

Conf -941175--1

PNL-SA-24795

SPENT CATALYST PROCESSING WITH ELECTROCHEMISTRY

L. J. Silva
L. A. Bray
J. G. Frye
M. F. Buehler

November 1994

Presented at the
The Eighth International Forum on Electrolysis in
the Chemical Industry
November 13-17, 1994
Lake Buena Vista, Florida

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

MASTER

Pacific Northwest Laboratory
Richland, Washington 99352

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

OT

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

SPENT CATALYST PROCESSING WITH ELECTROCHEMISTRY

*The Eighth International Forum on
Electrolysis in the Chemical Industry*

November 13-17, 1994
Lake Buena Vista, Florida

L.J. Silva, L. A. Bray, J.G. Frye, M.F. Buehler
Pacific Northwest Laboratory^(a)
Richland, Washington 99352

EXTENDED ABSTRACT

Increasing concern for pollution prevention and waste disposal has created a need for clean alternatives for spent catalyst processing. In addition, expanded use of catalysts for the production of fuels and chemical feedstocks will continue in response to 1) economic pressure to upgrade heavier crudes and other feeds having high levels of impurities, 2) competitive pressure to achieve higher conversions using less energy, and 3) pressure to increase reaction selectivities to minimize waste production. While the incentives for using catalysts are great, all catalysts gradually lose activity through coking; poisoning by metals, sulfur, or halides; or loss of surface area from sintering at high process temperatures. Regeneration is possible where the catalyst deactivation can easily be reversed. However, the economic life of a catalyst is ultimately limited by regeneration costs and extent of irreversible deactivation.

Electrochemical dissolution is a new technique to oxidize catalyst contaminants and dissolve catalyst metals in an aqueous solution for further recovery of the raw materials. The key to this process is adding spent catalyst to a solution containing small amounts of species that form kinetically active, strongly oxidizing ions such as cerium(IV) or silver(II). The oxidizing ions are regenerated at the anode; they act in a catalytic manner carrying electrons from the solid surface to the anode of the electrochemical cell.

A cerium oxidizer was used for the experiments described in this paper. For this procedure, solution is added to the anode side of an electrochemical cell. At the anode, aqueous cerium(III) is oxidized to cerium(IV). The cerium(IV), in turn, oxidizes organic material adhered to the catalyst to carbon dioxide and water. Many spent catalysts used in hydrogenations contain metal sulfides that have contaminated the catalyst surface during processing. Metal sulfides are oxidized to dissolved metal ions and sulfur species. Because cerium is continuously reoxidized to cerium(IV) at the anode, a small amount of cerium is needed to oxidize the spent catalyst.

(a)Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

COPPER CHROMITE CATALYST

Copper chromite catalysts are used to reduce functional groups while maintaining the unsaturation of aromatic rings or alkyl chains. This class of catalyst is widely used in the oil and fats industry. Some copper chromite catalysts are stabilized with barium or manganese to slow reduction of the catalyst. It is not economic to treat spent copper chromite catalyst using conventional catalyst recovery methods because it is very insoluble even in concentrated acids or bases.

Fresh copper chromite catalyst was dissolved within 10 minutes using cerium(IV) oxidation in an electrochemical cell. No apparent dissolution was observed for electrochemical dissolutions without a redox agent such as cerium, or for dissolutions using acid alone.

A barium salt precipitate formed as the catalyst dissolution proceeded. The barium salt was filtered and easily dissolved in water. Therefore, the barium can be recovered separately from the other catalyst components and returned to the catalyst manufacturing processes in desired amounts.

Cerium was selectively precipitated from the dissolved mixture by neutralizing the solution with ammonium. The cerium can be recovered and returned to the dissolution step. The remaining solution, containing copper and chromate ions, could be used as feedstock to produce fresh copper chromite catalyst. Two methods for preparing copper chromite catalyst are decomposition of copper ammonium chromate and decomposition of copper chromium nitrates. The solution could be returned from the catalyst preparation step for reuse in the dissolution step. A proposed flow scheme was prepared for processing spent copper chromite catalyst by cerium(IV) oxidation.

PETROLEUM HYDROTREATING CATALYST

Metals such as Ni, Mo, Co, or W are commonly used in catalysts used to improve the quality of fossil fuels. The metals are conventionally incorporated on a support material and used in fixed-bed reactors. Recent developments include research using unsupported catalysts combined with liquids in a slurry reactor system to improve reactions for coal liquefaction or very heavy petroleum. Most of this research has focused on using iron as a cheap, disposable catalyst. However, this catalyst recovery technique could make more expensive metals more attractive.

An unsupported hydrotreating catalyst sample was prepared by deactivating fresh catalyst via coking and metal deposition. The spent catalyst sample contained the original catalyst metal plus contaminants such as Ni, V, S, carbon and hydrocarbons. The sample was pretreated to remove some of the adhered hydrocarbons. Pretreated samples completely dissolved in about 15-30 minutes using cerium(IV) oxidation in an electrochemical cell. Results from inductively coupled plasma/mass spectrometry analyses showed that the ratios of dissolved metal concentrations were about the same as the ratios of metals in the spent catalyst. For this case, then, the dissolution was not selective for particular catalyst components. After complete dissolution of the solid, the acidity of the anolyte was adjusted. The oxide of the transition metal used for the fresh catalyst subsequently precipitated.

An experiment was also conducted in which spent catalyst was contacted with nitric acid solution overnight without an oxidizer present. The solids did not dissolve under these conditions, but did dissolve within a few minutes after adding cerium(IV). Therefore, an oxidizer is needed for this process.

Electrolysis 1994

Spent Catalyst Processing With Electrochemistry

*The Eighth International Forum on
Electrolysis in the Chemical Industry*

Environmental Electrochemistry

L. J. Silva, L.A. Bray, J.G. Frye, M.F. Buehler

November 13-17, 1994
Lake Buena Vista, Florida

Pacific Northwest Laboratory

Spent Catalyst Processing With Electrochemistry

All catalysts deactivate due to . . .

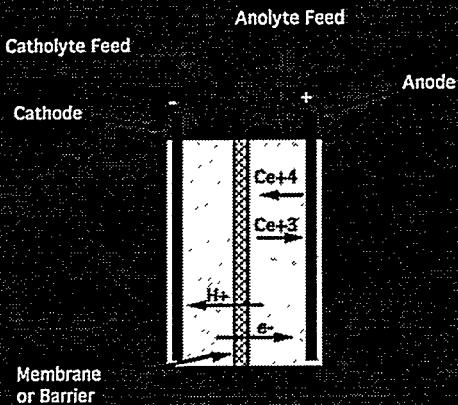
- accumulation of contaminants
- undesirable physical changes

Premise: *Opportunities exist for clean, innovative spent catalyst processing methods for waste treating, materials recovery, or re-manufacturing fresh catalyst.*

All catalysts deactivate due to . . .

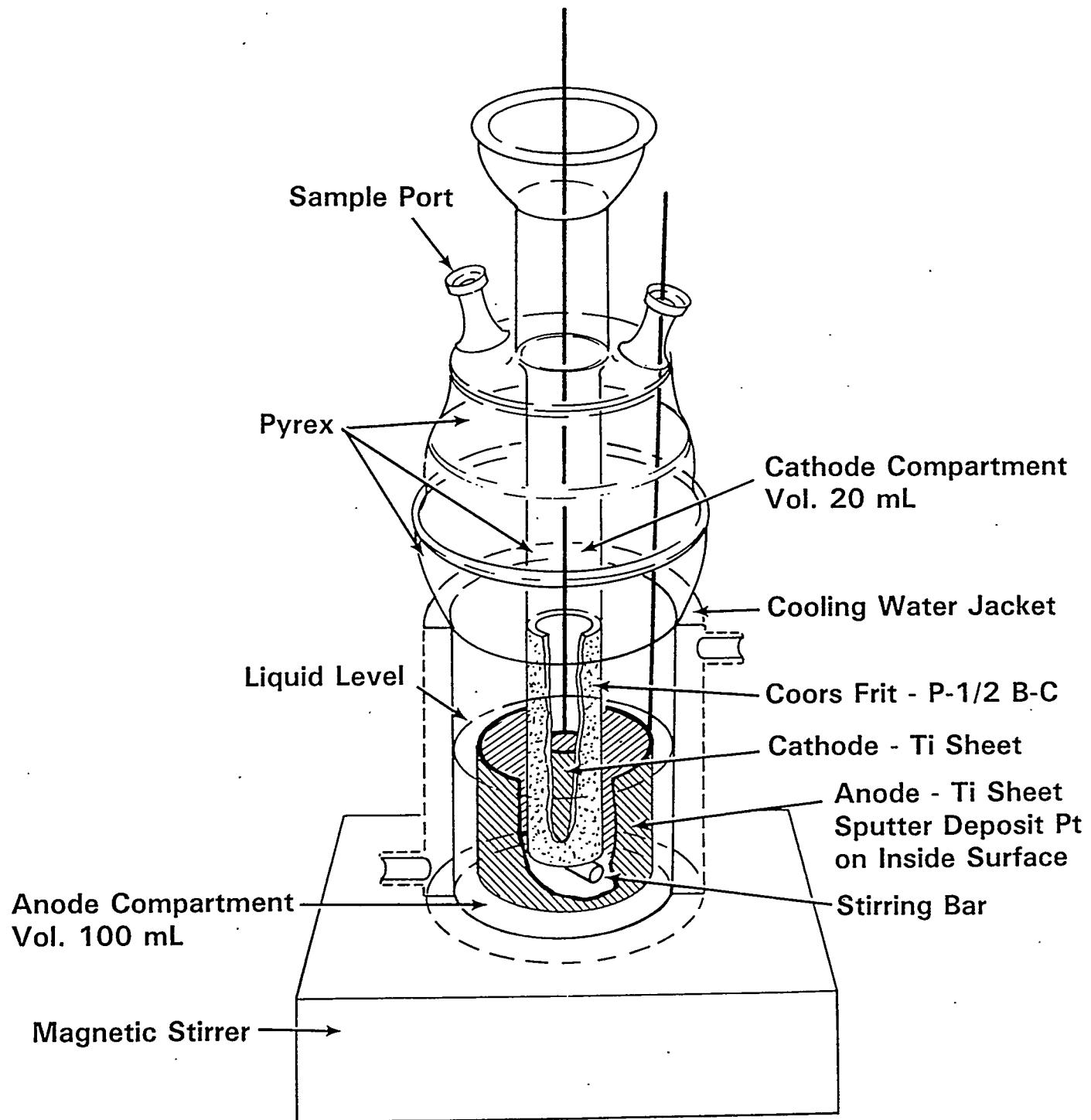
Indirect Oxidation Couples

or


Indirect Oxidation Couples

Net Anodic Reactions

- Oxidize organics to CO_2
- Oxidize sulfides to aqueous sulfur species
- Dissolve and/or oxidize elemental metals or metal cations
- Oxidize water to oxygen

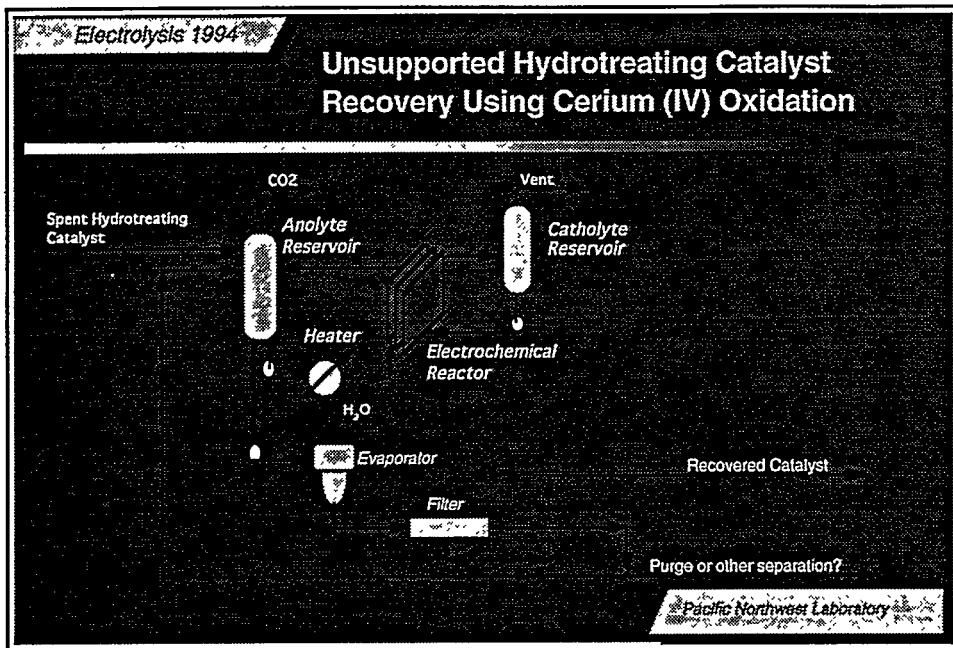

Net Anodic Reactions

Electrochemical Dissolution Schematic

Pacific Northwest Laboratory

Electrochemical Dissolution Schematic

Hydrotreating Catalyst Experiment


- Spent experimental catalyst
 - Unsupported transition metal (i.e. Ni, Mo, Co, or W)
 - About 66 weight percent "coke" on catalyst
 - About 34 weight percent metal sulfides
 - Ni, V, Fe contaminants
- Screening batch contact experiments in HNO_3 solution
 - Most solids dissolved within 20 minutes with Ce^{+4}
 - No dissolution without Ce^{+4} , even overnight

Hydrotreating Catalyst Experiment

Electrochemical Experimental Results

- 0.5 M cerium nitrate, about 2 M nitric acid
- Platinum-coated anode, 185 mA/cm², 8 V
- No catalyst dissolution at ambient temperature
- At temperatures near boiling, sequential dissolution of samples dissolved in 15-25 minutes
- A total of 0.17 g spent catalyst dissolved in about 10 mL
- No significant selectivity of metals dissolution
- Ceric sulfate/sulfuric acid system was not as effective and resulted in precipitation of another solid phase (cerium sulfate?)

Electrochemical Experimental Results

Unsupported Hydrotreating Catalyst Recovery Using Cerium (IV) Oxidation

Copper Chromite Catalyst

- Various formulations of CuO and Cr_2O_3
- Used for hydrogenation (oxidized) or dehydrogenation (reduced)
- Stabilized with barium or manganese
- Screening batch contact experiments in HNO_3 solution
 - All solids dissolved within minutes at 80°C with Ce^{4+}
 - Slight dissolution after 30 min. at boiling with no Ce^{4+}

Copper Chromite Catalyst

Electrochemical Experimental Results

- 0.1 M cerium nitrate, about 4 M nitric acid
- Platinum-coated anode, 185 mA/cm², 5 V
- Ambient temperature
- Barium salt begins to form when solubility limit is exceeded
- Sequential dissolution of samples dissolved in 10-25 minutes
- A total of 26 g of fresh catalyst dissolved in about 100 mL
- Control experiment showed no dissolution without cerium

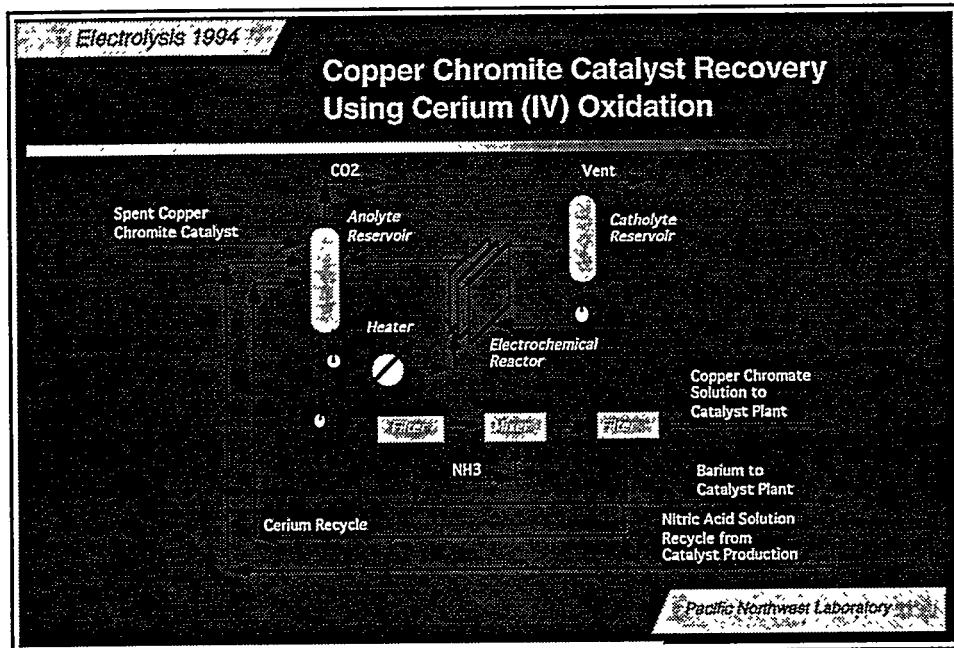
Pacific Northwest Laboratory

Electrochemical Experimental Results

Results with Silver Couple

- 0.1 M silver nitrate instead of cerium
- other conditions same as with cerium experiment
- less dissolution of solids
- precipitation of red solids (silver chromate or dichromate?)

Results with Silver Couple


Completing the Cycle

*Is the product solution suitable for direct
re-manufacture of fresh copper chromite catalyst?*

Conventional methods for manufacture are:

- decomposition of copper ammonium chromate
- decomposition of copper chromium nitrates
- decomposition of precipitated copper ammonium chromium carbonates
- grinding or heating together copper oxide and chromium oxides

Completing the Cycle

Copper Chromite Catalyst Recovery Using Cerium (IV) Oxidation

Finally...

- Qualitative proof-of-concept tests indicate potential for electrochemically treating spent hydroprocessing and copper chromite catalysts.
- What about other spent catalysts or other complex solid wastes?

Finally...