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PROCESS FAULT DETECTION AND NONLINEAR TIME SERIES
ANALYSIS FOR ANOMALY DETECTION IN SAFEGUARDS

T. L. Burr, M. F. Mullen, L. E. Wangen
Los Alamos National Laboratory

ABSTRACT

In this paper we discuss two advancéd techniques, process fault detection and nonlinear
time series analysis, and apply them to the analysis of vector-valued and single-valued time-
series data. We investigate model-based process fault detection methods for analyzing
simulated, multivariate, time-series data from a three-tank system. The model-predictions are
compared with simulated measurements of the same variables to form residual vectors that are
tested for the presence of faults (possible diversions in safeguards terminology). We evaluate
two methods, testing all individual residuals with a univariate z-score and testing all variables
simultaneously with the Mahalanobis distance, for their ability to detect loss of material from
two different leak scenarios from the three-tank system: a leak without and with replacement of
the lost volume. Nonlinear time-series analysis tools were compared with the linear methods
popularized by Box and Jenkins. We compare prediction results using three nonlinear and two
linear modeling methods on each of six simulated time series: two nonlinear and four linear.
The nonlinear methods performed better at predicting the nonlinear time series and did as well
as the linear methods at predicting the linear values.

1. INTRODUCTION

For process control and other reasons, there is increasing automation of chemical
processing plants, including spent-nuclear-fuel reprocessing plants. Consequently there will
be more data potentially available for safeguards in future reprocessing. These data will consist
of control data and physical and chemical measurements of process inputs and outputs during
plant operations. Not only will more variables be monitored, but data collection will be more

frequent than in the past. These data could assist the safeguards function if appropriate data



analysis methods can be identified. We have investigated two different approaches for the
analysis and interpretation of such data: 1) process fault detection applied to the monitoring of
multivariate time-series data and 2) application of nonlinear methods to the analysis of
univariate time-series data. The latter differs from the present linear methods used for time
series analysis in safeguards.

The first method, process fault detection and diagnosis, monitors a vector-valued
time series, such as the amount of nitric acid, plutonium, and uranium in various tanks and
other vessels over time. The second method, nonlinear time-series analysis, monitors a
scalzr-valued time series, such as the amount of plutonium over time, but allows the serial
dependence to have an arbitrary functional form. Present methods used to analyze time-series
data for materials control and accountancy, such as material unaccounted for (MUF), assume
that the functional form of the time series is linear.

The goal of process fault detection and diagnosis is to develop improved methods
for detecting, isolating, and identifying deviations from nominal or desired process operating
conditions [1]. Process fault detection and diagnosis involves comparing data from process
measurements with redundant information to detect and identify faults so that appropriate action
can be taken. The redundant information can be either from other process measurements or
from process models. The concept is illustrated in Fig. 1 for a case in which a process model
is used to provide the redundant information. The process model is developed for “normal”
operating conditions, and it uses process knowledge and process inputs to make predictions
about the expected state of selected output variables. These predictions are compared with
measured values of the same output variables to form ;'esiduals (the differences between the
measured and model-predicted values) that are tested to determine the presence or absence of a
fault at a desired degree of confidence. Because of the unavoidable presence of both modeling
and measurement errors, non-zero residuals are expected so criteria are needed for deciding
whether a fault has occurrcd. Mass balance rclations in the form of MUF are an example of a

process model involving simple consistency relationships. In this report we focus on the



analysis of multivariate residuals representing a single point in time. In another report [2] we
address the analysis of cumulative residuals from successive multivariate residuals.

We compared nonlinear time-series analysis tools {3.4] with the linear methods
popularized by Box and Jenkins [5] for analyzing time series. Box-Jenkins analysis assumes
that the expected value of any observation is a linear function of some subset of all previous
observations and errors. Our approach relies on using historical data to estimate the functional
dependence of the present observation on some subset of past observations. We then estimate
the expected value of the next observation in the time series using a nonparametric procedure
(no distribution assumptions) based on past observations. The next value of the time series is
predicted, then compzicd with the observed value. If the resulting residual is large, we suspect
that an anomaly has occurred. We illustrate the idea in Fig. 2. Shown in Fig. 2a is a time
series plot of the first 100 values of a nonlinear time series. In Fig. 2b, is our conditional
expected value estimate (solid line) on a scatter plot of the present versus the past values from
the same time series. Note that the nonlinear dependence of the present value on the past value
is not readily apparent from Fig. 2a but is apparent in Fig. 2b and that our estimated conditional
mean can be viewed as being a scatter plot smoother in the lag one case. This estimated
conditional mean can be used together with the estimated prediction error to assist with

detecting anomalies.

2. METHODS AND RESULTS: PROCESS FAULT DETECTION

We applied two multivariate fault detection techniques to simulated data from a three-tank
system (Fig. 3) containing nitric acid, plutonium, and uranium. The dynamics are described
by a system of coupled differential equations based on total mass balances and on individual
mass balances for each chemical species for each tank (Eq. 1).

[Time rate of change of mass] = [Mass in] — [Mass out] (1)



For given input flows, initial tank volumes, and initial concentrations of nitric acid,
plutonium, and uraiuum, the differential equations are solved to give the outputs, i.e., the
volumes and concentrations in the tanks at various times. When density is a linear function of

concentration, the equations for Tank 1 are

dvy/dt = Fyy +Fpp-Fyy
dHy/dt = [(HO; Fyy + HO3 Frp) - (Fyy +Fi) Hil /v,y
dPuy/dt = [(Pu0y Fy + Pulyp Fy) - (Fyy + Fi) Pujl/ V)
dUy/dt = [(U0y; Fyy + U0 Fp) - (Fy +Fr) Ugl/ V)

with analogous equations for Tanks 2 and 3. The superscript zeros are tank input
concentrations for nitric acid (H), plutonium (Pu), and uranium (U), and the other symbols are
defined in Fig. 3. The density of each tank solution is determined from empirical relationships
between density and concentrations of nitric acid, plutonium and uranium [6,7]. The system of
equations is solved by the Euler method. The volumes, densities, and concentrations of
plutonium, uranium, and nitric acid are the model predictions that are compared to measured
values to give residuals, which are tested for faults. Simulated measured values are obtained
by adding the following relative standard deviations to the known true values: flow rate-0.05,
tank volume—0.002, density—0.002, and nitric acid, plutonium, and uranium concentrations—
0.01, 0.002, and 0.004—respectively.

The residuals were evaluated by two different multivariate techniques. The first
technique monitors each individual element of the residual vector separately and is a natural
extension of the commonly used univariate approach. The univariate test statistic for variable p
of vector-valued residual i, r;;, that is expected to be zero, Hy: E(r;p) = 0 versus the alternative

hypothesis Hy: E(r;,) #0, is

Zp(@) = 55—, @)

n



assuming the standard deviation o is known. Here, n is the number of samples used to
calculate r (n =1 for this work) and E denotes expected value. The critical values to which
these test statistics are to be compared come from N(0,1). The user specifies what significance
level (a value) will be used to signal a fault depending on the number of false alarms to be
tolerated. For uncorrelated, multivariate normal distributions, if we wish to maintain the same
overall significance level for detecting a fault, tests for individual residuals use the Bonferroni
method [8], which replaces a by a/P to account for the multiple tests; P is the number of
individual z values being tested. If the standard deviation is not known but must be estimated,
critical values from the student’s t distribution are used.

The second multivariate fault detection technique uses a multivariate statistical distance,
the Mahalanobis distance, to jointly monitor P measured variables simultaneously. The

Mahalanobis distance of vector-valued residual r; from the mean or target vector T is

Mdi = (I'i -T) 31 (r; - r) 3)

if the covariance is known. The Mahalanobis distance for r; is compared to user-specified
critical values from either the chi-squared distribution (or the weighted F distribution if Z is not
known but must be estimated). In the present application, the target vector T is zero.

The covariance matrix X is necessary for calculation of the test statistics, zjp(a) and Md;.
For the three-tank system, this was obtained by performing one thousand 10-h simulations
under no-fault operating conditions. The flow rates and iniu.! tank conditions were the same
_ for each simulation except for the application of randomly distributed uncertainty to all
measured variables. For the initial tank conditions, the uncertainties were applied once at the
beginning of each simulation. For the flow rates, we assumed that new measured values
became available every 0.1 h at which time the model values were updated. Model predictions
at the end of each 10-h simulation were compared to measured values obtained at the same time

and residuals calculated.



We also performed a principal component analysis of the 1000 simulated residuals.
Principal components analysis is often used as a dimensionality reduction method when
correlated variables are present. For data vectors containing P elements, it may be assumed
that the components corresponding to the O (Q < P) largest eigenvalues explain the important
internal structure of the data. We used an approach presented in a paper on multivariate
process control by Jackson [9]. Jackson suggested rescaling the eigenvectors by the
eigenvalues so that each score has a mean of zero and a variance of one. Thus the score, 7; for
residual i and principal component j can be tested directly against critical values from the
N(0,1) distribution to determine if the particular principal component score may be an outlier.
In addition the Mahalanobis distances are easily calculated directly from the scaled scores. For

observation i this is
Mdi = ti t: (4)

We investigated two diversion scenarios: 1) a steady leak from the second tank without
replacement and 2) the same leak but the lost solution replaced with water. In practice, the
model would not know about a leak and thus would make erroneous predictions because it
assumes “normal” operations. The true conditions, i.e., the loss because of leakage, are
reflected in the measured data. Results of fault detection tests for a 0.5-L/h leak, which was
easily detected, are summarized in Fig. 4 Concentrations of plutonium and uranium plus
density were detected as outliers in the second tank (Fig. 4b) under the leak-with-water-
replacement scenario whereas only volume (Fig 4a) was detected as a fault for the leak-
without-replacement scenario. Replacing the removed volume with water diluted the
concentrations enough to make a large difference in all concentration variables as well as in
density, which is based on concentrations. The Mahalanobis distances are shown in Fig. 5 for
three different leak rates. In all cases the values are larger, thus more statistically significant,
for the leak with replacement scenario. The 0.5-L/h rate was the only one significant at the 5%

level.



3. UNIVARIATE TIME SERIES ANALYSIS

We considered univariate time series such as MUF values or other statistics arising from
safeguards.

In computer simulations we experimented with several noniinear estimation methods
using both linear and nonlinear simulated data sets. Qur approach assumes that the same
functional dependence between an observation and some subset of the previous observations
holds throughout the entire time series. If this assumption is not valid, the time series must be
divided into subsets in which the assumption is satisfactory. This requires detailed knowledge
of the process that is generating the sequence. Except for this potentially serious problem, the
implementation of our procedures is straightforward.

We implemented FORTRAN computer codes to perform the two main activities in
estimating the conditional mean: choosing the degree of smoothing and estimating the lag, i.e.,
number of previous observations directly affecting the present observation.

Empirical estimates of the lag may enhance understanding of the processes generating the
data. In many cases, we have a good idea of a value for the lag. For example, in ordinary
MUF sequences, a value of one is often a good first approximation for the lag. This is because
the ending inventory for MUF;., is the beginning inventory for MUF;. Therefore, if we ignore
the effects of systematic errors, the lag is one.

Our main goal is better detection of anomalies through use of the best techniques for
predicting future values of the time series. By best, we mean that the standard error of
residuals (MSEP) is minimized.

To illustrate nonlinear modeling, we compared the MSEP using two linear and three
nonlinear estimation methods as follows:

(1) Divide the time series vector into testing and training sets and assume no loss has

occurred.



(2) Use the training sei i estimate the conditional mean making either no assumption about
the functional form of the conditional mean or assuming that the conditional mean is linear.
(3) Compare the MSEP evaluated in the test set for the linear and the nonlinear methods.

Regarding the MSEP, we have analyzed simulated data from the foilowing six time
sequences, each observed with error.

@ x=1-14 x,z.l +0.3x,.2 (nonlinear),
(®) x;=4x,.1(1-x.1) (nonlinear),

(©) X;=ag+ bie;.1 + baey.2 + ¢ (linear),
(d) X;=ap+a1X,1+axX;2 +e; (linear),
(¢) X;=ap+ bje.) +e (linear), and

() X;=ap+a)X;1+e; (linear).

We have used lower case for the two nonlinear time series, (a) and (b), because we
generated the data dzterminisiically and then added observational error. Specifically, we
generated the x;'s and then added independent N(0,0.052) random variables to represent
observational errors. For the lincar series, the errors were independent N(0,1) random
variables. Therefore, the theoretically lowest achievable MSEP is 0.0025 for series (a) and
(b), and 1 for series (c-f). For each of the six time series, we generated training vectors with
1000 observations and testing vectors with 1000 observations. The MSEP:s for two methods
of linear estimation and for three types of nonlinear estimation are shown in Table I for the
six cases. We include the sample variance s2 for each case because s2 would be the MSEP if
we used the sample mean as the predicted value. )

In Table I, the first linear method is denoted Linear], the second linear method is denoted
Linear2, and similarly for the three nonlinear methods. The first linear method fits the best
possible autoregressive moving average (ARMA) model to the observed sequence. The second
linear method fits a linear model to the regression of X; on X;.; or on X,.; and X,.,
depending on which gives a better fit.



S
Table I. Simulation Results for Mean Square Error of Prediction (MSEP)

Series s2 Linearl Linear2 Nonlinearl Nonlinear2 Nonlinear3

a 0.53 0.47 0.46 0.06 0.01 1.21
b 0.13 0.13 0.13 0.02 0.10 0.94
c 1.36 0.98 1.14 1.48 0.821 0.37
d 1.68 0.98 0.99 1.05 0.60 0.84
€ 1.14 1.01 0.99 1.01 0.87 1.48
f 1.30 1.00 0.98 1.00 0.76 0.80

The first nonlinear method is a conditional mean estimator. For the lag = 1 case, our

estimator is

- x X x-X; X
M(x)={— 2 X 5)
n-1 j=1 nJ=l

where x is called the kernel. It is usually assumed that x(x) evaluated at x =0 is the maximum

value of x, and that (x) is a decreasing function of [x| It is usually further assumed that x is

a symmetric probability density function such as the standard normal density. The parameter h
is the bandwidth, which determines the amount of smoothing. For more detail, see Ref. [5]
but the idea in Eq. (5) is straightforward. We have » observations, X;,X3,--+,X,, and seek an

estimate of X, given the value X; = x. The idea is to use all of the first n— 1 observations,
but weigh most heavily the observations that are most near the value x. The extension to
higher lags is straightforward. We present results here only for the lag one case for the first
nonlinear method. The second method is different fmm the first method in that the second
method does attempt to estimate the lag and uses a different method to choose the bandwidth.
Using the second method, the best estimate of the lags for time series (a) through (f) was
d=5,2,2,2,2,and 1, respectively, whereas the correct lags are 2, 1, 2,2, 1, and 1. The
third nonlinear method is a computationally intensive method which appears to be an

inconsistent performer in our experiments to date. The method uses the k nearest neighbors of



each point io fit a local linear model at that point. The overall model is then piecewise linear,
but can be made to look rather smooth if the pieces are sufficiently short.

In Table I there is not much difference in MSEP between the two linear methods except
for series c where Linear] gives a lower value. We expect the second linear method to perform
worse on MA models than the first linear method because the second linzar method relies on
the true time series being an autoregressive series. Similarly, all three of our nonlinear
methods are designed for autoregressive series. However, it is possible to extend our
nonlinear methods to accommodate MA models. The details of this extension can be found in
Ref. [10].

In comparing the linear methods to the nonlinear methods, note that cases a and b are the
only nonlinear series. For series a and b there is a clear advantage in using the Nonlinear] over
the linear methods. However, notice that the other two nonlinear methods do not perform
consistently. In fact, because the error variance fo: the two linear time series was 1.0, the
theoretically lowest achievable variance for predicting them is 1.0. Therefore, Nonlinear2 and
3 sometimes give misleadingly low estimates of the true MSEP. We currently have no
explanation for this behavior. At present we prefer the relative simplicity of Nonlinearl and are

pleased with its performance on both linear and nonlinear time series.

4. SUMMARY AND CONCLUSIONS

Both the multivariate process fault detection and the nonlinear time series methods are
fairly easy to implement. With respect to safeguards, the main issue is whether internztional
inspectors will be grantea access to the larger amounts of data expected from modern
reprocessing plants. Until such data are available, we can only test our methods on simulated
data.

For the three-tank problem, univariate tests on individual variables as well as on
individual principal components were equally effective at detecting losses of material. Because
the principal components are linear combinations of individual variables, they might be

10



expected to provide more sensitive detectioi. of outliers or faults for situations where two or
more correlated variables are affected by a fault. With this simulation, the correlations were not
strong enough to observe this effect. Multivariate tests based on the Mahalanobis distances
Were never as sensitive as the univariate tests probably because the sensitivity is diminished
somewhat by those variables rot affected by a leak. The leak with replacement scenario was
detected with slightly more sensitivity than was the leak without replacement perhaps because
replacing the lost volume with water affects four variables (density and the concentrations of
nitric acid, plutonium, and uranium) rather than just one as does a leak without replacement.

For univariate time series, our current recommendation is to include techniques that can
test for nonlinearity in a package of evaluation methods for time series. If tests do not indicate
nonlinearity, there is no need to apply nonlinear estimation methods. If tests do indicate
nonlinearity, we recommend using nonlinear techniques for estimating the expected value of an
observation in the time series sequence. Presumably, if a time series sequence fails the tests
for linearity, future expected values will be a nonlinear function of some subset of the previous
observations. Another potential advantage of nonlinear modeling could result from an
improved understanding of mechanisms generating the data through detection of unexpected
functional dependencies. Thus, for reasons other than anomaly detection, we may wish to
analyze time sequences containing many elements using nonlinear methods should they become
available in the future.

Judging from results obtained using simulated data, the multivariate process control
methods will improve our ability to detect loss by exploiting the redundancies between modeled
and measured variables. The nonlinear time series methods perform as well as linear methods
when the true functional form is linear and outperform the linear methods when the true
functional form is nonlinear. However, the price paid in both cases is that more measurements

must be made.
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