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T. L. Burr, M. F. Mullen, L. E. Wangen
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ABSTRACT

In this paper we discuss two advanc6d techniques, process fault detection and nonlinear

time series analysis, and apply them to the analysis of vector-valued and single-valued time-

series data. We investigate model-based process fault detection methods for analyzing

simulated, multivariate, time-series data from a three-tank system. The model-predictions are

compared with simulated measurements of the same variables to form residual vectors thatare

tested for the presence of faults (possible diversions in safeguards terminology). We evaluate

two methods, testing aU individual residuals with a univariate z-score and testing all variables

simultaneously with the Mahalanobis distance, for their ability to detect loss of material from

two different leak scenarios from the three-tank system: a leak without and with replacement of

the lost volume. Nonlinear time-series analysis tools were compared with the linear methods

popularized by Box and Jenkins. We compare prediction results using three nonlinear and two

linear modeling methods on each of six simulated time series: two nonlinear and four linear.

The nonlinear methods perfonned better at predicting the nonlinear time series and did as well

as the linear methods at predicting the linear values.

1. INTRODUCTION

For pr'x:ess control and other reasons, there is it/creasing automation of chemical

processing plants, including spent-nuclear-fuel reprocessing plants. Consequently there will

be more datapotentially available for safeguards in future reprocessing. These data will consist

of control data _d physical and chemical measurements of process inputs and outputs during

plant operations. Not only wiUmore variables be monitored, but data collection will be more

frequent than in the past. These data could assist the safeguards function if appropriate data



analysis methods can be identified. We have investigated two different approaches for the

analysis and interpretation of such data: 1) _s fault detection applied to the monitoring of

multivariate time-series data and 2) application of nonlinear methods to the analysis of

univariatetime-series data. The latterdiffers from the present linear methods used for time

series analysis in safeguards.

The first method, process fault detection and diagnosis, monitors a vector-valued

time series, such as the amount of nitricacid, plutonium, and uranium in various tanks and

other vessels over time. The second method, nonlinear time-series analysis, monitors a

scal_:-valued time series, such as the amountof plutonium over time, but allows the serial

dependence to have an arbitraryfunctional form. Present methods used to analyze time-series

data for materials control and accountancy, such as material unaccounted for (MUF), assume

that the functional form of the time series is linear.

The goal of process fault detection and diagnosis is to develop improved methods

for detecting, isolating, and identifying deviations from nominal or desired process operating

conditions [1]. Process fault detection and diagnosis involves comparing data from process

measurements with redundant information to detect and identify faults so that appropriate action

can be taken. The redundantinformation can be either from other process measurements or

from process models. The concept is illustrated in Fig. 1 for a case in which a process model

is used to provide the redundant information. The process model is developed for "normal"

operating conditions, and it uses process knowledge and process inputs to make predictions

about the expected state of selected output variables. These predictions are compared with

measured values of the same output variables to form residuals (the differences between the

measured and model-predicted values) that are tested to determine the presence or absence of a

fault at a desired degree of confidence. Because of the unavoidable presence of both modeling

and measurement errors, non-zero residuals are expected so criteria are needed for deciding

whether a fault has occurrcA. Mass balance relations in the form of MUF are an example of a

process model involving simple consistency relationships. In this report we focus on the



analysis of multivariate residuals representing a single point in time. In another report [2] we

address the analysis of cumulative residuals from successive multivariate residuals.

We compared nonlinear time-series analysis tools [3,4] with the linear methods

popularized by Box and Jenkins [5] for analyzing time series. B0x-Jenkins analysis assumes

that the expected value of any observation is a linear function of some subset of all previous

observations and errors. Our approach relies on using historical data to estimate the functional

dependence of the present observation on some subset of past observations. We then estimate

the expected value of the next observation in the time series using a nonparametric procedure

(no distribution assumptions) based on past observations. The next value of the time series is

predicted, then com_-_-_ with the observed value. If the resulting residual is large, we suspect

that an anomaly has occurred. We illustrate the idea in Fig. 2. Shown in Fig. 2a is a time

series plot of the first 100 values of a nonlinear time series. In Fig. 2b, is our conditional

expected value estimate (solid line) on a matter plot of the present versus the past values from

the same time series. Note that the nonlinear dependence of the present value on the past value

is not readily apparent from Fig. 2a but is apparent in Fig. 2b and that our estimated conditional

mean can be viewed as being a scatter plot smoother in the lag one case. This estimated

conditional mean can be used together with the estimated prediction errorto assist with

detecting anomalies.

2. METHODS AND RESULTS: PROCESS FAULT DETECTION

We applied two multivariate fault detectiontechniques to simulated datafrom a three-tank

system (Fig. 3) containing nitric acid, plutonium,and uranium. The dynamics are described

by a system of coupled differential equations based on total mass balances and on individual

mass balances for each chemical species for each tank (F_,q.1).

[Time rate of change of mass] = [Mass in] -[Mass out] (1)



For given input flows, initial tank volumes, and initial concentrations of nitric acid,

plutonium, and m'za,:am,the differential equations are solved to give the outputs, i.e., the

volumes and concentrations in the tanks at various times. When density is a linear function of

concentration, the equations for Tank 1 are

dVl/dt = Fll + Fl2- F21

d.Hl/dt = [(H011Fll + H012 Fl2)- (Ell + FI2) H1]/Vl

dPul/dt = [(pu011Fll + pu012 FI2) - (Ell + FI2) PUl]/Vl

dUl/dt = [(U0ll FII + U012 F12)" (Ell + FI2) U1]/VI

with analogous equations for Tanks 2 and 3. The superscript zeros are tank input

concentrations for nitricacid (H), plutonium (Pu), and uranium (U), and the other symbols are

defined in Fig. 3. The density of each tank solution is determined from empirical relationships

between density andconcentrations of nitric acid, plutonium and uranium [6,7]. The system of

equations is solved by the ELdermethod. The volumes, densities, and concentrations of

plutonium, uranium, and nitric acid are the model predictions that are compared to measured

values to give residuals, which are tested for faults. Simulated measured values are obtained

by adding the following relative standard deviations to the known true values: flow rate-0.05,

",ankvolume-0.002, density-0.002, and nitric acid, plutonium, and uranium concentrations---

0.01, 0.002, and 0.0(O---respectively.

The residuals were evaluated by two different multivariate techniques. The first

technique monitors each individual element of the residual vector separately and is a natural

extension of the comn_nly used univariate approach. The univariate test statistic for variablep

of vector-valued residual i, rip, that is expected to be zero, H0: E(r/p) = 0 versus the alternative

hypothesis HI: E(rip) _ O,is

zip(a) = r_ (2)



assuming the standarddeviation o is known. Here, n is the number of samples used to

calculate r (n = 1 for this work) andE denotes expected value. The critical values to which

these test statistics are to be compared come from N(0,1). The user _les what significance

level (a value) will be used to signal a fault depending on the number of false alarms to be

tolerated. For uncorrelated, multivariate normal distributions, ff we wish to maintain the same

overall significance level for detecting a fault, tests for individual residuals use the Bonferroni

method [8], which replaces ct by cdP to account for the multiple tests; P is the number of

individual z values being tested. If the standarddeviation is not known but must be estimated,

critical values from the student's t distribution are used.

The second multivariate fault detection technique uses a multivariate statistical distance,

the Mahalanobis distance, to jointly monitor P measured variables simultaneously. The

Mahalanobis distance of vector-valued residual ri from the meanor target vector r is

Md i = (ri - r)' y-i (ri . I') (3)

if the covariance is known. The Mahalanobis distance for ri is compared to user-specified

critical values from either the chi-squared distribution (or the weighted F distribution if Y_is not

known but must be estimated). In the present application, the target vector r' is zero.

The covariance matrix 2;is necessary for calculation of the test statistics, z//,(c0 andMdi.

For the three-tank system, this was obtained by performing one thousand lO-h simulations

under no-fault operating conditions. The flow rates and iniu,_!tank conditions were the same

for each simulation except for the application of randomly distributeduncertainty to all

measured variables. For the initial tank conditions, the uncertainties were applied once at the

beginning of each simulation. For file flow rates, we assumed that new measured values

became available every 0.1 h at which time the model values were updated. Model predictions

at the end of each 10-h simulation were compared to measuredvalues obtained at the same time

and residuals calculated.



We also performed a principal co_t analysis of the 1000 simulated residuals.

Principal components analysis is often used as a dimensionality reduction medmd when

correlated variables are present. For data vectors containing P elements, it may be

that the components corresponding to the Q (Q _<P) largest eigenvalues explain the important

internal _ of the data. We used an approach presented in a paper on multivariate

process control by Jackson [9]. Jackson suggested rescaling the eigenvectors by the

eigenvalues so that each score has a mean of zero and a variaace of one. Thus the score, to for

residual i and principal componentj can be tested directly against critical values from the

N(O,1) distribution to determine if the particularprincipal component score may be an outlier.

In addition the Mahalanobis distances are easily calculated directly from the scaled scores. For

observation i this is

Mdi = t i t_. (4)

We investigated two diversion scenarios: 1) a steady leak from the second tank without

replacement and 2) the same leak but the lost solution replaced with water. In practice, the

model would not know about a leak and thus would make erroneous predictions because it

assumes "normal" operations. The true conditions, i.e., the loss because of leakage, are

reflected in the measured data. Results of fault detection tests for a 0.5-L/h leak, which was

easily detected, are summarized in Fig. 4. Concentrations of plutonium and uranium plus

density were detected as outliers in the second tank (Fig. 4b) under the leak-with-water-

replacement scenario whereas only volume (Fig 4a) was detected as a fault for the leak-

without-replacement scenario. Replacing the removed volume with water diluted the

concentrations enough to make a large difference in all concentration variables as well as in

density, which is based on concentrations. The Mahalanobis distances are shown in Fig. 5 for

three different leak rates. In all cases the values are larger, thus more statistically significant,

for the leak with replacement scenario. The 0.5-].Jh rate was the only one significant at the 5%

level.



3. UNIVARIATE TIME SERIES ANALYSIS

We considered univariate time series such as MUF values or other statistics arising from

safeguards.

In computer simulations we experimented with several nonlinear estimation methcxts

using both linear and nonlinear simulated data sets. Our approach assumes that the same

functional dependence between an observation and some subset of the previous observations

holds throughout the entire time series. If this assumption is not valid, the time series must be

divided into subsets in which the assumption is satisfactory. This requixesdetailed knowledge

of the process thatis generating the sequence. Except for this potentially serious problem, the

implementation of our procedures is straightforward.

We implemented FORTRAN computer codes to perform the two main activities in

estimating the conditional mean: choosing the degree of smoothing and estimating the lag, i.e.,

number of previous observations directly affecting the present observation.

Empirical estimates of the lag may enhance understanding of the processes generating the

data. In many cases, we have a good idea of a value for the lag. For example, in ordinary

MUF sequences, a value of one is often a good first approximation for the lag. This is because

the ending inventory for MUFj. 1 is the beginning inventory for MUFj. Therefore, if we ignore

the effects of systematic errors, the lag is one.

Our main goal is better detection of anomalies through use of the best techniques for

predicting future values of the time series. By best, we mean that the standard errorof

residuals (MSEP) is minimized.

To illustrate nonlinear modeling, we compared the MSEP using two linear and three

nonlinear estimation methods as follows:

(1) Divide the time series vector into testing and training sets and assume no loss has

occurred.



(2) Use the training set _) estimate the conditional mean making either no assumption about

the ftmctionai form of theconditional mean or assuming that the ccmditional mean is linear.

(3) _ the MSEP evaluated in the test set for the _ and the ncmlineaxmethods.

Regarding the MSEP, we have analyzed simulated datafrom the foilowing six ring

sequences, each observed with error.

(a) xt = 1- 1.4xt2_1+ 0.3xt.2 (nonlinear),

Co)xt= 4xt-1(l- xt-O(nontinear),

(c) Xt = ao + blet-I + b2et-2 + et Oinear),

(d)Xt= aO+ alXt.l+ a2Xt-2+ etOinear),

(e)Xt= ao+ blet.1+ et (linear),and

(0 Xt = aO+ _lXt-I + et (linear).

We have used lower case for the two nonlinear time series, (a) and (b), because we

generated the data deterministically and then addedobservational error. Specifically, we

generated the xt's and then added independent N(0,0.052) random variables to represent

observational errors. For the linear series, the errors were independent N(0,1) random

variables. Therefore, the theoretically lowest achievable MSEP is 0.0025 for series (a) and

(b), and 1 for series (c-f). For each of the six time series, we generated training vectors with

1000 observations and testing vectors with 1000 observations. The MSEPs for two methods

of linear estimation and for three types of nonlinear estimation are shown in Table I for the

six cases. We include the sample variance s2 for each case because s2 would be the MSEP ff

we used the sample mean as the predicted value.

In Table I, the first linear method is denoted Linearl, the second linear method is denoted

Linear2, and similarly for the three nonlinear methods. The first finear method fits the best

possible autoregressive moving average (ARMA) model to the observed sequence. The second

linear method fits a linear model to the regression of Xt on Xt-I or on Xt-I andXt.2,

depending on which gives a better fit.



Table I. Simulation Results for Mean Square Error of Prediction (MSEP)

Tm_
Series s 2 l.,ilgarl Linear2 Nonlinearl Nonlinear2 N_3

a 0.53 0.47 0.46 0.06 0.01 1.21
b 0.13 0.13 0.13 0.02 0.10 0.94
¢ 1.36 0.98 1.14 1.48 0.821 0.37
d 1.68 0.98 0.99 1.05 0.60 0.84
e 1.14 1.01 0.99 1.01 0.87 1.48
f 1.30 1.00 0.98 1.00 0.76 0.80

The first nonlinear method is a conditional n_m estimator. For the lag = 1 case, our

estimator is

(5)

where g is called the kernel. It is usually assumed that g(x) evaluated at x =0 is the maximum

value of K, and that g(x) is a decreasing function of Ix[ It is usually further assumed that g is

a symmetric probability density function such as the standardnormal density. The parameter h

is the bandwidth, which determines the amount of smoothing. For more detail, see Ref. [5]

but the idea in Ec1. (5) is straightforward. We have n observations, X1,X2,...,X n, and seek an

estimate of Xn+l given the value X t = x. The idea is to use all of the first n- 1 observations,

but weigh most heavily the observations that are most near the value x. The extension to

higher lags is straightforward. We present results here only for the lag one case for the first

nonlinear method. The second method is different from the first method in thatthe second

method does attempt to estimate the lag and uses a different method to choose the bandwidth.

Using the second method, the best estimate of the lags for time series (a) through (f) was

d = 5, 2, 2, 2, 2, and 1, respectively, whereas the correct lags are 2, 1, 2, 2, 1, and 1. The

thirdnonlinear method is a computationally intensive method which appears to be an

inconsistent performer in our experiments to date. The method uses the k nearest neighbors of

9



each point to fit a local linear model at that point. The overall model is then piecewise linear,

but can be made to look rather smooth ff the pieces are sufficiendy short.

In Table I there is not much difference in MSEP between the two linear methods except

for series c where Linearl gives a lower value. We extx_ the second linear method to perform

worse on MA models than the first finearmethod because the second linear method relies on

the true time series being an autoregressive series. Similarly, all three of our nonlinear

methods are designed for autoregressive series. However, it is possible to extend our

nonlinear methods to accommodate MA nxxiels. The details of this extension can be found in

Ref. [10].

In comparing the linear methods to the nonlimmr methods, note that eases a andb are,the

only nonlinear series. For series a and b there is a clear advantage in using the Nonlinearl over

the linear methods. However, notice that the other two nonlinear methods do not perform

consistently. In fact, because the error variance fo: the two finear time series was 1.0, the

theoretically lowest achievable variance for predicting them is 1.0. Therefore, Nonlinear2 and

3 sometimes give misleadingly low estimates of the true MSEP. We currently have no

explanation for this behavior. At present we prefer the relative simplicity of Nonlinearl and are

pleased with its performance on both linear and r_-_linear time series.

4. SUMMARY AND CONCLUSIONS

Both the multivariate process fault detection and the nonlinear time series methods are

fairly easy to implement. With respect to safeguards, the main issue is whether intetm.tional

inspectors will be grantea access to the larger amounts of data expected from modem

reprocessing plants. Until such data are available, we can only test our methods on simulated

data.

For the three-tank problem, univariate tests on individual variables as well as on

individual principal components were equally effective at detecting losses of material. Because

the principal components are linear combinations of individual variables, they might be

10



expected to provide more sensitive detectiok of outliers or faults for situations where two or

more correlate_ variables are affected by a fault. With this simulation, the correlations were not

strong enough to observe this effect. Multivariate tests based on the M_halanobis distances

were never as sensitive as the univariate tests probably because the sensitivity is diminished

somewhat by those variables r_t affected by a leak. The leak with replacement scenario was

detected with slightly more sensitivity than was the leak without replacement perhaps because

replacing the lost volume with wateraffects four variables (density and the concentrations of

nitric acid, plutonium, and uranium) ratherthanjust one as does a leak without replacement.

For univariate time series, our currentrecommendation is to include techniques thatcan

test for nonlinearity in a package of evaluation methods for time series. If tests do not indicate

nonlinearity, there is no need to apply nonlinear estimation methods. If tests do indicate

nonlinearity, we recommend using nonlinear techniques for estimating the expected value of an

observation in the time series sequence. Presumably, if a time series sequence fails the tests

for linearity, future expected values will be a nonlinear function of some subset of the previous

, observations. Another potential advantage of nonlinear modeling could result from an

improved understanding of mechanisms generating the data through detection of unexpected

functional dependencies. Thus, for reasons other than anomaly detection, we may wish to

_nalyze time sequences containing many elements using nonlinear methods should they become

available in the future.

Judging from results obtained using simulated data, the multivariate process control

methods will improve our ability to detect loss by exploiting the redundancies between modeled

and measured variables. The nonlinear time series methods perform as well as linear methods

when the true functional form is linear and outperform the linear methods when the true

functional form is nonlinear. However, the price paid in both cases is that more measurements

must be made.

11
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Fig. 3. A three-tank system. V, P. H, Pu,
and U refer to volumes, densities,
and concentrations of nitric acid,
plutonium, and uranium. C°s refer
to concentrations in input flows Fs.




