophcnolcapped

nanocrystalinds-pyridine,As can be seen,despitethepossibilityofmany different.,m

environmentsonthenanocrystalsurfacecausingafeaturelessIH NMR spectrum,we have

observedhighresolutionspectrathatareshiftedwithrespecttofreethiophenol.This

immediatelytellsusthatthethiophcnolmoleculesareboundtothesurfaceand thatthe

distributionofthiophenolsiteson thesurfaceisrelativelysmall.The protonNMR spectra

ofthemodelcompoundsCd(SC6Hs)2and[Cd(SC6Hs)2]2[H3CPCH2CH2PCH3]have

D

/"_'\ pyridine /---,
_. qt'J _......................................... -__Ib,
\,. 6#Vl ',.,.:2.,.o --

-9.0
.........

I I I I I 1 I I I I I
9.0 8.0 7.0

ppm

Fig. 2.2.2: Amplitude modulated COSY spectrum CdS nanocrystals in d5-pyridine. The spectrum was

takenwithinoneweekafterpreparationatroomtemperatureat a 1Hfrequencyof 400MHz..
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identical spectra to that of the thiophenol ligands on the semiconductor nanocrystals. The

crystal structures of these two model compounds are known[ 6,7 and show that the

thiophenol ligands bind both terminally to a single cadmium atom and bridging between

two cadmium atoms. Comparison of these spectra with that of the nanocrystal implies that

thiophenol binds to cadmium atoms on the surface in a similar way in both the nanocrystal

and the model compounds. Unfortunately, we cannot use these data to specify whether

thiophenol binds to the nanocrystal surface in a terminal or bridging manner, as the solution

state structure of the models is unknown.

Two-dimensional phase-sensitive COSY spectra s,9were used to assign the

chemical shifts. As shown in figure 2.2.2, we see only one set of resonances which are

attributable to the ortho-, meta- and para- protons of thiophenol and which show the

corresponding characteristic connectivities. Thus, the peaks at 7.91, 7.03 and 6.92 ppm are

assigned to the ortho, meta, and para protons respectively of thiophenol molecules bound

to the surface. The peaks at 8.71, 7.19 and 7.56 ppm are due to the ortho, meta, and para

protons respectively of residual protonated pyridine co-purified from the synthesis

procedure. These resonances are identical to those for pure pyridine.

The surface of the nanocrystal changes with time, as can be seen from the

appearance of new peaks at 7.25, 7.38, and 8.34 ppm in the 1Hspectra. The intensity of

these peaks is seen to increase with time, while the bound thiophenol peaks decrease with

approximately the same rate. For panicles in pyridine solution at room temperature the

bound thiophenol ligand resonances disappear in approximately 16 days. The same change

in the NMR spectrum is seen in samples kept as powders, however, the rate slowed

considerably. For this reason, many of the samples of nanocrystals were studied within

one week of their synthesis before degradation could occur. Russell Bowers and Robert

Grubbs identified the degradation product as the dithiophenol, CsH5SSCsHs. We showed

that the change requires both 02 and light, and a plot of the amount of the dithiophenol

present as a function of the number of ultra-violet photons for a pyridine solution of CdSe
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Fig.2.2.3:Intensityoftheorthoselenophenolpeakandthedegradationproductpeakat8.34ppm intheIH

NMR spectrumasa functionofthenumberof ultra-violetphotons(L=530nm) towhichthesampleof

Selenophenol capped CdSe nanocrystals was exposed. Degradation of this sample is seen to form the same

type of product as the CdS nanocrystals.

nanocrystals that has been saturated with 02 is presented in figure 2.2.3. Robert and Russ

showed that if the 02 is excluded from the NMR tube, no reaction occurs independent of

the number of UV photons exposed to the nanocrystals. Thus, samples can be kept

indefinitely in sealed tubes when oxygen is removed by the freeze-pump-thaw method.

Figure 2.2.4 shows a size dependent series of spectra to which a known amount of

CH2C12 was added. The intensity of the thiophenol peaks falls rapidly as the nanocrystal

radius is increased. Using these spectra, we are able to determine the number of thiophenol

" capping molecules per nanocrystal, and the percent coverage by comparing the integrated

thiophenol signal to that of a standard present at known concentration (Figure 2.2.5 and
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13.8/_

_ <.......__..... _ ss_

15.8A

1

19.2/_

,_ I ' 'I I I I I

8.80 8.40 8.00 7.60 7.20 5.60

Frequency (ppm)

Figure 2.2.4: Intensity calibrated, size-depe'a_,ent 1Hspectra of thiophenol capped CdS nanocrystals. The

samples were made from the same stock solution of d5-pyridine to which had been added 0.9 mmoles of

CH2C12per kilogram of solution. The intensity of the CH2C12.at 5.68 ppm is constant in these spectra.
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Fig.2.2.5Number of thiophenolmoleculesper gram ofnanocrystalversusradius.Noticethatthedatado

not follow the expected 1/r dependence given by the solid line.

Table 2.2.1). In the table, the number of surface Cd atoms was determined for the

thiophenol coverage calculation from the shell model of Lippens and Lannoo. 1°This model

builds a nanocrystal by tetrahedrally binding atoms in shells starting from a single central

. atom and predicts the number of atoms N in a particle with a given number of shells ns to

be

N = _.(10nsl 3_ 15n_ + 26ns - 9) for odd ns, (eq. 2.2.1)

N = _(10n_ - 15n,2 + 26n, - 12) for even n,. (eq. 2.2.2)
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This model is consistent with the nanocrystal preparation, which was performed with the

addition of excess Cd at the end of the synthesis in order to create a Cd rich surface. The

nanocrystal radius is calculated assuming a spherical nanocrystal. Where the lattice constant

of the unit cell is a, the radius is given by

a13_
r = _ V'4-_'_" (eq. 2.2.3)

With these formulae, we can estimate an upper limit for the number of Cd atoms in the

nanoerystal surface. The NMR data can then be used to provide a lower limit for the

,, ,,',

Radius Molecular ActualNo. No. Cd % Coverage Effective T.P. T2 of T.P para

(k) b Wt (kDa)c T.P./part on Surfaced of T.P. radius (k) e peak (msec)f
i I i II I ii

11.8+1.0 23+6 24+6 92 26 9+1 57+__3

13.8+_1.0 34+7 18+-4 162 11 12+-2 76+-3

15.8+1.0 50-2__10 16+5 204 7.8 14+2 121+3

19.2+-1.0 89__+14 17+5 304 5.6 16+2 220-___3
' i

Table 2.2.1: Experimental measure of the coverage of thiophenol on CdS nanocrystalsa as a function of

n&aocrystalradius,b

a. Determined by integration of the spectra presented in Figure 2.2.4. b. The radius of the nanocrystal, excluding

the capping group using UV-VIS spectroscopy and graphs in Lippens and Lannoo. 10 c. Assuming the

nanocrystal is spherical. This molecular weight is a lower limit, d. Based on Lippens and Lannoo and assuming

completed shells. 10 This coverage is a lower limit, e. Note that the Van der Waals radius of thiophenol is 2.1,4 if

bound in a bridging fashion and is 4.9 _{ if bound in a terminal fashion, f. T2 was measured by the method of

Emsley, Kowalewska', and Bodenhausen. 11
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thiophenol coverage (Table 2.2.1). This percent coverage increases with decreasing

nanocrystal radius. The data show that the coverage increases from 5.6 to 26 percent as the

nanocrystal radius changes from 19.2 A to 11.8/_ (Table 1). Thus, the nanocrystal is not

completely capped. It is of considerable interest to determine whether, at low coverage, the

thiophenol molecules are uniformly dispersed on the nanocrystal surface, or if there are

substantial local fluctuations in the coverage. If the thiophenol coverage were uniform, the

average distance from one surface molecule to another would change from 18A to 32/_.

Such large separations would indicate that there should be negligible interaction between

thiophenol molecules.

In figure 2.2.6, the concentration of pyridine per gram of particles is plotted versus

the nanocrystal radius. These data show no correlation between the amount of pyridine and

the nanocrystal radius. The pyridine resonances disappear upon repeated evaporation and

resuspension in deuterated solvent. However, the pyridine resonances do not disappear

when powders of nanocrystals are placed under vacuum at room temperature. These data

i .9

0.8

0.7

10 12 14 16 18 20

Radius (,_)

Fig: 2.2.6: Pyridine concentration per gram of nanocrystal versus nanocrystal radius. Data obtained from the

integrals of the intensity calibrated spectra shown in figure 2.2.4. Notice that there is no trend in the data.
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suggest that the pyridine is not specifically attached to the nanocrystal surface, but merely

trapped in the powder; however, we cannot determine if some proportion of the pyridine

does associate with the nanocrystal surface, as would be suggested by the low thiophenol

coverage.

Perhaps the most remarkable feature of figure 2.2.4 is the size dependence of the

linewidths of the thiophenol peaks. As the nanocrystals become smaller, the resonances

broaden. This broadening could be either homogeneous as a result of changes in the

mechanism of motional narrowing of the lines, or inhomogeneous and due to site variations

on the nanocrystal surface. We investigated the source of the broadening by measuring the

1H and 13C longitudinal and transverse relaxation times of the thiophenol ligands. The

necessary techniques and the results of these experiments will be discussed in the next

sections.

Section 2.3: 1H Longitudinal and Transverse Relaxation Time

Measurements of Thiophenol Capped Nanocrystals

To determine the homogeneous linewidth of the 1H resonances of thiophenol on the

CdS nanocrystal surface, we measured the transverse relaxation time, T2, by the selective

Hahn echo technique. II This relaxation time is related to the homogeneous linewidth by

1
Av=_, (eq. 2.3.1)

where Av is the full width at half the maximum intensity. If the linewidth determined by

relaxation time is about the same as the observed linewidth, the line is homogeneously

broadened and we must find a mechanism to explain the linewidth. However, if the

relaxation time measurement indicates that the homogeneous linewidth is much less than the
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Fig. 2.3.1"The Hahnechosequenceconsistsof a 90xand 180ypulsesseparatedby a time "c.The chemi_l

• shiftsrefocusat 2%at whichtimesignalacquisitioncanbegin,

observed linewidth, the line must be broadened inhomogeneously, say by a distribution of

sites on the nanocrystal surface.

To measure the transverse relaxation time in this system, a selective experiment

must be performed to remove the effects of J-couplings 12.For example, let us assume that

we have two J-coupled spins, I and S, and that we perform a nonselective Hahn echo on

this system. The Hahn echo sequence 1315is shown in figure 2.3.1. In the rotating frame,

the Hamiltonian for this system is

H = r.Oflz+ tOsSz + 2zcJlslzSz . (eq. 2.3.2)

The zeroth order Average Hamiltonian can be found by using equation 1.3.7 of section 1.3

of this thesis. During the f'trst free precession period, the Harniltonian acting on the spins,

H1, is eq. 2.3.2. After the n: pulse, this Hamiltonian is rotated and becomes

H2 = -r..Oflz - wsSz + 2z_JtslzSz . (eq. 2.3.3)

The Average Hamitonian to zeroth order is

1
_'(o>= ,q-z_(H,t_ + H2t2) = 2zCJtslzS z, (eq. 2.3.4)
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and the intensity of the echo is modulated by the J-coupling. If many J-couplings are

present, the echo modulations become too complicated to interpret. In the case of a Hahn

echo, the zeroth order average Hamiltonian is equivalent to the exact result.

These echo modulations can be removed by performing a selective Hahn echo. By a

selective Hahn echo, we mean that only a single multiplet due to a single spin is affected by

the pulses. For the two spin case, where we selectively excite only the I spin, the

Hamiltonian during the first time period is again given by equation 2.3.2. After the

selective n pulse, the Hamiltonian during the second time period is

H2 = -o_flz + rOsSz - 2zcJ_slzSz . (eq. 2.3.5)

The zeroth order Average Hamiltonian is

_(o) = OgsSz. (eq. 2.3.6)

This Average Hamiltonian does not effect the I spin, so the echo amplitude evolves only

because of the transverse relaxation. By using this method, it is easy to obtain an accurate

measure of the transverse relaxation time.

To perform the selective Hahn echo experiment, good selective pulses are needed.

Emsley and Bodenhausen have found shaped pulses that give good selective excitation

without phase problems. They have shown that a gaussian 270* pulse can have a narrow

excitation bandwidth with good in phase response 16.Inversion can be achieved by using a

pulse made of three gaussians of different widths and amplitudes that causes almost

"tophat" like inversion. They have called this pulse a q3 pulse17. By using these pulses in a

Hahn echo sequence 11, they can accurately measure transverse relaxation times and

distinguish slightly different relaxation rates.
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Fig 2.3.2: The Selective T2 experiment of Ernsley, Kowalewski, and Bodenhausen: a.. The pulse sequence.

b. Representative data from the ortho and para protons of the thiophenol ligands on CdS nanocrystals.

- We have used this selective T2 sequence to measure the homogeneous proton

linewidths of the thiophenol molecules bound to the nanocrystal surface. Figure 2.3.2

shows the selective T2 pulse sequence of Emsley, Kowalewski, and Bodenhausen 11that
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Fig. 2.3.3:T2 as a function of CdS nanocrystal radius. "I"2was measured using the selective T2 sequence

shown in figure 2.3.2. a.) T2 measured on sampled prepared by dissolving 5 mg of nanocrystals in 0.5 ml

of d5-pyridine. By the time the meta peak of the r=19.2 A nanocrystal was measured, significant

decomposition of the surfacehadoccurredas evidenced by the appearanceof peaks due to the dithiophenol

decomposition product, b.) Samples prepared at the same concentrations as in a), but the samples were

purged of 02 by repeating the freeze-pump-thaw procedure five times. This had the benefit of both

preventing decomposition of the nanocrystals and removing randomfield relaxation due to dissolved 02.

The removal of random field effects explains the increase in T2 of the particles in b over what they were

measured in a.
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was used to make the measurements, together with some representative T2 data. The

resulting transverse relaxation times (given for the para peak in Table 1) fully account for

the trend in the linewidth, demonstrating that the lines are in fact homogeneously

broadened. Therefore, the changes in linewidth must be due to motional averaging effects.

The simplest model assumes that the entire nanocrystal undergoes isotropic rotational

diffusion as described by the Stokes-Einstein equation while the thiophenol ligands remain

fixed with respect :o the nanocrystal surface. This predicts that as the particle size increases

from 11.8 to 19.2/_, the correlation time for reorientation of the entire nanocrystal

increases from 1.7 to 7.1 ns, and that the transverse relaxation times should

correspondingly decrease with increasing nanocrystal radius. If only intra-thiophenol

dipole-dipole interactions are considered, this theory predicts that T2Para=T2meta=½T2 °rth°.

Neither of these predictions is borne out in our experimental data, presented in figure

2.3.3.

Figure 2.3.4 shows the 1H longitudinal relaxation times, TI, of the thiophenol

ligands. The data for the nondegassed samples possibly suggest that the 13.8/_

nanocrystals are near the T1 minimum. However, the degassed samples show that T1

monotonically increases with nanoc_3,stal radius, indicating that the nanocrystals are

tumbling in the slow motion regime. This would be expected for particles whose overall

tumbling time is 1.7 to 7.1 ns in a 400 MHz magnetic field; therefore, the possible T1

minimum observed in the nondegassed samples must be an experimental error. Notice that

the longitudinal relaxation times of the different sites in the thiophenol molecules in the

gassed and degassed samples occur in a different order. In the nondegassed samples,

Tlortho>Tlmeta>Tlpara while in the degassed samples, Tlpara>Tlmeta>Tlortho . These data

suggest that in the nondegassed samples, longitudinal relaxation due to random fields

created by dissolved oxygen, which has greater exposure to the para 1H's, is the

predominant effect. In the degassed samples, this effect is removed.
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Fig. 2.3.4: 1H longitudinal relaxation times of thiopbenol ligands as a function of nanocrystal radius. T1

was measured by nonselective inversion recovery of all 1H resonances, a.) T1 measured on sampled prepared

by dissolving 5 mg of nanocrystals in 0.5 ml of d5-pyridine. By the time the meta peak of the r=19.2 ,_

nanocrystal was measured, significant decomposition of the surface had occurred as evidenced b_, the

appearance of peaks due to the dithiopbenol de,:omposition product, b.) Samples prepared at the same

concentrations as in a), but the samples were purged of 02 by repeating the freeze-pump-thaw procedure five

times. This had the same benefits as in figure 2.3.3.
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Change Qf 1H relaxation rate in 10.6_, thionhenol capved CdS

nanocrvstals.
1 '.t

. Peak T (°C) T2 (msec) T2_'sh T_

ortho 26.0 72.6 2.0
I II I

79.1 63.4
II II I III I II II I I I

meta 26.0 49.8 2.5
I II I I

79.1 44.2
I I I I II II

7

para 26.0 104.9 0.97
I i i

79.1 95.2

Change of 1H relaxation rate in |52A thiovhenol cawed CdS

nanocrvst_ls.
1 1

Peak T (°C) T2 (msec) T_"Sh T_ (sec"

1)

ortho 25.9 127.0 8.8

79.3 59.9
II II I I I I I I I I

meta 259 80.3 10.1
Ill Ill II II

D

79.3 44.4
I Illl I I Ill Ill I I

• para 25.9 239.8 7.9
I I I II II

79.3 83.0
I I

Table2.3.1:Changeinrelaxationratewithtemperature.
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Fig.2.3.5:Temperaturedependenceofthe IH transverserelaxationratesforthe thiophenolligandsof

CdS nanocrystals. The temperature dependence for two sizes of nanocrystals is presented: a.) r=10.6 ,/_.b.)

r=15.2 A. These samples were prepared by dissolving 5 mg of nanocrystal powder in 0.5 ml of d5-pyricline

and then purging the samples of 02 by repeating the freeze-pump-thaw procedure five times and flame

sealing the N-MR tubes.

The temperature dependence of the T2 data was measured, and is presented in

figure 2.3.5. T2 decreases as the temperature is raised. This trend is unexpected, because

the correlation time of the motion of the nanocrystal should decrease with temperature and

lengthen the T2. Table 2.3.1 presents the difference in the high and low temperature rates

for the two particle sizes. For a nanocrystal of a given size, the relaxation rates of the

different sites on the thiophenol ligand change by an amount that is the same to within the
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error of the measurement. This result implies that the mechanism responsible for the

decrease in the relaxation time does not distinguish between the different locations on the

thiophenol ligand.

To obtain more information about the relaxation behavior of the thiophenol

molecules, we performed 13C relaxation measurements. These experiments are presented in

the next section.

Section 2.4: 13C T1 and T2 Measurements of Thiophenol

Capped Nanocrystals

In order to obtain more information about the relaxation mechanisms in the

thiophenol ligands of the CdS nanocrystals, we performed 13C longitudinal, T1, and

transverse, T2, relaxation measurements. 13C dipole-dipole relaxation depends only upon

the motion of the 13C -1H vector to those H atoms directly covalenfly bound to the carbon

atom. Thus, this relaxation process is only sensitive to the motions of a single thiophenol

and is totally unaffected by neighboring thiophenols.

However, despite the advantage 13C relaxation measurements have for

interpretation of the data, they are difficult experiments to perform because of the sensitivity

problems of 13C. The simplest, but erpensive, solution to this sensitivity problem is

isotopic enrichment of the sample with 13C. This is not a possible solution in the case of

the thiophenol nanocrystals because, of the lack of availability of 13C labeled thiophenol.

" Thus, we had to measure the 13C spectra without enrichment. Unfortunately, direct

measurement of the spectrum by the simple pulse-acquire method never produced a

thiophenol spectrum because the ds-pyridine solvent signal totally dominated the spectrum.

Because of these problems, the 13C spectra were indirectly detected via the thiophenol

p_;ons by using the double INEPT experiment 18-z3shown in figure 2.4.1. This sequence
transfers magnetization from the ]H to the 13C via the antiphase coherence formed in
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Fig. 2.4.1: The double INEPT experiments used in this section to observe the 13C resonances of the

thiophenol ligands of CdS nanocrystals. In the sequences shown, rd is the recycle delay, 42 is set to

1/(4JHC) and allows build up of 1H-13Cantiphase coherence, and the two pulses labeled SL are spin lock

pulse,, !o remove residual proton coherence. In the experiments described in this section, rd=20sec, 42=1.5

ms.,, ,,,id the two spin lock pulses equaled 4 msec and 1 reset, respectively. The phases used in these

sequences are given in table 4.2.1. a.) The double INEPT experiment used to observe the proton detected "4

13C spectrum shown in figure 2.4.2. b.) The double INEPT T1 experiment used to measure the 13C

longitudinal relaxation time, T1. The pulse labeled SAT was used to saturate the 1Hresonances which were

kept saturated by the repeated 1800pulses every d4 sec. The saturation pulse length was 0.5 msec and the

180' degree pulses were applied every 0.5 msec for the measurements on the CdS nanocrystals, c.) The

double INEPT T2 experiment used to measure the 13C tr_,nsverserelaxation time, T2.
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ppm
Fig. 2.4.2: 1H detected 13C spectrum of an r=15.8/_, nanocrystal. The double INEPT sequence shown in

part a of figure 2.4.1 a was used. The sample was prepared by dissolving 5 mg of nanocrystal in 0.5 ml of

ds-pyridine and then freeze-pump-thawing the sample and flame sealing the sample. The recycle delay in

this experiment was 10 see. The 1H 90" pulse length was 4.8 I.tsec, the 13C 90" pulse length was 10.0

lxsec, the first spin-lock length was 1 msec, and the second was 4 msec. The delay d2 was 1.5625 msec.

This spectrum was obtained in 512 scans and was apodized before fourier transformation with an

exponential filter of 2 Hz.

response to the heteronuclear J-coupling. Such an inverse detected spectrum is shown in

figure 2.4.2. In this spectrum, each multiplet of the proton spectrum is split into a doublet

by the large, approximately 160Hz, 1H-13CJ-coupling. The artifacts between the doublets

are due to incomplete suppressionof the 1Hsignal not coupled to a 13C.

The double INEPT inversion recovery and Hahn echo sequences used to measure

the 13Clongitudinal and transverse relaxation times are also shown in figure 2.4.1. These

sequences are the double INEPT sequence with a inversion recovery or Hahn echo

sequence inserted. In the inversion recovery sequence, proton saturation is performed

while the carbon magnetizationis inverted in order that simple monoexponential decays are
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observed, as discussed at the end of section 1.10 of this thesis. Representative data from

these sequences are shown in figure 2.4.3. The signal to noise in these data are not nearly

as good as in the proton spectra measured in section 2.3, but they are good enough to give
,=

us a reasonable measure, +15%, of the relaxation times.

Figure 2.4.4 shows the 13C longitudinal relaxation time, T1, as a function of
I*

nanocrystal radius. The measured relaxation times are very similar for different synthetic

a.) 7, ...... I I " I' '1 ' '
P

6-

2"

1 "' I I I '1
o I 2 3 4 5

Time(scc)

b.) nt t / I I I I I /

o1o

g,
!,

4

o so 1oo Iso 2o0 zso 3o0 35o 4o0

" Time(msec)

Fig. 2.4.3: Representative 13C T] and T2 data of the thiophenol ligands of CdS nanocrysta]s taken with

the double INEPT TI and T2 sequences, a,) TI data for the para thiophenol carbon on a 15.8,/k radiusB

nanocrystal, b.) T2 data for the para thiophenol carbon on a 15.8,/_radius nanocrystal. The experiment time

for both of these data sets was approximately 12 hours. The intensity is the sum of the integrated area of

the two members of the doublet seen in the proton detected carbon spectrum.
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Fig. 2.4.4: 13C longitudinal relaxation times, T1, as a function of particle radius. These relaxation times

were measured using the double INEPT T1 experiment shown in figure 2.4.1. The relaxation times

presented in this figure is average data from two different batches of nanocrystals per size whose radii were

within 0.4,/_ of each other.
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Fig. 2.4.5: 13C transverse relaxation time, T2, of thiophenol ligands attached to CdS nanocrystals. The

relaxation times at 15.5A is averaged over two different synthetic bat;hes.
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batches, so the data were averaged over different batches with approximately the same

radius. Since the relaxation times were not dependent upon which synthetic batch was

observed, we can compare the relaxation times of different sized nanocrystals without

considering that the effects we are seeing are a result of inconsistencies in the synthesis

procedure. These data show that the T1 increases as the particles get larger, implying that

the particles are randomly tumbling at arate on the slow motion side of the T1 minimum as

one would expect from a particle of this size. This result is consistent with the 1H Tl'S

measured before on the degassed samples and it shows that the possible T1 minimum

observed in the otherexperiment is not a real effect.

Figure 2.4.5 shows the 13C transverse relaxation time, T2, as a function of the

nanocrystal radius. These transverse relaxation times follow the same trend as seen in the

1Htransverse relaxation data presented in section 2.3. The relaxation times become longer

as the particle radius increases. As for the previously measured proton relaxation times,

these data cannot be explained by reorientation of the nanocrystal with immobile thiophenol

ligands. These data differ from the 1H data in that the para 13C now has the shortest

transverse relaxation time for a given radius of nanocrystal, while the para 1H had the

longest. This suggests that the thiophenol ligands must be rotating about either the C-S or

Cd-S bonds, because this rotation would cause averaging of the dipolar coupling in the

case the para 1H and little averaging in the 13C case.

To understand the relaxation mechanism of both the 1H and the 13C, we must

perform explicit calculations of the longitudinal and transverse relaxation rates for both the

1Hdata and the 13Cdata. These explicit calculationswill be performed in the next section.
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Section 2.5: Motional Models Explored to Explain the 1H and

13C Relaxation Measurements

In order to understand the relaxation data presented in the previous sections,

detailed relaxation calculations must be performed. The equations we will use for

calculating TI and T2 are derived from Redfield theory, which was presented in section

1.10 and was there used to derive the TI equation. They assume only two spin interactions

without J-couplings and are the same as those presented by Szabo 24 with only slight

change of the definition of the spectral density. These equations only approximately

describe our system and neglect cross-correlation effects. Since all of our experiments were

performed selectively and, in all cases, the spins responsible for the relaxation are not

degenerate with the spin being relaxed, we must use heteronuclear (I S) relaxation

equations given in table 2.5.1. We will neglect the effect of transverse cross relaxation in

the IH T2 experiments.

As you can see from the equations in table 2.5. I, we need to calculate the spectral

densities,

r' ' ,o i¢0_M_

J,,(co,_m)=(-1) " _C,,,('Oe '- d.c, (eq. 2.5.1)
moo

'[,' - , i ,] , 1 '=' i , ,"= ; , i |", i, i i,,,I

1H Dipole-Dipole Relaxation T_"1= C[3J(co0) + 12J(2w0)]

T21 =½C[5J(O)+9J(coo)+6J(2coo)] .... ... _

13CDipole-Dipole Relaxation T( 1=C[J(co,-cos)+ 3J(cot)+ 6J(co t +COs)]

T_t= ½C[4J(0) + J(COt- COs)+ 3J(CO,)+ 6J(cos)

+6:(W t + cos)]

Table 2.5.1:Longitudinalandtransverserelaxationrates24for 1Hand 13Cdipolarrelaxation.Theconstant
.2. 2F--6C is givenby ¼7"t7"s , wher_I is the observedspin,S is thespinresponsiblefortherelaxation.
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which are the real fourier transformof the correlation function of the molecule under study,

(YL 0>rL \Cm(_) = -._-C__ r(t)3rCt + .¢)3 /. (eq. 2.5.2)

The Y_.,,(_ii,t) are spherical harmonics with D_j being the direction of the internuclear

vector in the laboratory frame at time t. In this section, we will hypothesize a model for the

motion of the thiophenol molecules and derive the resulting correlation functions and

spectral densities. From these results, we will learn about the motions of the thiophenol

ligands with respect to the surface.

The crystal structure of the model compounds synthesized by Dance's group 7 show

that thiophenol molecules can bond bridging two cadmium atom or terminally to a single

cadmium atom. Also, the crystal structure of a single sized small nanocrystal has been

obtained _ and shows that the thiophenols in this sample are bound in a bridging fashion.

From these crystallographic results, we based our motional models on bridgingly bound

thiophenol molecules. A schematic drawing of this bonding arrangement is shown in figure

2.5.1 along with the def'mition of the various axis system we will use. The final axis

zlab( ) s ol
Fig. 2.5.1" Definitionof the axis systems used in modeling the relaxation data, assuming that the

thiophenolis boundbridging two cadmiumatoms.The principleaxis system (PAS) is not shownand is

givenbythe vectorbetweenthe nucleiinvolvedin therelaxationprocessbeinginvestigated.
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system we will need is the principle axis system of the dipole-dipole interaction. This

system is not explicitly indicated in figure 2.5.1 oecause it depends upon which nucleus is

examined.

The expressions we derive for a bridging thiophenol molecules will apply to both

the 13C and IH cases, except that in the IH case, we will assume that we can add the
q

effects of multiple spins and, in the 13C case, we assume that only the bound IH is

responsible for the relaxation of the carbon. We need to rotate the spherical harmonics in

equation 3.5.2 into the principle axis system (PAS) of the dipole-dipole interaction, so that

Y .(nij,t) becomes

Y_q(f_ij,t) = _ y paStt2 c2) (2)z.., 2.0 , ,*as)Dl.,,,(_,,,,i)D_.q(12p) (eq. 2.5.3)
tTl)tl

where t2p are the Euler angles between the lab frame and the axis system defined on the

nanocrystal, _,t are the angles between the particle defined axis system and the

thiophenol defined axis system illustrated in figure 2.5.1, and f_,as are the angles between

the thiophenol defined axis system and the PAS. The correlation function then becomes

(2) (2) ,c(t)= ,,, ')')(D:..(a.,)D'.:...(a,,)')_.d_ m,q ""P _"m',q'\a_'P
m,n

m',n'

xY2e_ (_pas)Y_.0"ts(ap,,.s')', (eq. 2.5.4)

wo = _-_, the unprimed euler angles, f2, correspond to the angles at time t,
where the

primed angles are the angles at time t+x, and the angular brackets,(), indicate that an

ensemble average must be performed. In expression 2.5.4, we have assumed that the

overall tumbling of the nanocrystal is uncorrelated with the internal rotations of the

thiophenol molecules, which allows the separate ensemble averages of the overall tumbling

from the internal motions. This assumption implies that the internal correlation time must be
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much shorter than the overall correlation time. If the overall tumbling of the nanocrystal is

isotropic, its ensemble average has been shown to be

(2) (2) , (eq. 2.5.5)(Dm,,(a,

where D., is the rotational diffusion coefficient of the nanocrystal. By using this relation,

the explicit form the Wigner rotation matrix,

(j) -_'a (j) -_,,/3
D,,.,,.(a,_,7)=e d_,.,,.(fl)e , (eq. 2.5.6)

and the orthogonality relation of the d Cj) (_),

Z (J) U)d_.,,,([3)dI:.,,031= _,,.,., (eq.2.5.7)

the correlation function simplifies to

3= r,12 a"6D,, t _-t/.i(2) (R A2/ain(umt'-a,_ )
C(t)= z_-0_ z._'-0,,_v'p_s, \_ )" (eq. 2.5.8)

n

As described in section 1.10, the correlation function is real so we can ignore the imaginary

part of the expansion of the exponential, so that

C(0 2_-6o., ,= woe _.a,2,ta._o..,¢pas,,2<cos[n(c%_,-a.o,)]). (eq. 2.5.9)
R

To calculate the ensemble average indicated in equation 3.5.9,

C,' (t)= (cos[n(o_,/-o_,_,)]), (eq. 2.5.10)
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we need to evaluate the integral,

2n,'2_

Cn'(t)=P,q _ _p(tx_,',r,[oc.,,O)cos[n(o_.,'-ot_,)]dot_,,'dtz_,,, (eq. 2.5.11)
0 0

where p(ot.,' ,tla_,,,0) is the conditional probability that a molecule at angle c¢., at time 0

will be at tz_,_' at time t. Models of the motion appear in this theory in terms of these

conditional probabilities.

For the bridging case, we have examined four different motional models; rotational

diffusion, two site jumps, and six site jumps in both the weak and strong collision limits.

To find the condition probability for rotational diffusion, the diffusion equation,

a _p(a' ,riot,O)
3p(a',tla, O) =D_ (eq. 2.5.12)at ,)a2 ,

must be solved with the delta function initial condition,

p(cc',0]a,0) = ¢_(a'-a), (eq. 2.5.13)

and periodic boundary conditions,

p(O, tlO,O) = p(2n:,t[O,O). (eq. 2.5.14)

The periodic boundary conditions implies a Fourier series expansion of the solution,

p(a' ,t[tz, O)= 2 £ Cm(t)cos[m(a'-a)], (eq. 2.5.15)
m=O

1

which can be substituted into the differential equation to produce
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£ 0 C_(t) cos[m(a'-a)] =-Dt_ t £mZC_(t)cos[m(a'-a)]. (eq. 2.5.16)
m-o 0 t m--o

This new equation gives us an infinite number of differential equations, one for each

" OCo(t)
= _ = 0, which implies that C0(t)=constant. For m ¢: 0, weC,(t). If m 0, then cgt

find that

a Cm(t) =_D_,m2C,(t) ' (eq. 2.5.17)0t

which can be integrated to give

Cm(t) = C,,(O)e-z_'m2'. (eq. 2.5.18)

The Cm(0) are given by

C,(0) = -_IS(O)cos(mO)dO= _, (eq. 2.5.19)

for all m. Thus, we find for rotational diffusion that the conditional probability is

p(a' ,tla,0)= _ £ e-D'm2'cos[m(a'-a)], (eq. 2.5.20)
m--0

which can be simplified to

p(a',tla, O)= 211 + e -°'' cos(a'-a)] (eq. 2.5.21)

in the long time limit.

With this conditional probability, we can find the ensemble average in equation

3.5.11 for thiophenol molecules undergoing rotational diffusion,
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2_2g

C.' (t)= 2p., _ .[[1 + e-D'' cos(a'-a)]cos[n(a_o,'-a._,)]da,,.o ,' do_,,_,
0 0

27_ form=O

= 7re -D_' for m = +1, (eq. 2.5.22)

0 for m = +2

where we have ased P,q = 2_. Combining equations 3.5.1, 3.5.9 and 3.5.22, we can
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Fig. 2.5.2:Simulationsof the 1HT1 andT2 versusthe C-Srotationalcorrelationtime, tc, assumingthat

the thiophenolis bridgingly bound and undergoing rotational diffusion about this bond. The overall

rotationalcorrelationtime wasassumedto be 10nsec.a.) log(T1) versus log(tc), b.) log(T2)versuslog(tc).
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finally arrive _, the spectral density for bridging thiophen01 molecules undergoing rotational

diffusion,

6D,,, ,4(2)(R )2 6D,, + Dr.t2 (2) 2 I- 2

(eq 2.5.23)

We used this two spin spectral density to calculate the 1H and 13C relaxation rates of the

thiophenol ligands of the CdS nanocrystals. The results of the 1H calculations are shown in

figure 2.5.2 and the 13C calculations are shown in figure 2.5.3. Notice that this calculation

can only predict our relaxation data if the internal rotation rate is slow, ~10-8 sec. In this

a.)
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Fig. 2.5.3:Simulationsof the 13CT1 and T2 versusthe C-S rotationalcorrelationtime, tc assuming

that the thiophenolis bridginglybound and undergoingrotationaldiffusionabout this bond.The overall

rotationalcorrelationtime wasassumedto be 10nsec.a.) log(T1) versus log(tc), b.) log(T2)versuslog(tc).
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time regime the assumption of no correlation between the overall tumbling and the internal

reorientation is becoming invalid. We performed similar calculations for a two site jump,

and six site jump models in both the strong and weak collision limit and these calculations

show the same trends as the rotational diffusion calculation and we are not able to

distinguish these subtleties in the motion.
n,

In the slow motion regime for the rotation of the C-S bond in the thiophenol, the

theory we have presented is invalid. This can be seen in figures 2.5.2 to 2.5.5 by the fact

that when the C-S bond is not rotating (the infinite correlation time limit for this motion) the

relaxation times do not attain the expected ortho:meta:para ratio of 1:1/2:1/2. The reason for

the failure of the theory in this limit is the assumption that the overall rotation of the particle

is uncorrelated to the internal rotation. Thus the separation of the correlation function in

equation 2.5.4 into two separate ensemble averages is inaccurate. As future work, this

ensemble average wiU be carried out in a single step.

Section 2.6: Conclusions about Thiophenol Motions on the

Nanocrystal Surface

In this chapter, we have presented 1H and 13C NMR data on the thiophenol ligands

of CdS nanocrystals. These data have provided a wealth of information on the surface

structure and dynamics of these materials. The data clearly show that the surface coverage

by the observed thiophenol molecules is low and that this coverage increases as the

particles become smaller. Since all the nanocrystals are synthesized with an excess of

thiophenol, this result is not a consequence of an insufficient quantity of thiophenol to

cause a highly covered surface, but must be due to a kinetic constraint on the coverage

process. Perhaps the smaller nanocrystals require higher coverage to force them out of the

micelles in which they are formed and precipitate.
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We concluded in section 2.2 that the thiophenol coverage is so low that if the

thiophenol ligands are homogeneously dispersed on the nanocrystal there should be

negligible interaction between the thiophenol molecules. However, our relaxation

calculations suggest that the data can most simply be explained if we assume that the

correlation time of the rotation about the C-S bond in a bridgingly bound thiophenol is

slow, longer than 10-8 sec. This long correlation time suggests a highly hindered rotor for

which there are at least three possible explanations. First, the distribution of thiophenol

ligands on the surface is not homogeneous, but rather the thiophenol ligands form covered

islands on the surface. In this case the densely covered regions would make rotation highly

sterically hindered. The motion could also be sterically hindered if the thiophenol molecules

are homogeneously dis_buted across the surface, but that the solvent pyridine densely

covers the rest of the thiophenol surface. The pyridine must be at least exchanging on and

off the surface, and we have yet to see any positive evidence that it really associates with

the surface. The final explanation is that the C-S bond is not free to rotate because of

conjugation of the ring pi electrons to the sulfur lone pair and then to the surface atoms. If

the thiophenol is bound in a bridging fashion, the sulfur would be sp2 hybridized leading

to good overlap of the lone pair electrons with the pi electrons in the benzene ring. This

conjugation could continue into the surface via the Cd d-orbitals. Of course it would be

difficult to explain the change in the correlation time with size for the last two hypotheses.

Along with the unusually long correlation times for the internal rotation rate, we

also see an unusual temperature dependence of the relaxation times. We see the 1H

• transverse relaxation time decrease as the temperature is increased. Our motional model

predicts that the correlation time then must increase with temperature. This is contradictory

to the idea that the motion was so slow because of steric hindrance. If this were true, the

correlation time should decrease as the temperature is raised and increase the relaxation

time. Possibly a reversible increase of the surface thiophenol density occurs as the

temperature is raised, however, it is nonintuitive that such a change would be reversible.
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Another possible explanation is that the motional model we have proposed is ",Tong, and

the correct explanation is that we are seeing one site of thiophenol that exchanges to an

unobserved second site. This would explain the increase in T2 as the temperature is raised,
q

but we have never seen any suggestion of another site in our data. The data would also

imply that the exchange rate would depend upon the nanocrystal radius. This implication is

highly suspect.

The final possibility is that there are two mechanisms responsible for the observed

relaxation data. The ratio of the various relaxation times is explained by the dipolar

relaxation mechanisms presented in section 2.5. However, the temperature dependence is

governed by some other mechanism. A possible mechanism is paramagnetic relaxation of

the 1H by a thermally populated paramagnetic state of the nanocrystal. This mechanism is

consistent with the data presented in table 2.3.1 where it is seen that the smaller

nanocrystals have smaller changes in the relaxation rates than do the larger particles. Since

the band gap of the nanocrystal gets smaller as the nanocrystal gets larger, the population of

the the,'mally excited paramagnetic state should become larger as the particle gets bigger

thus making the paramagnetic relaxation more robust.

In conclusion, we have presented the f'trst NMR study of the surface structure of

semiconductor nanocrystals. It seems that these spectra, while at first sight appearing

relatively simple, conceal a wealth of information not only about the nature of the surface

but also possible of the core. The spectra show that the nanocrystal surface is not

completely capped. Rather, due to nanocrystal faceting, steric effects or kinetic limitations

of the capping process, islands of covered regions seem to exist which are separated by

uncovered regions. Furthermore, to consistently explain both our 1H and 13C data these

covered islands must be fairly densely packed with thiophenol molecules to cause the 10-8

sec correlation times of the rotation of the thiophenol molecules. We also propose the

existence of a thermally activated paramagnetic state that contributes significantly to the

relaxation of the larger nanocrystals at higher temperatures.
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Until now, such detailed information about the structure and dynamics of surface

capping molecules on nanocrystal surfaces has been difficult to obtain. NMR appears to be

an ideal tool for extracting this information, which is needed in order to understand fully
r

such properties of the nanocrystal as ultrafast trapping of photon-generated electrons and

holes. 26-29By binding organic molecules to the surface, one hopes to move all mid or near

band gap surface states to much higher energies. Clearly, to accomplish this, the coverage

will need to be increased to saturation and the effects of these changes on the surface can be
i

monitored by NMR.

e
i
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Chapter 3: Determining
Conformational Parameters in Small

Peptides by Measuring Scalar
Relaxation Rates

Section 3.1: Introduction

NMR spectroscopy determines the structure of biological molecules by providing

the researcher with distances between 1H nuclei and conformation constraints on torsion

angles. The internuclear distances are measured using Nuclear Overhauser Spectroscopy

(NOESY), while the conformational constraints are determined from an analysis of the

scalar coupling (J-coupling) between different nuclei. The distance information from the

NOESY experiment is crucial for determining the basic backbone folding pattern of a

protein; however, it is not sufficient to determine sidechain conformations in proteins or

sugar ring and phosphate backbone conformation in RNA or DNA. In these cases, the

precise measurement of J-couplings becomes more important.

The J-coupling provides a measure of the conformation of a small region of the

molecule because these couplings vary with the torsion angle of the bonds between the two

nuclei. This was first theoretically shown by Martin Karplus in 19591, and then he later

showed that the variation of the J-coupling in the molecular fragment (HCC'H') can be

approximated by the Karplus equation,

Jnn' = A + Bcos¢+ Ccos2¢, (eq. 3.1.1)
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where _0is the dihedral angle. Karplus calculated values of A, B, and C, but it was

found to be more accurate to empirically fit these parameters. This equation has been

empirically applied to J-couplings other than just those between two protons and has

shown itself to be reliable. These empirically fit equations have become the basis for

extracting dihedral angles from the measured J-couplings.

In principle, the values of these J-couplings can be determined from the normal

one-dimensional experiment; however, spectral overlap normally prevents this, so that

analysis of cross-peaks in correlation spectroscopy (COSY) becomes necessary. The cross-

peaks in the normal COSY spectrum become complicated in large systems leading to

overlap of the numerous multiplet components. Thus, the techniques commonly used to

acquire J-couplings simplify the cross-peak structure by limiting the coherence transfer to

directly connected transitions, i.e. those sharing a common energy level. The first

technique proposed to make this simplification is the E. COSY experiment 2, which consists

of a superposition of 2,3, and 4 quantum filtered COSY spectra in a ratio 1:2:4. This

experiment gives rise to coherence transfer exclusively between connected transitions for

weakly coupled spins, and, for this reason, is called exclusive correlation spectroscopy (E.

COSY). Another experiment which results in coherence transfer between directly connected

transitions is the z-COSY 3, which produces coherence transfer through multispin

longitudinal order. Unfortunately, this experiment suffers from inferior signal to noise ratio

when compared to the E. COSY, but it is also considerably easier to perform. Finally, the

selective COSY experiment 4, which uses selective pulses to selectively transfer coherence

' between two spins, has recently been shown to lead to the same type of spectra as the E.

and z-COSY experiments, but has the advantage of excellent spectral resolution because the

sweep widths can be made very small; commonly 500 by 200 Hz. All of these techniques

give rise to the same distinctive crosspeak intensity pattern: four lines with the signs

(+ +} due to coupling between active spins and then splitting of this pattern into two
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identical patterns displaced by the coupling constant to the passive spin. Notice that such a

cross-peak pattern contains much information about the coupling network.

These techniques suffer from two disadvantages when one wants to measure JNH

couplings. First, in large proteins, it is hard to determine the J-couplings by these methods

because of the increasing linewidths in the spectra lead to cancellation problems. Finally, to

perform these techniques, the protein must be enriched with 15N in order to observe a

splitting due to the J-coupling, because the splitting due to the quickly relaxing spin 1 14N

nucleus is unobservable. However, the effect of the quickly relaxing 14N nucleus can be

observed on the relaxation of the 1H nuclei to which it is scalar coupled. This effect on the

1H nuclei is known as scalar relaxation of the second kind and is related to the scalar

coupling between the 1H and 14N nuclei. This chapter will present a new technique for

measuring these J-couplings by measuring this scalar relaxation rate. We will present data

for the extreme narrowing case only, but with additional measurements, one should be able

to measure these coupling in larger molecules.

Section 3.2: The Approach: Exploiting Scalar Relaxation of the

Second Kind

The scalar coupling between a slowly relaxing nucleus, such as an 1H nucleus, and

a quickly relaxing quadrupolar nucleus, such as the 14N nucleus, can enhance the

transverse relaxation rate of the more slowly relaxing nucleus. This effect is directly related

to the scalar coupling (J-coupling) between the fast and slowly relaxing nuclei, and can be

exploited to measure this coupling. In this section, we will show what effect this scalar
,f

relaxation has on the observed relaxation rates and will present a method for determining

the J-coupling from the relaxation rates.

The scalar relaxation rates can be derived by using the formalism of section 1.10 if

we assume that the quadrupolar 14N nucleus relaxes so quickly that it can be assumed to be
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a part of the lattice 5. In this case, the time-dependent Hamiltonian responsible for the

relaxation of the 1H nucleus is

Ha(t)= 2rd'l. S(t), (eq. 3.2.1)

t.

where I and S are the angular momenta of the 1H and 14N, respectively, and J is the

scalar coupling between the nuclei. One can rewrite this equation as

111(0 = YtBs(t). I, (eq. 3.2.2)

where Bs(t ) = 2rdS(t)/y t is the fluctuating magnetic field seen by the 1H created by the

14N nucleus. If we now follow the formalism presented in section 1.10, we can calculate

the longitudinal and transverse relaxation times for this relaxation mechanism. They are

8rt2j _ 14N

_ = -----S(S + 1) 1"2 (eq. 3.2.3)
214N

T:" 3 1+(Cot -cos) T22

and

f 14N-- t

1 47_2J2 S(S + 1) 7"2 + Tt (eq. 3.2.4)
"214N 2 '_

Ts' 3 1+(co, -cos) T2

where S is the angular momentum quantum number of the 14N nucleus, which equals 1,

' and "_T1 and "_T 2 are the longitudinal and transverse relaxation times of the 14N nucleus.

"214N 2

For most biomolecules in solution at typical magnetic field strengths, (cot - cos) T2 is a

large number, which allows us to simplify the above equ_.tions to

1

iT'_ = 0 (eq. 3.2.5)
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and

1 8rc2J2"UTt (eq. 3.2.6)

Thus the scalar relaxation of the second kind reduces the transverse relaxation rate while
,i

not perturbing the longitudinal rate.

Since the scalar relaxation of the second kind only effects one of the measurable

relaxation rates, we now have a method for measuring the scalar relaxation rate. If the

proton relaxation in the molecule under study is assumed to be caused by both the scalar

relaxation mechanism and the dipole-dipole mechanism, the measured relaxation times can

be written as

1 1 1 1

-_-i= T(---_+ T-_ = T-_ (eq. 3.2.7)

and

1 1 1 1 87_2 2"_

_-2=T_+ Ts.-.-T=_+--._J T,. (eq. 3.2.8)

If weare studying a molecule in the extreme narrowing limit, then the difference in the 1H

longitudinal and transverse relaxation rates directly measures the scalar relaxation rate:

1 1 87t2 2"_
=--J T1. (eq. 3.2.9) '

T2 T, 3

To determine 14N to 1H scalar couplings of biomolecules, we measured proton

longitudinal and transverse relaxation times and the 14N longitudinal relaxation time. By

using equation 4.2.9, we can then extract the square of the J-coupling which can be used to

place conformational constraints on the molecule under study. The only fundamental limit
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of this approach at this time is that the molecule must be undergoing rapid tumbling in the

extreme narrowing limit. In slower tumbling regimes, more measurements must be made to

separate the dipole-dipole mechanisms from the scalar relaxation mechanism. We have not

gone into explicit detail on how to perform this more complicated set of experiments.

Section 3.3: Measuring J,,_H Couplings in Pyridine

To investigate the feasibility of this proposed strategy for measu.':ing 14N-H J-

couplings and to evaluate its potential problems, we studied a simple model compound,

pyridine. This compound provides many advantages for initial studies of this type. It is a

small molecule and therefore is tumbling in the extreme narrowing limit. It is easy to make

concentrated samples, and the spectrum is well resolved, so established NMR techniques

can be used to measure the needed relaxation times. For these reasons, we attempted to

measure the J,,_ to the ortho 1H in a sample of 0.05 ml of freshly distilled pyridine

diluted into 0.5 ml of d5-pyridine (99.99% deuterated, Aldrich) from a freshly opened vial.

The sample was degassed by repeating the freeze-pump-thaw method five times. All

relaxation measurements were performed on a Bruker 400AMX spectrometer with a recycle

delay of 5 minutes.

As presented in the previous section, we need to measure the T1 and T2 of the ortho

proton and the T1 of the 14N nucleus. The 1H T1 was measured by a nonselective

inversion-recovery sequence, 180*-x-90°-acq, which gives monoexponential recovery of

' the 1H magnetization. The ortho proton longitudinal relaxation time measured in this way

was 62.7 sec. The transverse relaxation time was measured using the selective Hahn echo
D

of Emsley, Kowalewski, and Bodenhausen 6, which was described in section 2.3 of this

thesis. The ortho proton transverse relaxation time measured with this method was 208

msec. The 14NT 1 was measured directly from fitting the 14N spectrum to a Lorentzian line

and recognizing that in the extreme narrowing limit
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1
T1= . (eq. 3.3.1)

_AI_H M

In this way, the 14N T1 was determined to be 1.47 msec. From these data and equation

3.29, we found that the absolute value of the 14N-ortho 1H J-coupling is 11.1 Hz. The

value of the 15N-ortho 1H J-coupling is reported to be -10.76 Hz7 When this value is

scaled by the ratio of 14N to 15N gyromagnetic ratios, the 14N-ortho 1H J-coupling should

be -7.67 Hz. This error of 45% is not explained by the error in our relaxation

measurements.

The metho_ we have described for determining J,'_cH depends on a precise
1

cancellation of all relaxation effects other than the desired scalar relaxation. This is true

when the other relaxation pathways are dipole-dipole effects, however, cancellation does

not occur when the 1H undergoes relaxation due to chemical shift anisotropy. Wittebort and

Szabo 8 present the expressions for relaxation due to chemical shift anisotropy:
-

T_"1=CJ(oo0) (eq. 3.3.2)

and

=ff-C[4J(0) + 3J(co0) ], (eq. 3.3.3)T21-6

where

C- #B°2 [28z- (c_x +St)] 2 (eq. 3.3.4) "4

and the 8's are the principal values of the chemical shift tensor. Including this effect, the

difference in the transverse and longitudinal relaxation rates is now
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T_"1- T_-1= AB02+ _ _,,_, 7'1, (eq. 3.3.5)

where A= 28 z_(Sx +&._]_,j2.This mechanism predicts that the error in the

determination of the 14N-H J-coupling should have a strong magnetic field dependence.

The appropriate relaxation times were measured for a sample of 0.05 ml of freshly

distilled pyridine dissolved in 0.5 ml of d6-DMSO (Aldrich, 99.99% deuterated) which had

been freeze pump thawed and then sealed in the NMR tube to exclude 02. The relaxation

measurements on this sample were performed on a Bruker 600AMX spectrometer. We

measured the relaxation rates as before, and found that the longitudinal and transverse

relaxation times of the ortho proton were 1.08 sec and 50.3 msec, respectively. The

longitudinal relaxation time of the 14N nucleus was measured to be 1.40 msec. With these

data, we calculated the 14N-tH ortho J-coupling to be 22.7 Hz. Thus we can see that the

determined J-coupling does depend strongly on the magnetic field. Unfortunately, the

change in solvent between the 400 MHz and the 600 MHz experiments made extraction of

the correct J-coupling value impossible.

In this section, we have shown that extraction of approximate values of J,,_ is

possible as long as one either works at lower field strengths or performs an explicit

magnetic field dependence of the data. Acknowledging these limitations, we decided to

measure biologically relevant J-couplings in a small peptide and see if this method could be

used to obtain information on amino acid sidechain conformation in a small peptide.

Section 3.4: Three Bond 14N-H J-couplings in Residue

Sidechains of Oxytocin

The goal of this research is to obtain biologically relevant 14N-H J-couplings in

order to constrain the conformation of a biomolecule. To investigate this possibility, we
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Fig. 4.3.1:Pulse sequencessuitablefor recordingtwo-dimensionallongitudinalandtransverserelaxation

spec_'a,a.)This sequencemeasuresthe selectiveinversionrecoveryof a spinwhoseresonancefrequencyis

_A1. It consistsof a selectiveinversionat_A1 followedby a selectiveCOSYto transferthecoherenceto

a spinat .f_A2-b.) This sequencemeasuresthe decayof a selectiveHahnechoof a spin whoseresonance

frequencyis _A1. It consistsof a selectiveHahnecho at _A1 followedby a selectiveCOSYto transfer
1

the coherenceto a spinat ._A2.

attempted to measure the three bond 14N-HI3J-coupling in the isoleucine residue of the

small peptide oxytocin. Oxytocin is a small peptide with nine amino acids and a molecular

weight of 1007 Da. At room temperature, the correlation time for the isotropic tumbling of

this peptide in an H20 solution is at the T1 minimum, however, when the sample is heated

to 40°C, the peptide is then moving in the extreme narrowing limit, and our approach for

measuring the J-couplings can be applied. We prepared a sample of 20 mg of oxytocin

dissolved in 0.5 ml of H20 to which 0.05 ml of D20 had been added. The acidity of the

sample was adjusted to a pH of 3. All experiments were performed on a Bruker AMX400

spectrometer.

Because of the larger size of this molecule and its greater spectral complexity than

the previously examined pyridine, simple inversion recovery sequences and selective T2

experiments could not be used. Methods which dealt with the spectral overlap problems

had to be developed. These new techniques consisted of combining the relaxation
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Fig. 3.4.2: a.)A seriesof spectraresultingfromtheapplicationof the HahnechoCOSY sequencewhich

correspondto the2'-2" crosspeakof T1 in d-TATA. The delaytimes2_are (from left to right andtop to

bottom),0, 50, 100, 150, 200, 300, 400, 600 and800 msrespectively.No distinction is madebetween

positiveandnegativecontours.Thespectrawereacquiredusinga 10mmolsolutionof d-TATA in D20 at

• 400 MHz and 44K, with spectral widths of 200 x 500 Hz and a digital resolution of 64 x 256 points in tl

and t2, zero-filled to 256 x 1024 before apodization and Fourier transformation, b.) A plot of the integrated

intensities of the cross peaks as a function of 2z (open circles), together with the best fit value of the

transverse relaxation rate, which yields T2 = 258 ms. Note that the intensity does not decay to zero, but to a

constant value which represents the integral of the absolute value of the noise in the spectra.
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Fig. 3.4.3: Fit of simulated biexponential recovery data with a single exponential recovery. The circles

correspond to data simulated with the equation l(t) = 1- e-' - e-3'. The line is the best fit of the simulated

data to the function l(t) = A(1- 2e-'/_ ). The best fit value of T[ "g was 1.71.

experiments with a 2-D selective COSY so that only a single nuclear site is observed. The

sequences for a selective inversion recovery COSY and a selective Hahn echo COSY are

shown in figure 3.4.1. A test of these sequences is shown in figure 3.4.2, which shows

results for the selective Hahn echo COSY on a sample of the single stranded DNA tetramer

TATA. As can be seen, the intensity of the absolute value of the observed T1 2'-2"

crosspeak 9 decays monoexponentialb, to a constant value, which is the integral of the

absolute value of the noise. The selective inversion recovery COSY spectra are of similar

quality.

Unfortunately, the interpretation of the selective inversion recovery sequence is

complicated by the expected biexponential recovery of the magnetization. As shown is

section 1.10 of this thesis, the result of this experiment for a two spin system undergoing

dipole-dipole relaxation should be biexponential with a ratio of relaxation times of 3:1 if the

molecule is tumbling in the extreme narrowing limit. The data that we will present is not of

sufficient quality to make this biexponential fit, so the data was fit to a single exponential.
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Figure 3.4.3 shows a monoexponential fit to biexponential data where the relaxation times

are related by the 3:1 ratio. As can be seen, the fit is quite good and the determined

relaxation time by this method is approximately 1.71 times the true relaxation time. A

justification for this scaling factor can be made by Taylor expanding the equation for the

biexponential recovery of the system:

lz(t)=I,(1-e-"r_ - e-'/3r,)

( lIt)z l(t]3+...)=I..[1- 1-_+-_. 1 _- - 3t_,Tl) )

I lC, 1i 11- 1- 3--_-i+_..k-_l) +... , (eq. 3.4.1)

which upon collecting terms becomes

= - - --+--C 2 - +... (eq. 3.4.2)
I (t) 1.[1 21 C1T1 3_"_ ) ,

2[where C, = 1+ . If the fn'st three Cn's are averaged and used to define a single

exponential recovery, the longitudinal magnetization can be approximated by

Iz(t ) = I,(1- 2e -''r_ ), (eq. 3.4.3)

• where T_M= 1.72T 1. This is close to the scaling factor seen above when the biexponential

curve was fit to a single exponential. In order to interpret our data, we will divide our fit T1

values by 1.71 to take into account the neglected biexponentiality. The biexponentiality of

the recovery could be removed if the selective inversion pulse were replaced by a

nonselective pulse that inverted all 1H resonances. This experiment has not yet been

performed.
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Fig. 3.4.4: Transverse and longitudinal relaxation data for the b proton of the isoleucine residue of

oxytocin, a,) The U'ansvcrserelaxationdatafor thisprotonmeasuredwith the Hahnecho COSYexperiment.

Notice that the data decay to a constant, which is the integral of the absolute value of the noise, b.) The

longitudinal relaxation data measured with the inversion recovery COSY. The given intensity dataarc

measured by taking the integral of the absolute value of the data minus the integral of the noise. The

absolute value of the data must be taken in both cases because the integral of the selective COSY

crosspeaksis zerobecause of its antiphasenature.

The longitudinal and transverse relaxation data for the 13proton of the isoleucine

residue of oxytocin is presented in figure 3.4.4. These data are quite good and allowed the

relaxation times to be measured: T_'_'=526msec, which implies that the true longitudinal

relaxation time is 7'1=308msec, and T_---103msec. Direct attempts at measuring the 14N

T1 failed because of the low sensitivity of this nucleus. This relaxation time was measured

by taking advantage of the scalarrelaxation rate of the amide proton for which the 15N-HJ-

coupling is known to be 93.2 Hz1°, which scales to a value of 66.4 Hz for the 14N-H J-

coupling. Effects due to exchange are minimized because the pH of the sample was
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adjusted to a value of 3 where exchange is at a minimum for amide protons. 11The effective

longitudinal relaxation time of the amide proton and the transverse relaxation time of this

proton was measured using the same selective sequences de.' ribed above. The effective

longitudinal relaxation time for the amide proton was 238 msec, which implies that the real

T1 is 139 msec. The transverse relaxation time was measured to be 121 msec. From these

data, the 14NT 1 was determined to be 9.2 gsec and the J-coupling between the 14N and the

[3proton was 163 Hz. This value of the J-coupling is in outside the expected range of 0 to

5.6 Hz. The error is probably due to relaxation due to chemical shift anisotropy and

exchange of the an'fideproton leading to an inaccurate measure of the longitudinal relaxation

time of the 14N nucleus. This problem with amide proton exchange can be eliminated by

using the Ha proton as the spy on the 14N relaxation time, because its J-coupling to this

nucleus is always approximately 2.2 Hz 1°. The effect of the chemical shift anisotropy

relaxation mechanism can be analyzed be performing a field dependence of the relaxation

data.

Section 3.5: Conclusions

!

In this chapter, we have presented preliminary results suggesting a new method

for measuring 14N-1H J-couplings in biological molecules. We have shown that the

technique is viable, however, many details of the method need to be worked out. As seen

in the pyridine data, relaxation due to chemical shift anisotropy causes the largest error in

• this method for small molecules, but this effect can be separated from scalar relaxation by

measuring the field dependence of the difference in relaxation rates. Much more work will

need to be done to apply this technique to measuring J-couplings in large molecules where

the longitudinal and transverse relaxation times due to dipole-dipole relaxation are not the

same. By performing additional measurements, these effects should be separable.
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An additional piece of information provided by this technique is the longitudinal

relaxation time of the 14N nucleus in the amide bond. This parameter is itself important

because it provides important constraints on the backbone motion of the peptide and this

method could provide a simple, inexpensive method for measuring these relaxation rates.

The technique presented here has many possibilities for future applications and is currently

under active research.
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Chapter 4:. Solid State Magic Angle
Spinning: Cross Relaxation NMR

Spectroscopy of Homonuclear
Dipolar Coupled Spin Systems

Section 4.1: Introduction

The high field carbon-13 NMR spectrum of a static solid sample containing many

different 13C sites is determined by a Hamiltonian which contains both chemical shift and

dipolar interactions. 1-3These interactions can be represented by first and second rank

spherical tensor components to express the spatial and spin dependence of the Hamiltonian.

The spectrum contains all the parameters necessary to determine the three dimensional

structure of the molecule under investigation. Unfortunately the spatial dependence of the

second rank terms broadens the resonances and makes the spectra of all but the simplest

systems difficult to interpret, even in the presence of high power proton decoupling.

A quantum leap was made in solid state NMR with the introduction of magic angle

spinning (MAS). 4 In this experiment the sample is rapidly rotated (=104 Hz) about an axis

inclined at an angle 54.74* with respect to the magnetic field. This has the effect of

" averaging the anisotropy of the chemical shift and dipolar interactions to a single value by

removing the second rank terms from the effective Hamiltonian. In the case of the chemical
b

shift this average value is the so called "isotropic" chemical shift, and is different for

different chemical environments. This leads to a high resolution spectrum of narrow lines,

which allows identification of the different sites in a manner analogous to a liquid state

111



spectinam. Since there are no first rank contributions the average value of the dipolar

interaction under magic angle spinning is zero. Thus, whilst MAS allows one to obtain a

high resolution spectrum, the resolution, is achieved by sacrificing information about

dipolar couplings.

Recently there has been considerable interest in retaining the resolution of magic

angle spinning, but nevertheless including information about homonuclear dipolar

couplings. 516 Methods such as rotational resonance have been successfully applied to

structure determination, 17a8 but they depend on pairwise measurements; the technique is

selective. Recently, the idea of radio frequency driven recoupling has been introduced in

which a train of pulses is applied that leads to an average Hamiltonian which is proportional

to the homonuclear dipolar Hamiltonian over a reaso:Lably broad range of chemical shifts. 5

7,11,13,16 The object of this type of experiment is to develop a broadband method for

measuring all the dipolar couplings in one experiment. The main disadvantage ot these

techniques is the need to apply complex mixing sequences consisting of many pulses.

In this chapter, we present initial results obtained from an alternative approach

towards broadband dipolar correlation under magic a_aglespinning which does not require

the application of pulses during the mixing period. Our technique correlates resonances by

using dipolar cross relaxation between the carbon nuclei. Two dimensional solid state MAS

cross relaxation spectra have been recorded for both triply 13C L-labeled alanine and

doubly 13C labeled Zinc acetate, yielding results reminiscent of liquid state NOESY

spectra.19Cross relaxation between carbon atoms as a mechanism for correlating spins in

solids has previously been discounted as unlikely to provide sufficiently rapid transfer .i

rates. Although the timescale fc- transfer we observe is longer than would be observed

under conditions where the full dipolar Hamiltonian is reintroduced, cross relaxation is

much faster than expected in these rigid systems. We discuss possible mechanisms of

polarization transfer in terms of either the restricted motion of the carbon skeleton using

conventional second order treatments, or the motion of nearby protons using third order
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Fig. 4.2.1: Pulse sequence used to record magic angle spinningcross relaxation spectra. The sequenceuses

cross polarization from protons to create carbon single quantum coherence which evolves with a
/

characteristic frequency during tl, and which is then stored along the z-axis by the action of the r/2 mixing

pulse for a period 'rmix. The magnetization is then recalled and detected during t2. High power proton

decoupling is applied throughout the sequence. The phases of the carbon spin lock pulse and the storage

pulse are cycled in order to retainonly the carbon coherence transfer pathway shown below the sequence.

perturbation theory. The method appears to provide a particularly simple broadband means

of correlating distances in solids which should be useful for both assigmnent and structure

determination.

Section 4.2: Experimental

Cross relaxation spectra were recorded using the pulse sequence shown in Fig.

4.2.1. The experiment consists of two free precession periods separated by a mixing period

during which longitudinal 13C magnetization is exchanged on a timescale of tens of

milliseconds. The protons are subjected to high power decoupling throughout the

sequence, preventing transfer through proton polarization and thereby quenching

polarization transfer
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Fig. 4.2.2: Four cross relaxation spectra recorded for 13C1,2,3-L-alanine (the sample was prepared as

described in the text). The spectra were recordedat room temperature using the pulse sequence of Fig. 1on a

"homebuilt" spectrometer operating at a proton frequency of 301 MHz (13C = 75.7 MHz) using a tecmag

operating system and a homebuilt magic angle spinning probe. 256 points in t2 were acquired for each of

64 points in tl. Each increment was averaged for eight scans yielding a total acquisition time of =30

minutes per spectrum. The spectra were zero filled to 256 x 128 and apodized with a Lorentzian line

broadening function before two dimensional Fourier transform and phasing. Phase sensitivity was achieved

using the States method. The spinning speed was carefully adjusted to 4.25 kHz, so that there should be no

effects from rotational resonance. The mixing time _:mixis shown in the lower right comer of each

spectrum.
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Fig. 4.2.3: Integrated intensities of the peaks observed in the spectra of Fig. 2 together with spectra

corresponding to other values of the mixing time Zmix ranging from 0 to 150 ms (longer times are

inadvisable due to problems with high power decoupling and probe breakdown). The cross peak integrals

were obtained by summing the cross peaks on both sides of the diagonal. Note the change in scale between

the cross peaks and the diagonal peaks. The initial rates measured for the cross peak growth are given in

table 1. It is important to notice that the growth rates are not oscillatory in nature, but have the appearance

" of exponential behavior typical forcross relaxation, as discussed in the text.
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Table4.2.1"Crossrelaxationrates between13Cnucleiin 13C1,2,3-L-alaninedeterminedfrom the initial ,

slopesof the buildupcurvesshownin Fig.3. Theratesare shownin (ms)-1
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between carbons by proton driven spin diffusion, a subject which has received much

attention in its own right. 81°

Figure 4.2.2 shows four spectra taken from a series recorded with different values

of the mixing time for a sample of 10% triply labeled 13C1,2,3-L-alanine co-crystallized

with 90% natural abundance L-alanine. In this way we can be sure that there is no

significant contribution to cross relaxation from intermolecular mechanisms. If cross

relaxation is occurring we expect that as the mixing time gets longer, the ratio of the cross

peak to diagonal peak intensity gets larger, and that is indeed what we observe. In Fig.

4.2.3 we plot the intensities of the diagonal and the cross peaks in the L-alanine spectrum

as a function of mixing time. At short mixing times we observe only diagonal peaks

(together with cross peaks between sidebands of the C=O resonance; if necessary these

peaks can

simply be removed by synchronizing the mixing time to an integral number of rotor

periods). It is particularly interesting to note that the initial rates of buildup of the cross

peaks extracted from these curves (given in table 4.2.1) shov, a relatively fast, and more or

less equal, rate for both the one bond C-C cross peaks, and a much slower rate for the

CH3-C=O cross peak which corresponds to a larger distance. These spectra represent the

first observation of direct cross relaxation between carbon atoms in a solid.

In order to confirm that there is an extra relaxation pathway in the enriched

compound, we measured the decay of longitudinal polarization shown in figure 4.2.4. As
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Fig. 4.2.4: A comparison of the decay of longitudinal carbon-13 magnetization in natural abundance and

. triply 13C enriched L-alanine. The data represent the integrals of peaks recorded for various values of the

recovery time in a 13C CP-MAS inversion recovery experiment with high power proton decoupling during

the recovery time. The experimental conditions were the same as those for the spectra used inFigs. 2 and 3.

As we expect, if cross relaxation between carbons occurs, the long CH and C=O relaxation times are

shortened in the enriched compound, whilst the CH3 relaxation time is slightly lengthened. This is a

reflection of the fact that all three carbons are more efficiently coupled together m the enriched compound

due to the addition of the homonuclear relaxation pathway.
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expected cross relaxation in the enriched compound causes the long CH and C=O

relaxation times to shorten, whilst the short CH3 relaxation time is slightly lengthened. This

result serves to conf'n'm that there is indeed an extra mechanism which couples the carbon

atoms in the enriched solid. Finally, in order to conf'n'm that this effect is not special to L-

alanine (even though we shall see that the mechanisms proposed below are very general in

nature) we have also recorded a series of cross relaxation spectra for doubly labeled I3C1,2

zinc acetate (not shown) and there we again observe polarization transfer between the two

carbon sites. The initifl rate we observe in this case being 120 (ms)-1.

Section 4.3: Theoretical Models for the Relaxation Behavior

We are aware of two reasonable models that can explain magnetization exchange

between the carbons, both of which are induced by rapid molecular motion. In the case

where cross relaxation between the carbon atoms is caused by motion of the carbon

framework, a conventional second order perturbation treatment is appropriate. In the

presence of proton decoupling and assuming that the carbon framework itself is rigid, a

third order treatment of cross relaxation is necessary to provide a mechanism for cross

relaxation. In this model the fluctuations in dipolar couplings to nearby protons provide the

missing energy required for the carbon nuclei to communicate. There are also some familiar

mechanisms for magnetization exchange in solid state NMR that are unreasonable

mechanisms in this experiment. The first is a failure of decoupling leading to spin

diffusion, and the second is rotational resonance.

Section 4.3.1: Unreasonable Mechanisms for Magnetization Transfer

Before continuing with a treatment of cross relaxation, we should outline why we

can discount more common mechanisms for cross relaxation. The most obvious choice
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would be proton driven spin diffusion. 8,9Even though high power proton decoupling is

applied together with magic angle spinning to remove both heteronuclear and homonuclear

dipolar couplings, homonuclear couplings in a three spin system are not completely

refocused, and rapid molecular motion can interfere with rf decoapling. That removal of the

dipolar couplings is slightly less effective in fully 13Cenriched alanine is evidenced by the

slightly larger linewidths (we observe =150 Hz as opposed to _-70Hz). However, the three

resonances in the MAS spectra of enriched alanine and the two resonances in zinc acetate

are all fully resolved. There is negligible overlap between the lines which immediately tells

us that spin diffusion, whether direct carbon or proton driven, will be completely quenched

to first order. Even if this simple criteria were not sufficient, we would (i) expect to see a

dependence on decoupling power which is not verified by experiment, (ii) we also expect

to see a dependence of the buildup rates on the difference in chemical shifts between the

carbons, which is not borne out in the alanine spectra.

The second well known mechanism for polarization transfer is rotational

resonance.14We can discount rotational resonance because we have carefully adjusted the

spinning speeds used in our experiments to avoid rotational resonance. As we mentioned

above, rotational resonance is a particularly selective technique, and is usually only

effective if the resonance condition is set to within the dipolar linewidth. In the experiments

shown below we are always at least 1.2 kHz away from rotational resonance. Additionally

we do not see any (significant) dependence of the relaxation rates on spinning speed.

We postulate that the actual mechanism of polarization transfer is true cross

" relaxation between the carbon nuclear spins and that there are two distinct contributions.

The first is caused by the dynamic mixing of the 13C energy levels by the carbon proton

dipole-dipole interaction and the second is driven by the local field generated by the motion

of nearby protons. This latter is a true three body effect. The usual treatment of dipolar

relaxation uses second order perturbation theory to model what is normally a two body

problem.i, 20-22
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Section 4.3.2: Second Order Treatment of Relaxation

In section 1.10 of this thesis, we presented a second order expansion of the

LiouviUe-von Neumann equation in order to describe therelaxation of an ensemble of spins

to equilibrium. The master equation for the relaxation of an operator, Q, was shown in that

section to be

.... r' r J *

a<a> , J_(mr'.)Tr{[A,..,[A,._.,Q]](p'(t)p,,(t))}, (eq. 4.3.2.1)c9t ,. ,,e _o,_.,-_,,_.-., ,-

Ojr ° rwhere J,,(t.-,,) is the spectral density of the motion, and Az.,, is defined by the fourier

decomposition of the time-dependent spherical tensors,

T_.,,(t) __-" i_;,,= at.me . (eq. 4.3.2.2)

Calculation of the commutators in equation 4.3.2.1 is relatively straightforward and

provides the well known results of Redfield theory. 2°,22 Cross relaxation can occur

between the two carbons. However, the corresponding spectral densities tell us that these

terms will only be non zero if the dipolar coupling between the two carbons is fluctuating,

i.e. if the carbon skeleton is mobile. Thus, contributions to relaxation from second order

mechanisms will only arise from the small amplitude librational motions of the carbon

skeleton. Not only are these motions small, but they are expected to occur at relatively high

frequencies which are inefficient for relaxation. This is the reason why cross relaxation has
i

previously been discounted as unimportant in rigid organic solids. Indeed, the crystal

structure of alanine leaves little room for framework motion. 23

Calculating the commutators and spectral densities of equation 4.3.2.1 for various

random Hamiltonians, but always assuming that the C-C dipolar couplings are not varying,
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shows that direct cross relaxation between the carbons is quenched. In contrast, the large

amplitude motions of the protons on the methyl and amine groups yield large spectral

densities but the corresponding commutators all lead to the conver'hon of carbon

polarization into proton polarization or multi spin order of the carbon and proton spins. In

the experiment of figure 4.2.1 these terms will be immediately destroyed by the decoupling

field, and will thus not contribute to the observables. Also, the efficiency of such

mechanisms will only be marginally affected by enrichment with labeled carbon atoms, the

primary effect being due to carbon proton pairs. Given that second order perturbations do

not contribute much to carbon cross relaxation, we must consider other alternatives to

explain our data and the way is now open for the observation of the effect of the smaller

third order contributions at longer timescales. There are several qualitative reasons why

third order contributions may be large compared to second order contributions. Firstly, we

shall see that they depend on the larger carbon proton dipolar couplings, as opposed to the

homonuclear carbon couplings, and secondly the spectral densities are influenced mostly

by the large amplitude motions of the protons which are known to occur at frequencies

comparable to the Larmor frequency, 24 as opposed to the small librational motions at

higher frequencies.

There is, however, another possible second order relaxation mechanism that could

cause cross relaxation between 13C nuclei. This effect is the dynamic mixing of the 13C

energy states by the time-dependent C-H dipolar coupling. The Harniltonian for the system

of two 13C nuclei and one proton is

/(z2) + 1.iclc2 14ctn c2nn = ¢o,_Sz+ ¢Oc1I(z_)+ ¢Oc_ ",oD + "'DD (t) + Hz_D (t). (eq. 4.3.2.3)
e

To diagonalize this Hamiltonian, we must find a time dependent unitary transformation.

This unitary transformation will lead to a time dependent mixing of the 13C states and allow
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cross relaxation between these state due to the motion of the proton. The detailed theory for

this idea has not yet been determined.

ea

Section 4.3.3: Third Order Treatment of Relaxation

A third order description of relaxation can simply be formulated by following the

same framework as was used in section 1.10 for the second order treatment. The expansion

of the density at time, t, to third order gives
l t t'

cr(t) = o'(0)- if[H; (t'), o'(O)]dt' - j"dt'_ dt"[H; (t'),[H; (t"), (3"(0)1]

0 0 0 (eq. 4.3.3.1)¢ l* IN

-,I_,'I_,"I_:[";(:),[";(:),[";(''),o(o)1]]
0 0 0

and now the time derivative of equation 4.3.3.1 yields

t ! t"

---[ [E"do" -i ,_l*(t),o.(0) - dt 3_1 (t). _1 (t ),0(0) -i dt at ,_1 (t), _ (t ). ,_1 (t"),o"(O)
dt

0 0 0

(eq. 4.3.3.2)

Introducing the variables _ = t - t" and 3' = t - t", taking the ensemble average, making

the Redfield approximation, and neglecting the second order term since we assume it does

not contribute to cross relaxation (although it does contain non zero elements that contribute

to the overall decay of magnetization), we obtain the equation for the average density matrix

OO OO q

dcr=-ifd'cfd'([g_l"(t),[g_l*(t- lrl),[_'_l"(t- _r2),o'(t)]]]. (eq. 4.3.3.3)dt
0 0

We now introduce the three-time correlation functions,

g rr *r ** /.. __
,,n,',,,"£t, _1 "r2) C(r)C(")c'('")R ('') .:'_R(") [t - ., "" 2.-,n "J 2.-,,," "rl)R(2_)--m(t r2) (eq. 4.3.3.4)
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Replacing _* in equation 4.3.3.3, we obtain

__.._ _ {( ,,1[,,(,') [,,("),[A,_,_,o'(t)]]]dcr -i .xp i oo_+¢o_':_,+co£")r/.jL....,,.,t...,,,,/ t t

r,rt_¥ m

_ t_ t;_ tt

p,p',p"

x g,,,,,,',,,'_'q,_2 exp . + oo,,.,p._l _id% (eq. 4.3.3.5)
o0

Keeping only secular terms, ¢o(r) + ,(r') + ,.,(r') = 0 then yieldsm,p Wm',p" Wm",p" '

dcr__ i _[A(r') [A(r'),[A(mr?pO'(t._)_]--dr - "am",p" '[_m',p ' '

r,r',r x_ _ g_,ff,.,,(z,.z2)exp{-i(t.O_!p,2 +co(_:_,'q )_z, dz2m,m',m" ;m+m'+m" =O

P'P"P" o o (eq. 4.3.3.6)

Note that, in contrast to the second order case where the secular approximation led to a

reduction in the number of indices over which the sum is carried out, this is a lesser

restriction in the third order case, as we still have three indices. The restriction introduced

by the secular approximation being only that they sum to zero. Using the relation

oo oo

rrst ,'v /' -- • t') 7*

o o

and given that """g_,m. can be shown to be a real function we obtain
#

ii { )1 ,.,c,'l/g,,_,.,,t_,,'c2)exo + w_:),'r2 dz, dz2 =.,,,_,,,,.t...,.,p ,k,,_,..t-.,p,-.,,p, )

0 0 (eq. 4.3.3.8)
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rr°r -
where JM,,,- and aM'm'_'"""are real numbers defined by equation 4.3.3.7. In this case the real

part of this expression is the third order dynamic shift, which can be included in a redefined

unperturbed Harniltonian, while the imaginary part contributes to relaxation. The master

equation at third order is thus

_=- " ""',p'IL'""'p"L-"p' ,o(t) . (eq. 4.3.3.9)dt
nlonlSjnlu; ill.hi s. til#_.0

p.p',p"
¥ ,rse¥ J¢

The equation of motion for the expectation value of an observable operator Q is given by

y_.,,,,,,,-,,...<,>...<,.>,.,,.st,<,->,,-r:<">-,,,',,',,.-r:<'>-,,,.,]]])dt =- ,.._.,m,,t,_,m,p,Wm, p,l., {L.m.,.. ,cr(t) Q .
iIIjnlOomHgtili.nlt.tili_=O

n,p',v" (eq. 4.3.3.10)
r,r*,r #

which, through repeated use of the relation Tr{A[B,C]} = Tr{[A,B]C}, can be rewritten as

40.) FA<"FA<';',[A_'.),, Q]]]i:r(t)}.dt =- Mm t'.,p''m',vS I.L m'"L m,.o' , '
#li,lii" ms";#l,l. rn ". ,,iim= 0

p,.*',,,," (eq. 4.3.3.11)

We are now in a position to use equation 4.3.3.11 to predict the behavior of our

system at third order. The simplest spin system that serves to demonstrate homonuclear

carbon cross relaxation is that of two carbon atoms and one proton. The unperturbed

Hamiltonian is

_'o = wsSz + °9#lllz + w#212z (eq. 4.3.3.12)
i

and the random perturbation is
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In our first example we neglect the (time independent) homonuclear carbon carbon dipolar
r

coupling. It may either be assumed to be zero, or it may be included in a redefined

unperturbed Hamiltonian. For simplicity we assume it is zero. We have

I

TCIH TCIH
2,0= 2-_6(411zSz- 11+S-- 11-S+), = _][2(411±Sz+ 11zS+)' TqH•2,1 =I1±s ,

(eq. 4.3.3.14)

for r = C1H with similar expressions for r = C2H. Transforming into the interaction

representation, we obtain, for r = C1H

Tc, H =
2,0 (t) 2-_6(4IlzSz-ll+S_exp{i(oo6-(.Os)t}--ll_S+exp{i(C.Os-C.Ol,)t}),

TC, H
2,±,(t)= 7_2(411±Szexp{+-ioo6 t} + ,lzS± exp{+-iOOst}),

T QH exp{+i(oos o91,2,2 = II±S± + )t}. (eq. 4.3.3.15)

2,row are then decomposed into A (r) and for r = C1H,

aC, H 2 aCtH 1 I , aglH
" "-*0,0 =7_IlzSz ' "-*0,1 =-2-_ l+s- "*0,2 =-2-_611-S+ '

, (.oClH _ C,H o)ClH0,0 =0, ('%,1 =CO11 -COs, 0,2 =COS-091,

A_:,tt _2 II+Sz acltt _2 IlzS+ acltt I±S+,1,0 ' '-q:À,l = ' -= _ - "_&2,0 =
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::!:1,0 °2::1:1,1 °2:_,0 = 4- COs + CO11,

(eq. 4.3.3.16)

with similar expressions for r = C2H. Calculation of the commutators of equation 4.3.3.11

for the secular terms is now straightforward, though tedious. As an example of a

representative term we f'md

[Ac..rA .r c.. ,..,2."a-l,0 ,[ +1,1 ,['a0,1 -- _ . (eq. 4.3.3.17)

In total there are twelve terms which are involved in the conversion Ilz _ Ilzl2z depending

[ ]]] -_..,c.,o_..,FA (r) ,_A (r') A(_)v,,Q Km_'m"_COm., m'., !L "'PL ""P"
,

[,¢_.,,r,,c,,r,,c,,, , ,c.,,.c:,,.c,,,__ .o),t_,oL'_,.,,.]]]=_(,,.s.-,,.,2.) oo,o _, _,,
[A_e,[A_,_,.r,,_,. ,._,.,_a-,,_,,,,...,o)

_._ ,,_,., ,t---,,o,_,. =-_(_.s. - _,._.) _0,._,-_

,L,-,_u .[A_L_.Ix,Ill = 7_.(/2,S. - .t_./2.) /(o.-_.+_VOs-_z,.-COs)

•...o _.-.o,_,,,.]]]--',. 4-"_I1_ 2z _'.1.-1.o t tl ,-_s)

•1,-1,o,L,-,.1,1,t,-_,l ,11, - -4-_I1'I_-' ".-1..1oo t-coA ,_s)

-,o._'t"-,.,.t---,.o.-,,=_(_,s,+_,,_,) +_._,._,(_,_+co,,.-_)

1]] F._,,,_.,r.,_,.,-,r,,c,,,,[A_,_M,,,.=__(z:_.s,+,,,.h.) -',,-,-,.,,-, -_o,)

'_c'tt,[AC__._.[A_e,l,, '_-1,-,.+2 (-°)t,,-c°s) "

.,,:,,.r,,,:,..,[,_.,,.11], ,.,.':,.,'::,.,':,.•-.+,.o,i.,-,+,., . , =-_I,,1_, ,..+,.+a.-2 (c%,a_s)

r,,_,,,r,,_,,,r,_.,,t.,__.o]]]=-_(';,so+ k_'"'_""c'"'o, ,0) '['_2.0'[rx0 C 'I1: Ilzl2z) +2.0,-2 t S + ('Ol,

A_2,o,[._oo ,t..2,o,11, - -_(I2,S , + I_1_) '_-2.0.+2 t- s _z,
".'.. : . ..., • ,,,,, .,

Table 4.3.3.1: Commutators and spectral densities from Eq. (32) involved in the conversion llz _ IlzI2z.
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on twelve corresponding spectral densities, and they are listed in Table 8,.3.3.1. The

important thing te realize is that the fluctuations of the proton carbon dipolar couplings can

convert single spin order of one carbon into two spin (dipolar) order of the two carbons

with a rate proportional to the sum of spectral densities and prefactors given in Table

4.3.3.1 There are a similar set of commutators which convert two spin order into

polarization of the second carbon, thereby achieving polarization transfer between the

carbons. If we include a non-zero carbon carbon dipolar coupling in the perturbing dipolar

Hamiltonian, there are even more terms which allow this conversion, even if the CC

coupling is not fluctuating. Note that all these mechanisms are, int_ language of normal

Redfield theory, cross correlation terms as the spectral densities represent correlations

between (up to three) different dipolar couplings. 22 Note also that we do not find terms

which simply cause direct cross relaxation between carbon polarizations.t

Section 4.4: Discussion

Homonuclear cross relaxation spectroscopy of 13Cas outlined in this article seems

to present a attractive method for broadband correlation of dipolar couplings in solids

spinning at the magic angle. The experimental considerations of the experiment are

especially simple, as correlations are achieved without the need for matching any special

condition or for the application of pulses during the mixing period. At first sight the results

we present here may seem surprising. It appears that cross relaxation between carbon

' atoms in "rigid" organic solids has previously been discounted as likely to occur only on a

timescale of tens of seconds, although cross relaxation has been observed between mobile
i

carbons. To our knowledge this work provides the first direct observation of carbon-

carbon cross relaxation in a rigid solid, and moreover we have shown that it is efficient on

a timescale of tens of milliseconds.
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Fig. 4.4.1: Fits of cross relaxation data to the full rate matrix, a.) Fits to a direct cross relaxation

mechanism,b.) Fits to an indirectcross relaxationmechanismwherethe intermediateis assumedto be two

spin orderbetween the crossrelaxing spins.

To determine which mechanism is reasonable for the observed cross relaxation, we

performed full rate matrix calculations 19'25,26of the three spin system for both a direct and

indirect cross relaxation.The indirect cross relaxation is assumed to involve an intermediate

two spin order state. Figure 4.4.1 shows the fitted cross peak growth curves for both

mechanisms. Clearly the direct cross relaxation mechanism fits the data much better than

the mechanisminvolving the two spin order intermediate, implying that the cross relaxation

is due primarily to the dynamic mixing of the carbon states. The rates determined in this

fitting procedure arepresented in table 4.4.1. While the proposed third
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Fig. 4.4.2: Double quantum filtered exchange experiment used to test for the presence of two spin order

during the mixing period.

order mechanism is not the predominate effect leading to cross relaxation, we have

observed the predicted two spin order (data not shown) by performing the double quantum

filtered experiment shown in figure 4.4.2. Further experiments are planned to determine

whether we are truly observing this third order effect. One should also note that although

the examples of zinc acetate and L-alanine presented here are clearly model examples,

nevertheless there is nothing obviously special about these materials and we expect the

effects to be observed in all organic solids of this type, with a most obvious application

being to the spectra of polypeptides.

The results and analysis we present here are only preliminary, we are currently

investigating the temperature dependencies of the cross relaxation to determine the source

of the cross relaxation. We hope to be able to quantitate the effect in order to determine

, internuclear distances in powdered organic solids. However, even if the goal of absolute

quantitation turns out to be difficult to achieve, these experiments will surely provide a

, useful means of sequentially assigning complex solid state spectra and determining

qualitative distances. Such data should be capable of providing the solid state structure of

larger molecules, in a manner analogous to liquid state structure determination using

NOESY data.
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