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Abstract

Nuclear Magnetic Relaxation Studies of Semiconductor Nanocrystals and Solids
by
Joseph Robert Sachleben
Doctor of Philosophy in Chemistry
University of California at Berkeley

Professor Alex Pines, Chair

Semiconductor nanocrystals, small biomolecules, and 13C enriched solids have
been studied by analyzing the relaxation properties of theit nuclear magnetic resonance
(NMR) spectra. More specifically, for the first time, details of the structure of the surface
of semiconductor nanocrystals was obtained. The surface structure was deduced from high
resolution !H and 13C liquid state spectra of the thiophenol ligands on the surface of the
nanocrystals, which were assigned using standard 2-dimensional liquid state techniques.
Intensity calibrated 1H NMR spectra were recorded as a function of nanocrystal radius, and
the surface coverage by thiophenol was found to be low, varying from 5.6% and 26% as
the nanocrystal radius changed from 11.8 to 19.2 A. The longitudinal and transverse
relaxation times of the H and 13C resonances of the thiophenol ligands show that the
spectra are homogeneously broadened and that the broadening increases as the nanocrystal
radius becomes smaller. This suggests that the thiophenol ligands are rotating with respect
to the nanocrystal surface and that the correlation time of this motion increases with
decreasing radius. The internal motion is estimated to be quite slow with a correlation time
greater than 10-8 sec-1. The temperature dependence of the !H transverse relaxation times
was anomalous. These relaxation times decreased with increasing temperature. In addition,
the surface thiophenol ligands are shown to react to form a dithiophenol when the

nanocrystals were simultaneously subjected to O and ultraviolet light.
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We present a method for measuring 14N-1H J-couplings in small biomolecules by
measuring the rate of scalar relaxation of the second kind. These couplings are related to
molecular conformation. By measuring the 14N longitudinal relaxation time and the
difference in the H transverse and longitudinal relaxation rates, the 14N-1H J-couplings
can be determined. The method is demonstrated on pyridine and the small peptide oxytocin.
To measure the relaxation times in crowded spectra with overlapping peaks in 1D, we
present new selective 2D T and T experiments. The results show that the technique is
viable; however, relaxation effects due to chemical shift anisotropy and modulation by
strong coupling interfere with the technique.

Finally, we demonstrate the possibility of carbon-carbon cross relaxation in 13C
enriched solids. 13C magic angle spinning exchange experiments performed on
polycrystalline samples of 13Cy Zinc Acetate and 13C3 L-Alanine show correlations
between the resolved carbon sites in the molecule which grow at a rate proportional to the
distance between the carbons. This occurred even though spin diffusion through the
protons was quenched by high powder. Normal mechanisms for cross relaxation are
inefficient in rigid solids because the fluctuations of the intercarbon vectors have a very low
amplitude and a very high frequency on the NMR scale. For this reason, the cross
relaxation is explained by a dynamic mixing of the eigenstates caused by the motions of the
nearby protons. Additionally, the quenching of normal H cross relaxation leaves open the
possibility to observe higher order effects and we have observed the presence of two spin
dipolar order between the 13C nuclei, which is explained by a third order perturbation

theory.
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Chapter I: Introduction:
Quantum Mechanics and NMR

Section 1.1: Introduction

Nuclear Magnetic Resonance (NMR) Spectroscopy has successfully addressed
numerous chemical problems since its invention five decades ago. These successes have
been due to the detailed chemical information the experiment provides and the flexibility
of the technique that allows the researcher to develop clever methods of extracting this
information. The information provided by the technique ranges from gross structural
correlations between the resonance frequency of the nucleus and its position in the
molecule under study to detailed structural and motional information about the system. In
this thesis, we will present relaxation studies that will provide us with detailed structural
and motional data about semiconductor nanocrystals, biomolecules, and 13C enriched
solids.

However, in order to understand these relaxation measurements, a knowledge of
quantum mechanics is necessary. Especially important is understanding how to simplify
the quantum mechanical equations so that intuition is developed and results are quickly
obtained. Conversely, it is also important to understand when these simplifications are
correctly applied so that one does not obtain incorrect results. This chapter will deal with
methods of obtaining approximate solutions to the quantum mechanical problems that
describe NMR. To begin this discussion, we must introduce quantum mechanics in terms

of the density matrix.




Section 1.2: Quantum Mechanics and the Density Matrix

In quantum mechanics, the state of the system is describable by either a state
vector (wavefunction) or a density matrix. The state vector provides information about
the system by assuming the existence of a quantum mechanical ensemble of identically
prepared systems. I will assume in this thesis that the reader is familiar with quantum
mechanics in terms of state vectors. Such a description is convenient when one is dealing
with single particles such as a single electron or a single atom, but it becomes
burdensome when one needs to deal with a real macroscopic sample. In such a sample, a
statistical mechanical ensemble is needed along with the quantum ensemble to describe
the system because the macroscopic sample can be thought of made up of an ensemble of
quantum systems. The density matrix most naturally describes such a system.

The density matrix is defined as

p=13 Pl¥, ><¥|, (eq. 1.2.1)

where 'V, > is the wavefunction for the ith quantum mechanical system in the sample, P,
is the probability that the ith quantum mechanical system occurs in the sample, and the
summation is over the statistical mechanical ensemble that describes the sample. As an
example, for a gas at low pressures and high temperatures (an ideal gas), I'¥; > refers to
the state of the ith atom and P, is the probability an atom has that state in the gas. All

observable properties are related to the density matrix by
<Q>=Tr(pQ), (eq. 1.2.2)

where Tr indicates the trace, and <Q> is the expectation value of the observable operator

Q.




In two cases it is easy to compute the density matrix of the system under study.
The first is the density matrix of a pure state, which means that only one quantum

mechanical system occurs in the sample. Then, the density matrix is

p=I¥>< Wl . (eq. 1.2.3)

If the wavefunction is written as a linear combination of a complete set of eigenvectors,

W >= gl >, (eq. 1.2.4)

the density matrix is,

p=2 > able,><,|
T
= ZZC;;VP;- >< @)l (eq. 1.2.5)
T

where a;, b;, and c; are complex numbers. So if the wavefunction of the system is
known, the density matrix can be simply and superfluously found. The diagonal matrix
elements of the density matrix, c;, are referred to as the populations while the off-
diagonal matrix elements, ¢, are the coherences. If the 1, > are eigenvectors of the
Hamiltonian, the diagonal elements refer to the populations of the energy levels and the
off-diagonal terms provide information about the phase relationship of those members of
the system that are in superposition states. In a pure state, this phase relationship is
perfect, and the quantum states add without cancellation.

The second easy calculable case is that for a system at equilibrium, where, with

the density matrix written in the eigenbasis of the Hamiltonian, we know that the off-




diagonal matrix elements are zero, because at equilibrium there is no phase relationship
between the superposition states (the random phase assumption which is a definition of
equilibrium?). This random phase assumption is equivalent, as we will show later, to
saying that at equilibrium the macroscopic state of the system is time independent. The

diagonal elements are the populations of the energy levels which are given by the

Boltzman distribution. Thus, all the c; are determined by

0 ifi#j (cq. 1.2.6)
. = . €q. 1.2.
i) ePE 7 ifi= 4
where Z is the partition function, which is given by
Z=Tr(e™). (eq. 1.2.7)

The density matrix for an equilibrium state is more succinctly written in terms of

operators!3- as
p=ePi/z. (eq. 1.2.8)

These formulae for the equilibrium density matrix tell us that to find the density matrix
we need to diagonalize the Hamiltonian and then determine the exponential operator in
equation 1.2.8. In many cases, the Hamiltonian only needs to be approximately
diagonalized leading to a good approximation of the equilibrium density matrix.

It is common in high-field NMR to approximate the density matrix by keeping
only the largest part of the Hamiltonian. In a large magnetic field, the interaction between

the nuclei and the magnetic field dominates all others. This allows us to approximate the




Hamiltonian (note that this is a semiclassical Hamiltonian, because we are only dealing

with the spin degrees of freedom), in frequency units, as

H=-w,l, (eq. 1.2.9)

where I, is the operator for the z component of the nuclear angular momentum, and @, is

the Larmor frequency, which is given by

@, = 18,. (eq. 1.2.10)

In this last equation, 7 is the gyromagnetic ratio of the nucleus, and B, is the external

magnetic field strength. We can substitute equation 1.2.9 into equation 1.2.8 in order to

approximate the density matrix as

p= PLENA /Z. (eg. 1.2.10)

However, under normal experimental conditions 1/ 8=kT>> w, (the high temperature

approximation), which allows us to approximate the density matrix by expanding the

exponential to first order as
p=1+pwl,)/Z. (eq. 1.2.11)
This approximation also allows us to evaluate the partition function, Z, in equation

1.2.11 by recognizing that every diagonal element of the exponential operator is almost 1,

which makes the partition function equal to the number of nuclear states,

Z=2I+1 (eq. 1.2.12)




Combining equations 1.2.11 and 1.2.12 and neglecting the physically unimportant term

proportional to the identity operator, we get

(1)

ISP eq. 1.2.13
KT2I+1) (eq )

p

Thus, a sample of spins at equilibrium in a large magnetic field has a demnsity matrix
proportional to the z component of nuclear angular momentum, which is equivalent to
saying that at equilibrium, the spins tend to align with the large external magnetic field.,
as we would expect?.

Now that we can find the density matrix in a few simple situations, we need to
discover how the density matrix evolves with time. The time-dependence of the density

matrix is determined by the Liouville-von Neumann equation,

adp _ .
P i[H,p]. (eq. 1.2.14)

This equation can be formally integrated to give p as a function of time!-5:5;
p(t) = e Hp(0)er™ . (eq. 1.2.15)

In order to produce equation 1.2.15, I had to assume that the Hamiltonian is not a
function of time. In general, this assumption is reasonable, because I can always make the
Hamiltonian time-independent. Practically, however, it is many times inconvenient to
consider a time independent Hamiltonian, and it then becomes necessary to find a
solution to equation 1.2.14. Many times, equation 1.2.14 is easier to deal with by making

the rotating frame transformation. Assume




H(t)=H,+ H,(z), (eq. 1.2.16)

where H, is the Zeeman interaction and H,(¢) is a smaller internal interaction, for
example the dipole-dipole interaction, chemical shift interaction, quadrupole interaction,
ect. If we make the transformation p* = ¢”*'pe " and H; = ¢"'H,e"™, equation 1.2.14
becomes

*

a o * *
Egz_:—'[H‘ ral (eq. 1.2.17)

This transformation will allow us to concentrate on the weaker internal interactions
without the interference of the fast Zeeman oscillations. At short times, this equation can

be integrated by successive approximations’ as follows:
gr y 19Y

j;-?i’a—%’-'ldr = —iJ;[H; @),p" (¢ e (eq. 1.2.18)
Pi)=p O =if[H().p" @ e (eq. 12.19)

We now assume that the time change is small enough that p'(t) = p‘(t‘ ), which allows us
substitute the right side of equation 1.2.17 into itself for p”(#'). Iterating in such a fashion

twice, and only keeping terms up to second order, we find that

P (0)=p () ~i[ 1H; (0).p" O = [ LH; (¢ MWH (0" ),p" (O)dr'de . (eq. 1.2.20)

As we have just shown, short time approximations to the Liouville-van Neumann

equation can be found. Unfortunately, long time solutions are much more difficult to




produce. The normal solution to this problem in the NMR community is to make an
effective, time-independent Hamiltonian that correctly describes the long time behavior
of the density matrix. Once we find this time-independent Hamiltonian, we simply need
to evaluate equation 1.2.15. Thus, the question of how to calculate the long time behavior
of the density matrix is effectively the same as the question of how to correctly calculate

an effective Hamiltonian, and when to appropriately apply this Hamiltonian.

Section 1.3: Average Hamiltonian Theory

Since its introduction to the NMR community in 196889, Average Hamiltonian
Theory has been a popular method of calculating effective Hamiltonia. It has been used to
describe the effects of multiple pulse sequences, composite pulses, spins experiencing
constant wave (cw) radio-frequency (rf) irradiation, and many other important problems.

The basic idea in average Hamiltonian theory is to replace the true propagator

U=Te™, (eq. 1.3.1)

where T is the Dyson time ordering operator, with an effective propagator

~iHt,

Uy=e (eq. 1.3.2)

which is governed by the average Hamiltonian, H, over the period . Average
Hamiltonian Theory is a method for calculating this average Hamiltonian. The average
Hamiltonian will depend on the initial and final times, unless the original Hamiltonian is
periodic and observation is performed stroboscopically with the period of the

Hamiltonian.
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FIG. 1.3.1: Above is a graphical representation of a Hamiltonian that changes discretely n times. Hy is the
kth Hamiltonian which lasts for a time ty. The total time which this time-dependent Hamiltonian acts on
the system is tc. In the limit that the txs become infinitesimal, the Hamiltonian become continuously time-

dependent for the time tc.

There are two limiting cases for the time dependence of the Hamiltonian: discrete
and continuous time dependence. We will begin by finding the average Hamiltonian for a
Hamiltonian that has a discrete time dependence, which means that the Hamiltonian stays
constant for a time period, tj, at which time it suddenly changes to a new Hamiltonian
(see figure 1.3.1). In the case where the Hamiltonian discretely changes n times, the

propagator is a product of propagators for each time period,

—iHot —iH —iHyt, =i
= gt gty gmiaty oty (eq. 1.3.3)

where U, , H,, and 1, and refer to the propagator, the Hamiltonian, and the length of
duration of the ith period. This product of exponential operators can be expressed as a

single operator by use of the Baker-Campbell-Hausdorff relation,

e'e® =exp{A+ B+1[B,Al+ 5 ((B,[B,All+[A,[4,B]]+...}, (eq. 1.3.4)




to find that the average Hamiltonian that guides the evolution over the entire period,

L=+ttt i, (eq. 1.3.5)

n-1

This average Hamiltonian is

H=H"+H"+H%+..., (eq. 1.3.6)
where

H® = L(Hp +Hypy+ +H, 1, +H,t), (eq. 1.3.7)

H® = —-{{H,t,H,1,)+all other commutators}, (eq. 1.3.8)
and )

H® = — & ([Hyty,[Hty, Ht 1+ (it [Hyty, Hoty 1]
+3[H,t,,[Hot, Ht 1+ 3 [Hit [ H 2 Hot, 11+ ). (eq. 1.3.9)

This series can be truncated as long as I|H 2k t, <1, in which case the higher order terms
clearly go to zero.

This convergence criterion would initially seem to indicate that Average
Hamiltonian Theory is a short time approximation, but it is also applicable to periodic
Hamiltonians where the cycle time and the strength of the perturbing Hamiltonian is
small enough that I|H 2k t, <1. A periodic Hamiltonian is one that returns to itself every

tc, or, mathematically,

H(@)=H(t+nt,). (eq. 1.3.10)

10




Under these conditions, the average Hamiltonian over a cycle can be calculated. This
Hamiltonian dictates the evolution of the density matrix over the same cycle time, thus
implying that measurement of any observable must be performed stroboscopically and
synchronously with this time. This rigid requirement of stroboscopic observation has led
to some misuses of Average Hamiltonian Theory, as we will present later.

If the Hamiltonian is cyclic and continuously time dependent, Average
Hamiltonian Theory is still applicable, but we substitute the continuous analogs of

equations 1.2.7-1.2.9 into equation 1.2.6. These new definitions of H® through H? are
H”=L["Hay, (eq. 1.3.11)
-—(1) i . £
HY == " [ [H(,), H)lndn, (eq. 1.3.12)
and

B =~ [ [ [ (HE)H ). HE)D

0
+{H (@), [H (1), H(t)Ndr,drydt,. (eq. 1.3.13)

These equations are found by making all the times in equations 1.3.7-1.3.9 small so that
the sums are replaced by integrals.

As an example of the use of Average Hamiltonian Theory, we will calculate the
average Hamiltonian to first order for a single quadrupolar spin (I>1/2) in a large
magnetic field. In this calculation, we will assume familiarity with spherical tensors 1911,

The total Hamiltonian for this system, H, is

11




H=H,+H,, ) (eq. 1.3.15)
where
H, = -, (eq. 1.3.16)
and
2
H,=C%Y (-)"RZ_,TZ,. (eq. 1.3.17)
m=-2

Transforming equation 1.2.17 into the Zeeman interaction representation by
H,=UHU", (eq. 1.3.18)
where
U = ez, (eq. 1.3.19)

removes the static Zeeman interaction and makes the quadrupole interaction time-
dependent for a density matrix in the same interaction representation. This can be proven
by substitution into the Liouville-von Neumann Equation (equation 1.2.14). In this

interaction representation, our Hamiltonian is now time-dependent, and we can apply
average Hamiltonian Theory by substituting ﬁg into equations 1.3.11-1.3.12. First, we

need to explicitly write down H,:

2 . .
Hy=C2 Y (-1)"RE """ ], e "

m=-2

12




2
=C% Y (-D)"RE, T, (eq. 1.3.20)

m=-2
where we have used the identity!2
¢ABe™* = B+[A,B] ++[A,[A, B]]+ 1 [A,[A[A, Bll}+... (eq. 1.3.21)
and the commutation relation between I, and the spherical tensors’10:11,

;.71 ,,1=mT, . (eq. 1.3.22)

Notice that we have Fourier analyzed the time dependence of the quadrupolar
Hamiltonian by using spherical tensors. Substituting equation 1.3.20 into 1.3.11, and

using the orthogonality relationship between Fourier components!3,

2%0 2% 3
N 22 if y=-
Je”‘“""e""“’“dt: {‘% nn 'm’ (eq. 1.3.23)
0 0 otherwise
we find the zeroth order average hamiltonian to be
H® =CPRATS,. (eq. 1.3.24)

Next, we need to find the first order average Hamilionian by evaluating equation

1.3.12 after the substitution of 1.3.20,

2 2 . .
HO =8 Y > (-)"RE RE_ [T2,TE,1[ [ e ™ se ™ dndr,. (eq.13.25)

n=<2m=-2

13




This can be done by first carrying out the integrations, to find that

[ [ e gt i, = o (76,,08,0 + 48,0 — 8p0) +56,0). (0. 13.26)

We then substitute this into equation 1.3.25, to find

— 2
O = _i%{RgoRgo[Tfo,Tgo]

2 2
+i Z#Rg.le’Q.-m[Tgm’Tlg.-m] + 2‘ ZS:'I")—R2Q.0R2Q.—M[T2Q.O’T£M] }' (eQ‘ 1327)

m=~2 m=-2
mr0 m#0

The commutators are evaluated by expanding the product of spherical tensors!4:

J=j+j

U, Vo = Zwl,'<j,j',m'm'”’M> Uyu» (eq. 1.3.28)

jom” jm
J=lj-jl

where N 7 is a normalization constant, < j,j',m,m'|J,M > is a Clebsch-Gordan

coefficient, and u,;, , v, , and U,, are spherical tensors. This expansion of the
product of spherical tensors then implies that the commutators in equation 1.3.27 can be

written as

J=4
(TomTom]= D 3 {<2,2,mm |, M >=<2,2,m' ,mlJ, M >T,,, (eq. 1.3.29)

J=0

The symmetry relation of the Clebsch-Gordan coefficients!O,

< jvj"mam‘lj’M >= (-l)j."f—l < j",j,m’,mIJ,M >, (Cq 1330)

14




immediately implies that the J=0,2,and 4 do not occur in the expansion of the

commutator, and equation 1.3.29 becomes

(TomsTom 1= % <2.2,mm 13,M > T,y ~ % <2,2,m,m LM >T, . (eq. 1.3.31)
In table 1.3.1, we tabulate the commutators needed to evaluate equation 1.3.27 and we
after using these commutators, we find that the first order correction to the average
Hamiltonian is
HO =2 (\3l% 4RE RS, + RG,RE)TZ, - 2 (RARE., - RE,RE TR ]
—%[R:?.oszTsQ.—z +RERY 2TH))
'Tvi,‘\g [RzQ.oRg.xTSQ.-x + Rer.oRg-lTs»Q.ll

~&[S[RS,RETE  + RE,RE . TAY). (eq. 1.3.32)

Now that we have found the Average Hamiltonian, we can calculate the time-dependence

m X T m X ]

0 T,, 0

0 Tpu FEAI T £ ST
0 Ty FET 4

1 Tz,-z 'NZ,_ \/g Ts.o - '5),’ \[ ‘52:T1.o

2 T, 2T, + 22Ty,

Table 1.3.1: Commutators of second rank irreducible tensors.

15




of the density matrix of a quadrupolar nucleus. Notice, however, that Average
Hamiltonian in this case is not so simple to use because it is not diagonal in the Zeeman

basis. In the following sections, we will deal with equation 1.3.32 and its consequences.
Section 1.4: Problems with Average Hamiltonian Theory

In the previous section, we calculated the average Hamiltonian to first order for a
quadrupolar nucleus in a large magnetic field. We found that the first order correction
contained terms that are off-diagonal in the Zeeman basis. Unfortunately, these off-
diagonal terms imply that techniques like Double Rotation(DOR) and Dynamic Angle
Spinning(DAS), which narrows the solid-state quadrupolar resonance of odd 1/2 integer
quadrupolar nuclei, should not work!>17. The common explanation for this is that
equation 1.3.32 must be reaverage with respect to the large zeroth order average
Hamiltonian to produce the correct average Hamiltonian. When this is done, all the off-

diagonal terms are lost, and equation 1.3.32 becomes
o—— Cc,?
O = 58 (3l (ARERE., + REGRE TS, - F-(RERE., ~ RERETE). (eq. 14.1)

Even though this last step is nonintuitive, it gives the correct equation for the first order
average Hamiltonian of a quadrupolar spin in a large magnetic field.

However, this extra needed step gives rise to two predictions in a gedanken
experiment. Assume that the sample of quadrupolar nuclei rotate fast enough about the
magic angle to average out the zeroth order term. In this case, two predictions are made
depending on whether the off-diagonal terms are kept of discarded. At variance with this
ambiguity, static perturbation theory only predicts the result without the off-diagonal
terms.!® We have performed a set of simulations for the NMR transition of a single-

crystal sample, containing equivalent uncoupled quadrupolar nuclei of spin 3/2, and
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spinning about the magic angle at various rotation rates.!® The spectra in figure 1.4.1
were calculated using three differenc methods: a full diagonalization procedure (referred
to as "exact"), using the average hamiltonian icsult presented in the previous section, and
using the static perturbation result, which is the same as the average Hamiltonian result
with the off-diagonal terms dropped (a sum of equations 1.3.24 and 1.4.1). The results
clearly show the failure of Average Hamiltonian Theory to provide even an approximate

description of the system when the spinning speed becomes comparable to the

OHz 2kHz 50kHz
Exact
SPT
AHT
1 \/\N\

12 6 0 -6 -12 12 6 0 -6-12 12 6 0 -6 -12
Frequency (kHz)
FIG. 1.4.1: Exact, Static Perturbation Theory, and Average Hamiltonian Theory simulations of the NMR

transitions of a single-crystal sample, conta. . ing equivalent uncoupled quadrupolar nuclei of spin 3/2, and
spinning around the magic angle at three different speeds. The spinning speeds (vR=0, 2, and 50 kHz), are
selected to fall in the ranges O-VZQ/Vz, sz/vz~vQ, and vQ-vz, showing three different behaviors of the
Average Hamiltonian Theory result. The Static Perturbation Theory simulations were performed in the
laboratory frame using a nontilted diagonal Hamiltonian containing the Zeeman interaction and the

quadrupolar interaction truncated to second order. The simulation was performed by Philip Grandinetti.
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quadrupolar coupling, while Static Perturbation Theory is in good agreement throughout
the range of experimental parameters.

In the next few sections of this thesis, we will give a general and coherent
framework for treating the effects of higher-order terms in perturbation expansions of
common problems that arise in NMR. Although this may be done by dynamic methods
(i.e., by going to the rotating frame and using Average Hamiltonian Theory), it is simpler
to use static diagonalization methods, since the Hamiltonian is time independent. The
usual perturbation expansions for the diagonalization are formulated in terms of matrix
elements.! We will reformulate these in terms of operators decomposed into irreducible
tensors. Two different methods, Static Perturbation Theory and Van Vleck
transformation, will be given. Two methods are introduced, because Static Perturbation
Theory is useful for systems with a finite number of energy levels and the Van Vleck
transformation is adapted to highly degenerate (e.g., dipolar broadened) systems. With
these two computational techniques, we will generate effective Hamiltonians and
interaction frames that are suitable for analyzing averaging experiments. We will also
discuss the proper conditions under which Average Hamiltonian Theory can be applicd

and the difficulties involved in extending this approach to include sample motion.

Section 1.5: Static Perturbation Theory in Terms of Irreducible Tensors

In its usual formulation, Static Perturbation Theory! provides an expansion for the
eigenvalues and eigenstates of a perturbed operator (which in our case will be the spin
Hamiltonian possibly including the radio frequency magnetic field). The results to second

order in the nondegenerate case are summarized by the following formulae:

H=H9+HO, (eq. 1.5.1)
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Hiv,>=E}lv; >, HOlj>=E”\j>, (. 1.5.2)
_ o ( _1i M
Ej-Ej.’+E}”+Ej2’+..., lv; >=1j >+ >+..., (eq. 1.5.3)

E{) =< JIHMj>, (eq. 1.5.4)

@ _ 2< JH® ke >< KIHO1j >
& EP-ED

, (eq. 1.5.5)

<MHmU>
ly (1) _Z E(°’ E‘°) (eq. 1.5.6)
k»j

These formulae for the matrix elements can be rewritten in terms of operators as follows:

H=VDV™, (eq. 1.5.7)

D=H®+D®+D®+., V=1+VP+., (eq. 1.5.8)

DO =Y1j>E" <]l (eq. 1.5.9)
j

D®=3%1j> E? < j, VO =Y ><jl, (eq. 1.5.10)
i J

where D and D™ are diagonal operators and V' is a unitary transformation. These

equations give the operators in terms of matrix elements and, in general, there is no

convenient way of simplifying them. However, in the case of NMR, the Zeeman
interaction H is a linear combination of Iz angular momentum Operators, and H® is
the superposition of the various local interactions which have simple expressions in

irreducible tensor form. The matrix element <IH ®}j > in equations 1.5.1 to 1.5.6 can
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be simplified by using the Wigner-Eckart Theorem!-1%:11 and tilc selection rules that it
implies to find pure irreducible tensor expansions for the D and V matrices.

We will demonstrate this procedure with the case of a quadrupolar nucleus in a
large magnetic field, the same system with which we demonstrated the Average

Hamiltonian Theory calculation. Again we have

HO = -, (eq. 1.5.11)
and
2
HY =2 Z(_l)ng_ngm . (eq. 1.5.12)
m==2

To find the first order correction to the effective Hamiltonian, we need to substitute

equation 1.5.12 into 1.5.4 and find

EP =Cy(-1)"RE_, < jITZ 1) >. (eq. 1.5.13)

The Wigner-Eckart Theorem implies the general selection rule for irreducible tensors,

<KkIT,,1j>=6, j,n <J+miT,,1j>, (eq. 1.5.14)

which immediately implies that only the m=0 irreducible tensor contributes to this term.

Placing the E{" into equation 1.5.10, we find that

D® = CQRzg_ong,O’ (eq. 1.5.15)

20




as we had found with Average Hamiltonian Theory. Next we find D'® by substitution

into equation 1.5.5 which will ultimately be used in equation 1.5.10, to find

- 2 i
5 < JTEalk >< KL 15> (eq. 1.5.16)

C3 m+m
EP =223 (-1)"RZ_ RZ_ . pa
m,m jnk J

The selection rule (equation 1.5.14) restricts the summation over k in equation 1.5.16 to
those terms where k=j+m' and k=j-m. This restriction then implies that the sum over m
and m' is restricted to m+m'=0 giving

RQ Q

R
Yy Eemn < GITE N j—m>< j-mITE 1>, (eq. 1.5.17)
m

m#0

2
Lo

2)
Ef T

This equation can be further simplified by using a rearrangement of the closure

relationship,
|j—m><j—ml=1——k;lk >< kl, (eq. 1.5.18)
Tom
to find
DP=-2%% Ry nRenTinTEen (eq. 1.5.19)

m#0 m

which we can write in terms of commutators as

) g pQ T2 7@
D® =Ce Z RonBs T3 Tom] (eq. 1.5.20)

Wy ¢
m>0 m

If commutators are replaced by their values in table 1.3.1, we find that this equation is
equivalent to that found in equation 1.4.1. Thus, by using static perturbation theory, we

naturally arrive at the correct form for the Hamiltonian correct to second order without
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the confusing and wrong ideas of a second averaging with respect to the first order
interaction.

Finally, we will calculate the first order tilting matrix, V", for this example. We
substitute equation 1.5.12 into 1.5.6 and use both the selection rule and the rearranged

closure relation to find

|v§1) o= _%an_z(_l)ng_ngmU S, (eq. 1.5.21)

m=»0

Thus the tilting matrix becomes

VO=-22 3 (-)"RE_,TZ,. (eq. 1.5.22)
m»0
In this section, we have shown how to correctly calculate effective Hamiltonians
up to second order for non-degenerate systems. This Static Perturbation method can be
used for degenerate systems, as long as the number of energy levels remains small.
However, for highly degenerate systems, this technique is intractable and alternate
methods must be used. We present a method based on the Van Vleck transformation?°

and apply it to the case of homogeneous dipolar broadening in a solid!.

Section 1.6: Van Vleck Transformation in Terms of Irreducible Tensor

Operators

The Van Vleck transformation, which was first applied by Van Vleck to
molecular spectroscopy calculations,C is a perturbative method used to block diagonalize
an operator having groups of degenerate eigenvalues. Block diagonalization mears that

no off-diagonal elements connect states of different unperturbed eigenvalues. However,
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no restrictions are set inside each eigenspace, which may be highly degenerate. In an

operator formalism this is defined by

H=H®+H® =wDW™, (eq. 1.6.1)
[H,D]=0, (eq. 1.6.2)
ww =1, (eq. 1.6.3)

where here we denote the tilting matrix by W to indicate that it does not completely
diagonalize the Hamiltonian. As in Static Perturbation Theory, the perturbation expansion
can be written in operator form. The expansion of D is identical to equation 1.5. 9, and it

is convenient to expand W as
W=es"es"es (eq. 1.6.4)
where the S™are Hermitian operators whose magnitudes decrease as (|H®1/IHON)".
This expansion is at variance with previous treatments,2%-2! but it simplifies later
calculations. Keeping terms up to the second order, equation 1.6.1 is expanded as
H® +D® 4+ DP4. .
={1-iSP+. ) [1-iSY + Sy /2...]
x(H® + HO)1+iS® + (S®)y? /2...]
x{1+iS®+...), (eq. 1.6.5)
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which upon collecting terms of the same order becomes
DY = HY +[H,is"], (eq. 1.6.6)
D? =[H®,isV]+ L[[H®,iSM),iSP]+[H©,iS?®] (eq. 1.6.7)

These operator equations do not define the D™ and S in a unique way. Aside from the
trivial case of adding H® to S, which is equivalent to multiplication of the eigenstates
by a phase factor, another operator that commutes with H‘® may be added to §® to
generate another solution. There is no easy way to solve equations 1.6.6 and 1.6.7 in
general. Van Vleck gave the initial solution for the D™ and S terms of matrix
elements, from which it is eventually possible to yield the expansions for D and W in
terms of irreducible tensors.2® However, in some special cases, it is possible to directly
generate an irreducible tensor solution to equations 1.6.1 to 1.6.3.

For the case of homogeneous dipolar couplings, the Hamiltonian is divided as

HO=H,= —wozlé = —w,l,, (eq. 1.6.8)

HO=H, = Zng)

i<y

=Y CPN (-1)"RP T = zkm, (eq. 1.6.9)

i<j m

where i and j label the spin sites, and the R{”, and T;” are the usual lattice and spin
parts of the dipolar coupling. The decomposition of H, into H,,, * *hich was introduced

by Jeener,?2 is equivalent to the usual dipolar alphabet formalism,’ and can also be used
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to represent the quadrupolar interaction treated in sections 1.3 and 1.5 of this thesis. The
H_, have two useful properties, which are the keys to solving equations 1.6.6 and 1.6.7 in

terms of irreducible tensors:
[I,,H,1=mH, (eq. 1.6.10)

and

Uz [1H, 1= m ) T H.)- (eq- 1.6.11)

If we set H” = H, = H, in equation 1.6.6, we sce that the expression for D
has nonsecular contributions ("rln;tO) coming from H®. Since D commutes with H®,
as must all the D™ by definition (equation 1.6.2), the commutator, [H?,iS], must
cancel the nonsecular terms. Using this constraint, equation 1.6.8 and 1.6.10 can be

combined to obtain a simple solution for S®:

. H
SV =ty —m, (eq. 1.6.12)
m»0 m
and thus,
DY =H, (eq. 1.6.13)

which is the known first order correction. The solution for higher orders follows the same
general procedure: the lower-order terms are inserted, the secular parts are assigned to
D™, and the S is tailored to cancel the nonsecular parts by using equation 1.6.11 in the
commutator [H®,iS™]. For instance, to find the second order expressions from equation

1.6.7, we first introduce S©, given by equation 1.6.12, into the first two terms:
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[H®,iSV1+§[[H®,iS1,is]

mu0 m mnQ,nel m

_ ﬁ?(zlﬂg_f_ﬁh ) L’_"__“’AJ (eq. 1.6.14)

and we identify the secular terms as those with m+n=0. Thus

D(2) 2 [H-m’H ]

m>0

(eq. 1.6.15)

SO = zwo(z_[_flo_’_gih y H.H, ]J (eq. 1.6.16)

me0 m man,mul m(m n)

Higher-order corrections, though more complicated, can be computed in a similar way.

Expressions for the Van Vleck transformation expansion to second order have
already been found,?2 but the tilting operator, S, was not given and the method could
not be easily extended to higher orders. A method similar to the Van Vleck
Transformation operator expansion was previously?® used to compute S®. For
" homogeneously coupled spin-1/2 nuclei the second-order term, D®,analogous to
equation 1.6.15, was shown to contain two different parts obtained when expanding the
sums over the nuclear indices in the commutators.2223 The first part contains two spin
contributions, of the I’ + I type, that only induce a shift of the transition and commute
with D = H,. The second part contains three spin contributions that do not shift the line
and do not commute with H,,.

The Van Vleck Transformation method is not restricted to the dipolar case and
can be applied, for instance, to the quadrupolar case treated previously. The prerequisite

for efficient use of the Van Vleck Transformation is the possibility of expanding the
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perturbation, H®, into contributions which satisfy the commutation relation in equation
1.6.10. Indeed, the results of the two methods are identical for this case and, for higher-
order contributions, the Van Vleck Transformation provides the results in a much simpler
way. However, in other cases, this transformation may be cumbersome for second-order
calculations (for instance, when different spins are involved) or not even tractable if we

are interested in a full diagonalization of a degenerate Hamiltonian.

Section 1.7: Explanation of the Difficulties with Average Hamiltonian

Theory

We will now discuss why Average Hamiltonian Theory gave incorrect results for
the case of the quadrupolar nucleus in a large magnetic field taken to second order. We
begin by describing in what sense AHT provides the "correct answer". As was shown in
section 1.3, when using Average Hamiltonian Theory, one must first convert the

Hamiltonian,
H=-wl;+H,,, (eq. 1.7.1)

into the rotating frame,

pert

Hiy=e“""H, e = H e (eq. 1.7.2)

where it becomes time-dependent, and then average it with Average Hamiltonian Theory
over the Larmor period, ¢ =2%,, to obtain the effective Hamiltonian
1 =51 +2(2) . .

H=H )+H(_) + H " +..., to whatever order is necessary. To the first-order average

Hamiltonian, one obtains!%-24,
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71’=H0+§:M—2[—M-’"—]-+m (eq. 1.7.3)
m>0 mwo ma0 M@,

The problem with the Average Hamiltonian Theory approach to truncation comes from
the assumption that all the observable transitions are actually being observed. This
assumption coupled with the stroboscopic nature of Average Hamiltonian Theory results

in a folding of multiple quantum transitions into the single quantum spectrum. To

Exact

SPT

_ L

12 6 0 -6 -12
Frequency (kHz)

Fig. 1.7.1. Exact, Static Perturbation Theory (SPT), and Average Hamiltonian Theory (AHT) simulations of
the NMR spectrum of a static single-crystal sample, containing equivalent uncoupled quadrupolar nuclei of

spin 3/2. The SPT propagator was calculated as in figure 1.4.1 but using the tilting operator V expanded to
first order. The dwell time in all three simulations is equal to the Larmor period. The vertical scale has been
expanded 525 times full scale to show the small Zeeman "forbidden” transitions folded into the Am = 1
spectrum. The simulation was performed by Philip Grandinetti.
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emphasize these points an additional set of exact, Static Perturbation Theory, and
Average Hamiltonian Theory simulations sampled at multiples of the Larmor period was
performed, and is shown in Fig. 1.7.1. In all three simulations the spectrum consists of
three main Zeeman allowed transitions and three Zeeman forbidden transitions of much
less intensity which arise from multiple-quantum transitions that are folded into the
spectral window. Both Average Hamiltonian Theory and Static Perturbation Theory
correctly reproduce all of the frequencies and amplitudes of the exact simulation.
However, while the Zeeman forbidden multiple quantum transitions can be
unfolded in the exact and Static Perturbation Theory simulations simply by increasing the
spectral win&éw, this is not the case in the Average Hamiltonian Theory simulation
which must be sampled at multiples of the Larmor period. The multiple quantum lines in
the Average Hamiltonian Theory simulation cannot be unfolded with a dwell time shorter
than the Larmor period, and in place of Average Hamiltonian Theory, Floquet Theory??
is needed to separate the signal contributions from the different transition orders.

Floquet Theory, as described by Maricq?® requires the calculation of an additional time-

dependent operator, P(?), to yield the effective propagator in the rotating frame,
U.(t) = P@)e ™, (eq. 1.7.4)

which is valid at all times. When compared to the propagator obtained from Static

Perturbation Theory or Van Vleck Transformation in the rotating frame,
0vv'r(t) - e—iwollz We LWt = e—z‘wotlz Weia)otlz er-:WD'W’t , (cq 1.7.5)
where

D*=D+al,=D"+D%+.., (eq. 1.7.6)
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one can see the equivalence of these two approaches by setting P(t) = e~ *2We'zW*
and H = WD'W'. Note that under conditions of stroboscopic sampling at multiples of z,,
both propagators reduce to the Average Hamiltonian Theory propagator with the effective
Hamiltonian given by equation 1.7.2, which is equivalent to a second-order expansion of

wWD'W?,

H=WD'W'=D®+D® 4DV §V}4+... (eq. 1.7.7)

Thus, the truncated Hamiltonian obtained from Average Hamiltonian Theory is correct,
but, of course, results in spectra that would never be observed in practice since the typical
bandwidth of an NMR spectrometer is too small to allow signals over many megahertz to
be aliased into the spectrum. It should be noted, however, that Static Perturbation Theory
has an advantage over Floquet theory that the perturbation expansion of W in irreducible
tensor form allows one to analytically separate the signal contributions from the different
transition orders, thus avoiding the short dwell times needed to prevent aliasing of the
multiple quantum transitions. When only Zeeman-allowed transitions are needed, W
can be simply 1, and only the calculation of D is required. Floquet theory, however,
requires the additional calculation of P(z) even for Zeeman-allowed transitions.

In the last several sections, we have attempted to present a general and consistent
framework for calculating the higher-order terms in the perturbation expansions used in
NMR. We have shown that Average Hamiltonian theory must be carefully applied and
that many times it is better to approach problems in NMR by using Static Perturbation
Theory or the Van Vleck Transformation as we have illustrated in several examples. By
exploiting the fact that the Zeeman interaction, a linear combination of Iz operators, is the
dominant interaction in NMR, irreducible-tensors expansions for the tilting matrix, V,

and the effective Hamiltonian in the tilted frame, D, are obtained. Irreducible tensor
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operators simplify these calculations since their commutation relationships with Iz are
simple and the matrix elements can be obtained using simple selection rules. Once V is
known, one can work in a diagonal frame where operators are modified and consequently
display unusual properties. Coherent averaging techniques, such as Average Hamiltonian
Theory, can then be applied in this diagonal frame in the same manner as they are when
no tilting is present. In addition, the perturbative expansion of V allows the NMR signal
to be "filtered" according to Am, thus avoiding aliasing problems when using small
spectral widths and allowing certain sets of transitions to be singled out for study. We
will use these ideas in the next couple of sections in order to determine the excitation
Hamiltonians for both the simple Am = %1 case and the more complicated overtone case.
We will be applying the tilting matrix in order to cast our equations in the diagonal frame
and in this frame applying Average Hamiltonian Theory to zeroth order to find effective

Hamiltonians for the duration of the pulse.

Section 1.8: Generation of an Effective Hamiltonian using Static

Perturbation Theory or the Van Vleck Transformation

The desén‘ption of the evolution and observation of a quantum mechanical system
is greatly simplified by choosing a reference frame in which the Hamiltonian is the
diagonal or block diagonal form. Furthermore, when applying coherent averaging
procedures it is often necessary to introduce an interaction representation that, like a
propagator, is more easily dealt with in a diagonal basis. Thus, if an exact diagonal form
is available for the Hamiltonian, all the calculations can be carried out in the
corresponding diagonal reference frame. However, if only approximate diagonalizations
are available, it is important to know to what extent this affects the various operations to

be carried out. As we shall see, for a given system, different levels of approximation may
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be necessary depending on the kind of observation and irradiation procedures involved in
the experiment.

The general procedure for producing an effective Hamiltonian is to write the
desired equations in the diagonal frame, which is called the tilted frame, and then
introduce the required perturbation expansions. If the Hamiltonian is diagonalized by a
decomposition like that in equation 1.6.1, any operator A transforms to the tilted frame

by the following operation:

A— A =W'AW, (eq. 1.8.1)

In the particular case of the Hamiltonian, we have H — H" =D. In NMR, where the
main contribution to the Hamiltonian is the Zeeman interaction, the analysis is simplified
by two arguments. First, the transformation in equation 1.8.1 is simplified by a
perturbation expansion of the operator W in terms of irreducible tensors. Second, the
Hamiltonian, H" = D, retains the general structure of the I, manifolds since it is reduced
to the Zeeman interaction in zeroth order. This last statement is important because it
implies that any NMR experiment can be analyzed with the same concepts and tools
(rotating frames, averaging techniques, multiple quantum coherences, etc.) that are
currently applied to the usual situations (where only first-order expansions without tilting
are used). Thus, the system can be described by an effective Hamiltonian, given in the
Zeeman eigenbasis by H™ = D. However, in this new representation, all the operators we
usually deal with, such as the density matrix, and the radio frequency couplings, are
modified by the tilting and may display some unusual properties.

Let us demonstrate this in the simple case of the observation of the free-induction

decay. If the initial density matrix is p(0) and the observable is I,,, the signal is given by

M @) =Trle™p(0)e™1,]
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=Trip" ()™ ' Ie "], (eq. 1.8.2)

and the second expression can be reinterpreted as the signal in a Zeeman eigenstate basis
with a purely diagonal Hamiltonian, H", but with a modified initial density matrix and
observable. The various possible transitions between levels of H'define the frequency
spectrum of M(r), where the amplitudes are proportional to the matrix elements of 7.
Thus, the usual Am =1 selection rule associated with the pure I, operator does not
apply in general.

However, in standard NMR experiments, the signal is observed with a tuned
circuit that selects a band of frequencies around some definite Am value. Although a
general Fourier analysis of M(¢) is not easy, the perturbation expansion of the tilting
operator, W, in irreducible tensor form provides a simple decomposition as a function of
Am. For instance, by expanding W of equation 1.6.4 to first order, and then I, by using

equation 1.8.1, M(z) is

M) =Trip" (0)e" “Le ™ "1+ Trip" (0)e” *[1,,iS"le™#"], (eq. 1.8.3)

where the S® terms have been regrouped into a commutator. To zeroth order in W, the
usual Am= =1 rule applies, and to a small error in the amplitudes, we can thus calculate
the Zeeman spectrum using the untilted operators and the diagonal effective Hamiltonian,
H", which can be approximated to any given order. This picture, in which H" and W are
not expanded to the same order, is well suited to NMR experiments, where the frequency
resolution can be very high, but the amplitudes of the signals are seldom very accurate.
The addition of the time-dependent perturbation to the Hamiltonian can be
handled in a similar manner provided the magnitude of the time-dependent perturbations

small compared to the time-independent part of the Hamiltonian. We will first
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demonstrate this for the case of rf irradiation near the Larmor frequency. In the tilted

frame, the Hamiltonian for an rf field of magnitude 2w, =28, along the X-axis in this

frame can be written as

H,(t)=2w, cos(wrn)ly

= 82 (e 4 i )((1+ +1)+ ZM) (eq. 1.8.4)

m»0 mwo

where the second expression was obtained by again expanding the tilting operator, W, to
first order using equations 1.8.1, 1.6.4, and 1.6.12. As in the procedure used in the
untilted Zeeman case,”26 the effect of the pulse is analyzed in a rotating frame, defined

by the unitary transformation ez :
A" o A =W AW (eq. 1.8.5)

This representation is the "rotating tilted frame," which should not be confused with the
"tilted rotating frame" introduced in the analysis of multiple-pulse experiments.}2?7 The
transformed density matrix p°(t) does not contain any high-frequency components,

because it evolves under the Hamiltonian
H =H"+al,. (eq. 1.8.6)
Notice that since I, and H' commute, H® is reduced to the offset and the local

interactions. The effective rf Hamiltonian is obtained from the static parts of equation

1.8.4 after transforming to the tilted rotating frame and by using
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e, = eP ], ) (eq. 1.8.7)
and
e ¢ =gy (eq. 1.8.8)

By keeping the static parts of equation 1.8.4, we are averaging the Hamiltonian over a

single Larmor period. This yields the effective rf Hamiltonian in the rotating tilted frame

Hy, = 0,(Iy + 75 (<1, H,1+ 1, H,))), (eq. 1.8.9)

which can be simplified by using the relation [/,,H,,]=0 to

Hy, = 0, (Iy +55-(Ux. H, ~ H_,))). (eq. 1.8.10)

We have shown the basic formalism for using Static Perturbation Theory and the
Van Vleck Transformation to produce an effective Hamiltonian. Even though the simple,
illustrative example of a rf irradiation at the Larmor frequency has been shown, we want
to apply this technique to a more interesting and less well understood problem: the

excitation of the 14N overtone.
Section 1.9: Excitation of the 14N Overtone

The 14N overtone is the weakly allowed transition between the +1 and -1 states of
the spin 1 14N nucleus. Developing techniques for exciting and narrowing this transition
is important for studying biomolecules and polymer. ._. the solid state, because many of

these materials contain nitrogen and 14N is its most common isotope. Thus structural
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Fig. 1.9.1 the external magnetic field Bp. The laboratory z direction is defined along the external magnetic
field, and the x direction is perpendicular to z and in the plane defined by the z axis and the direction of the
rf magnetic field.

information could be obtained through the use of a naturally abundant nucleus that is
almost ubiquitously present in these systems. Exciting the overtone removes the
megahertz wide first order quadrupolar broadening of the normal 14N Am=x%1
transition. Thus, the overtone transition would have a second order powder pattern, as do
the central transitions of odd half integer quadrupolar nuclei, which could then be
narrowed by the DOR and DAS techniques!>-!7 providing high-resolution 14N spectra of
biomolecules or polymers.

Such a transition is excited by applying an rf field oscillating at twice the 14N

Larmmor frequency. Thus the Hamiltonian during the pulse is

H=H, +H,+ Hy, (eq. 1.9.1)

where

H, =-w,, (eq. 1.9.2)

36




Hy=Co X (-1)"R, Ty, " (eq. 1.9.3)

and

Hyp =~ (I, 5in 6 + 1, cos 6)cos(2w,t). (eq. 1.9.4)

As can be seen in figure 1.9.1, 6 is the angle between the large external field and the rf
coil. Notice in equation 1.9.4, that the rf field is oscillating at twice the Larmor frequency.
As we did before, we must put this Hamiltonian in the rotating, tilted frame by

using the transformation

H — H° = e~ @2yt Y@tz _ie“'ﬂ’a"zv? _aa_t_(ve“"“dz ) (eq 1.9.5)

Before, we used a slightly different rotating, tilted frame transformation, but they are
essentially the same, because the extra term in equation 1.8.5 just cancels the Zeeman
interaction, which we had already dropped in the earlier example. Using this

transformation , we find

R2.-m [TZ.—m 14 T2.m ]

: R
H =CoRyoTyo+5 Y, =22 — +Hop, (eq. 1.9.6)
m>0
where
Hyp =e 2ViH, Ve ™'z, (eq. 1.9.7)

Expanding the tilting operator, V, to first order and substituting for Hg, from equation

1.9.4 gives
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Hpp = — g (™™ (§ (1, + I.)sin 6 + I cos 6)e’™"
+e7 % [L(I, + 1 )sin @+ I, c0s 0,VP)e " Jcos2m,t).  (eq. 1.9.8)

This equation is simplified by substituting for V® from equation 1.5.22 and then using
equations 1.7.7 and 1.7.8 to find the static parts, which is effectively applying Average
Hamiltonian Theory to zeroth order. We then find that

Hy =-22{(R,,T, , ~ R, \T,,)sin0+(R;,T, , R, ,T,;)c0s6}.  (eq.19.9)

@y

The Hamiltonian during the pulse is

R2.mR2.—m [TZ.-M ? T2.m ]

. c3
H = CQR2,0T2,0 + FD‘
m>0 m

— 2220 (R, T, = R, Ty, )sin 0+ (Ry,T, , = Ry T, ,)c0s8}.  (eq. 1.9.10)
The first order quadrupole shift, C,R, ,T, , does not directly effect the +1 to -1 transition,
and will be dropped from any further consideration. The second order quadrupole shift,

, does effect the overtone, but we will assume that the rf field

Eé_ RZ.MRZ.-M [T2,-m s T2,m]
strength is large enough that it can be neglected. Unfortunately, to neglect the nutation

due to the second order quadrupole interaction means that the rf-field strength must be
much greater than the quadrupole coupling constant. This approximation is an unrealistic
in most cases, however, we will see the general behavior of the overtone by this

simplified treatment.
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Some aspects of the Hamiltonian during the pulse can be made more intuitive by
writing this Hamiltonian in terms of fictitious spin-1/2 operators.28-32 Using the identity

for a spin-1 that
T, =1 £il}, (eq. 1.5.11)

where 1-3 indicates a coherence between the +1 and -1 states of the spin-1 nucleus.

Substituting these identities into equation 1.9.9 gives

H = —E-Z;C-Q {[ (Rz.z +R, , ) cosf+ (RZ-I ~ R )sin 0][ X

~i|(Ryz = Ry 5)cos 8+ (R, + R, ,)sin 6] (eq. 1.9.12)

Notice that this Hamiltonian can be rewritten as

H =-22% Afcos ¢l — sin Iy %}, (eq. 1.9.13)
where
2 3
A= \/[(RZZ + Rz,_z)cos 6+ (R2,1 - Rz’_l)sin 9] - [(Rz’2 - R2,_2)cos 6+ (R2,1 + R2,—1)Si" 9] ,
(eq. 1.9.14)
cos § = (Ra + By g Joeso+ (Ryy = Ry g Jsind

2 2’
\/[(RZ,Z + Rz’_.z)cose + (RZ.I - R2’_1)sin 9] - [(R2,2 - Rz'_z)cose + (R2,1 + Rz’__l)sin 9]

(eq. 1.9.15)
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and

i[(Rz'z - Rz‘_z )Cose + (Rz’l + Rz -1 )Sin 6]
sing = 5 o
J[(Rz'z + Rz'_z)cose + (Rz'l - Rz‘_l)sin 0] - [(Rz'z b R2'~2)cos 9 + (R2'1 + Rz'__l )Sin 6]

(eq. 1.9.16)

By rotating the Hamiltonian given in equation 1.9.13 by ¢ about I}, we find that

H'= e—iOl}" Hoei&ﬂ;’ - _2%:_:?1 A];-—:& - ‘Jl’l{—-S. (Cq 1'9'17)

This equation will allow us to simply analyze the effect of the pulse, because now its
effect is a rotation about the I} axis.

In order to examine the effect of the rf pulse on the overtone transition, we will
calculate the magnetization immediately after the pulse. As discussed in section 1.2, the

expectation value of the magnetization is
M., (t+1,)=Trle ™ p(t,)e™I.,,], (eq. 1.9.18)

where i =x,y, specifying which component of the magnetization detected, ¢, is the rf

pulse length, ¢ is the time after the pulse during which the overtone undergoes free
precession, H is the Hamiltonian that governs the free precession which we assume to be
the sum of the Zeeman and Quadrupole interactions, and I.,, is the observable angular

momentum in the coil. There are two possible expressions for /'

coil

depending upon

which component of the magnetization is measured:

1* =I,cos0+1,sin8 (eq. 1.9.19)
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and
I, =1,cos0+1,sin6. (eq. 1.9.20)

coil

It is most convenient to calculate the magnetization in the rotating tilted frame, where the

magnetization is given by

ML (t+1,)=Trlp (t,)e”" Ie™"1, (eq. 1.9.21)

where

Ljy = eV Ve = e (11 + 1, V))e™", (eq. 1.9.22)
D°=D+iw,l, =DM +D%+..., (eq. 1.9.23)

and p°(t,) is the density matrix after the pulse in the rotating tilted frame. By
substituting equations 1.9.20 and 1.9.20 into 1.9.22, keeping only those terms that
oscillate at twice the larmor frequency, and then using equation 1.9.11 to write the

resulting equations in terms of fictitious spin 1/2 operators, we find

L% = -3¢ Alcos ¢l - sin g1y} (eq. 1.9.24)
and
LY =-22 Alsingly™ +cosgly*}, (eq. 1.9.25)

where A, cos¢@, and sin ¢ are given by equations 1.9.14-1.9.16.
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" Now that the observable is determined, we need to find the density matrix in the
rotating, tilted frame after the pulse, p°(t,), which is found by propagating the
equilibrium density matrix, written in the same frame, with the Hamiltonian during the

pulse:
p'(1,) =% e M (0)e e (eq. 1.9.26)

The Hamiltonian during the pulse, H", is given by equation 1.9.16, and the initial
density matrix is
Wy y1-3

p"(0)= 21

. .1.9.27
T 2 (eq )

This equation is the same as found in section 1.2 because, to lowest order, all the
transformations that we have made commute with >, Carrying out the operations

indicated in equation 1.9.25, we find

Wy

e [(sin @1y + cos g1y )sin(@ 41,) + I > cos(wqt,)] (e 1.9.28)

p'(t,)=

We have now found everything that is needed to substitute in equation 1.9.21 and

determine the overtone spectrum. Since we are most interested in determining the

overtone excitation efficiency, we will only calculate the magnetization at z,, which is

given by
ML) =Trlp (t,)0]. (eq. 1.9.29)

By substituting equations 1.9.24 or 1.9.25 and 1.9.28 we can calculate either the x or y
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*1 +4V,; sin f cosfe™
2 — GVgsi e

Table 1.9.1: Spacial Tensors for the axially symmetric case as defined by Haeberlen?’.

components of the magnetization after the pulse. These are given by

M. (@t,)= —TﬁA(sm ¢cosg —singcos@)sin(@,42,)=0 (eq. 1.9.30)
and

M. @,) = — 5% A(sin? ¢ +cos 2¢)sin(w,41,) = -;—-Asm(w,it ), (eq.1.9.31)

where we have used the orthogonality relations of the fictitious spin 1/2 operators,

Tri[71,*]1=6,, to find these equations. Equation 1.9.17 defined

m"Cq a)"wa ' : . WpprWp 27(.009 MH2)(1MHz)
W4t = At, = A't,, which is of order —G-21, = “rggepp— (10 usec) =.02.

Thus even if we apply a pulse that is ten times longer, we are in the small pulse limit,

which will allow us to approximate
Mz (t,) =~ 55 AQ,1, = ~ 5t A%, (eq. 1.9.32)

This equation is what is needed to analyze the excitation efficiency of the overtone

transition.
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Fig. 1.9.2: Definition of the angles o and B for the axially symmetric quadrupole interaction. X, Y, Z are
laboratory frame direction where Z is defined in the direction of the external magnetic field. Vzz is the

direction of the Z principle axis of the quadrupole interaction.

We will examine the overtone excitation of a sample with an axially symmetric
quadrupole interaction for the cases with the rf coil parallel and perpendicular to the
external magnetic field (8=0 or 6=3%). For an axially symmetric quadrupole
interaction, the spacial tensors needed to find A, cos¢, and sin¢ are given in table
1.9.1. The angles & and 8 which appear in table 1.9.1 are defined in figure 1.9.2. With

these tensors we can show that

A=}V, sin®B, (eq. 1.9.33)
¢ =2ac, (eq. 1.9.34)
and
MYy 0uot,) = — 55228 1 sin* B (eq. 1.9.35) .

or the rf-coil along the external magnetic field. If the rf-coil is perpendicular to the

magnetic field, we then find that
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a)
0.04 ~
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B
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1 1 | !
0 wé %2 Ind =
8

FIG. 1.9.3: The excitation efficiency of the 14N overtone as a function of B, the polar angle (defined in

Figure 1.5).where the quadrupolar tensor is axially symmetric a.) The excitation profile when the rf-coil is
oriented along the external magnetic field. b.) The excitation profile when the rf-coil is perpendicular to this

field. M?

P . ﬂ’umé -
coit 18 in units where 21, =1.

A=3V,,sinfBcosp,
(eq. 1.9.37)
and

coi

Y Wep . 2 2
Mo, 9=§(tp)=‘%7%,—f'tpsm Bcos* B.
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Intensity of the overtone transition as a function of the orientation angle for a fixed, short
pulse length is shown in figure 1.9.3.

If the sample is polycrysialiine, it is not obvious whether the direction of the rf-
coil is going to effect the total intensity of the overtone transition. To determine this, the

magnetization must be averaged over all crystallite orientations:

ML(t,)) = j jM,,.,(t )sinB dp dar. (eq. 1.9.39)

a=0p=0

Performing this average on equations 1.9.35 and 1.9.38, we find

(M oil, =07, )) ( oit, 0=3 (0 )> —E Lt (eq. 1.9.40)

and thus the total overtone intensity does not depend on these two rf-coil orientations.
However, the shape of the observed powder pattern will depend upon the coil orientation,
because different crystallites are excited which then will oscillate at different frequencies.

In this section, we have shown how the formalism presented earlier can be used to
find an effective Hamiltonian that allowed us to examine the excitation of the 14N
overtone. We have shown that it is possible to excite the overtone in a polycrystalline
sample and we have presented a formalism that can be expanded to determine the
nutation effects due to the second order quadrupole interaction that we have ignored and
the effects of spinning the sample. Thus the idea of an effective Hamiltonian is useful for
determining the time dependence of the density matrix and thus the quantities actually
observed in an experiment. However, all the time-dependent Hamiltonians that we have
examined so far have be under our control. They have been due to either an artificial

frame transformation or application of a coherent rf field. We have ignored the effects of
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incoherent fields on our sample. These fields will lead to relaxation of the spin system

and will be treated in the next section.

Section 1.10: Relaxation Theory

So far in this thesis, we have learned to calculate the interaction of nuclear spins
with large, static magnetic fields and radio-frequency fields. To do this analysis, we
calculated an effef,ctive Hamiltonian which then led to the time dependence of the density
matrix. The initial condition for these calculations was always that the spins were in
equilibrium with the rest of the lattice and thus was at the same temperature as the lattice
(see the derivation of equation 1.2.13). However, we never examined how the nuclear
spins came to be in equilibrium with the lattice. The examination of the process by which
nuclear spins reach equilibrium is called relaxation theory, and was first analyzed by
Bloembergen, Pound, and Purcell33, and then later refined by Redfield and others34-38,

By analogy with what occurs in atomic systems, we would expect the relaxation
of the nuclear spins to be due to the coupling of the nuclear spins to the radiation field,
and thus the lifetime could be calculated using Fermi's golden rule!. However, as shown
by Abragam in his book’, this effect is much too small to explain the relaxation times
actually seen. Bloombergen, Pound, and Purcell have shown that the appropriate
explanation for nuclear relaxation is the interaction of the nuclei with motions of the
molecules in the sample, which is normally referred to as coupling to the lattice. The
nuclei interact with these motions through the modulations of the dipole-dipole
interaction, chemical shift interaction, quadrupole interaction, ect that the motions create.
In order to describe the coupling between the nuclei and the motions, we will present
Redfield theory which describes the relaxation of every element in the density matrix.

This theory will only be appropriate to describe the relaxation where the coupling to the
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lattice is weak. We will ignore the other case. We will treat the motions of the lattice
classically and the nuclear system quantum mechanically ( a semiclassical treatment).
With a semiclassical treatment, the nuclear spin Hamiltonian is partitioned into a
large time-independent term, which contains the Zeeman interaction and all the static -
internal interactions, and a much smaller time dependent term, which contains the

coupling to the motions of the lattice:

H(t)=H, +H,(¢). (eq. 1.10.1)

As we did in sections 1.2 and 1.8, we can now go into the rotating frame to remove the

effects of the time-independent Hamiltonian and find a short time approximation for

p (),

P’ )= p"©) =i, [H] (0" O)e [ ] LHI (LB} ¢ 7),0" Ok e, (eq. 1.10.2)
where

p @) =eM'p(n)e™" = e P'VIp(t)Ve™ = e P'p(t)e®, (eq. 1.10.3)
and similarly

H(®) =e ™ H (t)e™. (eq. 1.10.4)

In both of these equations, we have neglected the effect of tilting. If we take the

derivative of equation 1.10.2 with respect to t, we find

___a,; 5’ ) iLH (0),0"(0)] - [t .t @), omar . (eq. 1.10.5)
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Both the Hamiltonian and the density matrix are independent statistical quantities in this
formalism, thus the Hamiltonian, H;(t), must be averaged over the motions of the
sample. This average can be made to disappear, because any part of it that does not
average to zero can be included in H,. This implies that the first term on the right hand
side of equation 1.10.3 is zero and this equation becomes

‘9” (’) = [ TH; .LH] (¢),p" ()Tl (eq. 1.10.6)

If the motions that are responsible for the time dependence of H, () have a correlation
time that is much shorter than the interval over which we want to calculate the change of
the density matrix, then the upper limit on the integration can be extended to infinity,
because the contribution to the value of the integral beyond the correlation time is
negligible. Secondly, if we assume that the coupling to the lattice is weak, we can replace
p (0) by p“(¢). This assumption is equivalent to assuming that the time over which we
observe the change in the density matrix is much shorter than T,. These assumptions are
referred to as the coarse graining approximation, because they limit our ability to examine
the density matrix for times such that ¢, <<t <<T,. Within this approximation, equation
1.10.4 becomes

‘9" O [ O @ O (eq. 1.10.7)

Because of the semiclassical treatment of the lattice, this equation relaxes towards an
infinite temperature condition, equal probabilities of all states; however, if the full

quantum mechanical treatment is performed’, it can be shown that the correct equation is

obtained by replacing p’(r) with p’(r)—p, (¢). We will make this substitution in all
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further equations. A matrix element expansion of the corrected version of equation 1.10.7
is the Redfield equation; however, we find that an operator expansion of this equation is
more convenient.

To find the operator equation, the interaction Hamiltonian between the spins and

the lattice, H,(t), is expanded in terms of irreducible tensors,

H®=YYCY (-D)"R_, 0T, (eq. 1.10.8)
i m

where i labels the different possible interactions between the spins and the lattice (the
dipole-dipole, chemical shift, and quadrupole interactions are most commonly
responsible for relaxation),and [/ and m label the rank and order of the tensors., which

are written in the laboratory frame. The R;_,(r) are functions of time because of the

motions of the lattice. Substituting equation 1.10.8 into 1.10.7, we find

a m+m' pi & i* [
p (I) - 2 XCC T DR (OR] e T S (0] 2 (),07(1) = Pl (1
oL m,m'
(eq- 1.10.9)

(t)— e ‘D‘T‘ : PR .
where T . If we substitute £'=t+ 7 and expand T;,(¢) in a Fourier
series,

()= ZA" ~ioiat (eg. 1.10.10)

equation 1.10.9 can be written as

a” (’) DI I /I (40 LM LN RO}

0o L mom

(eq. 1.10.11)
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where

T57 e (0F ) = [(CC R ()R] i (2 + 7)) dr, (eq. 1.10.12)

© tmemy B

is the spectral density of the motion and ( ) explicitly indicates that an ensemble average
over all initial and final cohﬁgurations must be performed. In equation 1.10.11, we have
kept only those terms with @], =-oj, because the other terms are oscillating too
rapidly to contribute to the integral of this equation. This equation gives us the rate of
change of the density matrix, however, we do not directly observe the density matrix in

an experiment. We measure the rate of change of some observable, Q, which is given by

a<0> Q_ei
dt -T{ dt Q}

S 3D 3030 Y P G Vsl v S (909 o | LR V-1t o) LA ORT M O]

i L mm'rr

(eq. 1.10.13)

where we have used the identity Tr([A,[B,C11D)=Tr([B,[A,D]IC). This equation is the
most general operator form of the Redfield equation. It is much more general that what
will be needed in this thesis and we will simplify it by working with only a single
relaxation mechanism at a time and neglecting the important cross-correlation effects.

Under these conditions, the summations over the i's and 1's are not needed and m=—-nmt'.

This simplifies equation 1.10.13 to

J ;? 2 = DI IR (e {47 140l (p" 0 -, ()}, (eq. 1.10.14)
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m Tym
0 VE{1,8,-4(1,5. +1.8,)}
+1 F4(1.S; +1,S,)

£2 31,5,

Table 1.10.1: Definition of Spherical Tensor Operators used to describe the Dipole-Dipole Interaction.

where

(@)= [{CPR _m(OR (e + )" (eq. 1.10.15)
0

The correlation function in equation 1.10.15 is given by

(CZR,__M(I)R,'m(t+ 1)) = JCZR,‘_M(I)R,_m(t + 7)p(Q1):Q(t + 7))dQ(t + 7),

Q1+7)

(eq. 1.10.16)

where p(Q(z):Q(t + 7)) is the conditional probablitiy to go from orientation Q(t) at time,
t, to Q(t+ 1) at t+ 7. This correlation function is a real function when the conditional
probablity is a real, even function. This constriant is true for any symmetric motions of
the molecule under study and is always true when the molecule is undergoing isotropic
reorientation. Equation 1.10.14 can be used to derive the longitudinal and transverse
relaxation times T and Ty respectively, for different circumstances.

As an example, we will derive the longitudinal relaxation time, Tj, for the case of

two resolved spins relaxed by the dipole-dipole interaction. In this example, the static

Hamiltonian is
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H,=D=w,l, + S, ' ) (eq. 1.10.17)

and the fluctuating Hamiltonian responsible for the relaxation is

H=C,Y (-D)"Ry_ ()T, (eq. 1.10.18)

where

Cp =-277ss (eq. 1.10.19)

7 2a(60).000)

R2 m(t) r(t)

(eq. 1.10.20)

and the T,, are given in table 1.10.1. The Y, ,(6(z),¢(s)) are spherical harmonics
describing the orientation of the internuclear vector whose length is r(t) by the polar

angle 6(z) and the azimuthal angle ¢(¢r). We can now go into the interaction frame

defined by equation 1.10.17 and find T} ., 4; ., and @] ,:

T;0(0=13% {IzSz ~ (1,57 4 1_s+e+"<wl—ws):)},

0 _ 1 _ 6 2 _ _ %
Ao =S, o=—1BLS.,  A=-37LS,
0o _ 1 2 _
@,,=0, Wy = W) — Wy, W0 = ~(w, - ws)’
Ty (1) = F3{1,S,7" +1,5,e7}, (eq. 1.10.21)
o _ - -
Ay =F3LS,, 1.:1 =¥31,S,,
o _ —
@, 4 =10y, W, 4 = 0y,

T;.:z(t) = ';'Iisxeﬁ(m’ s )
Ag,ﬂ = %[tsﬂ:’

0, . =%, + o).
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Since we are calculating the longitudinal relaxation rate, the observable, Q, is /,, and

equation 1.10.14 becomes

a<l., >
T2 = [ A2 A 0 ) 1, 0)

~To(o; - 0T[4 0.l 420 L1 (0" () - piy )}
~Jo(e, - 05 )Tr{[ A2 1AL 0 1) 0" () - 0, 0))
~J()Tr{[ 43,143 11 (p" 1) - 2y ()}
~J (@, )Tr{[ 4 148 1" 0 - o1y ()}
=1 (s )Tr{[ 4,14 10" ) - ply )]
~h(@)Tr{[ 4.4 o0~ o)}
~Jy(0; + @5 )Tr{[ 425,140 5. 1,1|(p" () - ply ()}

—Jz(a), + ws)Tr{[Ag'_z,[Azo_zslz ]](p‘ (t) —'p:q (t))} . (eq 1.1022)

Assuming I and S are spin %, we can use the definitions in equations 1.10.21 and the

commutators defined in table 1.10.2 to find

o<, >
Z =_p(

Ep <IZ >-< IZ >eq)— 0'(< SZ >-<SZ >eq)’ (eq. 1.10.23)
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where
p=[Jo(w, - w5)- 37 (0,)+6J,(@, + o)), (eq. 1.10.24)

0 =35[~Jo(0, - ws) + 67, (w0, + w5)], (eq. 1.10.25)

S

and

Jm(w’r:_m) = %(_l)mclz) I <Y2‘,m(0(t)! ¢(I))Y2.m(9(t + T)’ ¢U + T))>eia){:_.1d€.

r(e)’r(t+ )’

(eq. 1.10.26)

Equation 1.10.23 is one of the two coupled equations describing the system. The entire

systems of equations is best described in matrix form, Louisville space, as
9 (h)] (n o\ {Iz)- (L),
- = “ . (eq. 1.10.27)
ar(<sz> o pA(S)-(S), !

These equations are the Solomon equations.

Spin 1/2 Commutators
[z, 1] =4I,
[1,.1.]=21,
[1,S.,1.8,]=1,-5,
[1,S,.1.8.]=1,+S,

Table 1.10.2; Spin 1/2 Commutators used in deriving relaxation equations.
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" Equation 1.10.23 makes the interesting prediction that the measured longitudinal
relaxation rate depends on the exactly how the experiment is performed. There are three
distinct experiments that can be performed. First, the I spin can be inverted while the S

spin is saturated. Under these conditions, the equation of motion of the I spin is

o<, >
___a_;zt__ = -—p(< I,>-<I, >eq)’ (eq. 1.10.28)

and the magnetization recovers with a rate p. To determine what happen in the other two
cases the relaxation equation, defined in equation 1.10.27, must be integrated. This is
done by diagonalizing the rate matrix and then solving the resulting differential equation.

The rate matrix can be diagonalized in the two spin case with the unitary transformation
1 1
U=[1 1). (eq. 1.10.29)

The inverse of this transformation is

1 1

1
-1_ 1
U = 2(1 _1). (eq. 1.10.30)

Using this unitary transformation, the solution for the differential equation in equation

1.10.27 is

( 12) _ ( I, )‘q - %[( RN e-(p-a)f)« I )Md _ < I, )q) + ( g (pro) _ po(p=o) )(( S, )MM - (Sz )q )]
(eq. 1.10.31)

The equation for Sz is found by exchanging the roles of /7 and Sz in equation 1.10.31.

The second experiment that can be performed on this system is the simultaneous
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inversion of both spins:(I,) = ~(I;),, and (S;)=~(S;),, . Assuming that I and § are a

resolved homonuclear system, the expected recovery of the system is

(I)=(L), (1-2¢7¢*) (eq. 1.10.32)
and

(S2)=(5;),,(1-2¢7C). (eq. 1.10.33)

In this case, the system recovers monoexponentially with a rate p+ o. If only the / spin
is inverted, initially (I;)=—(I;), and (S;)=(S;),, - The expected recovery of the

system is now
(1) = (1), (1= =) 6. 1103

and
(S:)=(S;), (1-€Cr +e ), (eq. 1.10.35)

Now the I magnetization recovers biexponentially. So as we can see the measured T)
depends upon which experiment is performed. Thus caution must be used when
attempting to interpret this parameter.

Throughout this first chapter, we have shown how to calculate the effect of static
and time dependent Hamiltonians on a spin system. The static interactions we now know
how to deal with include interaction with the large external magnetic field used in NMR
as well as the smaller internal interactions, such as the dipole-dipole coupling, quadrupole

coupling, and scalar coupling (J-coupling). We have also determined how to calculate the

57




effects of time-dependent interactions, such as interaction with the oscillating rf-field
used to excite the spins and random time-dependent interactions that lead to relaxation of
the spin system back to equilibrium. The rest of this thesis will be investigating relaxation
processes in nuclear magnetic resonance spectroscopy. These relaxation processes will be
investigated in semiconductor nanocrystals, biological molecules, and 13C enriched
solids. By measuring the relaxation properties of these materials, we will determine both
dynamic information about the motions of the molecules and also structural information

that will that will constrain the geometry of the molecules.
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Chapter 2: NMR Studies of the
Structure and Surface Dynamics of
Semiconductor Nanocrystals

Section 2.1: Introduction to Nanocrystals

A novel form of matter which has recently received much theoretical and
experimental interest is the nanocrystal. A nanocrystal is intermediate in size between the
molecular and the bulk causing its physical properties to become size dependent.!'2 For
example, the energy at which light is absorbed depends on the radius of the nanocrystal.
The size dependence of the properties of the nanocrystal has lead to the realization that they
might be tuned for technological purposes;*4 however, before these nanocrystals can be
used in devices the relationship between the structure of the nanocrystal and its properties
must be understood. In this chapter, we present NMR studies of cadmium sulfide
nanccrystals capped with thiophenol molecules in order to obtain structural information
about these nanocrystals.

The structure of the nanocrystal can be loosely divided into two parts, the surface
and the core (or interior). Our studies address only the surface of the nanocrystals, which,
not surprisingly, plays an important role in determining many of size dependent properties
of the nanocrystal. For example, trapping of the optically produced hole, the fluorescence
of the nanocrystal, the surface energy and hence the phase diagram all depend upon the
structure of the surface. In addition, it is necessary to synthetically manipulate the
nanocrystal surface to achieve solubility in a wide variety of organic solvents. Thus, a
study of the organic molecules bound to the surface of the nanocrystal is crucial to

understanding these systems. Despite its importance, the surface structure of these particles
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has so far received relatively little attention. We will approach this important problem by
examining the solution state 1H and 13C NMR of the thiophenol molecules bound to the
surface, which will tell us not only about how the thiophenols are bound to the surface, but

also about their motions on the surface.
Section 2.2: 1H NMR Results of Thiophenol of CdS Nanocrystals

We have used one- and two-dimensional solution state lH-NMR to characterize the
organic molecules bound to the surface of CdS nanocrystals. To perform the solution state
studies, Vicki Colvin synthesized pyridine soluble, thiophenol capped nanocrystals using
inverse micelles according to standard procedures, except that they were not annealed and
thus their interior was poorly crystalline. The non-annealed samples were used because
annealing is performed in quinoline at high temperatures, which greatly complicates the

NMR spectra. NMR samples of nanocrystals were prepared by dissolving 5 mg of CdS
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Fig. 2.2.1: 1H NMR spectrum of an 11.8A CdS Nanocrystal in ds-pyridine at room temperature. The
sample was prepared by dissolving 5 mg of dry powder of nanocrystals in 0.5 ml of 99.99% deuterated
solvent. The spectrum was taken at a 1H Larmour frequency of 400 MHz on a Bruker AM400
spectrometer.
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nanocrystals in 0.5 ml of 100% ds-pyridine. 400 MHz 1H-NMR spectra were recorded
within a week of particle synthesis at room temperature with Bruker AM-400 and AM-
400X spectrometers.

In figure 2.2.1 is a representative proton NMR spectrum of a thiophenol capped
nanocrystal in ds-pyridine. As can be seen, despite the possibility of many different
environments on the nanocrystal surface causing a featureless !H NMR spectrum, we have
observed high resolution spectra that are shifted with respect to free thiophenol. This
immediately tells us that the thiophenol molecules are bound to the surface and that the
distribution of thiophenol sites on the surface is relatively small. The proton NMR spectra

of the model compounds Cd(SCgHs)2 and [Cd(SCgHs)2]2[H3CPCH2CH,PCH3] have

)
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Fig. 2.2.2: Amplitude modulated COSY spectrum CdS nanocrystals in ds-pyridine. The spectrum was

taken within one week after preparation at room temperature at a 1 H frequency of 400 MHz..
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identical spectra to that of the thiophenol ligands on the semiconductor nanocrystals. The
crystal structures of these two model compounds are known[®7 and show that the
thiophenol ligands bind both terminally to a single cadmium atom and bridging between
two cadmium atoms. Comparison of these spectra with that of the nanocrystal implies that
thiophenol binds to cadmium atoms on the surface in a similar way in both the nanocrystal
and the model compounds. Unfortunately, we cannot use these data to specify whether
thiophenol binds to the nanocrystal surface in a terminal or bridging manner, as the solution
state structure of the models is unknown.

Two-dimensional phase-sensitive COSY spectra®? were used to assign the
chemical shifts. As shown in figure 2.2.2, we see only one set of resonances which are
attributable to the ortho-, meta- and para- protons of thiophenol and which show the
corresponding characteristic connectivities. Thus, the peaks at 7.91, 7.03 and 6.92 ppm are
assigned to the ortho, meta, and para protons respectively of thiophenol molecules bound
to the surface. The peaks at 8.71, 7.19 and 7.56 ppm are due to the ortho, meta, and para
protons respectively of residual protonated pyridine co-purified from the synthesis
procedure. These resonances are identical to those for pure pyridine.

The surface of the nanocrystal changes with time, as can be seen from the
appearance of new peaks at 7.25, 7.38, and 8.34 ppm in the H spectra. The intensity of
these peaks is seen to increase with time, while the bound thiophenol peaks decrease with
approximately the same rate. For particles in pyridine solution at room temperature the
bound thiophenol ligand resonances disappear in approximately 16 days. The same change
in the NMR spectrum is seen in samples kept as powders, however, the rate slowed
considerably. For this reason, many of the samples of nanocrystals were studied within
one week of their synthesis before degradation could occur. Russell Bowers and Robert
Grubbs identified the degradation product as the dithiophenol, CsHsSSCsHs. We showed
that the change requires both O and light, and a plot of the amount of the dithiophenol

present as a function of the number of ultra-violet photons for a pyridine solution of CdSe
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Fig. 2.2.3: Intensity of the ortho selenophenol peak and the degradation product peak at 8.34 ppm in the 1H
NMR spectrum as a function of the number of ultra-violet photons (A=530 nm) to which the sample of
Selenophenol capped CdSe nanocrystals was exposed. Degradation of this sample is seen to form the same
type of product as the CdS nanocrystals.

nanocrystals that has been saturated with O3 is presented in figure 2.2.3. Robert and Russ
showed that if the O2 is excluded from the NMR tube, no reaction occurs independent of
the number of UV photons exposed to the nanocrystals. Thus, samples can be kept
indefinitely in sealed tubes when oxygen is removed by the freeze-pump-thaw method.
Figure 2.2.4 shows a size dependent series of spectra to which a known amount of
CH Cly was added. The intensity of the thiophenol peaks falls rapidly as the nanocrystal
radius is increased. Using these spectra, we are able to determine the number of thiophenol
capping molecules per nanocrystal, and the percent coverage by comparing the integrated

thiophenol signal to that of a standard present at known concentration (Figure 2.2.5 and
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Figure 2.2.4: Intensity calibrated, size-dependent 1H spectra of thiophenol capped CdS nanocrystals. The
samples were made from the same stock solution of ds-pyridine to which had been added 0.9 mmoles of

CH,Cl, per kilogram of solution. The intensity of the CH2Cly_ at 5.68 ppm is constant in these spectra.
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Fig. 2.2.5 Number of thiophenol molecules per gram of nanocrystal versus radius. Notice that the data do

not follow the expected 1/r dependence given by the solid line,

Table 2.2.1). In the table, the number of surface Cd atoms was determined for the
thiophenol coverage calculation from the shell model of Lippens and Lannoo.!? This model
builds a nanocrystal by tetrahedrally binding atoms in shells starting from a single central

atom and predicts the number of atoms N in a particle with a given number of shells n, to

be

N = £(10n] = 15n} +26n, ~9) for odd n,, (eq. 2.2.1)
N =£(10n? —=15n2 +26n, —12) for even n,. (eq. 2.2.2)
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This model is consistent with the nanocrystal preparation, which was performed with the
addition of excess Cd at the end of the synthesis in order to create a Cd rich surface. The
nanocrystal radius is calculated assuming a spherical nanocrystal. Where the lattice constant

of the unit cell is a, the radius is given by

a_|3N
=_%f__, .223
A (eq. 2.2.3)

With these formulae, we can estimate an upper limit for the number of Cd atoms in the

nanocrystal surface. The NMR data can then be used to provide a lower limit for the

—_—

— — . —
Radius Molecular ActualNo.  No.Cd % Coverage Effective TP. T2 of TP para
A Wt(kDa)  T.P/part  onSurface? of T.P. radius (A)¢ peak (msec)
11.8+1.0 236 2446 92 26 9+1 57+3
13.8+1.0 3447 18+4 162 11 1212 7613
15.8+1.0 50£10 165 204 7.8 1412 12113
19.2+1.0 89+14 175 304 5.6 1612 220+3

Table 2.2.1: Experimental measure of the coverage of thiophenol on CdS nanocrystals? as a function of
naiocrystal radius.b

a. Determined by integration of the spectra presented in Figure 2.2.4. b. The radius of the nanocrystal, excluding
the capping group using UV-VIS spectroscopy and graphs in Lippens and Lannoo.19 ¢. Assuming the
nanocrystal is spherical. This molecular weight is a lower limit. d. Based on Lippens and Lannoo and assuming
completed shells. 10 This coverage is a lower limit. e. Note that the Van der Waals radius of thiophenol is 2.1A if
bound in a bridging fashion and is 4.9 A if bound in a terminal fashion. f. Ty was measured by the method of

Emsley, Kowalewski, and Bodenhausen.11
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thiophenol coverage (Table 2.'2.1). This percent coverage increases with decreasing
nanocrystal radius. The data show that the coverage increases from 5.6 to 26 percent as the
nanocrystal radius changes from 19.2 A to 11.8 A (Table 1). Thus, the nanocrystal is not
completely capped. It is of considerable interest to determine whether, at low coverage, the
thiophenol molecules are uniformly dispersed on the nanocrystal surface, or if there are
substantial local fluctuations in the coverage. If the thiophenol coverage were uniform, the
average distance from one surface molecule to another would change from 18A to0 32A.
Such large separations would indicate that there should be negligible interaction between
thiophenol molecules.

In figure 2.2.6, the concentration of pyridine per gram of particles is plotted versus
the nanocrystal radius. These data show no correlation between the amount of pyridine and
the nanocrystal radius. The pyridine resonances disappear upon repeated evaporation and
resuspension in deuterated solvent. However, the pyridine resonances do not disappear

when powders of nanocrystals are placed under vacuum at room temperature. These data
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Fig: 2.2.6: Pyridine concentration per gram of nanocrystal versus nanocrystal radius. Data obtained from the

integrals of the intensity calibrated spectra shown in figure 2.2.4. Notice that there is no trend in the data.
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suggest that the pyridine is not specifically attached to the nanocrystal surface, but merely
trapped in the powder; however, we cannot determine if some proportion of the pyridine
does associate with the nanocrystal surface, as would be suggested by the low thiophenol
coverage.

Perhaps the most remarkable feature of figure 2.2.4 is the size dependence of the
linewidths of the thiophenol peaks. As the nanocrystals become smaller, the resonances
broaden. This broadening could be either homogeneous as a result of changes in the
mechanism of motional narrowing of the lines, or inhomogeneous and due to site variations
on the nanocrystal surface. We investigated the source of the broadening by measuring the
1H and 13C longitudinal and transverse relaxation times of the thiophenol ligands. The
necessary techniques and the results of these experiments will be discussed in the next

sections.

Section 2.3: 1H Longitudinal and Transverse Relaxation Time

Measurements of Thiophenol Capped Nanocrystals

To determine the homogeneous linewidth of the 1H resonances of thiophenol on the
CdS nanocrystal surface, we measured the transverse relaxation time, T, by the selective

Hahn echo technique.!! This relaxation time is related to the homogeneous linewidth by

Ay =—o, ‘ (eq. 2.3.1)
where Av is the full width at half the maximum intensity. If the linewidth determined by
relaxation time is about the same as the observed linewidth, the line is homogeneously

broadened and we must find a mechanism to explain the linewidth. However, if the

relaxation time measurement indicates that the homogeneous linewidth is much less than the
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S T X acq.

Fig. 2.3.1: The Hahn echo sequence consists of a 90x and 180y pulses separated by a time 1. The chemical

shifts refocus at 27 at which time signal acquisition can begin.

observed linewidth, the line must be broadened inhomogeneously, say by a distribution of
sites on the nanocrystal surface.

To measure the transverse relaxation time in this system, a selective experiment
must be performed to remove the effects of J-couplings!2. For example, let us assume that
we have two J-coupled spins, I and S, and that we perform a nonselective Hahn echo on
this system. The Hahn echo sequence!3-13 is shown in figure 2.3.1. In the rotating frame,

the Hamiltonian for this system is

H=owl, +wS; +2nJ,l,S,. (eq. 2.3.2)
The zeroth order Average Hamiltonian can be found by using equation 1.3.7 of section 1.3
of this thesis. During the first free precession period, the Hamiltonian acting on the spins,
H,, is eq. 2.3.2. After the 7 pulse, this Hamiltonian is rotated and becomes

Hz ="‘a)llz "‘COSSZ +2”JISIZSZ' (cq- 2.3.3)

The Average Hamitonian to zeroth order is

To - 7,‘:17(1'11’1 +H2t2)= 21 Jl,S,, (eq. 2.3.4)

2
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and the intensity of the echo is modulated by the J-coupling. If many J-couplings are
present, the echo modulations become too complicated to interpret. In the case of a Hahn
echo, the zeroth order average Hamiltonian is equivalent to the exact result.

These echo modulations can be removed by performing a selective Hahn echo. By a
selective Hahn echo, we mean that only a single multiplet due to a single spin is affected 'by
the pulses. For the two spin case, where we selectively excite only the I spin, the
Hamiltonian during the first time period is again given by equation 2.3.2. After the

selective 7 pulse, the Hamiltonian during the second time period is

H,=—wl, +wS, - 21 Jl,S,. (eq. 2.3.5)
The zeroth order Average Hamiltonian is

HO =S, (eq. 2.3.6)

This Average Hamiltonian does not effect the I spin, so the echo amplitude evolves only
because of the transverse relaxation. By using this method, it is easy to obtain an accurate
measure of the transverse relaxation time. |
To perform the selective Hahn echo experiment, good selective pulses are needed.
Emsley and Bodenhausen have found shaped pulses that give good selective excitation
without phase problems. They have shown that a gaussian 270° pulse can have a narrow
excitation bandwidth with good in phase response!®. Inversion can be achieved by using a
pulse made of three gaussians of different widths and amplitudes that causes almost
"tophat" like inversion. They have called this pulse a q3 pulse!’. By using these pulses in a
Hahn echo sequence!l, they can accurately measure transverse relaxation times and

distinguish slightly different relaxation rates.
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Fig 2.3.2: The Selective T2 experiment of Emsley, Kowalewski, and Bodenhausen: a.. The pulse sequence.
b. Representative data from the ortho and para protons of the thiophenol ligands on CdS nanocrystals.

We have used this selective T2 sequence to measure the homogeneous proton
linewidths of the thiophenol molecules bound to the nanocrystal surface. Figure 2.3.2

shows the selective T2 pulse sequence of Emsley, Kowalewski, and Bodenhausen!! that
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Fig. 2.3.3: Ty as a function of CdS nanocrystal radius. T, was measured using the selective T2 sequence
shown in figure 2.3.2. a.) T2 measured on sampled prepared by dissolving 5 mg of nanocrystals in 0.5 ml
of d5-pyridine. By the time the meta peak of the r=19.2 A nanocrystal was measured, significant
decomposition of the surface had occurred as evidenced by the appearance of peaks due to the dithiophenol
decomposition product. b.) Samples prepared at the same concentrations as in a), but the samples were
purged of O by repeating the freeze-pump-thaw procedure five times. This had the benefit of both
preventing decomposition of the nanocrystals and removing random field relaxation due to dissolved O».
The removal of random field effects explains the increase in T of the particles in b over what they were

measured in a.
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was used to make the measurements, together with some representative T2 data. The
resulting transverse relaxation times (given for the para peak in Table 1) fully account for
the trend in the linewidth, demonstrating that the lines are in fact homogeneously
broadened. Therefore, the changes in linewidth must be due to motional averaging effects.
The simplest model assumes that the entire nanocrystal undergoes isotropic rotational
diffusion as described by the Stokes-Einstein equation while the thiophenol ligands remain
fixed with respect to the nanocrystal surface. This predicts that as the particle size increases
from 11.8 to 19.2 A, the correlation time for reorientation of the entire nanocrystal
increases from 1.7 to 7.1 ns, and that the transverse relaxation times should
correspondingly decrease with increasing nanocrystal radius. If only intra-thiophenol
dipole-dipole interactions are considered, this theory predicts that ToPara=T,meta=1T,ortho,
Neither of these predictions is borne out in our experimental data, presented in figure
2.3.3.

Figure 2.3.4 shows the 1H longitudinal relaxation times, Ty, of the thiophenol
ligands. The data for the nondegassed samples possibly suggest that the 13.84
nanocrystals are near the T} minimum. However, the degassed samples show that T
monotonically increases with nanocrystal radius, indicating that the nanocrystals are
tumbling in the slow motion regime. This would be expected for particles whose overall
tumbling time is 1.7 to 7.1 ns in a 400 MHz magnetic field; therefore, the possible T
minimum observed in the nondegassed samples must be an experimental error. Notice that
the longitudinal relaxation times of the different sites in the thiophenol molecules in the
gassed and degassed samples occur in a different order. In the nondegassed samples,
T1ortho>T 1meta>T 1para While in the degassed samples, T1para>T 1meta>T10rtho- These data
sugge.st that in the nondegassed samples, longitudinal relaxation due to random fields
created by dissolved oxygen, which has greater exposure to the para 1H's , is the

predominant effect. In the degassed samples, this effect is removed.
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Fig. 2.3.4: 1H longitudinal relaxation times of thiophenol ligands as a function of nanocrystal radius. Ty
was measured by nonselective inversion recovery of all 1H resonances. a.) T1 measured on sampled prepared
by dissolving S mg of nanocrystals in 0.5 ml of ds-pyridine. By the time the meta peak of the r=19.2 A
nanocrystal was measured, significant decomposition of the surface had occurred as evidenced b;, the
appearance of peaks due to the dithiophenol dezomposition product. b.) Samples prepared at the same
concentrations as in a), but the samples were purged of Oz by repeating the freeze-pump-thaw procedure five
times. This had the same benefits as in figure 2.3.3.
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Change of 1H relaxation rate in 10.6A thiophenol capped CdS

nanocrystals,
Peak T (°C) T, (msec) 'é;,.-—}-jm
ortho 26.0 72.6 2.0
79.1 63.4
meta 26.0 49.8 2.5
79.1 44.2
para 26.0 104.9 0.97
79.1 95.2

C. E 1.!! ! I. I . lsz°! ”. l l ! C!S

nanocrystals,
Peak T (°C) T» (msec) };,%7—?;;- (sec”
1)
ortho 25.9 127.0 8.8
79.3 59.9
meta 25.9 80.3 10.1
79.3 44.4
para 25.9 239.8 7.9
79.3 83.0

Table 2.3.1: Change in relaxation rate with temperature.
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Fig. 2.3.5: Temperature dependence of the 1H transverse relaxation rates for the thiophenol ligands of
CdS nanocrystals. The temperature dependence for two sizes of nanocrystals is presented: a.) r=10.6 A.b)
r=15.2 A. These samples were prepared by dissolving 5 mg of nanocrystal powder in 0.5 ml of ds-pyridine
and then purging the samples of O2 by repeating the freeze-pump-thaw procedure five times and flame
sealing the NMR tubes.

The temperature dependence of the T data was measured, and is presented in
figure 2.3.5. T2 decreases as the temperature is raised. This trend is unexpected, because
the correlation time of the motion of the nanocrystal should decrease with temperature and
lengthen the T . Table 2.3.1 presents the difference in the high and low temperature rates
for the two particle sizes. For a nanocrystal of a given size, the relaxation rates of the

different sites on the thiophenol ligand change by an amount that is the same to within the
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error of the measurement. This result implies that the mechanism responsible for the
decrease in the relaxation time does not distinguish between the different locations on the
thiophenol ligand.

To obtain more information about the relaxation behavior of the thiophenol
molecules, we performed 13C relaxation measurements. These experiments are presented in

the next section.

Section 2.4: 13C T1 and T3 Measurements of Thiophenol
Capped Nanocrystals

In order to obtain more information about the relaxation mechanisms in the
thiophenol ligands of the CdS nanocrystals, we performed 13C longitudinal, Tj, and
transverse, Tp, relaxation measurements. 13C dipole-dipole relaxation depends only upon
the motion of the 13C -1H vector to those H atoms directly covalently bound to the carbon
atom. Thus, this relaxation process is only sensitive to the motions of a single thiophenol
and is totally unaffected by neighboring thiophenols.

However, despite the advantage 13C relaxation measurements have for
interpretation of the data, they are difficult experiments to perform because of the sensitivity
problems of 13C. The simplest, but expensive, solution to this sensitivity problem is
isotopic enrichment of the sample with 13C. This is not a possible solution in the case of
the thiophenol nanocrystals becaus. of the lack of availability of 13C labeled thiophenol.
Thus, we had to measure the 13C spectra without enrichment. Unfortunately, direct
measurement of the spectrum by the simple pulse-acquire method never produced a
thiophenol spectrum because the ds-pyridine solvent signal totally dominated the spectrum.
Because of these problems, the 13C spectra were indirectly detected via the thiophenol
pég;ons by using the double INEPT experiment!®-23 shown in figure 2.4.1. This sequence

transfers magnetization from the 1H to the 13C via the antiphase coherence formed in

71




90 180° 90'90°  180°

rd n d2 —‘dIZ SL d2 HdZ SL | ACQ.
LU 9 %% P ®5 %
180" 90°90° 180"
] P O

180" 90" 180°

o 180° 180° 180°
rd H dZH d2| SL d2—|d2 SAT| d4 H dd I | —leH d2{ |d2} sL | ACQ.
® b @y KX - g
90*

% ¥ % % % 9 o %
180° 90" 180° 90° 180° 90° 180"
A feflefe——e—feflellf
9y % P L] L 9 LA 9y

c.)
90* 90* 180° 90* 180°

180° 180°
rd nd2—|¢12 SL dZH -‘dZHdZHdZ SL | ACQ.
®2

@ P % %0 % P %

80° 180°

::' ::r 180 %0 180°
1 fleflemn Sl oo Sefle] o]
9% 9 L) L]

9 ®s

Fig. 2.4.1: The double INEPT experiments used in this section to observe the 13C resonances of the
thiophenol ligands of CdS nanocrystals. In the sequences shown, rd is the recycle delay, d2 is set to
1/(47c) and allows build up of 1H-13C antiphase coherence, and the two pulses labeled SL are spin lock
pulse; *o remove residual proton coherence. In the experiments described in this section, rd=20sec, d2=1.5
ms ., wid the two spin lock pulses equaled 4 msec and 1 msec, respectively. The phases used in these
sequences are given in table 4.2.1. a.) The double INEPT experiment used to observe the proton detected
13C spectrum shown in figure 2.4.2. b.) The double INEPT Ty experiment used to measure the 13C
longitudinal relaxation time, Ty, The pulse labeled SAT was used to saturate the 1H resonances which were
kept saturated by the repeated 180° pulses every d4 sec. The saturation pulse length was 0.5 msec and the
180° degree pulses were applied every 0.5 msec for the measurements on the CdS nanocrystals. c.) The
double INEPT T, experiment used to measure the 13C transverse relaxation time, Ta.
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Table 4.2.1: Phase Table for the Double INEPT experiments shown in figure 2.4.1.

79




meta

ortho

r‘_—‘l para

T T T T T T T T T T
84 82 80 78 76 74 172 170 68 66

ppm

Fig. 2.4.2: 1H detected 13C spectrum of an r=15.8 A nanocrystal. The double INEPT sequence shown in
part o of figure 2.4.1 a was used. The sample was prepared by dissolving 5 mg of nanocrystal in 0.5 ml of
ds-pyridine and then freeze-pump-thawing the sample and flame sealing the sample. The recycle delay in
this experiment was 10 sec. The 1H 90° pulse length was 4.8 psec, the 13C 90° pulse length was 10.0
psec, the first spin-lock length was 1 msec, and the second was 4 msec. The delay d2 was 1.5625 msec.
This spectrum was obtained in 512 scans and was apodized before fourier transformation with an
exponential fiiter of 2 Hz.

response to the heteronuclear J-coupling. Such an inverse detected spectrum is shown in
figure 2.4.2. In this spectrum, each multiplet of the proton spectrum is split into a doublet
by the large, approximately 160 Hz, 1H-13C J-coupling. The artifacts between the doublets
are due to incomplete suppression of the 1H signal not coupled to a 13C.

The double INEPT inversion recovery and Hahn echo sequences used to measure
the 13C longitudinal and transverse relaxation times are also shown in figure 2.4.1. These
sequences are the double INEPT sequence with a inversion recovery or Hahn echo
sequence inserted. In the inversion fecovery sequence, proton saturation is performed

while the carbon magnetization is inverted in order that simple monoexponential decays are
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observed, as discussed at the end of section 1.10 of this thesis. Representative data from
these sequences are shown in figure 2.4.3. The signal to noise in these data are not nearly
- as good as in the proton spectra measured in section 2.3, but they are good enough to give
us a reasonable measure, +15%, of the relaxation times.

Figure 2.4.4 shows the 13C longitudinal relaxation time, Tj, as a function of

nanocrystal radius. The measured relaxation times are very similar for different synthetic
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Fig. 2.4.3: Representative 13C T1 and T data of the thiophenol ligands of CdS nanocrystals taken with
the double INEPT T; and T, sequences. a.) Ty data for the para thiophenol carbon on a 15.8A radius
nanocrystal. b.) T data for the para thiophenol carbon on a 15.8A radius nanocrystal. The experiment time
for both of these data sets was approximately 12 hours. The intensity is the sum of the integrated area of
the two members of the doublet seen in the proton detected carbon spectrum.
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Fig. 2.4.4: 13C longitudinal relaxation times, Ty, as a function of particle radius. These relaxation times
were measured using the double INEPT Ty experiment shown in figure 2.4.1. The relaxation times
presented in this figure is average data from two different batches of nanocrystals per size whose radii were
within 0.4A of each other.
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Fig. 2.4.5: 13C transverse relaxation time, T, of thiophenol ligands attached to CdS nanocrystals. The

relaxation times at 15.5A is averaged over two different synthetic bat-hes.
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batches, so the data were averaged over different batches with approximately the same
radius. Since the relaxation times were not dependent upon which synthetic batch was
observed, we can compare the relaxation times of different sized nanocrystals without
considering that the effects we are seeing are a result of inconsistencies in the synthesis
procedure. These data show that the T) increases as the particles get larger, implying that
the particles are randomly tumbling at a rate on the slow motion side of the T1 minimum as
one would expect from a particle of this size. This result is consistent with the !H T1's
measured before on the degassed samples and it shows that the possible T minimum
observed in the other experiment is not a real effect.

Figure 2.4.5 shows the 13C transverse relaxation time, T5, as a function of the
nanocrystal radius. These transverse relaxation times follow the same trend as seen in the
1H transverse relaxation data presented in section 2.3. The relaxation times become longer
as the particle radius increases. As for the previously measured proton relaxation times,
these data cannot be explained by reorientation of the nanocrystal with immobile thiophenol
ligands. These data differ from the !H data in that the para 13C now has the shortest
transverse relaxation time for a given radius of nanocrystal, while the para 1H had the
longest. This suggests that the thiophenol ligands must be rotating about either the C-S or
Cd-S bonds, because this rotation would cause averaging of the dipolar coupling in the
case the para H and little averaging in the 13C case.

To understand the relaxation mechanism of both the 1H and the 13C, we must
perform explicit calculations of the longitudinal and transverse relaxation rates for both the

1H data and the 13C data. These explicit calculations will be performed in the next section.

83




Section 2.5: Motional Models Explored to Explain the 1H and

13C Relaxation Measurements

In order to understand the relaxation data presented in the previous sections,
detailed relaxation calculations must be performed. The equations we will use for
calculating T} and T are derived from Redfield theory, which was presented in section
1.10 and was there used to derive the Ty equation. They assume only two spin interactions
without J-couplings and are the same as those presented by Szabo?* with only slight
change of the definition of the spectral density. These equations only approximately
describe our system and neglect cross-correlation effects. Since all of our experiments were
performed selectively and, in all cases, the spins responsible for the relaxation are not
degenerate with the spin being relaxed, we must use heteronuclear (I S) relaxation
equations given in table 2.5.1. We will neglect the effect of transverse cross relaxation in
the 'H T, experiments.

As you can see from the equations in table 2.5.1, we need to calculate the spectral
densities,

.

Tn(@fy=(=1)" [Cu(mei~as, (eq. 2.5.1)

P e —————

1H Dipole-Dipole Relaxation 7} = C[3J(,) +12J(2a))|
T;' =4C|5J(0)+9J(w, )+ 6J (2w,
13C Dipole-Dipole Relaxation T, = C[J (e, ~ @)+ 3J(w,) + 6J (@, + a)]
T;' =1C[4J(0)+ J (o, - w5) +3J (@) + 6J(w;)

+6J£w,+ws !]

Table 2.5.1: Longitudinal and transverse relaxation rates?4 for 1H and 13C dipolar relaxation. The constant

C is given by % y,z ‘}'gr'(’, wher. / is the observed spin, S is the spin responsible for the relaxation.
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which are the real fourier transform of the correlation function of the molecule under study,

(eq. 2.5.2)

YE (Q.,00YE (Q..0)°
Cm(r)=§g7-‘-cg< 2n (825 0%, ( i t)>

r@)’r(t+ 1)’

The Y7, (;,?) are spherical harmonics with Q; being the direction of the internuclear
vector in the laboratory frame at time t. In this section, we will hypothesize a model for the
motion of the thiophenol molecules and derive the resulting correlation functions and
spectral densities. From these results, we will learn about the motions of the thiophenol
ligands with respect to the surface.

The crystal structure of the model compounds synthesized by Dance's group’ show
that thiophenol molecules can bond bridging two cadmium atom or terminally to a single
cadmium atom. Also, the crystal structure of a single sized small nanocrystal has been
obtained?® and shows that the thiophenols in this sample are bound in a bridging fashion.
From these crystallographic results, we based our motional models on bridgingly bound
thiophenol molecules. A schematic drawing of this bonding arrangement is shown in figure

2.5.1 along with the definition of the various axis system we will use. The final axis

Fig. 2.5.1: Definition of the axis systems used in modeling the relaxation data, assuming that the
thiophenol is bound bridging two cadmium atoms. The principle axis system (PAS) is not shown and is

given by the vector between the nuclei involved in the relaxation process being investigated.
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system we will need is the principle axis system of the dipole-dipole interaction. This
system is not explicitly indicated in figure 2.5.1 vecause it depends upon which nucleus is
examined.

The expressions we derive for a bridging thiophenol molecules will apply to both
the 13C and 1H cases, except that in the 1H case, we will assume that we can add the
effects of multiple spins and, in the 13C case, we assume that only the bound !H is
responsible for the relaxation of the carbon. We need to rotate the spherical harmonics in
equation 3.5.2 into the principle axis system (PAS) of the dipole-dipole interaction, so that
Y; . (Q

t) becomes

"j’

q

Yy (Q,0)= Y Y24 (Qpp)DAUR,,)DE Q) (eq. 2.5.3)

where Q, are the Euler angles between the lab frame and the axis system defined on the

nanocrystal, Q_, are the angles between the particle defined axis system and the

mol

thiophenol defined axis system illustrated in figure 2.5.1, and €,,, are the angles between

the thiophenol defined axis system and the PAS. The correlation function then becomes
Cty=%a} Y (D% (@)D Q") XD Qo) D (@ )')
XY 305 (Qpps)Y o (Qpas' )" (eq. 2.5.4)

where @, = %’-, the unprimed euler angles, Q, correspond to the angles at time t, the
primed angles are the angles at time t+7, and the angular brackets,( ), indicate that an
ensemble average must be performed. In expression 2.5.4, we have assumed that the
overall tumbling of the nanocrystal is uncorrelated with the internal rotations of the
thiophenol molecules, which allows the separate ensemble averages of the overall tumbling

from the internal motions. This assumption implies that the internal correlation time must be
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much shorter than the overall correlation time. If the overall tumbling of the nanocrystal is

isotropic, its ensemble average has been shown to be
(Di(nz.; (QP )D'(n%?q' (QP' )‘> = %8m,m'e_60-" (eq. 2.5-5)

where D, is the rotational diffusion coefficient of the nanocrystal. By using this relation,

the explicit form the Wigner rotation matrix,

D& (a.B,y)=e"mdd (Bre™, (eq. 2.5.6)
and the orthogonality relation of the 4./, (8),

2 4Bl B)=0, 0, (eq. 2.5.7)
the correlation function simplifies to

C(t)=F 0he™ Y dP(Bpys)* (e ~"2). (eq. 2.5.8)

n

As described in section 1.10, the correlation function is real so we can ignore the imaginary

part of the expansion of the exponential, so that

C)=F e d2 (ﬁPAs)2<cos[n(am,’ -a,,, )]) (eq. 2.5.9)
To calculate the ensemble average indicated in equation 3.5.9,

C.' (2) = (cos[ (G’ =]} (eq. 2.5.10)
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we need to evaluate the integral,

2mn

C, (=P, f _[ PO +1{0120) COS[ 1y’ =l )|A ' Gy, (eq. 2.5.11)
00

1
mol ?

where p(oz tlam,,O) is the conditional probability that a molecule at angle «,,, at time O
will be at ¢, at time t. Models of the motion appear in this theory in terms of these
conditional probabilities.

For the bridging case, we have examined four different motional models; rotational
diffusion, two site jumps, and six site jumps in both the weak and strong collision limits.

To find the condition probability for rotational diffusion, the diffusion equation,

dp(a'.1a,0) D 9’ p(e' ,fex,0)

3, =D, P , (eq. 2.5.12)
must be solved with the delta function initial condition,
p(e ,0je,0)=6(o' —ax), (eq. 2.5.13)
and periodic boundary conditions,
p(0,£0,0) = p(27,70,0). (eq. 2.5.14)

The periodic boundary conditions implies a Fourier series expansion of the solution,
p(e,de,0)=2" C, (t)cos[m(a —ax)], (eq. 2.5.15)

m=0

which can be substituted into the differential equation to produce
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zac (t)cos (o —ax)] =D, Zmzc (1) cos[m(c —a\] (eq. 2.5.16)

m=0 m=0

This new equation gives us an infinite number of differential equations, one for each

C.(t). If m=0, then -‘?—g‘-’tﬁg= 0, which implies that C,(z)=constant. For m# 0, we
find that
-‘2-(—:4"—(2 =-D, m*C,(1), (eq. 2.5.17)
ot
which can be integrated to give
C, ()= C,(0)eP="", (eq. 2.5.18)

The C, (0) are given by
C.(0)= -,‘-,-;f5(9)cos(m9)d9 =1, | (eq. 2.5.19)
for all m. Thus, we find for rotational diffusion that the conditional probability is
p(ct 1], 0) = 1; “Purt cos[m(el —a)], (eq. 2.5.20)
which can be simplified to
p(o' 1o, 0) = 2[1+e™ = cos(or )] (eq. 2.5.21)
in the long time limit.

With this conditional probability, we can find the ensemble average in equation

3.5.11 for thiophenol molecules undergoing rotational diffusion,
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C, (t)=%P, Tjﬂ[l + e cos(ar' —a)|cos|n( @, ~ @, )|dex,,, de,,,
00

2n form=0
={me™ = form =+, (eq. 2.5.22)
0 form=%2

where we have used P, = 7=. Combining equations 3.5.1, 3.5.9 and 3.5.22, we can
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Fig. 2.5.2: Simulations of the 1H Tj and T3 versus the C-S rotational correlation time , tc, assuming that

the thiophenol is bridgingly bound and undergoing rotational diffusion about this bond. The overall
rotational correiation time was assumed to be 10 nsec. a.) log(T) versus log(tc). b.) log(T2) versus log(tc).
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finally arrive 2. the spectral density for bridging thiophenol molecules undergoing rotational

diffusion,

2 2 6D, 2 6D +D,
J(w)= %s—a)},{dﬁfg (Bpas) W*’ a7 (Beas) (6D, +D.) 10"

(eq 2.5.23)

We used this two spin spectral density to calculate the 1H and 13C relaxation rates of the
thiophenol ligands of the CdS nanocrystals. The results of the H calculations are shown in
figure 2.5.2 and the 13C calculations are shown in figure 2.5.3. Notice that this calculation

can only predict our relaxation data if the internal rotation rate is slow, ~10-8 sec. In this
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Fig. 2.5.3: Simulations of the 13C Ty and T versus the C-S rotational correlation time , tc, assuming

that the thiophenol is bridgingly bound and undergoing rotational diffusion about this bond. The overall
rotational correlation time was assumed to be 10 nsec. a.) log(T1) versus log(tc). b.) 1og(T2) versus log(tc).
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time regime the assumption of no correlation between the overall tumbling and the internal
reorientation is becoming invalid. We performed similar calculations for a two site jump,
and six site jump models in both the strong and weak collision limit and these calculations
show the same trends as the rotational diffusion calculation and we are not able to
distinguish these subtleties in the motion.

In the slow motion regime for the rotation of the C-S bond in the thiophenol, the
theory we have presented is invalid. This can be seen in figures 2.5.2 to 2.5.5 by the fact
that when the C-S bond is not rotating (the infinite correlation time limit for this motion) the
relaxation times do not attain the expected ortho:meta:para ratio of 1:1/2:1/2. The reason for
the failure of the theory in this limit is the assumption that the overall rotation of the particle
is uncorrelated to the internal rotation. Thus the separation of the correlation function in
equation 2.5.4 into two separate ensemble averages is inaccurate. As future work, this

ensemble average will be carried out in a single step.

Section 2.6: Conclusions about Thiophenol Motions on the

Nanocrystal Surface

In this chapter, we have presented !H and 13C NMR data on the thiophenol ligands
of CdS nanocrystals. These data have provided a wealth of information on the surface
structure and dynamics of these materials. The data clearly show that the surface coverage
by the observed thiophenol molecules is low and that this coverage increases as the
particles become smaller. Since all the nanocrystals are synthesized with an excess of
thiophenol, this result is not a consequence of an insufficient quantity of thiophenol to
cause a highly covered surface, but must be due to a kinetic constraint on the coverage
process. Perhaps the smaller nanocrystals require higher coverage to force them out of the

micelles in which they are formed and precipitate.
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We concluded in section 2.2 that the thiophenol coverage is so low that if the
thiophenol ligands are homogeneously dispersed on the nanocrystal there should be
negligible interaction between the thiophenol molecules. However, our relaxation
calculations suggest that the data can most simply be explained if we assume that the
correlation time of the rotation about the C-S bond in a bridgingly bound thiophenol is
slow, longer than 10-8 sec. This long correlation time suggests a highly hindered rotor for
which there are at least three possible explanations. First, the distribution of thiophenol
ligands on the surface is not homogeneous, but rather the thiophenol ligands form covered
islands on the surface. In this case the densely covered regions would make rotation highly
sterically hindered. The motion could also be sterically hindered if the thiophenol molecules
are homogeneously dis.ributed across the surface, but that the solvent pyridine densely
covers the rest of the thiophenol surface. The pyridine must be at least exchanging on and
off the surface, and we have yet to see any positive evidence that it really associates with
the surface. The final explanation is that the C-S bond is not free to rotate because of
conjugation of the ring pi electrons to the sulfur lone pair and then to the surface atoms. If
the thiophenol is bound in a bridging fashion, the sulfur would be sp2 hybridized leading
to good overlap of the lone pair electrons with the pi electrons in the benzene ring. This
conjugation could continue into the surface via the Cd d-orbitals. Of course it would be
difficult to explain the change in the correlation time with size for the last two hypotheses.

Along with the unusually long correlation times for the internal rotation rate, we
also see an unusual temperature dependence of the relaxation times. We see the 'H
transverse relaxation time decrease as the temperature is increased. Our motional model
predicts that the correlation time then must increase with temperature. This is contradictory
to the idea that the motion was so slow because of steric hindrance. If this were true, the
correlation time should decrease as the temperature is raised and increase the relaxation
time. Possibly a reversible increase of the surface thiophenol density occurs as the

temperature is raised, however, it is nonintuitive that such a change would be reversible.
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Another possible explanation is that the motional model we have proposed is wrong, and
the correct explanation is that we are seeing one site of thiophenol that exchanges to an
unobserved second site. This would explain the increase in T as the temperature is raised,
but we have never seen any suggestion of another site in our data. The data would also
imply that the exchange rate would depend upon the nanocrystal radius. This implication is
highly suspect.

The final possibility is that there are two mechanisms responsible for the observed
relaxation data. The ratio of the various relaxation times is explained by the dipolar
relaxation mechanisms presented in section 2.5. However, the temperature dependence is
governed by some other mechanism. A possible mechanism is paramagnetic relaxation of
the H by a thermally populated paramagnetic state of the nanocrystal. This mechanism is
consistent with the data presented in table 2.3.1 where it is seen that the smaller
nanocrystals have smaller changes in the relaxation rates than do the larger particles. Since
the band gap of the nanocrystal gets smaller as the nanocrystal gets larger, the population of
the thermally excited paramagnetic state should become larger as the particle gets bigger
thus making the paramagnetic relaxation more robust.

In conclusion, we have presented the first NMR study of the surface structure of
semiconductor nanocrystals. It seems that these spectra, while at first sight appearing
relatively simple, conceal a wealth of information not only about the nature of the surface
but also possible of the core. The spectra show that the nanocrystal surface is not
completely capped. Rather, due to nanocrystal faceting, steric effects or kinetic limitations
of the capping process, islands of covered regions seem to exist which are separated by
uncovered regions. Furthermore, to consistently explain both our 1H and 13C data these
covered islands must be fairly densely packed with thiophenol molecules to cause the 10-8
sec correlation times of the rotation of the thiophenol molecules. We also propose fhe
existence of a thermally activated paramagnetic state that contributes significantly to the

relaxation of the larger nanocrystals at higher temperatures.
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Until now, such detailed information about the structure and dynamics of surface
capping molecules on nanocrystal surfaces has been difficult to obtain. NMR appears to be
an ideal tool for extracting this information, which is needed in order to understand fully
such properties of the nanocrystal as ultrafast trapping of photon-generated electrons and
holes.26-2% By binding organic molecules to the surface, one hopes to move all mid or near
band gap surface states to much higher energies. Clearly, to accomplish this, the coverage
will need to be increased to saturation and the effects of these changes on the surface can be

monitored by NMR.
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Chapter 3: Determining
Conformational Parameters in Small
Peptides by Measuring Scalar
Relaxation Rates

Section 3.1: Introduction

NMR spectroscopy determines the structure of biological molecules by providing
the researcher with distances between !H nuclei and conformation constraints on torsion
angles. The internuclear distances are measured using Nuclear Overhauser Spectroscopy
(NOESY), while the conformational constraints are determined from an analysis of the
scalar coupling (J-coupling) between different nuclei. The distance information from the
NOESY experiment is crucial for determining the basic backbone folding pattern of a
protein; however, it is not sufficient to determine sidechain conformations in proteins or
sugar ring and phosphate backbone conformation in RNA or DNA. In these cases, the
precise measurement of J-couplings becomes more important.

The J-coupling provides a measure of the conformation of a small region of the
molecule because these couplings vary with the torsion angle of the bonds between the two
nuclei. This was first theoretically shown by Martin Karplus in 19591, and then he later
showed that the variation of the J-coupling in the molecular fragment (HCC'H') can be

approximated by the Karplus equation,

Jyp = A+ Bcosp+Ccos2¢, (eq. 3.1.1)
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where ¢ is the dihedral angle. Karplus calculated values of A, B, and C, but it was
found to be more accurate to empirically fit these parameters. This equation has been
empirically applied to J-couplings other than just those between two protons and has
shown itself to be reliable. These empirically fit equations have become the basis for
extracting dihedral angles from the measured J-couplings.

In principle, the values of these J-couplings can be determined from the normal
one-dimensional experiment; however, spectral overlap normally prevents this, so that
analysis of cross-peaks in correlation spectroscopy (COSY) becomes necessary. The cross-
peaks in the normal COSY spectrum become complicated in large systems leading to
overlap of the numerous multiplet components. Thus, the techniques commonly used to
acquire J-couplings simplify the cross-peak structure by limiting the coherence transfer to
directly connected transitions, i.e. those sharing a common energy level. The first
technique proposed to make this simplification is the E. COSY experiment2, which consists
of a superposition of 2,3, and 4 quantum filtered COSY spectra in a ratio 1:2:4. This
experiment gives rise to coherence transfer exclusively between connected transitions for
weakly coupled spins, and, for this reason, is called exclusive correlation spectroscopy (E.
COSY). Another experiment which results in coherence transfer between directly connected
transitions is the z-COSY3, which produces coherence transfer through multispin
longitudinal order. Unfortunately, this experiment suffers from inferior signal to noise ratio
when compared to the E. COSY, but it is also considerably easier to perform. Finally, the
selective COSY experiment®, which uses selective pulses to selectively transfer coherence
between two spins, has recently been shown to lead to the same type of spectra as the E.
and z-COSY experiments, but has the advantage of excellent spectral resolution because the
sweep widths can be made very small; commonly 500 by 200 Hz. All of these techniques
give rise to the same distinctive crosspeak intensity pattern: four lines with the signs

+ —
( J due to coupling between active spins and then splitting of this pattern into two
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identical patterns displaced by the coupling constant to the passive spin. Notice that such a
cross-peak pattern contains much information about the coupling network.

These techniques suffer from two disadvantages when one wants to measure JNH
couplings. First, in large proteins, it is hard to determine the J-couplings by these methods
because of the increasing linewidths in the spectra lead to cancellation problems. Finally, to
perform these techniques, the protein must be enriched with 15N in order to observe a
splitting due to the J-coupling, because the splitting due to the quickly relaxing spin 1 14N
nucleus is unobservable. However, the effect of the quickly relaxing 14N nucleus can be
observed on the relaxation of the IH nuclei to which it is scalar coupled. This effect on the
1H nuclei is known as scalar relaxation of the second kind and is related to the scalar
coupling between the !H and 14N nuclei. This chapter will present a new technique for
measuring these J-couplings by measuring this scalar relaxation rate. We will present data
for the extreme narrowing case only, but with additional measurements, one should be able

to measure these coupling in larger molecules.

Section 3.2: The Approach: Expleiting Scalar Relaxation of the
Second Kind

The scalar coupling between a slowly relaxing nucleus, such as an 'H nucleus, and
a quickly relaxing quadrupolar nucleus, such as the 14N nucleus, can enhance the
transverse relaxation rate of the more slowly relaxing nucleus. This effect is directly related
to the scalar coupling (J-coupling) between the fast and slowly relaxing nuclei, and can be
exploited to measure this coupling. In this section, we will show what effect this scalar
relaxation has on the observed relaxation rates and will present a method for determining
the J-coupling from the relaxation rates.

The scalar relaxation rates can be derived by using the formalism of section 1.10 if

we assume that the quadrupolar 14N nucleus relaxes so quickly that it can be assumed to be
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a part of the lattice’. In this case, the time-dependent Hamiltonian responsible for the

relaxation of the 1H nucleus is
H () =2m1-S(1), (eq. 3.2.1)

where I and S are the angular momenta of the 1H and 14N, respectively, and J is the

scalar coupling between the nuclei. One can rewrite this equation as
H,(t)=v,Bs(1)-1, (eq. 3.2.2)
where Bg(r) =27JS(t)/y, is the fluctuating magnetic field seen by the H created by the

14N nucleus. If we now follow the formalism presented in section 1.10, we can calculate

the longitudinal and transverse relaxation times for this relaxation mechanism. They are

2 y5 1y
=L ss+0) Lt - (eq. 3.2.3)
1 2 1+(w1_ws) T,’
and
272 14y
—ls-f=ﬂc—1—5(5+1) L -+ VT, 1, (eq. 3.2.4)
T. 3 2"V, ,
2 1+ (0, ~ )" T,

where S is the angular momentum quantum number of the 14N nucleus, which equals 1,
and VT, and “VT, are the longitudinal and transverse relaxation times of the 14N nucleus.
For most biomolecules in solution at typical magnetic field strengths, (@, - cos)zuNTz2 isa
large number , which allows us to simplify the above equations to

1
7w =0 (eq. 3.2.5)
1
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and

—— = J? T, (eq. 3.2.6)

Thus the scalar relaxation of the second kind reduces the transverse relaxation rate while
not perturbing the longitudinal rate.

Since the scalar relaxation of the second kind only effects one of the measurable
relaxation rates, we now have a method for measuring the scalar relaxation rate. If the
proton relaxation in the molecule under study is assumed to be caused by both the scalar

relaxation mechanism and the dipole-dipole mechanism, the measured relaxation times can

be written as

%.= T,}’D + T:S“ - TI}’D . (€q. 3.2.7)
and

—T%= T;”’ ' Tis" 77 R e 5.2

If we are studying a molecule in the extreme narrowing limit, then the difference in the 1H

longitudinal and transverse relaxation rates directly measures the scalar relaxation rate:

———— = J* "T,. (eq. 3.2.9)

To determine 14N to 1H scalar couplings of biomolecules, we measured proton
longitudinal and transverse relaxation times and the 14N longitudinal relaxation time. By
using equation 4.2.9, we can then extract the square of the J-coupling which can be used to

place conformational constraints on the molecule under study. The only fundamental limit
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of this approach at this time is that the molecule must be undergoing rapid tumbling in the
extreme narrowing limit. In slower tumbling regimes, more measurements must be made to
separate the dipole-dipole mechanisms from the scalar relaxation mechanism. We have not
gone into explicit detail on how to perform this more cornplicated set of experiments.

Section 3.3: Measuring J.,  Couplings in Pyridine

UNH

To investigate the feasibility of this proposed strategy for measuring 14N-H J-
couplings and to evaluate its potential problems, we studied a simple model compound,
pyridine. This compound provides many advantages for initial studies of this type. Itis a
small molecule and therefore is tumbling in the extreme narrowing limit. It is easy to make
concentrated samples, and the spectrum is well resolved, so established NMR techniques
can be used to measure the 'needed relaxation times. For these reasons, we attempted to

measure the J,,  to the ortho 1H in a sample of 0.05 ml of freshly distilled pyridine

“NH
diluted into 0.5 ml of ds-pyridine (99.99% deuterated, Aldrich) from a freshly opened vial.
The sample was degassed by repeating the freeze-pump-thaw method five times. All
relaxation measurements were performed on a Bruker 400AMX spectrometer with a recycle
delay of 5 minutes.

As presented in the previous section, we need to measure the Ty and T; of the ortho
proton and the T; of the 14N nucleus. The !H T; was measured by a nonselective
inversion-recovery sequence, 180°-t-90°-acq, which gives monoexponential recovery of
the 1H magnetization. The ortho proton longitudinal relaxation time measured in this way
was 62.7 sec. The transverse relaxation time was measured using the selective Hahn echo
of Emsley, Kowalewski, and Bodenhausen®, which was described in section 2.3 of this
thesis. The ortho proton transverse relaxation time measured with this method was 208

msec. The 14N T1 was measured directly from fitting the 14N spectrum to a Lorentzian line

and recognizing that in the extreme narrowing linuit
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T, =;A—v—1£;. (eq. 33.1)
In this way, the 14N T; was determined to be 1.47 msec. From these data and equation
3.29, we found that the absolute value of the 14N-ortho 1H J-coupling is 11.1 Hz. The
value of the 15N-ortho !H J-coupling is reported to be -10.76 Hz” When this value is
scaled by the ratio of 14N to 15N gyromagnetic ratios, the 14N-ortho 1H J-coupling should
be -7.67 Hz. This error of 45% is not explained by the error in our relaxation
measurements.

The methoc we have described for determining J depends on a precise

4 NH
cancellation of all relaxation effects other than the desired scalar relaxation. This is true
when the other relaxation pathways are dipole-dipole effects, however, cancellation does
not occur when the 1H undergoes relaxation due to chemical shift anisotropy. Wittebort and

Szabo?® present the expressions for relaxation due to chemical shift anisotropy:

T =CJ(w,) (eq. 3.3.2)
and
T, .-%[41(0) +3J(w,)], (eq. 3.3.3)
where
y?B? 2
C= ’4 0 [262 —(6y + &y )] (eq. 3.3.4)

and the &'s are the principal values of the chemical shift tensor. Including this effect, the

difference in the transverse and longitudinal relaxation rates is now
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T, T = AB2 + 82272 T, (eq. 3.3.5)

g

b
4
determination of the 14N-H J-coupling should have a strong magnetic field dependence.

where A= [262 — (6 + 6,,)]2. This mechanism predicts that the error in the

The appropriate relaxation times were measured for a sample of 0.05 ml of freshly
distilled pyridine dissolved in 0.5 ml of dg-DMSO (Aldrich, 99.99% deuterated) which had
been freeze pump thawed and then sealed in the NMR tube to exclude O2. The relaxation
measurements on this sample were performed on a Bruker 600AMX spectrometer. We
measured the relaxation rates as before, and found that the longitudinal and transverse
relaxation times of the ortho proton were 1.08 sec and 50.3 msec, respectively. The
longitudinal relaxation time of the 14N nucleus was measured to be 1.40 msec. With these
data, we calculated the 14N-1H ortho J-coupling to be 22.7 Hz. Thus we can see that the
determined J-coupling does depend strongly on the magnetic field. Unfortunately, the
change in solvent between the 400 MHz and the 600 MHz experiments made extraction of
the correct J-coupling value impossible.

In this section, we have shown that extraction of approximate values of J,, N is
possible as long as one either works at lower field strengths or performs an explicit
magnetic field dependence of the data. Acknowledging these limitations, we decided to
measure biologically relevant J-couplings in a small peptide and see if this method could be

used to obtain information on amino acid sidechain conformation in a small peptide.

Section 3.4: Three Bond 14N-H J-couplings in Residue
Sidechains of Oxytocin

The goal of this research is to obtain biologically relevant 14N-H J-couplings in

order to constrain the conformation of a biomolecule. To investigate this possibility, we
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Fig. 4.3.1: Pulse sequences suitable for recording two-dimensional longitudinal and transverse relaxation

spectra. a.) This sequence measures the selective inversion recovery of a spin whose resonance frequency is
1. It consists of a selective inversion at QA followed by a selective COSY to transfer the coherence to
a spin at .QA2. b.) This sequence measures the decay of a selective Hahn echo of a spin whose resonance
frequency is QA 1. It consists of a selective Hahn echo at QA1 followed by a selective COSY to transfer
the coherence to a spin at .QA?2.

attempted to measure the three bond 14N-H|3 J-coupling in the isoleucine residue of the
small peptide oxytocin. Oxytocin is a small peptide with nine amino acids and a molecular
weight of 1007 Da. At room temperature, the correlation time for the isotropic tumbling of
this peptide in an H2O solution is at the T} minimum, however, when the sample is heated
to 40°C, the peptide is then moving in the extreme narrowing limit, and our approach for
measuring the J-couplings can be applied. We prepared a sample of 20 mg of oxytocin
dissolved in 0.5 ml of HO to which 0.05 ml of D20 had been added. The acidity of the
sample was adjusted to a pH of 3. All experiments were performed on a Bruker AMX400
spectrometer.

Because of the larger size of this molecule and its greater spectral complexity than
the previously examined pyridine, simple inversion recovery sequences and selective T
experiments could not be used. Methods which dealt with the spectral overlap problems

had to be developed. These new techniques consisted of combining the relaxation
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Fig. 3.4.2: a.)A series of spectra resulting from the application of the Hahn echo COSY sequence which
correspond to the 2'-2" cross peak of T1 in d-TATA. The delay times 27 are (from left to right and top to
bottom), 0, 50, 100, 150, 200, 300, 400, 600 and 800 ms respectively. No distinction is made between
positive and negative contours. The spectra were acquired using a 10 mmol solution of d-TATA in D20 at
400 MHz and 44K, with spectral widths of 200 x 500 Hz and a digital resolution of 64 x 256 points in 71
and 17, zero-filled to 256 x 1024 before apodization and Fourier transformation. b.) A plot of the integrated
intensities of the cross peaks as a function of 27 (open circles), together with the best fit value of the
transverse relaxation rate, which yields 72 = 258 ms. Note that the intensity does not decay to zero, but to a

constant value which represents the integral of the absolute value of the noise in the spectra.
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Fig. 3.4.3: Fit of simulated biexponential recovery data with a single exponential recovery. The circles
correspond to data simulated with the equation J(t) =1-—¢™" — ™. The line is the best fit of the simulated
data to the function /= A(l - 2"_‘/7’). The best fit value of T}7 was 1.71.

experiments with a 2-D selective COSY so that only a single nuclear site is observed. The
sequences for a selective inversion recovery COSY and a selective Hahn echo COSY are
shown in figure 3.4.1. A test of these sequences is shown in figure 3.4.2, which shows
results for the selective Hahn echo COSY on a sample of the single stranded DNA tetramer
TATA. As can be seen, the intensity of the absolute value of the observed Tj 2'-2"
crosspeak® decays monoexponentially to a constant value, which is the integral of the
absolute value of the noise. The selective inversion recovery COSY spectra are of similar
quality.

Unfortunately, the interpretation of the selective inversion recovery sequence is
complicated by the expected biexponential recovery of the magnetization. As shown is
section 1.10 of this thesis, the result of this experiment for a two spin system undergoing
dipole-dipole relaxation should be biexponential with a ratio of relaxation times of 3:1 if the
molecule is tumbling in the extreme narrowing limit. The data that we will present is not of

sufficient quality to make this biexponential fit, so the data was fit to a single exponential.
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Figure 3.4.3 shows a monoexponential fit to biexponential data where the relaxation times
are related by the 3:1 ratio. As can be seen, the fit is quite good and the determined
relaxation time by this method is approximately 1.71 times the true relaxation time. A
justification for this scaling factor can be made by Taylor expanding the equation for the

biexponential recovery of the system:

I(1)= 1”(1._ et e—lIST,)

2 3
=1_[1- 1_._t_+_!_ .i_ —l L +...
T, 2UT,) 3T,
1 1Y
) RN JELIN BN LA P | (eq. 3.4.1)
31, 21\ 3T,) 3137,

which upon collecting terms becomes

2 3

t 1 t 1 4

Iz(t)=Iw[1—2[l-C,F+-i—'C2(F) —ETC?'(T] +] (eq. 3.4.2)
1 ¢ 1 * 1

where C, = %[1 + (%) } If the first three Cp,’s are averaged and used to define a single

exponential recovery, the longitudinal magnetization can be approximated by
L(1)= 1,,(1 —2e™T ) (eq. 3.4.3)

where T{7 =1.72T,. This is close to the scaling factor seen above when the biexponential
curve was fit to a single exponential. In order to interpret our data, we will divide our fit T
values by 1.71 to take into account the neglected biexponentiality. The biexponentiality of
the recovery could be removed if the selective inversion pulse were replaced by a
nonselective pulse that inverted all 1H resonances. This experiment has not yet been

performed.

107




a)

Intensity (AU)

b.)

Intensity (AU)

4 1 L A 4
-15 T Tt T

i
L]
0 100 200 00 400 50 60 MW

time (msec)
Fig. 3.4.4: Transverse and longitudinal relaxation data for the b proton of the isoleucine residue of
oxytocin. a,) The transverse relaxation data for this proton measured with the Hahn echo COSY experiment.
Notice that the data decay to a constant, which is the integral of the absolute value of the noise. b.) The
longitudinal relaxation data measured with the inversion recovery COSY. The given intensity data are
measured by taking the integral of the absolute value of the data minus the integral of the noise. The
absolute value of the data must be taken in both cases because the integral of the selective COSY

crosspeaks is zero because of its antiphase nature.

The longitudinal and transverse relaxation data for the B proton of the isoleucine
residue of oxytocin is presented in figure 3.4.4. These data are quite good and allowed the
relaxation times to be measured: T, =526 msec, which implies that the true longitudinal
relaxation time is T,=308 msec, and T,=103 msec. Direct attempts at measuring the 14N
T failed because of the low sensitivity of this nucleus. This relaxation time was measured
by taking advantage of the scalar relaxation rate of the amide proton for which the 15N-H J-
coupling is known to be 93.2 Hz1, which scales to a value of 66.4 Hz for the 14N-H J-

coupling. Effects due to exchange are minimized because the pH of the sample was
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adjusted to a value of 3 where exchange is at a minimum for amide protons.!! The effective
longitudinal relaxation time of the amide proton and the transverse relaxation time of this
proton was measured using the same selective sequences de: . ribed above. The effective
longitudinal relaxation time for the amide proton was 238 msec, which implies that the real
T is 139 msec. The transverse relaxation time was measured to be 121 msec. From these
data, the 14N T; was determined to be 9.2 psec and the J-coupling between the 14N and the
B proton was 163 Hz. This value of the J-coupling is in outside the expected range of O to
5.6 Hz. The error is probably due to relaxation due to chemical shift anisotropy and
exchange of the amide proton leading to an inaccurate measure of the longitudinal relaxation
time of the 14N nucleus. This problem with amide proton exchange can be eliminated by
using the Hy, proton as the spy on the 14N relaxation time, because its J-coupling to this
nucleus is always approximately 2.2 Hz!0. The effect of the chemical shift anisotropy

relaxation mechanism can be analyzed be performing a field dependence of the relaxation

data.
Section 3.5: Conclusions

In this chapter, we have presented preliminary results suggesting a new method
for measuring 14N-1H J-couplings in biological molecules. We have shown that the
technique is viable, however, many details of the method need to be worked out. As seen
in the pyridine data, relaxation due to chemical shift anisotropy causes the largest error in
this method for small molecules, but this effect can be separated from scalar relaxation by
measuring the field dependence of the difference in relaxation rates. Much more work will
need to be done to apply this technique to measuring J-couplings in large molecules where
the longitudinal and transverse relaxation times due to dipole-dipole relaxation are not the

same. By performing additional measurements, these effects should be separable.
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An additional piece of information provided by this technique is the longitudinal
relaxation time of the 14N nucleus in the amide bond. This parameter is itself important
because it provides important constraints on the backbone motion of the peptide and this
method could provide a simple, inexpensive method for measuring these relaxation rates.
The technique presented here has many possibilities for future applications and is currently

under active research.
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Chapter 4: Solid State Magic Angle
Spinning: Cross Relaxation NMR
Spectroscopy of Homonuclear
Dipolar Coupled Spin Systems

Section 4.1: Introduction

The high field carbon-13 NMR spectrum of a static solid sample containing many
different 13C sites is determined by a Hamiltonian which contains both chemical shift and
dipolar interactions.!"> These interactions can be represented by first and second rank
spherical tensor components to express the spatial and spin dependence of the Hamiltonian.
The spectrum contains all the parameters necessary to determine the three dimensional
structure of the molecule under investigation. Unfortunately the spatial dependence of the
second rank terms broadens the resonances and makes the spectra of all but the simplest
systems difficult to interpret, even in the presence of high power proton decoupling.

A quantum leap was made in solid state NMR with the introduction of magic angle
spinning (MAS).# In this experiment the sample is rapidly rotated (=104 Hz) about an axis
inclined at an angle 54.74° with respect to the magnetic field. This has the effect of
averaging the anisotropy of the chemical shift and dipolar interactions to a single value by
removing the second rank terms from the effective Hamiltonian. In the case of the chemical
shift this average value is the so called "isotropic" chemical shift, and is different for
different chemical environments. This leads to a high resolution spectrum of narrow lines,

which allows identification of the different sites in a manner analogous to a liquid state
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spectrum. Since there are no first rank contributions the average value of the dipolar
interaction under magic angle spinning is zero. Thus, whilst MAS allows one to obtain a
high resolution spectrum, the resolutior is achieved by sacrificing information about
dipolar couplings.

Recently there has been considerable interest in retaining the resolution of magic
angle spinning, but nevertheless including information about homonuclear dipolar
couplings.’-16 Methods such as rotational resonance have been successfully applied to
structure determination,!”:18 but they depend on pairwise measurements; the technique is
selective. Recently, the idea of radio frequency driven recoupling has been introduced in
which a train of pulses is applied that leads to an average Hamiltonian which is proportional
to the homonuclear dipolar Hamiltonian over a reaso:iably broad range of chemical shifts.>-
T1L13.16 The object of this type of experiment is to develop a broadband method for
measuring all the dipolar couplings in one experiment. The main disadvantage ot these
techniques is the need to apply complex mixing sequences consisting of many pulses.

In this chapter, we present initial results obtained from an alternative approach
towards broadband dipolar correlation under magic angle spinning which does not require
the application of pulses during the mixing period. Our technique correlates resonances by
using dipolar cross relaxation between the carbon nuclei. Two dimensional solid state MAS
cross relaxation spectra have been recorded for both triply 13C L-labeled alanine and
doubly 13C labeled zinc acetate, yielding results reminiscent of liquid state NOESY
spectra.l?Cross relaxation between carbon atoms as a mechanism for correlating spins in
solids has previously been discounted as unlikely to provide sufficiently rapid transfer
rates. Although the timescale fc - transfer we observe is longer than would be observed
under conditions where the full dipolar Hamiltonian is reintroduced, cross relaxation is
much faster than expected in these rigid systems. We discuss possible mechanisms of
polarization transfer in terms of either the restricted motion of the carbon skeleton using

conventional second order treatments, or the motion of nearby protons using third order
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Fig. 4.2.1: Pulse sequence used to record magic angle spinning cross relaxation spectra. The sequence uses

cross polarization from protons to create carbon single quantum coherence »/vhich evolves with a
characteristic frequency during ¢, and which is then stored along the z-axis by the action of the /2 mixing
pulse for a period 7jx. The magnetization is then recalled and detected during ¢2. High power proton
decoupling is applied throughout the sequence. The phases of the carbon spin lock pulse and the storage
pulse are cycled in order to retain only the carbon coherence transfer pathway shown below the sequence.

perturbation theory. The method appears to provide a particularly simple broadband means
of correlating distances in solids which should be useful for both assigniaent and structure

determination.
Section 4.2: Experimental

Cross relaxation spectra were recorded using the pulse sequence shown in Fig.
4.2.1. The experiment consists of two free precession periods séparated by a mixing period
during which longitudinal 13C magnetization is exchanged on a timescale of tens of
milliseconds. The protons are subjected to high power decoupling throughout the
sequence, preventing transfer through proton polarization and thereby quenching

polarization transfer
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Fig. 4.2.2: Four cross relaxation spectra recorded for 13C1,2,3-L-alanine (the sample was prepared as
described in the text). The spectra were recorded at room temperature using the pulse sequence of Fig. 1 ona
"homebuilt" spectrometer operating at a proton frequency of 301 MHz (13C = 75.7 MHz) using a tecmag
operating system and a homebuilt magic angle spinning probe. 256 points in 3 were acquired for each of
64 points in ¢]. Each increment was averaged for eight scans yielding a total acquisition time of =30
minutes per spectrum. The spectra were zero filled to 256 x 128 and apodized with a Lorentzian line
broadening function before two dimensional Fourier transform and phasing. Phase sensitivity was achieved

using the States method. The spinning speed was carefully adjusted to 4.25 kHz, so that there should be no
effects from rotational resonance. The mixing time Tmjx is shown in the lower right comer of each

spectrum.
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Fig. 4.2.3: Integrated intensities of the peaks observed in the spectra of Fig. 2 together with spectra
corresponding to other values of the mixing time Tmix rénging from O to 150 ms (longer times are
inadvisable due to problems with high power decoupling and probe breakdown). The cross peak integrals
were obtained by summing the cross peaks on both sides of the diagonal. Note the change in scale between
the cross peaks and the diagonal peaks. The initial rates measured for the cross peak growth are given in
table 1. It is important to notice that the growth rates are not oscillatory in nature, but have the appearance
of exponential behavior typical for cross relaxation, as discussed in the text.
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Table 4.2.1: Cross relaxation rates between 13C nuclei in 13C1,2,3-L-alanine determined from the initial

slopes of the buildup curves shown in Fig. 3. The rates are shown in (ms)‘1

between carbons by proton driven spin diffusion, a subject which has received much
attention in its own right.8-10

Figure 4.2.2 shows four spectra taken from a series recorded with different values
of the mixing time for a sample of 10% triply labeled 13C1,2,3-L-alz:mine: co-crystallized
with 90% natural abundance L-alanine. In this way we can be sure that there is no
significant contribution to cross relaxation from intermolecular mechanisms. If cross
relaxation is occurring we expect that as the mixing time gets longer, the ratio of the cross
peak to diagonal peak intensity gets larger, and that is indeed what we observe. In Fig.
4.2.3 we plot the intensities of the diagonal and the cross peaks in the L-alanine spectrum
as a function of mixing time. At short mixing times we observe only diagonal peaks
(together with cross peaks between sidebands of the C=0O resonance; if necessary these
peaks can
simply be removed by synchronizing the mixing time to an integral number of rotor
periods). It is particularly interesting to note that the initial rates of buildup of the cross
peaks extracted from these curves (given in table 4.2.1) show’ a relatively fast, and more or
less equal, rate for both the one bond C-C cross peaks, and a much slower rate for the
CH3-C=0 cross peak which corresponds to a larger distance. These spectra represent the
first observation of direct cross relaxation between carbon atoms in a solid.

In order to confirm that there is an extra relaxation pathway in the enriched

compound, we measured the decay of longitudinal polarization shown in figure 4.2.4. As

116



13C labelled o
natural abundance A

g
2

a
'y
e “ -
1
[ ]
_ 122 |
CH; |
’;'h: e
~ °
> [ )
= ®e
7] [ ]
= ...
ﬁ- -
(3]
Nt
g
E CH 1
=

I A A '

L AAAAAAAA
o9
: ®e0cse00

-

C=0 1

0 2E) 46 60 Si) 160 120
recovery time (ms)
Fig. 4.2.4: A comparison of the decay of longitudinal carbon-13 magnetization in natural abundance and
triply 13¢ enriched L-alanine. The data represent the integrals of peaks recorded for various values of the
recovery time in a 13¢c CP-MAS inversion recovery experiment with high power proton decoupling during
the recovery time. The experimental conditions were the same as those for the spectra used in Figs. 2 and 3.
As we expect, if cross relaxation between carbons occurs, the long CH and C=0 relaxation times are
shortened in the enriched compound, whilst the CH3 relaxation time is slightly lengthened. This is a
reflection of the fact that all three carbons are more efficiently coupled together w1 the enriched compound

due to the addition of the homonuclear relaxation pathway.
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expected cross relaxation in the enriched compound causes the long CH and C=0
relaxation times to shorten, whilst the short CHj relaxation time is slightly lengthened. This
result serves to confirm that there is indeed an extra mechanism which couples the carbon
atoms in the enriched solid. Finally, in order to confirm that this effect is not special to L-
alanine (even though we shall see that the mechanisms proposed below are very general in
nature) we have also recorded a series of cross relaxation spectra for doubly labeled 13C; 5
zinc acetate (not shown) and there we again observe polarization transfer between the two

carbon sites. The initial rate we observe in this case being 120 (ms)-1.
Section 4.3: Theoretical Models for the Relaxation Behavior

We are aware of two reasonable models that can explain magnetization exchange
between the carbons, both of which are induced by rapid molecular motion. In the case
where cross relaxation between the carbon atoms is caused by motion of the carbon
framework, a conventional second order perturbation treatment is appropriate. In the
presence of proton decoupling and assuming that the carbon framework itself is rigid, a
third order treatment of cross relaxation is necessary to provide a mechanism for cross
relaxation. In this model the fluctuations in dipolar couplings to nearby protons provide the
missing energy required for the carbon nuclei to communicate. There are also some familiar
mechanisms for magnetization exchange in solid state NMR that are unreasonable
mechanisms in this experiment. The first is a failure of decoupling leading to spin

diffusion, and the second is rotational resonance.
Section 4.3.1: Unreasonable Mechanisms for Magnetization Transfer

Before continuing with a treatment of cross relaxation, we should outline why we

can discount more common mechanisms for cross relaxation. The most obvious choice
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would be proton driven spin diffusion.®9 Even though high power proton decoupling is
applied together with magic angle spinning to remove both heteronuclear and homonuclear
dipolar couplings, homonuclear couplings in a three spin system are not completely
refocused, and rapid molecular motion can interfere with rf decoupling. That removal of the
dipolar couplings is slightly less effective in fully !3C enriched alanine is evidenced by the
slightly larger linewidths (we observe =150 Hz as opposed to =70 Hz). However, the three
resonances in the MAS spectra of enriched alanine and the two resonances in zinc acetate
are all fully resolved. There is negligible overlap between the lines which immediately tells
us that spin diffusion, whether direct carbon or proton driven, will be completely quenched
to first order. Even if this simple criteria were not sufficient, we would (i) expect to see a
dependence on decoupling power which is not verified by experiment, (ii) we also expect
to see a dependence of the buildup rates on the difference in chemical shifts between the
carbons, which is not borne out in the alanine spectra.

The second well known mechanism for polarization transfer is rotational
resonance.!4We can discount rotational resonance because we have carefully adjusted the
spinning speeds used in our experiments to avoid rotational resonance. As we mentioned
above, rotational resonance is a particularly selective technique, and is usually only
effective if the resonance condition is set to within the dipolar linewidth. In the experiments
shown below we are always at least 1.2 kHz away from rotational resonance. Additionally
we do not see any (significant) dependence of the relaxation rates on spinning speed.

We postulate that the actual mechanism of polarization transfer is true cross
relaxation between the carbon nuclear spins and that there are two distinct contributions.
The first is caused by the dynamic mixing of the 13C energy levels by the carbon proton
dipole-dipole interaction and the second is driven by the local field generated by the motion
of nearby protons. This latter is a true three body eff-ct. The usual treatment of dipolar
relaxation uses second order perturbation theory to model what is normally a two body

problem.!:20-22
119



Section 4.3.2: Second Order Treatment of Relaxation

In section 1.10 of this thesis, we presented a second order expansion of the
Liouville-von Neumann equation in order to describe the relaxation of an ensemble of spins
to equilibrium. The master equation for the relaxation of an operator, Q, was shown in that
section to be

0<Q> ’ Y oear . .
=2 =-3 38, g Inl @Al AL Q" 0P @)} ea- 4320

m rr

where Jm(w,':_m) is the spectral density of the motion, and 4/, is defined by the fourier

decomposition of the time-dependent spherical tensors,
T,a(0)= ZAZ...GW""' . (eq. 4.3.2.2)

Calculation of the commutators in equation 4.3.2.1 is relatively straightforward and
provides the well known results of Redfield theory.2:22 Cross relaxation can occur
between the two carbons. However, the corresponding spectral densities tell us that these
terms will only be non zero if the dipolar coupling between the two carbons is fluctuating,
i.e. if the carbon skeleton is mobile. Thus, contributions to relaxation from second order
mechanisms will only arise from the small amplitude librational motions of the carbon
skeleton. Not only are these motions small, but they are expected to occur at relatively high
frequencies which are inefficient for relaxation. This is the reason why cross relaxation has
previously been discounted as unimportant in rigid organic solids. Indeed, the crystal
structure of alanine leaves little room for framework motion.?

Calculating the commutators and spectral densities of equation 4.3.2.1 for various

random Hamiltonians, but always assuming that the C-C dipolar couplings are not varying,
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shows that direct cross relaxation between the carbons is quenched. In contrast. che large
amplitude motions of the protons on the methyl and amine groups yield large spectral
densities but the corresponding commutators all lead to the conversion of carbon
polarization into proton polarization or multi spin order of the carbon and proton spins. In
the experiment of figure 4.2.1 these terms will be immediately destroyed by the decoupling
field, and will thus not contribute to the observables. Also, the efficiency of such
mechanisms will only be marginally affected by enrichment with labeled carbon atoms, the
primary effect being due to carbon proton pairs. Given that second order perturbations do
not contribute much to carbon cross relaxation, we must consider other alternatives to
explain our data and the way is now open for the observation of the effect of the smaller
third order contributions at longer timescales. There are several qualitative reasons why
third order contributions may be large compared to second order contributions. Firstly, we
shall see that they depend on the larger carbon proton dipolar couplings, as opposed to the
homonuclear carbon couplings, and secondly the spectral densities are influenced mostly
by the large amplitude motions of the protons which are known to occur at frequencies
comparable to the Larmor frequency,?* as opposed to the small librational motions at
higher frequencies.

There is, however, another possible second order relaxation mechanism that could
cause cross relaxation between 13C nuclei. This effect is the dynamic mixing of the 13C
energy states by the time-dependent C-H dipolar coupling. The Hamiltonian for the system

of two 13C nuclei and one proton is
H=w,S, + 0,1 + o I + Hgy* + Hoy (1) + HEy' (1) (eq. 4.3.2.3)

To diagonalize this Hamiltonian, we must find a time dependent unitary transformation.

This unitary transformation will lead to a time dependent mixing of the 13C states and allow
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cross relaxation between these state due to the motion of the proton. The detailed theory for

this idea has not yet been determined.
Section 4.3.3: Third Order Treatment of Relaxation

A third order description of relaxation can simply be formulated by following the
same framework as was used in section 1.10 for the second order treatment. The expansion
of the density at time, t, to third order gives
(1) = 6(0) - ij[u;(:'), o(0)]ar’ - jd:"j dr'[H; (). [H; ("), o(0)]]

. (eq. 4.3.3.1)
-—il dr’ { dr” ! dt”'[H;(t'),[H; ()[H; (), 0(0)]]]

and now the time derivative of equation 4.3.3.1 yields

22 - {58 0).010)]- [ a8 )[ 8 (). 00)]) i [ ar [ ar{ o 0| 5 (1) [ (7). O]
0 0 0

(eq. 4.3.3.2)

Introducing the variables 7=7—1" and 7’ =¢-1", taking the ensemble average, making
the Redfield approximation, and neglecting the second order term since we assume it does
not contribute to cross relaxation (although it does contain non zero elements that contribute

to the overall decay of magnetization), we obtain the equation for the average density matrix

-‘2—(: = —i‘(‘: d’t']: d‘c'[.%’l* (z),[gﬁ* (I -7 ),[.%91* (t -1 ), O'(t)]]] (eq. 4.3.3.3)

We now introduce the three-time correlation functions,

grrn(t: 1. 15) = C(’)C(")C(’")R;(,::L”(t)Rgi)m»(t - rl)Rgz,,,(t -1,). (eq. 4.3.3.4)
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Replacing &%, in equation 4.3.3.3, we obtain

_‘j_ag_,_._, Zexp{ (m(') +ol ) +w(’ }[A(r") [A A,(,:)P,O't)]]]

re'r”

m,m’ . m”

’, ~
pp.P

xjj (7.7) exp{ (w,‘,f.),,rza-wf:,")p,q)}dqdrz (eq. 4.3.3.5)
00

Keeping only secular terms, wf,:,)p + wg:?p, + wf,::')p" = 0, then yields

ot S]]

i o
mm’,m”;m+m’+m"=0 X g,’:,{,m”(fl.fz)exp{—z(w(') T, + wfn )p T )}dr,dtz
pp P

00

(eq. 4.3.3.6)

Note that, in contrast to the second order case where the secular approximation led to a
reduction in the number of indices over which the sum is carried out, this is a lesser
restriction in the third order case, as we still have three indices. The restriction introduced

by the secular approximation being only that they sum to zero. Using the relation

Sy §

JJ‘gv’n'mrm 7. T exP{“(a’f:)pTx ( ) Tz)}d"ldfz= g (1,.72)cos(wf,f),r,+w( ") rz)dfldrz
00

0
lJ
0

and given that g7’ . can be shown to be a real function we obtain

S (T1:T2) s""(w;(;,l;&q.‘“i:%:&')% dt,,

o‘——.s 4

J.g;fm’m (f,,rz)exp{ (a)(') ‘rl+(o( ") 12)}d11d12 =Jr (w,(..'),,.w( ) ) lk'” (“’f;)p""( ) )

° (eq. 4.3.3.8)

© Sy 8
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where J7", . and k77, . are real numbers defined by equation 4. 3 3.7. In this case the real
part of this expression is the third order dynamic shift, which can be included in a redefined
unperturbed Hamiltonian, while the imaginary part contributes to relaxation. The master

equation at third order is thus

%,q _ 2 k(0.0 )[ A%, [A(r),' A0, o(,)]]] (eq. 4.3.3.9)
mm’ . m”; m+m’+m~=0
PP

The equation of motion for the expectation value of an observable operator Q is given by

0. Sl okl p {40 ol

mm' m”;m+m'+m”=0
p.pp (eq. 4.3.3.10)

f
rr'r”

which, through repeated use of the relation Tr{A[B,C]} =Tr{[A,B]C}, can be rewritten as

L1

@ Seienp{olalede)

m,m’,m" im+m’ ‘+m -0 4 11
P (eq. 4.3.3.11)
We are now in a position to use equation 4.3.3.11 to predict the behavior of our

system at third order. The simplest spin system that serves to demonstrate homonuclear

carbon cross relaxation is that of two carbon atoms and one proton. The unperturbed
Hamiltonian is

'%0 = wssz + 6011112 + O)Izlzz (eq. 4.3.3.12)

and the random perturbation is
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H, = ¢ ZRz_m(z)Tcl”mczHERf (TS + e, Y REF(OTH.
(eq. 4.3.3.13)

In our first example we neglect the (time independent) homonuclear carbon carbon dipolar

coupling. It may either be assumed to be zero, or it may be included in a redefined

unperturbed Hamiltonian. For simplicity we assume it is zero. We have

C\H CH
Toh =5 (@S, 1S ~1.S,),  Toh =J5(4hsS, +1.S:), Toly =D,
(eq. 4.3.3.14)
for r = C;H with similar expressions for r = C;H. Transforming into the interaction

representation, we obtain, for r = C;H

IS8 (1) = S (405, — 1S_ ep{i(w0, = w5} - 1.5, expfi(s - o, J})-

T$H (1) = 7—(41115 exp{tiooy ]+ 1S exp{‘*‘zwst})

TSR = 1,8, exp{ii(ws +ay, )i} (eq. 4.3.3.15)

The Tz (t) are then decomposed into A,(,:' )p and w,(,:?p for r = CiH,

CH _ 2 GH ___1 GH _ _ 1

AO.IO ’Vgllzsz’ A(),11 _—EVEIHS" Ao,lz ——m11-5+,
C\H c c

wop =0, wpy =y — s, Woh' =g =0y,
CH _ 1 CH _ 1 C,H

Asio = 75 1+Ses Ay =55 Ao = 1+Ss




C\H
Qg =10y, w4y =y, W55,0 = i(a’s + oy )

(eq. 4.3.3.16)

with similar expressions for r = C;H. Calculation of the commutators of equation 4.3.3.11
for the secular terms is now straightforward, though tedious. As an example of a

representative term we find

(455 [AG1 [A5Y" 1. | = g hetae (eq. 43.3.17)

In total there are twelve terms which are involved in the conversion I}, — I;,1,, depending

k;.’m’m( ") (0(.):)

(CiH C,H.GH
0,0,0

Wg — 0y, .0)

[

[A& . % 453 1,,]]]= g (a8~ helae) K5 (@, - 05.0)
(a6 [aGt [ 458 .|| = - s 1aeS, - k) kRS (0, - 05, 05)
[ [A—cf{{:[ 10»11zm g U2eS: = . 1,) koM (0 - oy, ~ o)
[ lz'[A-clz.ll.l'[Ag‘ZH'Ilz]]]="'471§Ilzl2z KALGH O (o0, - o)
(4% (a2l (A6 1| = - S el KGR (-0, 05)
[ [t [asfs ][ =4 (s, 1) e O
I [Afz‘,’é,[Aﬁ’,{’,[ oy sz]]]="lz(12z5z+11zlzz) KGR (- 05 ~ 7, -~ 05)
A A5 60 4 (LN -0,
[ o [Afx’x [A-zo»llz]] $halz k&ﬁii’f'qﬁ(wmws)
[ 20»[1453‘1’»[“;2}5 lum= % (5,8, +1,15,) k365" (05 +@4,.0)
[Alef;,[ 7 [Agh 0| = B 0aeS, + hkze) kGG (g - oy ,0)

S R e e =
Table 4.3.3.1: Commutators and spectral densities from Eq. (32) involved in the conversion I}, — I},15,.
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on twelve corresponding spectral densities, and they are listed in Table 4.3.3.1. The
important thing tc realize is that the fluctuations of the proton carbon dipolar couplings can
convert single spin order of one carbon into two spin (dipolar) order of the two carbons
with a rate proportional to the sum of spectral densities and prefactors given in Table
4.3.3.1 There are a similar set of commutators which convert two spin order into
polarization of the second carbon, thereby achieving polarization transfer between the
carbons. If we include a non-zero carbon carbon dipolar coupling in the perturbing dipolar
Hamiltonian, there are even more terms which allow this conversion, even if the CC
coupling is not fluctuating. Note that all these mechanisms are, irﬁhe language of normal
Redfield theory, cross correlation terms as the spectral densities represent correlations
between (up to three) different dipolar couplings.22 Note also that we do not find terms

which simply cause direct cross relaxation between carbon polarizations.
Section 4.4: Discussion

Homonuclear cross relaxation spectroscopy of 13C as outlined in this article seems
to present a attractive method for broadband correlation of dipolar couplings in solids
spinning at the magic angle. The experimental considerations of the experiment are
especially simple, as correlations are achieved without the need for matching any special
condition or for the application of pulses during the mixing period. At first sight the results
we present here may seem surprising. It appears that cross relaxation between carbon
atoms in "rigid" organic solids has previously been discounted as likely to occur only on a
timescale of tens of seconds, although cross relaxation has been observed between mobile
carbons. To our knowledge this work provides the first direct observation of carbon-
carbon cross relaxation in a rigid solid, and moreover we have shown that it is efficient on

a timescale of tens of milliseconds.

127

e e B At B



Carbonyl to Cq
so -
~~ L)
Sef .
z|.
'g 401
5
zo L
0 g T
0 40 120
Mixing Time (msec)
Carbonyl to Cq

Intensity (AU)

:

™
0 40

L wian
120 160

Mixing Time (msec)

Carbony! to Methyl Cq to Methyl
80 100
* .
604 . 801
g Ew- . .
40 4
2 g
204 * )
. 204
° 0
0 4 8 120 160 0 40 80 120 160
Mixing Time (msec) Mixing Time (msec)
Carbonyl to Methy! Cg to Methyl
80 00,
[ ]
604 . 80 1

Intensity (AU)
F- 3
=3

-20

Intensity (AU)
8 8

[

) 80 120 160
Mixing Time (msec)

8

L JNNS AN Bt Smmn 4 T

o 4 80 120 160

Mixing Time (msec)

Fig. 4.4.1: Fits of cross relaxation data to the full rate matrix. a.) Fits to a direct cross relaxation

mechanism. b.) Fits to an indirect cross relaxation mechanism where the intermediate is assumed to be two
spin order between the cross relaxing spins.

To determine which mechanism is reasonable for the observed cross relaxation, we

performed full rate matrix calculations!®23:26 of the three spin system for both a direct and

indirect cross relaxation. ‘The indirect cross relaxation is assumed to involve an intermediate

two spin order state. Figure 4.4.1 shows the fitted cross peak growth curves for both

mechanisms. Clearly the direct cross relaxation mechanism fits the data much better than

the mechanism involving the two spin order intermediate, implying that the cross relaxation

is due primarily to the dynamic mixing of the carbon states. The rates determined in this

fitting procedure are presented in table 4.4.1. While the proposed third

128




n/2
14 [- cP DECOUPLE

n2 212 n/2
130 _Ep—l 1 ” w2 ﬂ” Tw/2 ” t2
: A\
N A
1\ ] \/ \
2 \/

Fig. 4.4.2: Double quantum filtered exchange experiment used to test for the presence of two spin order

during the mixing period.

order mechanism is not the predominate effect leading to cross relaxation, we have
observed the predicted two spin order (data not shown) by performing the double quantum
filtered experiment shown in figure 4.4.2. Further experiments are planned to determine
whether we are truly observing this third order effect. One should also note that although
the examples of zinc acetate and L-alanine presented here are clearly model examples,
nevertheless there is nothing obviously special about these materials and we expect the
effects to be observed in all organic solids of this type, with a most obvious application
being to the spectra of polypeptides.

The results and analysis we present here are only preliminary, we are currently
investigating the temperature dependencies of the cross relaxation to determine the source
of the cross relaxation. We hope to be able to quantitate the effect in order to determine
internuclear distances in powdered organic solids. However, even if the goal of absolute
quantitation turns out to be difficult to achieve, these experiments will surely provide a
useful means of sequentially assigning complex solid state spectra and determining
qualitative distances. Such data should be capable of providing the solid state structure of
larger molecules, in a manner analogous to liquid state structure determination using
NOESY data.
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