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Abstract

Many safety (risk) analyses depend on uncertain inputs and on mathematical models
chosen from various alternatives, but give fixed results (implying no uncertainty).
Conventional uncertainty analyses help, but are also based on assumptions and models, the
accuracy of which may be difficult to assure. Some of the models and assumptions that on
cursory examination seem reasonable can be misleading. As a result, quantitative
assessments, even those accompanied by uncertainty measures, can give unwarranted
impressions of accuracy. Since analysis results can be a major contributor to a safety-
measure decision process, risk management depends on relating uncertainty to only the
information available. The uncertainties due to abnormal environments are even more

challenging than those in normal-environment safety assessments; and therefore require an
even more cautious approach. A fuzzy algebra analysis is proposed in this report that has
the potential to appropriately reflect the information available and portray uncertainties
well, especially for abnormal environments.
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Introduction

Many safety (risk) analyses depend on uncertain inputs and on mathematicalmodels

chosen from various alternatives, but give fixed results (implying no uncertainty). While
• solving these types of problems may give insight to the analyst (an importantbenefit),

there is a possibility that such results can give others an unwarranted impressionof
° accuracy. There has been considerable noteworthy work [e.g., Refs. 1-6] on this problem,

specifically emphasizing measures of uncertainty associated with analytical results and
decisions. Conventional uncertainty analyses help, but are also based on assumptions and
models, the accuracy of which may be difficult to assure. Some of the models and
assumptions that on cursory examination seem reasonable can be misleading. As a result,
quantitative assessments, even those accompanied by uncertainty measures, can give
unwarranted impressions of accuracy. Since analysis results can be a major contributorto
a safety-measure decision process, risk management depends on relating uncertaintyto
only the information available.

Safety analyses are frequently based on probabilities (e.g., probabilistic risk assessments).
This approach almost always depends on models using logic structures (e.g., faulttrees
and event trees). It is appropriate to also consider "uncertain" inputs. The input
uncertainty may be due to variability of potential input values, interpolationor
extrapolation, measurement or human error, disagreements in interpretation, problem
specification language vagueness or ambiguity, assumptions, simplifications or
approximations, instrumentation resolution limits, sampling variability,etc.

One approach to describe input uncertainty is to use probability density functions. For
most safety problems, this is an approximation, which introduces another contribution to
uncertainty. The use of fault trees and event trees and combinations (one of many
alternatives) implies properties that are often difficult to meet (discussed subsequently),
which introduces additional uncertainty. Even the manner in which the results are
presented can be varied, thereby varying the impression given to a decision-maker. The
analyst is another important factor. It is tempting for analysts to focus so much on
mathematical correctness that they may lose sight of some of the contributions to
uncertainty. The literature on attempted verification of "confidence limits," for example,
demonstrates that these are generally underestimated [Ref. 3, pp. 57-59]. Also, review of
unexpected-accident histories reveals numerous situations for which assurance based on
safety analysis was overly optimistic.

The uncertainties due to abnormal environments are even more challenging than

"conventional" (normal-environment) safety assessments, and therefore require an even
more cautious approach. Although uncertainty must be handled very carefully because of

•_ the above factors, safety analyses still afford the capability to contribute valuable
information, since there is some semblance of natural order in almost all situations. The
challenge is to do the best job possible of utilizing somewhat predictable phenomena,



without being misleading about the uncertainty involved. This is the type of perspective
that is most useful for the recipient of analytical results.

A fuzzy algebra analysis is proposed in this report that has the potential to appropriately
reflect the information available and portray uncertainties well, especially for abnormal
environments. Following a brief summary of uncertain-variable probabilistic operations "
and calculus, the application of fuzzy algebra is described, with emphasis on the
differences (in concept and applicability) between the two approaches. The differences do
not preclude transition from one to the other based on the amount of input knowledge
available.

Frequentist and Bayesian Probability

, Most treatments of uncertainty are probabilistic in nature. For example, an input might be
modeled to have a probability density function (over ranges of probabilities):

dl"( x )
f(x) = ---- , (1)

dr

where fix) is a probability density function, and F(x) (the probability distribution fimction)
is the probability that a variable has a value (for our purposes, a probability value) less
than or equal to x. Integrating f(x) over all possibilities gives 1 (by convention, probability
values are between 0 and 1):

y_,ftx)dx = ! (2)

Data for such a function might come from sufficient trials to convince oneself that the
model was appropriate (frequentist approach), or they might be derived as a subjective
expectation based on sparse data (Bayesian approach) [e.g., Re[ 7]. There are many
mathematical models for probability density functions (and distribution functions), each of
which has associated conditions that must be met (usually approximated) for validity.

X 2

e 2

An example probability density function, f (x) = _, is shown below.
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Figure I. A Probability Density Function (Unit Gaussian)



The distributions of the results of logical and algebraic operations on random variables can
be calculated using integral calculus I [Ref. 8, pp. 121,129, 409]. For example, the density
function of the sum of two independent random variables is (see Appendix 2):

frY) = y. fl (x)f,_ (y- x)dx (3)

8

The density function of the product of two such random variables (which are nonnegative,
since they are probabilities) is (see Appendix 2):

V/' (y / x)dxf(y) (4)Jo x

The complexity of the required analysis is inconvenient, but not overwhelming.
The distribution of functions of random variables can also be computed in other
ways. For example, Monte Carlo simulation is sometimes more efficient, and may
be more applicable where the input distributions are estimated from data rather
than assumed [Ref 6].

Fuzzy Algebra

Probability density (or distribution) concepts provide a framework in which uncertain
parameters can be described and operated on mathematically, transcending some of the
limitations of fixed numbers. Fuzzy logic [e.g., Refs. 9-13] also extends capabilities
beyond fixed numbers. Fuzzy logic first emphasized set membership [Ref. 9]. "Crisp"
(conventional) set membership is fixed (an element is either a member of a set or it isn't).
However, an entity can have some of the characteristics of more than one set description
(e.g., a person's hair may be somewhat black and somewhat gray). Like probabilistic
calculus, Fuzzy algebra also can be applied to introduce variability to fixed parameters.
For example, an uncertain parameter can have some of the characteristics of more than
one number (e.g., "approximately" five may indicate a range of real numbers including, but
not limited to, five). Fuzzy models can therefore be applied to represent uncertainty of
parameters in probability analysis [Ref 14], and this has some similarity to strictly
probabilistic descriptions. However, fuzzy algebra differs from probabilistic calculus both
mathematically and in concept. It appears to be more appropriate for the uncertain inputs
applicable to abnormal environments, particularly if probability distributions are unknown
and must be assumed. Before exploring this, some mathematical background is helpful.

J
A fuzzy number (formally a convex and normal fuzzy set) can be represented
mathematically [Ref. 10] as:

A"(x)=A_=[a_,a_] , (5)

ITransform techniques can be similarly used.



where the a_ and a 2 values on x represent the lower and upper limits, respectively, of the
variation possible for the number as a function of or, and ot is a "level of presumption."
The level of presumption represents a collection of subjective judgments 2 about the range
specified. One must be more presumptuous in order to specify a narrower variable range .
(maximum level of presumption is presumption of minimum uncertainty). The "normal"
restriction fixes the maximum level of presumption at I and the minimumto 0.3 An
example fuzzy number (over the real numbers) is shown below; this is called a triangular
fuzzy number (TFN). A few other examples of fuzzy numbers are given in the
Appendices.

Ot

1

0 3 5 7 x

Figure 2. An Example of a Triangular "Fuzzy" Number (e.g., "Approximately" 5)

The graphical representations of fuzzy parameters should be viewed in a horizontal sense.
That is, one should think of the function as representing the end points of intervals within
which the parameter lies. If a particular value of presumption, a, is selected, a horizontal
line can be drawn that intersects the ordinate at ot=a. The two points where the line
intersects the function represent the lower and upper bounds for the parameter at the
specified presumption level.

Fuzzy addition is specified 4 as:

Aa+ B" =[a_ + b_,a_ + b_] . (6)

Fuzzy subtraction is:

Q
_t

A_-B_=taT-b_,a_-b, ] (7)

t

2preferably from "experts," preferably based on data (even if limited), and possibly weighted according to
expertise.
3Note that this can sacrifice some uniformil)', e.g., if various inputs are judged by various persons or
groups.
4Fuzzy arithmetic can also be derived using the "extensian pnnciple" [Refs. 10, 141.



Addition and subtraction of TFNs yields a TFN (because these are linear operations).

Fuzzy multiplication is-

- A=xB_ ,, = ==[a,b;,aib;] (s)

• Multiplication of TFNs does not yield a TFN, because multiplication is a nonlinear
operation. This is demonstrated in Appendix 2, where algebraic expressions for the results
of addition and multiplication are given. Note that the above fuzzy algebra operations
only utilize ranges of values, and make no use of or assumptions about relationships
between probability parameters, or of independence between probability parameters.S The
applicability of the operations shown is useful for parameters for which relative
probabilities and independence are not well known (a common situation). On the other
hand, probabiF,stic operations are limited to parameters for which these characteristics are
well known (a less common situation).

A useful aspect of fuzzy algebra is that accuracy (and uncertainty) of the results is not
significantly affected by some common mathematical simplifications. For example,
linearizing muitiplicative nonlinearities (e.g., approximating the product of two TFNs by a
"ITN) is appropriate for most abnormal-environment assessments. Deviation from iinearity
increases with the number of multiplicative operands, but so does the difficulty of finding
the independence necessary for multiplication to be valid. To emphasize this, we will
portray these boundaries with linear dashed lines.

It is informative to consider an illustration of the applicability of fuzzy algebra, including
its differences from probabilistic operations. Assume that four coins are to be flipped, but
that they have been deformed. The expected probability of four "heads" is to be assessed,
(e.g., as a threat to safety). If the coins could be subjected to frequentist experiments, or
if their geometry could be accurately measured, we could use conventional techniques. If
these data were limited (a typical abnormal environment problem), we could observe that
over a large number of such situations, four heads would be expected about one-sixteenth
of the time. However, fuzzy algebra assessment provides more appropriate information.

From the data given, we can only conclude that the probability of heads on any coin toss is
bounded between 0 and 1. As fuzzy multiplication demonstrates, the probability of four
heads is also bounded between 0 and 1. There is no way, based on the information
available, to preclude the possibility of four heads.

Although probabilistic assessment is not appropriate for this problem, it could be used if
sufficient information were available. Pursuing the example shows how results that

•" assume too much informatior, can be misleading. One might, for example, equate uniform
distributions across the interval [0, 1] with no information about the probabilityof heads

5However,treatmentof independence/dependencepropertiesis notprecluded.



for each coin. Although these density functions look similar to fuzzy descriptions, the

meaning is quite different. The resultant probability density function, fly) in Fig. 3, for
four heads is-(In y)3/6 (derived from Equations A2-8 and A2-9 in Appendix A2). This

function is largely concentrated near zero, indicating large confidence that for any four
coins, four heads is improbable, whereas no such concentcation occurs when fuzzy no-

knowledge descriptions are used. The concentration in probabilistic assessment arises °
from the assumptions of equal likelihood for probabiliti,?s and independence of coin
deformation. These would be impossible to assure for general abnormal environments.

The implication for abnormal-environment safety is that assuming more than is known can

iead to unwarranted expectations.

f(Y)
(probabilistic calculus)

level of presum ption
(fuzzy algebra)

1.0_ .........................................................
_

00 ....... - i0 s............... v
probability of four heads

Figure 3. Probabilistic Assessment Example (Four Heads; Deformed Coins).

Pursuing the example, we can demonstrate that liJzzy algebra is not limited to trivial
bounds. Suppose that "experts" have the opportunity to view the deformed coins. Their

experience may allow them to make qualitative judgments about the possibility of heads
for each coin. Furthermore, each expe._ may have varying leve!s of presumption in his or
her own judgment, and the level of expertise may vary from expert to expert. The
guidance provided for generating such descriptions is that the maximum level of
presumption (one) corresponds to the smallest range of values the expert would judge
plausible, and the lowest level of presumption (zero) corresponds to the largest range of

values the expert would judge plausible. This allows for a characterization of the fuzz7
input parameters by "level of presumption." The boundaries for abnormal-environment

inputs and outputs are estimated linearly. Assume !hat the expert judgments have been
consolidated (e.g., by a weighted combination) into the four graphs shown for the four

coins in Fig. 4 (as an example). Multiplication of the fuzzy input variables (Eqn. 8,
linearized) is appropriate only if the coins are independently deformed and independently
tossed (a restriction addressed subsequently). This leads to the output shown in Figure 4.

I0
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Figure 4. "Expert" Inputs and Fuzzy Algebra Output (Example)

The independence assumption above is convenient, but seldom assured. Questions would
arise about the relationship of the deforming process from one coin to the next, for

example Since independence is not assured, expert judgment on dependence can also be
useful. For example, the upper and the lower bounds on the range of values for four
heads can vary, depending on the amount of dependence. The fuzzy result is bounded as
indicated in Figure 5. Introducing another level of presumption from expert judgment
(reflecting amount of dependence) would be necessary if the indicated range were to be
narrowed.

Extreme Independence/ Extreme dependence

"I;xNump_o, _"" . ",

_o0.0 prob=bJty
Four Heads

Figure 5. Effect of Dependence on Example

In abnormal-environment safety assessment, the input probabilities are often not known
well, and the relations between possible probability values are not known well. The
independence or dependence between inputs may also not be known well. However, we
usually have access to expert judgment, along with limited data, which -"n be applied (to
the appropriate extent) using fuzzy algebra.

, The fuzzy algebra approach can transition toward the probabilistic approach as the amount
of knowledge increases. It is also possible to combine probabilistic variables and fuzzy
variables, as well as to combine probabilistic and fuzzy characteristics in the same variable

,#

[Ref. 10].
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Fault Trees, Event Trees, and Combinations

An undesired outcome (loss of system safety) can frequently be described logically,
leading to a "fault tree." The logical structure is _,. :nterconnected array of
representations for logic functions (e.g., "and" and "or"). These are mostly combinational "
in 1_ature(they do not handle sequences of events well). They are deductive descriptions
of how an unwanted event might occur, once such an event has been postulated. An •
example of a fault that can be caused by occurrence A or by the combination of both
occurrences B and C is shown below (assuming no other significant possibilities).

I L
B C

Figure 6. An Example (Simple) Fault Tree

The result of a sequence of occurrences can be described by a logical structure called an
event tree (also scenario trees and event sequence trees). Event trees represent the
sequence, each occurrence having two or more possible outcomes. They usually describe
sequential occurrences, although they can be used for combinational factors. Event trees
are inductive in nature, meaning that a starting occurrence is postulated, and it is necessary
to consider the possibilities for subsequent occurrences. An example of an event tree for
two coin tosses is shown below (assuming none remain on edge):

heads

heads

tails
start

heads

tails

tails

l

Figure 7. An Example (Simple) Event Tree

It is possible to glean most of the advantages of fault trees and event trees from
combinations of the two, as discussed subsequently. First, it is important to examine the
applicability of each.

12
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The probability that two events in a fault tree or event tree both occur is:

P(AtotdB) = P(A)P(BiA), (9)

" where the juxtaposition represents ordinary multiplication and the second term on the right
hand side of the equation is the probability of B conditional on A having occurred. This

, either requires that the conditional probabilities be known, or that A and B be independent
so that the probability of B occurring is not conditional on A. Similar extensions apply to
any number of variables.

The "or" operation, which is an essential part of fault tree analysis6 is:

P( AorB ) = P(A) + P( B) - P(AandB), (10)

where the plus and minus signs indicate ordinary addition and subtraction. The third term
on the right hand side of the equation is unnecessary if occurrences A and B are mutually
exclusive. This term can be omitted as an approximation if the probabilities of
occurrences A and B are vet3"small. When the term must be included, occurrences A and
B must be independent or the dependency must be known.

If A and B are uncertain variables, the independence consideration must be treated with
great care. For example, although probability distributions can be added, subtracted, and
multiplied; addition, subtraction, and multiplication of density functions cannot be
combined to solve the "or" function above (for uncertain variables), because independence
cannot be maintained for the operations. Therefore the solution is not nearly as
straightforward for uncertain variables. For fuzzy uncertain variables, this constraint
means that addition and then subtraction oft_eir product must be done at each level of
presumption, rather than first adding fuzzy parameters and then subtracting their product.
The above approach also extends to any number of variables. Each "or" function must
cover all possibilities conditional on being at that point in the fault tree.

The end result of a fault tree can be represented as a Boolean expression which can be
converted to minimal (Boolean simplification applied) "sum of product" form ("or" of
"ands"). The individual terms are called "cutsets." It should be noted that the overall
result is a Boolean sum, not an algebraic sum of cutset values. These differ because of
variables in common among the terms.

. The branches at a node in an event tree must represent "partitions," meaning that they
must be mutually exclusive occurrences and span all possibilities at that point in the event
tree. The accumulation of probabilities along a path in the event tree can be made by

" multiplying probabilities if they are independent (or if the conditional dependence is
known).

6E.xhaustingall possibilitiesforinputsis a particularlychallengingproblem.

13



The use of, and combination of, probabilities in fault trees and event trees also depends on
consistent units. For example, the probability of a lightning strike to ground is not

meaningful unless it is given as a probability that it occurs in a unit time interval or area.
The probability of heads on a coin toss is a probability per toss. The units of the two
examples above would not be generally compatible for fault tree or event tree "
combination.

There are manyother logical constructs that can be used in fault trees and event trees
(e.g., "inhibit,""not,:""priority-and," "exclusive-or"). The use of each of these implies
further limitingassumptions for the analysis.

The reason for pointing out these restrictions is that the recipient of the analysis results
may be misled as to the degree of uncertainty added to the results by the modeling
assumptions and potential inputs remaining unidentified. Lack of rigorous attention to
these restrictions is a significant source of uncertainty for quantitative safety analysis
results.

Fault tree and event tree structures are frequently combined. Accidents may be caused by
a sequence of occurrences (matching an event tree structun;). At each stage in the
sequence, combinations of factors can lead to a safety problem (matching a fault tree
structure). An example is given in Appendix 1.

Conclusions

Systematic treatment of uncertainty has been approached in a large number of ways, some
of which were reviewed above or in the references. Each of these approaches has
applicability in particular situations. Qualitative decision-making-assistance algorithms
[e.g., gef. 15] are becoming widely used because of quantitative analysis uncertainties.
However, these are mostly heuristic-based. For abnormal environments, fuzzy algebra
structured with an event-tree-fault-tree combination is a mathematically correct reflection
of the input data. It therefore could offer advantages over other approaches. This is
basically because fuzzy descriptions and the logical processing required are ideally suited
to the knowledge base for most abnormal-environment situations.

14



Appendix 1. An Example

An example will be given involving the risk of a safety system failure following a particular
type of accident. The probability of this type of situation can be expressed as

P (failure) = P (accident) P(responselaccident ) . (A 1-1)
J

In general, we would trace through a particular type of accident, using an event tree for
the accident, combined with a fault tree for the response to the accident. For simplicity of
illustration, only one specific type of accident was chosen for this example. One
specifically chosen response failure is evaluated (logical "and" of three independent
contributors. All inputs are represented both as probabilistic and as fuzzy variables. The
fuzzy values are chosen for illustration. There is no justification for the probabilistic
values; these are chosen only for range comparison. The result sought is the probability of
a safety failure per year for the particular type of accident. For illustration, all constraints
necessary for fault tree/event tree modeling are assumed to be satisfied.

The diagrambelow shows a combination event tree/fault tree.

Level of Probabilistic

P(no accident) er==,_ Product

1start ' ,: -". , Outputsfrom .__
z_" -7 -1 EventTree/FaultTree -22 -10"

P(accident) _o _o _o _oprobability Combination ._ probability

_" '='_ Fuzzy

' Probabilistic L.ve4oq
,;_,, Presump_ Product

1 ] ,' ",

10 -7 -1 __ " "10 Y

probability -28 -4
lo probability lO

P(responselaccident)Fuzzy _. Probabilistic
'_'_.

Levelof Product ,_/Presumption "_1_ Product

,,, ..
-21 -3 / I I -17 -7

lo probability lo A B C 10 10
Levelof _f j_ ,._\\ probability

_ll ",, Probabilistic
.. " Fuzzy

• !

-7 -1 -7 -1
10 10 10 10

._ probability probability

Figure AI. 1. (Simple) Example of Combined Fault Tree/Event Tree

The event tree branch is for the occurrence of some accident per year. The abscissa scale
for the inputs are shown logarithmically (proportional to the log to the base ten of the

15



probability). The outputs of the event tree are variables for which the lower and upper
limits and the spread (uncertainty) are directly affected by all event tree branches.

At this point, the response fault tree enters the computation. It shows that an undesired
response can be due to a logical combination of effects described by uncertain variables
(shown in fuzzy and probabilistic form). The fault tree output is also an uncertain variable
(also shown in both forms).

8

The final output upper and lower limits (and spread) are affected by both the event tree
output and the fault tree output. The combination ofthc event tree and the fault tree is
through multiplication, representing an "and_ operation, because the fault tree output is
conditional on the event tree output.

Examples even as simple as this tend to illustrate how spread (uncertainty) grows as a
result of the number of uncertain inputs. However, the spread indicated by probabilistic
calculus is much smaller than the fuzzy bounds because the assumption of probability
distributions implies extra knowledge. The general conclusions are that complex event
tree/fault tree structures for describing abnormal environment response are almost certain
to have substantial uncertainty, and the amount of uncertainty can be underestimated by
using probability distributionsthat overassume knowledge.

_°
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Appendix 2. Mathematical Details

This appendix summarizes some of the mathematical details on logical combinationsusing
• probabilistic variable calculus and fuzzy variable algebra.

Probabilistic Calculus

1. Addition of Two Random Variables

This approach is extendible to any numberof variables. Consider adding random variables
X 1 and X2 to obtain Y (Y = X I+X2)- Let the variables be described by probability
density functions (PDFs), f over x, and determine fly) for y sum values from knowledge of
fl(X) and f2(x). One solution (there are other approaches, e.g., through transforms) for
independent variables 7 is:

f (Y) = f'f_, Z (x) f 2 (Y- x)dx . (A2-1)

The convolution integral results from the additive inverse linear contributions required to
achieve a single sum from two contributors. As one operand increases, the other must
decrease linearly.

Example 1. As an example, consider the addition of two random variables, each uniformly
distributed between 0 and 1.

fl(x) f2 x)

Xl X2
1 1

0 1 x 0 1 x

Figure A2.1. PDFs for Two Uniformly Distributed Random Variables

Solving equation A2-1
J

0< y _<l:/(y) = [Yah: = y (A2-2)40

7Dependent functionality issimilarly accountedfor, but dependenceis usuallyunknown. Probability
valuesare nonnegative.

17



L1<y_<2:f(y)= d_ = 2-y . (a2-3)!

f(Y)

1

0 2 Y

Figure A2.2 PDF for the Sum of Two Random Uniformly Distributed Variables

Example 2. For two triangular density functions ranging from 0 to 1"

fllx) f2(x)
2

X X
0 1 0 1

Figure A2.3. PDFs for Two Triangular-Distributed Random Variables

Solving equation A2-1

0<_y <_l / 2:f (y) = 16_YoX(Y- x)dx = Sy 3 / 3 (.&2-4)

l/2<_y<_l:f(y)=16[ x(l_y+x)dx+ay__,2x(y_x)dx + ,2(l_x)(y_x)dx ]

g

= 8(-3y 3 +6y 2 -3y+ I/2)/3 . (A2-5)

The result is symmetrical in y about 1.

18
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Y
0 2

Figure A2.4. PDF for the Sum of Two Triangular-Distributed Random Variables

Example 3. For the addition of a random variable with a uniform density function to a
random variable with a triangular density function:

fltx ) f2 x)
2

X2

1

.. x .,x
0 1 0 1

Figure A2.5. PDFs for Triangular- and Uniformly Distributed Random Variables

Solving equation A2-1:

0 _<y _<1/ 2: f(y) = 4_oYYdx= 2y: (A2-6)

4 /,!/2 Slyl/2<y<l:f(y)= [Jo xa_+ (l-x)dxl=-l+4y-2y 2 (A2-7)/2

The result is symmetrical in y about 1.
8
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Figure A2.6. PDF for the Sum of Triangular- and Uniformly Distributed Random
Variables

2. Multiplication of two random variables

As with addition, this is extendible to any number of variables. Consider multiplying XI
and X2 to obtain Y(Y=XIxX2). The solution (for nonnegative values and independent
inputs) is:

f (Y) = fro_ (x)f: (y I X)d r . (A2-8)X

The structure is similar to addition, but the y/x functional dependence is to relate
multiplieative inverses that generate each value, and the denominator is because
derivatives in y are related to derivatives in x through the nonlinear inverse.

Example 4. Consider the multiplication of two random variables with uniform (0 to !)
PDFs (see Fig. A2..1).

Solving equation A2-8:

/(y) = =-Iny . (A2-9)

fry

\
\,

\

y
0 1

tl
Figure A2.7. PDF for the Product of Two Uniformly Distributed Random Variables
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Example 5. Consider two random variables, each ofwhich has a triangular PDF (see Fig.
A2.3).

• Solving equation A2-8 requires meticulous care in a_._urding for the integration ranges.
The ultimate result is:

O<y<O.25:f(y)= 16[ "(l-y/x)dx+ + ]
_ _ _ X 2

= 1612),+ 2ylnO.5+ylny-2yin(2y)] (A2-10)

fo, . e,(l- _)O-y/_)a_+[, yt]=._)a_
0.25< y<O.5: f(y)=16[j_, (l-ylx)dx.',-jos x ",, x 2 '

= 16[2-6y-2ylnO.5-1nO.5+ylny+2yln(2y)+ln(2y)] (A2-11)

0.5 _<y <__i:f(y) = 16[ _(1- x)(l -y / x)dr = 16(-2 + 2y-ylny-lny). (A2-12)
dy X

t(y) / \

\
" ".

0 1 Y

Figure A2.8. PDF for the Product of Two Triangular-Distributed Random Variables

Example 6. Consider multiplication oftwo random variables, one with a uniform PDF (0
to 1) and the other with a triangular PDF (0 to 1) (see Fig. A2-5).

Solving equation A2-8:

J'; _a[Ic Io (I-x)dx]t O<y<O.25:f(y)=4[ "dx+ +
5 X

_' = 4(-y-in 0.5) (A2-13)
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0.25 < y < O.5:f (y) = 4[__ . dr +,o5 r- +":y _c ]

= 4(-y-hi0.5) (A2-14)

P

-x)dr0.5<_y_< l-f(v) =4 =4(-Iny-l+y). (A2-15)

\

2 "t'x

Y
o I

Figure A2.9. PDF for the Product of Triangular- and Uniformly Distributed Random
Variables

Mean value computations depend on the calculation:

la=f'f_)f(y)dy. (A2-16)

The results applied to examples I-3 all give a mean value for y of i; the results for
examples 4-6 all give mean value 0.25.

Fuzzy Algebra

The presentation of fuzzy representations and of fuzzy algebra given in the report text is
generally the most mathematically straightforward. However, additional fundamental
understanding of processing can be given by an algebraic description. A fuzzy number can
be described algebraicallyas follows:

,4_-------_ct(x). (A2-17)

This means that the relationship for level of presumption can be expressed as a function of
X.

i

Given _(×), the sum of two variables is:

y(a) =x, (a)+ (A2-]8)

From tNs, _ can be determined as a function of y.

22



The product of two variables is:

y(ct) = x, (ot)x 2( ct) . (A2-19)

This can also be solved for a as a function of y.

An example algebraic description for a TYN is:
4

forO<_x<l/2,

a = 2x", (A2-20)

for l/2<x<l,

a=2(l-x)

Addition of the TFN to a similarly described TFN is solved as:

for O<_y <_1,

2x = y = a , (a2-22)

for I <y<_2,

2x= y= 2-tt ,

a = 2 - y . (A2-23)

Multiplication of the TFN to a similarly described TFN is solved as:

for 0<y< 1/4,

X 2 (X2=y= /4 ,

a = 2_ , (A2-24)

for l/4<y<l,
#

1:2 =y=(l-_/2) 2

2- 24 . (m-2s)

These techniques were used to solve six examples similarto those solved in the section on
probabilistic calculus, but with the ordinate functionality in terms of level of presumption
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rather than probability density. For comparison, the six examples posed probabilistically
and fimzily are shown in the following table.

Comparison Table for Probabilistic Calculus and Fuzzy Algebra

Probabilistic Sum:

1 "
1

0 1 = 1 x ii ¥

FuzzySum:
0_ Of2 Of

I

o' 't x 0 1 = 0 2 Y

Probabilistic Sum:

t(y)

0 1 0 1 0 2

Fuzzy_Sum:
0_] 0_: tZ
t

0 1 0 'I 0 2 Y
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Comparison Table for Probabilistic Calculus and Fuzzy Algebra (Continued)

Probabifistic Sum:

Jr . , jff
O: I 0 _ 1 . , •

Fuzzy Sum

t_: _2 tZ

x 1 ' '
O' 1 0 I • 0 2 Y

Probabilistic Product:

fltx) f2Ix) ] ; '.,\

1 t

!_[ -- y
0 1 x 1 x o I

Fuzzy Product:

(X 1 Gt., (X

l*] i, °1
1 I"

o 1 o 1 x 1 y
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Comparison Table for Probabilistic Calculus and Fuzzy Algebra (Continued)

ProbabilisticProduct:

x x
0 1 0 1 _ _ •

Fuzzy Product:

l

1 _',

1 xl _ , / .
/ .
.t

X X r _ _

o 1 o _ O' 1

Probabilistic Product:

,,t,_ 7" \

2 Xl _,

\

x _ y
0 O" 1 I

Fuzzy Product:
O_I O_2 O_

Xo 1 x y
O' 1 0 I
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