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ABSTRACT

Electromagnetic field calcu!ations for radio frequency (rf) antennas in two dimensions
(2-D) neglect finite antenna length effects as well as the feeders leading to the main current
strap. Comparisons with experiments indicate that these 2-D calculations can overestimate
the loading of the antenna and fail to give the correct reactive behavior. The 2-D calcula-
tions also predict that the return currents in the sidewalls of the antenna structure depend
strongly on plasma parameters, but this prediction is also suspect because of experimental
evidence.

To study the validity of the 2-D approximation, the Multiple Antenna Implementation
System (MAntIS) has been used to perform 3-D modeling of the power spectrum, plasma
loading, and inductance for a relevant loop antenna design. Effects on antenna performance
caused by feeders to the main current strap, conducting sidewalls, and finite phase velocity
are considered. The plasma impedance matrix for the loading calculation is generated by
use of the ORION-1D code. The 3-D model is benchmarked with the 2-D model in the 2-D
limit.

For finite-length antennas, inductance calculations are found to be in much more rea-
sonable agreement with experiments for 3-D modeling than for the 2-D estimates. The
modeling shows that the feeders affect the launched power spectrum in an indirect way by
forcing the driven rf current to return in the antenna sidewalls rather than in the plasma
as in the 2-D model. Thus, the feeders have much more influence than the plasma on the
currents that return in the sidewall. It has also been found that poloidal dependencies in the
plasma impedance matrix can reduce the loading from that predicted in the 2-D model. For
some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted
loading by as much as a factor of 2 from that given by the 2-D model.




1 INTRODUCTION

Waves with frequencies in the ion cyclotron (or gyro) range of frequencies (ICRF) have
been successfully used to heat plasmas and modify the operation of experimental fusion
devices. These radio frequency (rf) systems are attractive for many applications in fusion
reactors because they are reliable, effective, and relatively inexpensive. Applications for
reactors include the driving of steady-state currents, the stabilization of sawteeth, and the
auxiliary heating of plasma to ignition.

The coupling between rf antennas and plasma is often modeled in two dimensions with
variation in only the radial and toroidal directions [1]. This two-dimensional (2-D) approx-
imation eliminates any poloidal variation in the system and models the antenna as a loop
of current running around the entire poloidal extent of the plasma. Thus, the only poloidal
mode number, m, considered in the 2-D model is m = 0.

Concerns about the accuracy of this 2-D approximation arise from two physical consid-
erations. First, the cutoff density for the fast wave increases with increasing poloidal mode
number. Thus, the 2-D model can significantly overestimate the antenna loading for some
plasma parameters because an antenna with finite poloidal length can generate a significant
amount of power in modes with m # 0. A three-dimensional (3-D) model is necessary to
consider modes with m = (. Second, the 2-D model permits the plasma to respond uni-
formly over its entire poloidal extent. This freedom allows the plasma to carry an image
current that appears to “rob” current from the driven strap when viewed from a distance
that is greater than the separation between the strap and the plasma. As the plasma
“robs” current from the main strap in the 2-D model, nearby metallic structures carry a
reduced image current in response to the combined plasma and driven strap currents. In
three dimensions, feeders for the driven strap force currents to be returned in the antenna
structure. Thus, the return currents in the 3-D model are much less sensitive to the current
carried by the plasma than in the 2-D model. This inaccuracy in the 2-D estimate for the
return currents can be important when calculating the toroidal power spectrum launched
by phased array antennas for current drive applications.

The intention in this paper is to isolate the most important 3-D effects with a simplified
model. The dominant 3-D effects are illustrated by considering a schematic of a typical
antenna in relation to a tokamak plasma as shown in Fig. 1. Although the antenna is
fully three-dimensional, a full 3-D solution is not necessary over the entire domain of the
tokamak because the plasma does not vary in the toroidal direction (along the direction of
the magnetic axis). This fact immediately permits the use of periodic Fourier analysis in
the toroidal direction for solutions in the plasma region. The plasma is also weakly varying
in the poloidal direction, and neglecting this poloidal variation permits solutions in terms
of a set of uncoupled ordinary differential equations in the radial direction. Thus, in the
plasma region, a single equation can be solved in the radial direction for each toroidal and
poloidal mode.

A poloidal cross-section of an antenna that might be used in present-day tokamak designs
is shown in Fig. 2. The main feature shown in Fig. 2 is the driven current element. This
element consists of the current strap and the feeders that connect the current strap to
capacitors through a feedthrough in the conducting backwall. The current element in this
design is driven by an rf transmitter such that the current amplitude is at a maximum
near the center of the current strap. Also shown in Fig. 2 is the Faraday shield housing.




The housing typically consists of a solid conducting box including sidewalls for the antenna
(see Fig. 1) and septa that separate current elements in multiple element designs. This
conducting box is electrically connected to the the conducting backwall. Note that in some
designs, the conducting box does not entirely enclose the main current strap but does cover
at least most of the feeders.

This paper considers 3-D effects arising from two features that are illustrated in Fig. 2.
One feature is the plasma response to a current strap having finite poloidal extent; modes
with poloidal variation are excited by a finite-length antenna and have reduced wave number
in the radial direction. This feature is also of concern because the plasma cannot respond
to the antenna structure with simple currents flowing the entire poloidal distance around
the plasma. A second feature requiring 3-D analysis is the inductive coupling that occurs
between the current element and the conducting box (Faraday screen housing). This cou-
pling is three-dimensional because the feeders effectively provide a short to the conducting
backwall. These shorts produce radial image currents in the sides, bottom, and top of the
conducting box that affect the launched power spectrum. Neither of these effects is included
in a 2-D model.

Other features to be considered in a general 3-D model are shown in Fig. 2 but are not
explicitly considered in this paper. These features include the Faraday shield face tubes and
the protective bumper tile. The bumper tiles protect the Faraday shield tubes from plasma
in the scrapeoff layer and provide a sharp boundary for the plasma-vacuum interface. The
Faraday shield tubes are difficult to model explicitly because they represent a very strong
modulation in the poloidal direction; however, this modulation is very localized in the
radial direction. Magnetic flux passes easily through a well-designed Faraday shield, and
its primary function is to isolate electrostatic fields (mostly in the radial direction) from
the plasma. Thus, explicit modeling of the Faraday shield tubes is necessary only when
details for the fields near the tubes are needed. The electrostatic fields between the strap
and the shield tubes can be estimated by allowing for the varia.ion of the current along the
strap. Transmission-line analysis [2] is frequently used to described this variation using a
finite phase velocity, v4, where v, = Aw/27 and X is the effective wavelength describing the
current variation along the strap. Capacitive effects from the Faraday shield can cause vy
to be significantly less than the speed of light in a vacuum.

To analyze the dominant physical effects arising in 3-D, we model the layer between the
plasma and the conducting vacuum vessel shown in Figs. 1 and 2. This layer contains the
3-D antenna structure, and we treat this layer as a periodic slab in vacuum. We consider
the radial direction with the Cartesian coordinate, z, as shown in Fig. 3. The Multiple
Antenna Implementation System (MAntIS) code [3] is used to calculate the electromagnetic
fields in this vacuum layer for multiple current elements over a ground plane (see Fig. 4).
The elements can have nearly arbitrary orientation, and multiple elements are treated by
the method of superposition. These elements include currents in the poloidal and toroidal
directions at a fixed z location, and also include feeders that carry current in the z direction
to the ground plane. These feeders are chosen such that the current is continuous at the
corners of the current element.

The MAntIS code treats the plasma surface at z = 0 in Fig. 3 as a surface impedance.
The plasma surface impedance is calculated in the same manner as that used by Brambilla (4]
using a slab plasma model (radial variation of plasma parameters with uncoupled poloidal
and toroidal modes). The use of a slab plasma model is justified for the case of good



wave absorption in the plasma region, and the impedance match is described in detail
in Appendices A and B. The surface impedance is calculated once for a set of plasma
parameters using the ORION-1D code [5] and need not be recalculated for any change in
the current distribution in the vacuum layer. The Fourier analysis of the current elements
used by the MAntIS code is described in Sect. 2. The electric field solutions for these
elements are described in Appendix A.

The medeling is performed by placing current elements near the locations that are
known to carry significant rf currents. The currents carried by the current elements are then
prescribed in the model with no attempt at a fully self-consistent solution [6]. However,
the amplitudes and variation of the currents along the strep are adjusted to approximately
satisfy the appropriate boundary conditions for the antenna. The MAntIS code provides
rapid solutions for a known distribution of currents in the vacuum layer by using analytic
solutions to Maxwell’s equations for eacii mode in Fourier space. Fields in real space are
obtained from the Fourier solutions using fast Fourier techniques. Diagnostics pertaining
to the boundary conditions and visualization of the fields in real space are performed with
postprocessing programs.

The remainder of the paper is organized as follows. Section 2 contains a brief description
of the MAntIS code explaining the basic current elements used to model rf systems. Section 3
describes the current elements used in the 3-D modeling of two side-by-side rf antenna
structures including a septum. The model is chosen to be representative of antennas selected
for experiments in TPX. Section 3 also describes how the 3-D model behaves in the 2-D
limit and gives results from benchmarking the 3-D model with an existing 2-D antenna
code RANT [1]. Section 4 describes results obtained from the 3-D model and compares the
results with predictions by the 2-D model. These results show that 3-D effects can lead to
significant differences in the launched power spectrum from the spectrum predicted by the
2-D model. The primary source of these differences is traced to return currents that have
part of their path along the third dimension. A discussion and a summary of the results are
presented in Sect. 5. Appendix A gives a detailed description of the analytic solutions for
the basic current elements used in the MAntIS code. Appendix B describes the generation
of the plasma impedance matrix.



2 MAntIS DESCRIPTION

Maxwell’s equations for fields of the form E exp(—iwt) and known current distributions
are given by

2
V2E+‘:-2E—V(V~E) = —iwpoJ (1)

where E and J are complex quantities referring to the electric field and the current, respec-
tively. Following Figs. 1 and 2 and as discussed in Sect. 1, MAntIS solves Eq. (1) near the
antenna, assuming that the region can be modeled as a periodic slab.

Using a Cartesian coordinate system thh yin the poloidal direction and z in the toroidal
direction, we expand the components of Eand J using a complete periodic basis over the
range —1ra5y§1raand —tR<z2<7R,eg.,

(2,9, 2 Z Jmn(z)exp {i[(my/a) + (nz/R)]} , (2)
where the coefficients are given by

Fr@)= o [ [ Tey e (~ilmy/a) + (ne/R)} sy (3)

and where m and n are integers ranging from —oo to co. This expansion represents a slab
model for a torus with minor radius a and major radius R. (The explicit z dependence
notation will be dropped in most instances but is retained for emphasis in some equations.)

Charge conservation and Coulomb's law, V - J = iwp = iwV - E/(uoc?), can be used in

Eq. (1) to obtain second-order ordinary differential equations for the y and z componerts
of E,

d*Emm " o . R mn
d:z + kim- EM™ = —iwpg [_] + — — (V J_) (4a)
dz 2mn mymon . m,n lc n m
dz + EUTEST = —iwpo |, (V f) (4b)

where k2™" = w?/c? - m?/a? — n?/R?, and the notation (V : f)mm refers to the Fourier
components of the time derivative of the charge density, iwp™"(z). Solutions to Eqs. (4a)
and (4b) can be found if two boundary conditions for E]*" and E[*" are known, provided

that J is specified. The E*"™ component can be determined in terms of the solutions to
Eqs. (4a) and (4b) by Fourier analysis of the z component of Eq. (1), giving

mdET"  indE™"
k2m.n mn _ _ m,n i z
E iwpoJ™" + a d:n * R dz

(4c)

One of the boundary conditions needed to solve Eqs. (4a) and (4b) is an impedance
relationship between z x E and & x B at the plasma surface, z = 0 (see Fig. 3), where Bis
the rf magnetic field. This plasma surface impedance effectively determines the spectrum
for power flow through the plasma surface for any prescribed B by Poynting’s theorem.
The surface impedance is calculated using a modified version of the ORION-1D code [5].




The ORION-1D code solves Eq. (1) in a periodic slab using the warm plasma conductivity
tensor to calculate the plasma currents in the plasma region (z < 0). The impedance
matrix is generated by specifying the value of & x B™" for a single pair of wavenumber
indices, m, and n at # = 0 and using this value as the source term for the ORION-1D
code. The ORION-1D code calculates the resulting values for E/*"™ and E™™ throughout
the plasma region using finite-difference techniques and an artificial absorber to prevent
reflections from the conducting wall on the far side of the plasma slab. The values for the
impedance matrix are determined from the ORION-1D solution by taking the ratio of E*"
or ET™ at = 0 to the source magnetic field component. The details of this calculation are
given in Appendix B. The second boundary condition required to solve Eqs. (4a) and (4b)
is obtained by specifying the value of E, and E, at ¢ = d + a, (see Fig. 3). Typically
the choice for this boundary condition is Ey(z = d + ay) = 0 and E,(z = d 1 a,) = 0,
representing a conducting ground plane at z = d + a,,.

A superposition of basic current elements is used to model complicated antenna struc-
tures in MAntIS. These basic elements, illustrated in Fig. 4, describe the flow of current on
the surface of rectangular parallelepipeds. The elements are represented using the gradient
of a geometry function, f(z,y, z), that has a value of 1 inside the parallelepiped and of 0
outside. To prescribe J using f, we introduce a Cartesian coordinate system, (z',y’, z'),
associated with each element, as shown in Fig. 5. This coordinate system has its origin
at the center of the element and is translated relative to the coordinates for the plasma
by the values y. and z.. The element can be rotated around the z-axis by an angle, 8,
measured from the 2-axis, so that currents with nearly arbitrary orientation relative to the
plasma can be considered as shown in Fig. 5. The transformation from the plasma coordi-
nate system to the element coordinate system is z = z’, y = y. + y'cos(8) + 2’sin(6), and
z = z. — y'sin(@) + 2’ cos(f#). Heaviside step functions, @, are used to describe f:

f(z',¢,2") =0(z'~d) [9 (V+%)-0(@ - %)]
<lof#+8)-e(-§)] - ®)

The direction of the current flow for each element is described by f x §', where f = Vf/IVSl
and §' is the unit vector in the y' direction, as shown in Fig. 3. Note that the feeders
are included in the basic element and are arbitrarily chosen to be at z/ = +83/2. This
representation simplifies the model by constraining the currents to flow in the z’ direction
on the current strap at z = d and in the z direction on the feeders. Also, ¥V f provides the
delta function behavior for the current density in the appropriate locations.

The magnitude of the current flowing on the strap at z = d is described by a surface
current function, K(y, z), that is continuous and defined throughout the periodic domain.
Thus, the current density on this element is modeled by

J= K(y,z)g—f—(%;—y-’—?—z(cos 8z +sinfy) + J.z . (6a)

The current density on the feeders is chosen to be

- o | ine?f];
J: = —K(y,2) cosO(a.z +sm96y j=(2) (6b)




where the complex function, j.(z), describes the variation of current along the feeders.
Constraining the value of j.(z = d) = 1 ensures continuity of the currents flowing from
the main strap onto the feedeis at 2z’ = +3/2. This constraint forces the delta function
behavior at each end of the strap to be canceled analytically with the appropriate terms at
the end of each feeder. A general expansion for j, gives

je(e)= 3 inexplipn(a - d)/a (7a)
with o
i Jp=1 (7b)
and T
=g [ dele)expl-ipn(a - d)aulds (7

The step behavior in the geometry function, f, restricts the use of j, to the range from
z=dtoz =d+ ay.

The Fourier analysis for the geometry function is carried out by applying the example
of Eq. (3) to Eq. (5). The integration is carried out in the (z',3’, z') coordinate system,
where the step functions can be used to limit the range of integration. The result is

, Oz - d
mr(e) = exp{=il(myc/a) + (nze/ R))) 25—
sin{a[(m/a)cosd — (n/R)sinf] /2}
[(m/a)cosf — (n/R)sin 8]
sin {#[(m/a)sinf + (n/R) cosb] /2}

[(m/a)siné + (n/R)cos b (8)
for m,n # 0, and
(=) 4:;?;120(” - d) .

Fourier components of the currents are obtained by using convolutions of K with f. K can
be used to represent spatial variations in the driven rf current that arise from finite phase
velocity, e.g., K(y',z) = cos (wy'/ve). Using orthogonality of the basis functions, we find
the Fourier components of J from Eq. (6):

Jmn = Z K™

m' n'

' '
m-m n—n
Y !

m Iz (cos 0z + 8infy) + J'"& . (9a)

When a finite number of Fourier modes are used, twice as many modes must be retained
for the f function as for the K function to produce the correct J™" coefficients. In Fourier
space, the feeder currents are

JMt =T (z) = —i Y fmominen gmin
e (9b)
cos 0) j=(z) .

?

m-m' | n-n
sin @ +

(
A

a



The solution to Eq. (4) is obtained analytically for each Fourier mode by considering a
specified current element to be located in Region I, as shown in Fig. 3. In this region, the
solution is
;’I"" =AT"" exp [ikT"" (z — d - ay))

+ B""exp [~ikT™(z — d - ay)] (10a)
+ Py (z)

and

ot =Cr " exp (kT (z - d - ay))
+ D" exp [-ikT"" (2 — d - ay)] (10Db)
+P7(z)

where P7*"(z) and P]*"(z) are the particular solutions caused by any charge distributed
along the feeder. The coefficients, A", B{"", C["" and D[*", are determined by the
boundary condition at # = d + a,, and matching conditions at 2 = d. The homogeneous
solution to Eq. (4) between the current element and the plasma, denoted as Region II, is
given by

E;’I‘i" = A" exp(ikT"z) + Bfy'" exp(—ikT ") (11a)
Eji" = Oy " exp(ikT""z) + DI exp(—ikT"z) . (11b)

The coefficients, A;™, B'", Cir'" and Dp™, are determined by applying the plasma
surface impedance condition at z = 0 and matching conditions at z = d. The matching
conditions between Regions I and II are obtained by requiring continuity of E, and E, at
z = d and by integrating Eqs. (4a) and (4b) across an infinitesimally thin layer at z = d.
The detailed values for these coefficients using various choices for feeder currents are given
in Appendix A.




3 3-D MODELING AND 2-D BENCHMARK

To model a 3-D antenna, the ORION-1D code was first used to generate a surface
impedance for cold plasma. The plasma profile that was used, shown in Fig. 6, had a square
root parabolic dependance from the magnetic axis to the separatrix and an exponential
scrapeoff layer extending from the separatrix to the plasma surface. An absorber was used
on the high field side of the magnetic axis so that no power was reflected from the conducting
wall on the high field side of the tokamak. Other pertinent parameters for the plasma are
given in Table 1.

TABLE I. PLASMA PARAMETERS
FOR 3-D STUDY

Plasma parameters

Major radius, R 2.25 m

Minor radius, a 0.53 m
Plasma minor radius, a, 0.48 m
Central density, no 8 x 101 m~3
Separatrix density, n. 1.6 x 10'* m~3

Exponential decay length 0.02 m
Width of exponential region 0.05 m

Frequency, w 40 MHz

Central magnetic field, By 4 Tesla

Ion species deuterium

Poloidal mode range -50 to 50

Toroidal mode range —-200 to 200
Antenna module parameters

Element width 0.02m

Strap width 0.07m

Strap height 0.09 m

module width 0.14 m

module height 1.0 m
Distance from current strap

to backwall, a, 0.325 m
Distance from front of septum

to backwall, a, 0.3 m

The rf antenna to be modeled consisted of two antenna modules placed side by side in
the toroidal direction producing a septum in between two current straps and sidewalls on
either side. The current elements used by MAntIS to model the top portion of the structure
are shown in Fig. 7 (note schematic for the main straps). Dimensions pertaining to each of
the antenna modules are given in Table 1.

As shown in Fig. 8, two filaments were used to simulate the peaking of current near
the edges of each main strap. The amplitude and phase of the currents carried by the
filaments were varied to approximately satisfy the magnetic boundary conditions at the
septum and sidewall locations. These currents were initially adjusted by visually inspecting
the rf magnetic field at the locations where conducting boundary conditions are to be



satisfied. An automated method based on the magnetic flux through the septum was then
used for small changes in the currents. The filament locations were not varied. All currents
for the main straps were kept in phase with one another (frequently referred to as monopole
phasing).

The relative values of the currents modeling the septum and sidewalls (Fig. 8) were
initially determined with a gap between the plasma and main straps, d, of 0.025 m. This
distribution was found to be relatively insensitive to d. For subsequent runs with differ-
ent values of d, the currents carried by the septum and sidewalls were kept constant. The
boundary conditions were then satisfied by adjusting the amplitude and phase of the cur-
rents carried by the main strap. To satisfy the boundary conditions for both the real and
imaginary parts of the rf magnetic field, the phase of the currents in the main strap led the
phase of the currents in the septum by slightly more than = radians. The largest phase lead
was roughly = + 0.05 radians for the case d = 0.015 m and was negligible for d > 0.056 m.
This additional phase delay appears to be caused by the complex plasma impedance.

The procedure for satisfying the boundary conditions was automated by integrating the
z component of the rf magnetic field, B,, at y = 0, z = 0 along the septum between z = d,
and z = d, + 0.3 m. The current amplitude was adjusted until the real part of the integral
of B, along this line was zero, and then the phase was adjusted to make the imaginary part
of the integral of B, over the septum also go to zero. The norm used to determine zero was
the amplitude of the integral of B, between the plasma (z = 0) and the septum (z = d,)
at y=02and z = 0.

The validity of this procedure and the accuracy of the modeling was then benchmarked
by considering the 2-D limit and comparing the results with those from the 2-D code,
RANT. To model the 2-D limit, the filaments for the 3-D model were extended to the
full periodic length in the poloidal direction. In this limit, the currents carried by the
feeders overlap and completely cancel one another. This cancellation also occurs for the
elerrents that are used to model the top and bottom of the antenna box (Fig. 7). In the
2-D benchmark case the resuits of the 3-D filament model and the 2-D model agreed for
both real and imaginary power to within 10%. This agreement is very good considering
the different ways that the currents in the septum and sidewalls are calculated in the two
models. In the MAntIS model, only three elements are used for modeling the septum and
sidewalls, and these three elements were adjusted together to find the root for the flux
througli the septum. (The distribution between the three was the same as that selected for
the case with 1.0-m poloidal extent, shown in Fig. 8.) The 2-D RANT code calculates the
currents in the sidewalls according to boundary conditious on the fields in a way that is
self-consistent with the forced current in the main strap. The benchmark also shows that
the impedance matrix for the plasma response in the two models is consistent even though
calculated by two different methods—finite differences for ORION-1D and integration with
a WKB outgoing boundary for RANT. Thus, we conclude that differences in results found
for the 3-D model using MAntIS and those of the 2-D predictions using RANT arise from
3-D geometrical effects or the 3-D plasma response.
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4 RESULTS

For the first study of 3-D effects, constant current was maintained along all of the current
elements, producing zero divergence for the driven currents (no driven charge in the source
terms of the model). The poloidal extent of the antenna for the 3-D model was selected to
be 1 m, as described in Table 1 and Fig. 7. The effect of the plasma on the currents in the
septum and sidewalls was studied by varying the distance between the main current strap
and the plasma in both the 3-D and 2-D models.

A good measure of the effect of the plasma on each model is obtained by summing
all of the currents passing through the y = 0 poloidal plane and the conducting backwall.
The sum includes the current flowing in the main strap, the septum and sidewalls, and the
conducting backwall but not the plasma. This sum, normalized to the current carried in
one of the main straps, is shown in Fig. 9 for both the 3-D and 2-D models. As shown in
Fig. 9, the 2-D model predicts a significant value for the total current in the presence of
plasma. Note that the plasma induces both a real and imaginary component in the return
currents in the 2-D model. This total current in the 2-D limit becomes large as the plasma
is brought near the main current elements and is referred to as “current robbing” by the
plasma. As the figure indicates, the 3-D model for the finite-length antenna does not exhibit
the current-robbing effect but did show the current-robbing effect when the antenna length
was extended to the 2-D limit. For the 3-D model, a slight change (roughly 5% over the
range studied) in the ratio of currents in the main strap to the septum and sidewalls is
observed, but this change is canceled by currents flowing in the conducting backwall. (The
error bars for the 3-D data in Fig. 9 are an estimate of the error in calculating the return
currents in the conducting backwall using & finite number of poloidal modes.) Thus, the
3-D model shows that the current-robbing effect is an artifact of the 2-D model.

The reason for the lack of current robbing in the finite-length, 3-D model is that the
feeders, septum, and sidewalls of the antenna structure combine to provide a low-inductance
path for return currents. This path prevents the plasma from participating in the circuit
over the entire poloidal domain. The absence of both feeders and the top of the antenna box
in the 2-D model permit currents (including those carried by the plasma) to return throngh
the periodic boundary condition: a loop the entire distance around the plasma. This absence
of a short to the backwall in the 2-D model permits the plasma to unrealistically affect the
return currents in the septum and sidewalls.

The robbed current in the 2-D model can influence the spectrum of power launched in
the toroidal direction. This difference between the 2-D and 3-D predictions for the toroidal
power spectrum is illustrated in Fig. 10 by averaging over all poloidal mode numbers. A
significant reduction in the loading is caused by the depression for small toroidal mode
numbers for the 3-D model as compared with the 2-D model.

Another 3-D effect that reduces loading arises from the increased density required to
propagate modes with a nonzero poloidal mode number. This effect tends to be important
when the plasma density in the exponential region (see Fig. 6) is near the cutoff density for
the fast wave. For the parameters in Table 1, a significant portion of the antenna spectrum
can be cut off by the plasma. The effect is demonstrated in Fig. 11 which illustrates the
loading per unit length versus the length of the antenna. (The current distribution was not
varied during the calculation, and elements representing the top and bottom of the antenna
box were removed). For the longest antenna, only the m = 0 mode is excited, while for the
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shorter lengths a broader range of poloidal modes is excited.

Loading calculations made by the 2-D and 3-D models are summarized in Fig. 12 for
the case of infinite phase velocity, v4. For vy = oo, the distribution of current along the
current elements was a constant (V - J = 0), thereby eliminating any source term arising
from charge in the 3-D model. Note that the 2-D model always satisfies V - J = 0 for the
antenna currents, because m = 0 and only the y component of the electric field is retained.
The real part of the loading from the 2-D calculation has been reduced by a factor of 0.65
to account for end effects [9]. (Such a factor is always used for the 2-D loading predictions
based on vacuum measurements of the magnetic field near the antennas.) Because the
currents modeling the antenna are divergence-free, the stored energy in the electric fields of
the system is small and the imaginary part of the loading per strap can be approximately
estimated from (P;)/2 =~ wLI?/2, where L is the inductance and P; is the circulating
(imaginary) power. The power is divided by 2 to obtain an average value per strap. Note
that both the real loading and inductance are overestimated in the 2-D model. The 3-D
results are near the experimentally measured values for the inductance.
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5 DISCUSSION

Several 3-D effects are found to significantly influence estimates used in rf antenna
designs. One important effect is the absence of a significant change in the distribution of
currents flowing in the septum and sidewalls when plasma parameters are varied. In 2-D
models, the only return path available is along the entire poloidal extent of the device.
In the 3-D model, the feeders provide a return path to the backwall with a much lower
inductance than a return path covering the entire poloidal extent of the device. Thus, the
plasma does not significantly “rob” current from the antenna structure when the feeders are
included, and the sidewalls remain strongly coupled to the main strap despite the proximity
of the plasma. This 3-D phenomenon affects the launched power spectrum by depressing
the power spectrum at low toroidal mode numbers, as shown in Fig. 10.

Another significant 3-D effect can occur because of the variation of the plasma impedance
matrix with poloidal mode number. Modes with m # 0 (nonzero poloidal modes) require a
higher density to propagate into the plasma than the m = 0 mode for any chosen toroidal
mode. Thus, the reduced loading for nonzero poloidal mode numbers can significantly
reduce the total loading, as shown in Fig. 11. This effect tends to be important when the
plasma edge dern:ity is near cutoff for a significant portion of the driven antenna spectrum.
The effect is also more significant for devices with small minor radius, because the poloidal
structure of the antenna must be constructed from a discrete set of modes having larger
poloidal wave numbers, m/a. The 3-D model also describes the inductance of the rf antenna
better than the 2-D model as shown in Fig. 12.

In conclusion, 3-D effects can lead to results for rf antenna loading calculations that
differ from 2-D models. These differences can be as large as a factor of 2 for some plasma
conditions. Three-dimensional effects can be important in applications using closely spaced,
phased arrays of antennas, and when the plasma in the scrapeoff layer is near the fast wave
cutoff for a significant portion of the poloidal antenna spectrum.
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APPENDIX: A

For each basic current element, the current-free region between the plasma-vacuum
interface at ¢ = 0 and the current strap at z = d is denoted Region II (see Fig. 3). The
region between the strap at * = d and the backwall at z = d + a,, is denoted Region 1. A
specified electric field is applied for the boundary condition at the backwall. For example,
El'™(z = d+ay) =0and E""(z = d+ a,) = 0 is the boundary condition for a perfectly
conducting backwall.

At the interface between Regions I and II, the delta function, §(z — d), arising from
8f/0z in Eq. (6a) is treated analytically. Equations (4a) and (4b) are integrated across the
infinitesimal boundary at z = d while maintaining continuity for both the E/*" and E;*"
components. (ET*™ can be discontinuous at z = d.) In Region I, the delta functions arising
from 8f/8y and 8f/8z in Eq. (6b) are true discontinuities only in the limit that an infinite
number of Fourier modes is considered. Thus, the scale length of resolution for the feeders
and the ends of the main strap depends upon the largest Fourier harmonic retained in the
calculation.

With Eqs. (7a) and (9b), the solutions to Eqs. (4a) and (4b) in Region I are

Tt =AT""exp [ikT"(z — d - ay)]

vl
+ B exp [k (z — d - ay))] (Ala)
+ PJ"(z)
nT =Cr " exp [ikT" (2 - d - ay))
+ D""exp [-ikT ™ (z — d - ay)) (A1lb)
+ P (e)
where
P;z,n(z) = 1”01": m mn Z p]p e;(p[zp?r(:c - d)/aw] (AlC)
way, a pihe KM - pn?/al
and
mn tpome? n pipexplipr(z — d)/ay)
PrM(2)= g P?_; @ pimijaz (Ald)

Using the notation :I""(z = d + a,) to represent the specified field at the boundary,
z =d+ ay, gives

mn _ pmmn - mn 1#07fc m mn p( 1)Pjp
B] = Eyl (2 d + Gw) A Way, a p-;oc k!mn pzﬂz/ai (Ale)
and
pome? 3 - 1)
DM = z=d+ay)-Cmn— HOTER g p(-1)"jp ALf
1 zI ( ) I Way R P oo k_szm _ pzwz/a?u ( )
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In Region II, the solutions to Eqs. (4a) and (4b) are

Ei" = Ay exp(ikT "z) + By™ exp(—ikT"z) (A2a)
"= Cp" exp(ikT"z) + Df " exp(—ikT "z) . (A2Db)

Integration of Eqs. (4a) and (4b) across the z = d location yields the jump condition for
the derivatives at z = d:

dETT™

d m,n

yl yll , mmn
T = —iwpoK" (A3a)
dz z2=d dz z=d
where
m-m' n-n' rm’'.n’ C2 mm, . Cz mn'
)C;"’"’:""‘Z;"f ' K™n [(1—‘:’—2- 22 )slng—JﬁCODe
and
dET™ dE " .
hadnad ) S ipaieat 1t U = —iwpo K7™ (A3b)
dz =d dz z=d
where

2 ! 2 !
! ! = ¢’ nn crnm
Kt = E fromnTh R 1 - — == | cosf - — —sinf
w? R? w? aR

m'n!

The surface terms, K7*" and K*", include both current and charge sources for the fields.
Differentiating Eqs. (A1) and (A2) for use in Eq. (A3), we find that the jump condition
at ¢ = d becomes

ik A" exp(ikT " d) — B " exp(~ikT"d)] = kT [A7" exp(—ikT " ay,)
dapmm (Ada)

— B"" exp(ikT "aw)] + wpo K" + dl.::

e=d
iK™ (CR ™ exp(ikT"d) — D" exp(—ik]"d)] = ikT™(CP™ exp(—ikT"au)
dpmn (Adb)

- D" exp(ikT ™ay)] + twpoKT™ + d; .

z=d

and the match condition at z = d is obtained using Eqs. (A1) and (A2) to give

" exp(tkT"d) + By exp(—ikT"d) = A" exp(—ikT"ay,)

Ad
+ B"" exp(ikT"ay) + P (z = d) (Ade)

and

Cr" exp(ikT"d) + D" exp(—ikT""d) = CT"" exp(~ikT "ay)

Ad4d
+ D" exp(ik] "ay) + PTM(z = d) . ( )
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Using Eq. (A4), we can write the Region II coefficients in terms of A{"" and C["" so
that Eq. (A2) becomes

MR = AT {explikT™(2 - ay — d)] - exp[—ikT" (2 — ay - d)]}

+ 2:’:’,,)(3’“ " {exp[ikT"(z ~ d)] - exp[-ik]""(z - d)]}
it
+ EJ™(z = d + ay) exp[—ikT "(z — ay - d)]
®0 ’
’ﬂo"fc m mn p]p
+
way, a ° p__E_:w k2" pir? /a2, (Aba)

1 pr g mn
| i—— ' -d
X {2 (kT'"aw + 1) exp[ik]""(z — d)]

- % (F‘I'L',‘r;— - 1) exp[—ikT" (2 - d)] - (—1)Pexp[-ikT"(z — d - aw)]} .
iy w

= Cr" {explik] " (z — ay — d)] — exp[-ikT"(z — ay — d)]}

+ oK™ {explik] " (z - d)] - exp[~ikT"(z - d)]}
L

+ E"™(z = d+ ay) exp[-ikT""(z - ay — d))

oo

t[.Loﬂ'c n n Plp
A
way pa—eo ki "~ pn?/ad (A5D)
1 pr mn
X - +1 ex k z—d
1 pr 1 T d P 1 MG d
-5 (TR 1) el - ) = (-1 expl k7o~ d - )] |

The last two equations for the Region I coefficients are obtained by considering the
match between the vacuum region (Region IT) and the plasma. The match is taken to be in
the vacuum just outside the plasma surface, so that if no source currents pass through the
interface between the vacuum region and the plasma surface [J (z = 0) = 0], then continuity
of the magnetic field implies that the matching condition can take the form of an impedance
matrix [4]. The impedance match at z = 0 is written with the assumption that toroidal
and poloidal modes are not coupled (periodic slab approximation), giving

1 n mn m,n
Emnz =0) = — [z;';' BT 4 20" B ] (A6a)
Ho =0
1
EPne=0)= o [z;';'"B;;"" + z;';'"B;nv"] , (A6b)
0 z=0

where the Z:; "™ coefficients of the impedance matrix are calculated as described in Ap-
pendix B and the notation {...],_, indicates that all field components inside the brackets
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are to be evaluated at z = 0. The tangential components of ¥V x E = iwB in Fourier space
give

wBm™n = m.n_é_-‘?.z"i]
[way = = E: el I (ATa)
dEJ™  im
. mn . ) - m,n . A
[wB, —— - —E; Lo (ATb)

Thus, if the impedance matrix is known (see Appendix B), then Eq. (A5) can be used
to calculate dET"™/dz and dE]""/dz in Region II at = 0. These derivatives at ¢ = 0
are then used with Eq. (4c) to eliminate EJ*™(z = 0) in Eqs. (A7a) and (A7b) with the
result used to eliminate the magnetic field components in Eq. (A6). These steps result in
two equations that relate the two unknown Region I coefficients, A["" and C{™", by using
Eq. (Ab) to evaluate E*" and E]*" at z = 0.

Specific solutions for A]"" and C["" for two feeder options have been tested in MAntIS
and are given below. The first option includes currents that are constant and continuous
along the feeder. The second feeder option permits both standing wave and traveling wave
currents with wavelength 2a,, to flow on the feeder elements. This option has been used
primarily for folded waveguide modeling [7,8].

Two combinations of feeder type and backwall boundary have been tested in MAntIS for
two different types of modeling. Both combinations satisfy Eq. (7b) (see Sect. 2). The first
combination has constant current along each feeder, jo = 1 and jpxo = 0, with boundary
conditions for a conducting backwall:

g (z=d+ay)=0 (A8a)
and
ElMz=d+ay,)=0 . (A8b)

This combination has been used for typical loop antenna modeling, as demonstrated in this
paper.

The second combination has both standing and traveling waves for the current along the
feeder such that j; = ({+1/2),j-1 = —(¢ - 1/2), and jpz+1 = 0. The boundary conditions
used with this feeder type are

. 2 )
e = d ot ay) = POTE T gmn % (A9a)
wa, a (k.l. mo_ w’/a?‘,)
B
mag _ tpomcin o -2(
Eq(z=d+ay) = o RJ' ) (A9b)

(kim'" - w’/aﬁ,)

where JM™" is defined by Eq. (9b), and ( is a traveling wave parameter. This boundary
condition is equivalent to a conducting backwall for standing waves where ( = 0, but it
permits power carried by the traveling wave to flow through the backwall when { # 0. This
combination has been used to model folded waveguide antenna structures [7,8] primarily
for ( = 0.
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Noting that Eq. (A8) is a simplification of Eq. (A9) obtained by taking { = 0 and
eliminating the particular solutions, the fields in Region II are given by

Eq" = Al {exp[ikT""(z - aw - d)] - exp[-ik]"(z - ayw - d)]}
Wilo mn 7I' mn mng _ _imany .
+ T <1Cy + aww#o'Py ) {exp[ikT""(z — d)] — exp[-ikT""(z - d)]} (A10a)

+ P {explikT "(z - d)] + exp(—ikT""(z - d)]}
W= O™ {expik T (z - ay — d)] — exp[—ikT"(z - a,, - d)]}

Wio mn 7|' mn R4 _ - ™ —
+2k'f'" (IC, +awwwllop' ){exp[zkl (z — d)] — exp[—ikT""(z - d)]} (A10Db)

+ PP {explikT (2 - )] + exp[~ikT (2 ~ d)]}
where
pore?/wa, m

! !
PP = g gmemin=n’ ("‘ — sinf + ——— cosB)

!
Ry

and

na
m,n .. mn
pm ——Ppm

" mR VY

The solutions for the Region I coefficients, A{"" and C{™", are compactly written as

AP™ = TR + TRPKE - ¢ (TR P + TREPP™) (Ala)
OP™ = TGy 4 TRKEY - ¢ (T3 Pp™ + T50Pr) (A110)
where
dpm.n
wpo KWt = d: +iwpoKTH™
e=d
. ) Sl . m
wp K7 = o +iwpo KT "
c=d
and
mn —-— wl"o m,n mn_ mmn m,n mn ;mn mnamn  mmn_ mmn m,n
T" = gm0 - al D=0 4+ ATNOTT) 4 of AT T T
mn Wwho mn/  mn mn mn mn m,n
rnz‘ = W[ﬂ1 (¢+ ¢— '—¢- ¢+ )]/rd
R e L e R e T
ITT = (BRI - YT T
W mn n n mmn_ mmn mn
TS = ggmaled "(VE"eT" - o7 /I
mn = Wio m,n_,mmn mn m,n mn mmn mmn  mmn _mmn_ mmn Fm,n
ez = ZkTm(z Lo A C U M I CH DU T
I-wc;,yn = [a;n,n(¢r:t,n T,n_¢$,n¢r,n)]/rzn,n

m,n
Ry

]

(g — RGP + BT T T T
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with
IT7 = (=477 +al "0 (-¢T" + B3 "90T) - ag BT (¢’

" - elr(3-5) 5 (E)
o = wuolkl"'" LZ;?'"(%) ) z;’;'"(’cﬁ; - %)
)

mn 1 [ mn w’ 1"’7,2 mmn mn

2 = wpokT™ _Zn (c’ a? 22 aR
¢T" = explikT"(aw + d)] + exp[—ikT " (ay + d)]
Y3 = exp(ik]'"d) £ exp(-ik]"d) .

i}

In terms of these Region I coefficients, the electric fields in Region I along with the particular
solutions for existing feeder options are given by Eq. (A1), and the fields in Region II are
given by Eq. (A5).




19

APPENDIX: B

The calculation of the impedance matrix for the plasma-vacuum interface is obtained
by using the ORION-1D code [5]. ORION-1D models a slab plasma using Fourier analysis
in the direction of the static magnetic field and in the direction orthogonal to both pressure
gradients and the static magnetic field. Periodicity conditions for the directions that are
Fourier-analyzed are chosen to represent the poloidal and toroidal directions shown in Fig. 1.
The equations solved are the three components of

2
~ W = , - -
—VxVxE+—c-;E+zwyo};J.=S , (B1)

where the summation is over the plasma species, s, and $ is an external source term.
The plasma current density terms, J,, are calculated using second-order finite temperature
corrections to the warm plasma dielectric tensor. A sixth-order finite difference technique
is used to solve Eq. (B1) in the direction of the plasma density and temperature gradients.
The numerical implementation used to calculate the impedance matrix is described below.

Faraday's law, V x E = iwB, applies at all finite difference nodes regardless of the
presence of plasma currents. With a conservative finite difference scheme, the numerical
representation of Faraday's law is

ik, EJN" — ik, EJN" = iwBoy (B2a)
ik, BNy — (ETI\"“ - E:nls'/’i1) /A =iwB" (B2b)
( wv ~ Egn- 1) /8 ~ikyEZN" = iwBN", (B2¢)

where k, = m/a and k, = n/R for periodic boundaries in the y and z directions. In Eq. (B2),
N refers to the numerical nodes just on the vacuum side of the plasma-vacuum boundary,
and A is the discrete step size in the z direction. Field values at these last two locations
(separated by A/2) represent the numerical resolution of the plasma-vacuum boundary.
The correspondences between field values and node location are shown in Fig. 13 and are
such that the numerical implementation of Stokes’s theorem and the divergence theorem
are satisfied. The remaining Maxwell's equation is written for this node as

W _mon

iky BN — ik BOY = pol N - S EQN (B3a)
. mn n zw m,n b
1'le:'"~" - (le\’f - zN 1) /A Mody m - ES EyN (Bab)

n W
(o — B, ) /8 = ik, BT3P = o3~ 2
Using Eq. (B2) to eliminate By, B/\" |, and B} | in Eq. (B3) and considering B]\"
and " to be source terms, we obtain the numerical boundary equations at the impedance
match locatxon (z =0):

EzN" (B3c)

mmn ".Cz mn . m,n . mn
E:I\’l = _‘:-(p‘o‘]zl\'f - lkl:Ile\‘l + kuByl\} ) (B48.)
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ic’ ky mn c? E!"',,‘,'f_l c? mn ¢ (2 2 m,n
T ZeNo1t AT T oakvk By + 1“‘3(kz+1/A) vN
Wi A w? A w w (B4b)
- —icz Jm,n 1 mmn
ic? k: ommn c? mmn c? Em)‘\;'ﬂ—l c? 2 2 mn
oA B+ Gk ER ¢ AR+ |1 G (VAT 4 k)| B (Bc)
B4c

== (- L)
w 0 N #OA yN
Because the impedance match is in a vacuum region, and it is assumed that no antenna
source currents penetrate the plasma surface, all components at the Nth nodes of J™"

are zero (see Fig. 13). The impedance tensor, Z, described in Eqs. (A6a) and (A6b) is
systematically calculated by setting BL"A’," = po and B]y" = 0 to obtain Z{7" and Z;1"
from the EJ\" and E7\" solutions provided by ORION-1D. The 23" and 23,™ coefficients
are similarly found by setting B;N" = uo and BJ\" = 0. The impedance tensor is calculated
for a desired range of m and n values and plasma parameters and can be used for many
subsequent MAntIS runs.

At the wall opposite the plasma impedance matching location, ORION-1D makes a
transition from warm to cold plasma and then applies a conducting wall boundary condition.
An outgoing boundary condition is presently simulated by using an artificial absorber [5).
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Figure 12: For the plasma parameters considered here, both the
inductance and the real loading are reduced in the 3-D model. For
higher plasma edge density, the loading is not so strongly affected.
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Figure 13: Grid used for finite differencing in the ORION-
1D code to calculate the impedance match between the plasma
and vacuum regions.
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