
m ,,,

!!uiillll--Illlis
IlUI_

nm_nln_lUil_IIII1-_

IIII1_Illll_,i1111-_LIIII-_iliil_

Integrated Computer-Enhanced
Remote Viewing System

Quarterly Report Number 2 o_ _,_2.
for _ _

January -,March 1993_ E C E I\!_' ._..r.

JAN3 1l_-t
OSTI

May 3, 1993

Work Performed under
Contract No.:DE-AC21-92MC29113

For:
U.S. Department of Energy
Morgantown Energy Technology Center
3610 Collins Ferry Road
Morgantown, West Virginia 26507

By:
Mechanical Technology Incorporated
968 Albany-Shaker Road
Latham, New York 12110
Tel No. (518) 785 -2800

DISTRIBUTION OF THIS DocuMENT i8 UNUMrI'ED

On these grounds, MTI recommends without reservation that the ICERVS
project be continued in Phase 2.

6. Avvendices

A. Phase 1 Task Descriptions

B. Subsystem Design Report, Phase 1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

!

o

Appendix A. ICERVS Task Description

The eight tasks in this Phase and the accomplishments involved are
described below.

Task 1. National Environmental Policy Act (NEPA) documentation.
MTI will prepare a report containing the environmental, health, and safety
information for the NEPA documentation which the DOE must submit for

this project. During this Phase, the project efforts are confined to a
laboratory where the primary activities involve the use of computers.
Hence only the OSHA aspects will be involved.

Task 2. Preliminary design.
MTI will design, analyze, and identify appropriate implementations of the
four major subsystems, namely, the Sensor, Data Library, Toolkit, and
Computational subsystems. The design of these subsystems will reflect the
current understanding of the needs of the user community.

i

Task 3. Computing Platform and Rapid Prototyping
MTI will provide a workstation to be used as the computer platform for this
phase of the effort. A 2D database will be developed as a rapid prototyping
tool to validate design approaches for the two subsystems. This task will
conclude with a design review.

Task 4. Detailed Design
MTI will detail the preliminary design, providing means to store empirical
3D geometric data (the Volumetric Database), a means to display the data
(Display Engine), and the software tools (Model Building) necessary to
create and manipulate models of objects. This task will conclude with a
design review.

Task 5. Data I,ibrary Subsystem
MTI will construct software modules to implement the detailed design of
the Data Library subsystem. These modules will store the empirical 3D
geometric data in the volumetric database, the wire frame models used in
the world model and maintain the associated data in the object files.

Task 6. Toolkit Subsystem
MTI will also construct software modules for the Display Engine, which
will retrieve and display the data in the volumetric database and in the
world model in a fashion that exploits the speed and efficiency of the octree
technology. A set of Model Building modules will provide the operator with
the tools to define a region of interest in a scene and create a model of the
object s/he perceives there. These models will be stored in the world model
and the volumetric database.

Task 7. Demonstrate Data Library and Toolkit Subsystems
MTI will integrate the software modules developed in Tasks 5 and 6 in the
Computational subsystem. A demonstration will be made of the basic

i •

L

functionality incorporated in these two subsystems, namely, the ability to
accept, store, and retrieve empirical geometric data rapidly and accurately
and to enable an operator to create, store, display and manipulate models of
objects that are perceived in the database.

Task 8. Topical Report and Decision Point
MTI will submit a comprehensive report on the technical results achieved
during this phase of the project. The Contracting Officer will decide
whether to continue on with the next phase.

" i, UlAUG28
1 Introduction I OFFICEOFTHE'D'iRI:CTOR--

" _..... MEE

The Interactive, Computer-E_anced, Remote Viewing System (ICERVS)
is a system designed to provide a reliable geometric description of a robotic
task space in a fashion that enables robotic remediation to be carried out
more efficiently and economically that with present systems. The key
elements are a faithful way to store empirical data and a friendly user
interface that provides an operator with timely access to all that is known
about a scene.

ICERVS will help an operator to analyze a scene and generate additional
geometric data for automating significant portions of the remediation
activity. Features that enable this include the following:

• Storage and display of empirical sensor data,
• Ability to update segments of the geometric description of the task

space,
• Side-by-side comparisons of a live TV scene and a computer

generated view of the same scene,
• Ability to create and display computer models of perceived objects

in the task space, together with textual comments, and
• Easy export of data to robotic world models for robot guidance.

The development of ICERVS is to occur in three phases.
• Phase 1 will focus on the development of the Data Library, which

contains the geometric data about the task space and the objects in
it, and the Toolkit, which includes the mechanisms for
manipulating and displaying both empirical and model data.

• Phase 2 will concentrate on integrating these subsystems with a ""
sensor subsystem into one working system. Some additional
functionality will be incorporated in the Data Library and Toolkit
subsystems.

• Phase 3 will expand the configuration to meet the needs of a full
scale demonstration of the interactive mapping of some waste site
to be identified.

We are currently about two thirds of the way through Phase 1.

2. Summary of Progress to Date

The Phase 1 activity consists of eight tasks which are described in Appendix
A. The first task was to provide the required National Environmental
Policy Act documentation. This was readily accomplished because only
computer related activities are involved in this Phase.

The Preliminary Design task developed a conceptual design for the system.
This was documented in the System Design Report which was included in
the last Quarterly Report.

The Computer Platform and Rapid Prototyping task is essentially a risk
reduction effort to validate our approach to critical design issues before
embodying them in a detailed design. A two dimensional quadtree was
used in lieu of an octree to verify basic data library procedures. A
commercial software package was acquired to provide basic user interface
functions. This task was completed in the first month of the quarter.

The Detailed Design task began early in the quarter and addressed three
major computer software components (CSCs), namely the Octree Engine
CSC, the Object Modeling CSC, and the User Interface CSC. Detailed
design was done in an object-oriented fashion and the results were
documented in a Subsystems Design Report, which is included as
Appendix B. The Task and quarter ended with a Critical Design Review
which elicited several suggestions for incorporation during Phase 2.

Coding was begun on the Data Library and the Toolkit Tasks as the quarter
ended.

3. Pma_s Re_ort

3.1 Rapid Prototype
This third project Task was aimed at reducing risk in the Detailed Design
Task by verifying the workability of certain design choices. One set of these
choices was associated with the octree technology and these were validated
using a two dimensional equivalent of the octree. The second set of choices
pertained to the software for the basic user interface. Class libraries in two
software packages from Rogue Wave (Tools.h++ and Views.h++) were
validated as providing the necessary basis for the design functionality that
was desired.

3.2 Detailed Design
The Detailed Design in Phase I focused on three CSCs: Octree Engine,
Object Modeling, and User Interface. The design began with an allocation
of the requirements listed in the System Design Report to each of the
various CSCs. The allocation criterion was to group the functionalities so
as to minimize interaction between the groups, in order to expedite debug,
integration, and any future modification. Study of the requirements
allocated to the User Interface CSC led to the perception that its functions
should be restricted solely to the interaction with the operator and to the
display of elements prepared by other CSCs. At this time, the separation is
not as complete as desired and so there are computer software units (CSUs)
in the User Interface CSC associated with the interfaces with the Octree
Engine CSC and with the Object Modeling CSC. (It is also recognized that
the User Interface cannot be designed without input from real operators.
Hence, a goal of the Phase 1 design is a strawman User Interface which
can be presented to real operators in order to secure a more realistic
definition of the user needs and the interface requirements.)

° i •

Study of the requirements allocated to the Octree Engine CSC led to a
generalization of the input means, to include data from other dimensional
sensors, such as the laser range finder, and from material property
sensors, such as temperature probes or magnetometers. A variety of
sensors and data structures need to be accommodated, all of which begin to
define the functionality to be included in the Data Interface CSC and the
Sensor Interface CSC, which are to be designed in the next Phase. From
this flowed the realization that it is necessary to define the units to be used
for internal representations of the data and to provide means to convert and
register different data sets.

in considering the details of the design for the Object Modeling CSC, it
became clear that GL (Graphics Language) is much more a set of
procedures than it is a format or language. Once this became apparent, the
value of GL dropped significantly. This was important when it was
discovered that the Rogue Wave software has a number of incompatibilities
with GL. Because of the value of the Rogue Wave user interface software,
the requirement for GL models was modified, replacing it with other
formats such as IGES (Initial Graphics Exchange Specification) or STEP.
For Phase 1, the graphics capability of Rogue Wave will be used.

The actual software design was rather straightforward. For each CSCV.
the allocated set of requirements was examined and a set of implicit
requirements was derived. For this combined set of requirements, a design
was created, classes were defined, functionalities enumerated, and
included data specified. Interaction between the classes was described and
diagrammed. As the design neared completion, a mapping of classes with
requirements was created to insure that no requirements were omitted and
no extraneous classes were created. It was verified that all pertinent _.
requirements have been satisfied with a minimal set of classes. The result
is a detailed design for the three CSCs which has been documented in the
Subsystem Design Report.

A Critical Design Review was conducted at the end of the Detailed Design
Task. The review team consisted of six people, three of whom were DOE
personnel:

Shawn Bohn, Battelle Pacific Northwest Laboratories
Fred DePiero, Oak Ridge National Laboratories
Gary Nelkin, Morgantown Energy Technology Center

and three of whom were MTI personnel:
James Dill
Gordon Hirschman
Thomas Walter.

Shawn represented the Hartford site and Fred represented the Robotics
program in OTD. Gordon is a senior investigator who is very skilled in
software design. The review was a lively one and many suggestions were
offered for Phase 2 improvements. The only Phase 1 comments pertained to

the choice of names; most of the recommended changes have been
incorporated in the Subsystem Design Report found in Appendix B.

3_3 Testing of True Solid
One recommendation from the Preliminary Design Review (held
December, 1992) was that True Solid, a software package offered by the
Octree Corporation, be considered for use in Phase 2. The package offers
many attractive features, some of which MTI had planned to develop in
Phase 2. However, there are questions about its ccmpatibility with the
object modeling requirements, which only testing can resolve.
Investigation revealed that the current True Solid configuration will
operate on some workstation platforms, but not on the Silicon Graphics Inc.
(SGI) products. MTI received authorization to have Octree port the True
Solid product to the SGI machine and to provide MTI with an evaluation
copy for three months. Octree is currently carrying out the necessary
recoding and expects to have the evaluation copy by the latter part of May.
Features to be evaluated include its ability to draw and display a wide range
of geometric (modeling) objects and the speed with which model updates
can be displayed. The evaluation of True Solid will begin in the last part of
the present quarter.

4, Phns for Future Activity
Phase 1 of the ICERVS project is on schedule and budget and will be
essentially completed by the end of the next quarter. Completion involves
the following items.

• Coding and debugging of the Data Library and Toolkit Subsystems.
• integration into the Phase I prototype and debug,
• Completion of the acceptance tests, per the test plan, ,_.
• Phase 1 Demonstration,
• Submission of the comprehensive Phase 2 proposal.

In accordance with the contract modification, the Phase 2 proposal will be
submitted about the middle of May.

5. Assessment of Prost_ects
The results from the first two quarters are quite encouraging. Both the
Preliminary Design Review and the Critical Design Review concluded that
the design was a solid one, with no major risks identified or anticipated.
The design has proceeded largely as expected, with only a few minor
modifications resulting from the greater insight developed with time.
There is high confidence that the Phase 1 demonstration will display all the
features and functionality to be delivered in the Phase 1 design.

In addition, discussion with field site personnel has shown that the
perceived need for ICERVS is real and is growing. Furthermore, contact
with commercial vendors indicates that there is yet no credible competition.

_P _f

ICERVS
Subsystem Design Report

Phase 1

°.

Prepared for :._
Department of Energy _ :"

Morgantown Energy Technology Center

Prepared under
Contract DE-AC21-92M29113

April 27, 1993

,¢ !

Integrated Computer Enhanced
Remote Viewing System

(ICERVS)

Prepared for

Department of Energy
Morgantown Enegy Technology Center

Prepared under
Contract DE-AC21-92M29113

Prepared by
Mechanical Technology Inc.

968 Albany-Shaker Road
Latham New York 122110

April 27,1993

PreparedbyDavid Smith

: , /-I ' ' ,, I.-_Approved by: _ _'. _._z=__ ,
_6hn Wagner, Date

_ _o

,t ,!

REVISION HISTORY

on Da Comment

A April2,1993 OriginalVersion

B April 27. 1993 Revised Requirements added

TABLE OF CONTENTS

Section Descri.p_ii._
Cover Page i
Title Page m
Revision History v
Table Of Contents vii

List Of Figures xi
List Of Tables xii

Glossary xm

1.0 INTRODUCTION 1-1

2.0 RELATED DOCUMENTS 2-1

3.0 PRELIMINARY DESIGN 3-1

3.1 System Diagrams 3-1
3.2 Sensor Subsystem 3-6
3.3 Computational Subsystem 3-6
3.4 Software Subsystem 3-6

4.0 SOFTWARE SUBSYSTEM DETAILED DESIGN 4-1

4.1 USER INTERFACE COMPUTER SOFTWARE COMPONENT (UI-CSC) 4-2

4.1.1 Preliminary Design Requirements and Functions 4-2

4.1.2 Derived Requirements and Functions 4-4
4.1.2.1 R2.05 Create, modify, and display 2D convex polygons 4-4
4.1.2.2 R2.07 Dimensioning Tools - tick marks, measuring cursors . 4-4
4.1.2.3 R3.01 Translate and Scale 4-4

4.1.2.4 R3.02 Display coordinate axes/grid. 4-5
4.1.2.5 R3.03 Pair of parallel cutplanes 4-5
4.1.2.6 R3.04 Geometric Objects - display/edit associated text data 4-5
4.1.2.7 R3.05 Geometric Objects - wire frame polygons 4-5
4.1.2.8 R3.06 Update octree display as input points received 4-5
4.1.2.9 R3.07 Pseudo-color octree display based on property or dimension 4-5

4.1.2.10 R3.08 Property derived coloring for objects (shared with OM-CSC) 4-5
4.1.2.11 R3.10 Save and recall view parameter set 4-5

4.1.2.12 R3.11 Multiple windows displaying the same data 4-6
4.1.2.13 R5.03 Operator delete objects 4-6
4.1.2.14 R6.01 Operator edit phase I system parameters 4-6

Subsystem Design Report vii

TABLE OF CONTENTS (continued)

Section Description P_.a_gg
4.1.2.15 R6.02 Save/retrieve models to/from disk 4-6

4.1.2.16 R6.04 Maintain operator log and notebook for observations and other notes 4-6

4.1.2.17 R6.05 Support Multiple System Of Units 4-6
4.1.2.18 R8.01 Graphics tools - space ball/mouse, pull-down menus, dialog boxes 4-7

4.1.3 Class Descriptions 4-7
4.1.3.1 Utility Classes 4-8
4.1.3.2 Main Window Related Classes 4-12

4.1.3.3 System Parameters and Work Volume Related Classes 4-13
4.1.3.4 View Window Related Classes 4-13

4.1.3.5 Object Modeling Interface Classes 4-15
4.1.3.6 Octree Engine Interface Classes 4.-15
4.1.3.7 Relationship Between UI-CSC Requirements and Classes 4-16

4.1.4 Major Function Descriptions 4-26
4.1.4.1 Main Window Menu Functions 4-27
4.1.4.2 View Window Menu Functions 4-34

4.2 OCTREE ENGINE COMPUTER SOFTWARE COMPONENT (OE-CSC) 4-41

4.2.1 Preliminary Design Requirements and Functions 4-41

4.2.2 Derived Requirements and Functions 4-42
4.2.2.1 R1.01 Octree representation - spatial data 4-42
4.2.2.2 R1.02 Octree representation - property data 4-42
4.2.2.3 R1.03 Octree representation - spatial interpolation . 4-42
4.2.2.4 R1.04 Octree representation - linear resolution of 1:512 4-42
4.2.2.5 R3.06 Update octree representation as input points received 4-43
4.2.2.6 R5.02 Set region within octree to selected state. (shared with UI-CSC) 4-43
4.2.2.7 R6.02 Save/retrieve models to/from disk. (Distributed among CSC:) 4-43

4.2.3 Class Descriptions 4-43
4.2.3.1 Tree Related Classes 4-44

4.2.3.2 Scaling Class 4-44
4.2.3.3 Tree Traversal Classes 4-46

4.2.3.4 Relationship Between OE-CSC Requirements and Classes 4-46

Subsystem Design Report viii

,F fT

TABLE OF CONTENTS (continued)

S_tion Description
4.2.4 Major Function Descriptions 4-50
4.2.4.1 Write Octree Data To Disk File 4-50
4.2.4.2 Read Octree Data From Disk File 4-50

4.2.4.3 Add Single Point To Octree 4-50
4.2.4.4 Add List Of Points To Octree 4-50

4.2.4.5 Add With Sculpting Single Point To Octree 4-50
4.2.4.6 Add With Sculpting List Of Points To Octree 4-51
4.2.4.7 Perform Tree Scan To Print Tree Data 4-51
4.2.4.8 Perform Tree Scan To Print Tree Statics 4-51

4.2.4.9 Perform Tree Scan To Display Tree In View Window 4-51

4.3 OBJECT MODELING COMPUTER SOFTWARE COMPONENT (OM-CSC)4-52

4.3.1 Preliminary Design Requirements and Functions 4-52

4.3.2 Derived Requirements and Functions 4-53
4.3.2.1 R1.05 Geometric models, polyhedral objects 4-53
4.3.2.2 R1.06 Geometric models, geometric primitives 4-54
4.3.2.3 R1.07 Geometric models, associate text with each object 4-54
4.3.2.4 R1.08 Geometric models, at least 100 objects, expansion capability 4-54
4.3.2.5 R2.01 Create, modify, and store primitives / templates 4-54
4.3.2.6 R2.03 Operator can define templates and add to library 4-54

4.3.2.7 R2.06 Create, modify, delete 3D polyhedral objects (swept volume) 4-55
4.3.2.8 R2.08 Attach text to objects (duplicates R1.07) 4-55

4.3.2.9 R3.05 Geometric Object - wire frame polygons 4-55
4.3.2.10 R5.03 Operator delete objects 4-55
4.3.2.11 R6.02 Save/retrieve models to/from disk 4-55

4.3.2.12 R7.06 Output - geometric models, text report, robot-compatible models 4-55

4.3.3 Class Descriptions 4-56
4.3.3.1 Collection Classes 4-56

4.3.3.2 Object Classes 4-56
4.3.3.3 Relationship Between OM-CSC Requirements and Classes 4-58

Subsystem Design Report ix

I I _lf

TABLE OF CONTENTS (continued)

Section Description P_.a.gg
4.3.4 Major Function Descriptions 4-64
4.3.4.1 Read Geometric Objects List/Library Files 4-64
4.3.4.2 Write Geometric Objects List/Library Files 4-64
4.3.4.3 Conversion Of A 3D Geometric Object Into 2D Displayable Objects 4-65
4.3.4.4 Conversion Of 2D Displayable Objects Into A 3D Geometric object 4-65
4.3.4.5 Add New 3D Object To List or Library 4-65
4.3.4.6 Delete 3D Object From List or Library 4-65
4.3.4.7 Modify 3D Object In List or Library 4-65
4.3.4.8 Associate (add or modify) Text With Geometric Object 4-66
4.3.4.9 Output Text Report Of Geometric Objects 4-66

Appendix A- Revised Requirements A-1

Subsystem Design Report x

-- _n

_ tt

LIST OF FIGURES

Figure Description
3-1 System Context Diagram 3-4
3-2 System Block Diagram 3-5

4-1 ICERVS Main Window Class Interactions 4-9 ,
4-2 ICERVS World Model (work space) Class Interactions 4-10
4-3 ICERVS View Window Class Interactions 4-11
4-4 ICERVS Main Window 4-28

4-5 ICERVS Logon Dialog 4-29
4-6 ICERVS View Window 4-35

4-7 Octree Engine Class Interactions 4-44
4-8 Object Modeling Class Interactions 4-57

Subsystem Design Report xi

t f 1_

LIST OF TABLES

Table Description
3-1 ICERVS Requirements 3-2
3-2 Allocation Of ICERVS Requirements To CSCs For Phase I 3-7

4-1 ICERVS Requirements for the User Interface CSC 4-2
4-2 UI-CSC Classes For Each ICERVS Requirement 4-17
4-3 ICERVS Requirements For Each UI-CSC Class 4-20
4-4 UI-CSC Detailed Required/Class Relationships 4-22

4-5 ICERVS Requirements for the Octree Engine CSC 4-41
4-6 OE-CSC Classes For Each ICERVS Requirement 4-47
4-7 ICERVS Requirements For Each OE-CSC Class 4-48
4-8 UI-CSC Detailed Required/Class Relationships a-49

4-9 ICERVS Requirements for the Object Modeling CSC 4-52
4-10 OM-CSC Classes For Each ICERVS Requirement 4-59
4-11 ICERVS Requirements For Each OM-CSC Class 4-61
4-12 OM-CSC Detailed Required/Class Relationships 4-62

Subsystem Design Report xii

,F it

GLOSSARY

2D--

Geometric Object: a geometric element that occupies conceptual space of dimensionality 2.
Examples of 2D geometric objects include circles, rectangles, and polygons. A 2D geometric
object lies in a plane, occupies surface area, but does not occupy volume.

Polygon: a geometric object characterized by a sequence of connected vertices lying in a
plane. The connections between adjacent vertices are edges. A 2D polygon is convex if a line
segment joining any two interior points is completely contained within the polygon.

2,7 D Surface Map: a mathematical description of a 3D region bounded by a single surface in
one dimension. A surface map is typically represented by a set of 3D data points.

3D--

Geometric Object: a geometric element that occupies conceptual space of dimensionality 3.
Examples of 3D geometric objects include spheres, rectangular parallelepipeds, and prisms. A
3D geometric object occupies volume.

Polyhedral Object: a 3D geometric object bounded by plane faces.

Swept Volume: the process of creating a 3D geometric object by projecting a 2D geometric

object through a path in 3D space.

Class, C+ +
Base Class: a class which is included in another class(es). A base class typically provides

general-purpose characteristics that are tailored by the derived class(es).

Class: a C+ + data type defined by the programmer, that aggregates programmer-defined data

structures (or member data), member functions, and custom operators.

Derived Class: a class defined such that it includes the member data and member functions
from another class. The derived class is said to inherit the characteristics of the other class.

Member Data: the variables and data structures defined within a class (including those
inherited from other classes).

Member Function: the functions defined within a class (including those inherited from another
class).

CSC: Computer Software Component.

CSCI: Computer Software Configuration Item

Subsystem Design Report xiii

GLOSSARY (continued)

CSU: Computer Software Unit

Cut Plane: a plane used to segment 3D space into two regions. Typically cut planes are used
in pairs to bound a region of interest.

Dialog Box: an area on the user display for user input/output.

ICERVS: Integrated Computer-Enhanced Remote Viewing System

Level: for a node in a tree, the number of descendants in the direct path from the node to the
root node.

Model

Geometric Model: a computer representation of a physical object.

Task Space: a region in physical space that the ICERVS is being used to model.

Worl..dM.odel: the ICERVS data representations (geometric models and octrees) used to
represent a task space.

Node: one data element within a tree data structure

Child Node: a direct descendant of another node.

Leaf Node: a node with no children. Leaf nodes have empty, full, or unknown states.

Node State: for octrees, a flag used to describe the occupancy of the region of space
corresponding to a node. The four node states are:

Empty - none of the region is occupied

Partial - some (but not all) of the region is occupied. The occupancy is described in
further detail by children nodes

Full - all of the region is occupied

Unknown - the occupancy of the region is not known

Subsystem Design Report xiv

if t!

GLOSSARY (continued)

Object--
Geometric 0bje¢_: a computer representation of a physical object. A geometric object typically
represents a contiguous region of conceptual space and is defined in a mathematical form(s).
Geometric objects can be two dimensional (e.g. circle, rectangle, and polygon) or three
dimensional (e.g. sphere, cube, and prism).

Group: a composite set of geometric objects that are treated as a single geometric object.

Octree: an 8-ary tree data structure that represents the spatial occupancy of a 3-dimensional
region. The data structure is produced by the recursive subdivision of a finite cubical universe.

OE,-CSC: Octree Engine CSC

Polygon: a geometric object characterized by a sequence of connected vertices lying in a
plane. The connections between adjacent vertices are edges. A polygon that satisfies the
condition that a line segment joining any two interior points is completely contained within the

polygon.

Polyhedron: a 3D geometric object bounded by plane faces.

Primitive/Geometric Primitive: a 3D geometric object typically defined by analytic
description (equations). Examples of primitives include spheres, cylinders, and planes (half-

spaces).

Prismoid: a polyhedron that has all of its vertices in two parallel planes, and with the same
number of edges in each plane.

Property Data: for octrees, data used to describe the physical characteristics of a region in
space corresponding to one node. Example property data include temperature, conductivity,
and color.

Quadtree: a 4-ary tree data structure that represents the spatial occupancy of a 2-dimensional
region. The data structure is produced by the recursive subdivision of a finite square universe.

Scale: for computer graphic display, the size of the computer-modeled space that is rendered
in a display window. For ICERVS, scale is described as a percentage of full scale (At full
scale, the entire computer-modeled region is made to exactly fit in the display window.)

Subsystem Design Report xv

t _ 11

...GLOSSARY(continued)

Sculpting: for octrees, the process of changing node states to empty along a selected path or
within a selected region. Sculpting is typically used to clear regions corresponding to input

data provided by line-of-sight sensors.

Translate: for computer graphic display, the apparent position of the display window in the
computer-modeled space. Translation provides the means for viewing a subsection of the world
model at a magnified scale. For ICERVS, translation is described as screen-horizontal and
screen-vertical displacements in internal units.

Tree: a data structure characterized by a hierarchy of dements or nodes descendant from a
single or root node.

Tree

Tree Traversal: the process of retrieving each node from a tree in a prescribed order. Typically
each node is retrieved one time. A depth-first tree traversal retrieves the descendants of a node
before retrieving the siblings of a node.

Units

External Units: the physical units selected by the ICERVS user for display and data
input/output.

Internal Units: the physical units used by the ICERVS User Interface CSC and Object
Modeling CSC. For ICERVS, these units are SI (dimensions in meters).

Tree Units: the dimensional units used by the Octree Engine CSC to describe octree space. For
ICERVS these dimensions vary between zero and 2,097,152 (221). This also sets the

maximum spatial resolution of the octree.

UI-CSC: User Interface CSC

Wireframe: a method for defining, or generating a graphic display of, a polyhedron as a set

of points and connecting edges.

Subsystem Design Report xvi

! It

1.0 INTRODUCTION

This ICERVS Subsystem Design Report describes the detailed design of the Software
Subsystem for the Phase 1 Integrated Computer-Enhanced Remote Viewing System (ICERVS).
The Software Subsystem design is based on the ICERVS system design described in ICERVS
System Design Report, December 21, 1993. The Software Subsystem consists of a single
Computer Software Configuration Item (CSCI) which is made up of seven Computer Software
Components (CSC). The design presented here is restricted to the three CSCs which are
needed to meet the contractual commitments of the Phase 1 work effort.

SubsystemDesignReport 1-1

_'l voda_l u_!saG mals,(sqns

_Q ti

2.0 RELATED DOCUMENTS
!

MTI technical proposal Q2-030, "Interactive Computer Enhanced Remote Viewing System",
December 13, 1991.

MTI "ICERVS System Design Report", December 21, 1992.

MTI ICERVS "Software Development Plan", December 23, 1992.

Rogue Wave Software "Views.h + +, MouseWrapper.h + + Class Libraries for Motif 1.0"

SubsystemDesignReport 2-1

E__ _odo_I u_!sO(l molsgsqns

II li

3.0 PRELIMINARY DESIGN

The Interactive Computer-Enhanced Remote Viewing System (ICERVS) combines volumetric
mapping and 3-D computer modeling technologies to provide reliable geometric descriptions
of an environment. The purpose of ICERVS is to provide operator assistance in the analysis of
remote scenes and in the generation of volumetric data for use in robotic task planning,
programming, and execution. The intended use of ICERVS will be in the remediation of
hazardous work sites such as underground waste storage tanks, buried waste sites, and
contaminated production facilities.

As part of the ICERVS preliminary design, mission profiles were described for three
remediation tasks. These profiles are documented in the ICERVS System Design Report
(December 21, 1992) Section 3. From these mission profiles, a list of ICERVS primary
requirements were developed. These requirements are documented in ICERVS System Design
Report (December 21, 1992) Section 3 and summarized in Table 3-1 below. In the course of
detailing the subsystem design, it became apparent that some minor revisions in the
requirements were necessary in order to clarify points or to reflect the greater insight into the
roles of the various subsystem elements. The details of the revisions to the requirements will
be found in Appendix A.

The ICERVS system-level design is documented in ICERVS System Design Report (December
21, 1992) Section 5. The following sections are excerpted from that section.

3.1 System Diagrams

The system context diagram shown in figure 3-1 depicts the relationship between the remote
viewing subsystem, the computation subsystem and the Data library subsystem.

The system block diagram shown in figure 3-2 shows the relationships between the major
system components. There are three subsystems: sensor subsystem, computational subsystem,
and software subsystem. The software subsystem is supported by the computational subsystem.
The sensor subsystem feeds data into and accepts commands from the computational
subsystem.

Table 3-1 ICERVS Requirements

Subsvstem Design Report 3-1

Table 3-1 ICERVS Requirements

NO SYSTEM REQUIREMENT PHASE 1 REQ'MENT NOTES

' ,, , ,,,,,,,

R1 DATA REPRESENTATION'
............

R 1.01 Octre¢: spatial data Full

Rl.02 Octree: property data Nm'ie Design ini|uei'lce

I,tl.03 Octre¢: spatial interpolation ' qone I)esign inilueuce

R'ii04 Octree: lin'ear res'n 1:512, expandable Full

R 1.05 Geom: polyhedral' objects Full

Ri,06 Geom: geometric primitives '" None '" l)esign iJdluence

R 1.07 Geom: associated text each object Full

R 1.08 Geom: 100 objects, expandabie Full

R l.O'_J G'eom: enter architectural and 'roboi pla'ns None
, , , , , , ,,

R2 OBJECT MODELING

R2.01 Library of primitives/template's ' " qo'ne

R2.02 Standard templates '" None

R2.03 User-ttefined templates None '"

R2.04 Automatic waste Surface modeling None ' Wil'i'demonstrate
mteractivelv

R2.05 Synthesiz'e21])polygons Full

R2.06 Syndlesize 3 D p01yhedra Partial Straight line sweeppath

R2.07 Dimensioning tools None Design mJIuence

R2.08 Attachte_toobjects...... FuU
'R3 coMPUTER GRAJ)HICS DISPLAY

R3.01 '" Translat'ion and scaling Ful'i

R3.02 Display coordinate axes None Design ;',,lh,e,,cc

R3.03 Parallel cut planes I'atlial I plane parallel Io
,., display

i'_3.04 Display object texl. data ' Full

R3.05 Shaded Or wire t_a,ne polygons l'a,'tia[\V6"efra,,,e o,,I, ' "

R3.06 Update octree as points recei'ved as input Full

R3.0'7 Pseudo-color octree data None Design influence

R3.08 Property derived color None Design inlluellcc

R3.09 Tex't display view parameters '" None

R3.10 Save/Recall 'view parameter set None
.......

R3. II Multiple wi'i_'dowsdisplaying same da'ta Full
.........

"i,_3.12 'View tracks sensor station attitude None I)esi_ll mllucn_c
.....

R3.13 l)isphty 2.5 I) surface map Ncmc

R4 '" VII)El) I)lSIq,,'_'f
.......

I_,| i')1 ,k,,Ioniloreach camera plus 1 for processill_t_ N[}11¢
....

z_02 I)isp_,,('L,r_Ji,,,,,_,,l:i_cL_o,,e,V,O_,, Y,,,,_
"R5 MANII'UI.ATION ANI) ANAI.YS'IS

R 5.01 Copy octrec None
.....

i _,5.'02 Set region within octrec Io selected stale NOlle I)¢xlt!,llililltlClicc
........

1_5ij i ()perator select and delete ohiccts Noiic
-

Subsystem Design Report 3-2

)4 JC I

Table 3-1 ICERVS Requirements (cont)

......................... [......

R5.04 Scan objects for consistency with octree None

RS#0Is I l Colnpale octree and object data None

R5.06 Compa're'2 octreesl compute difference None

R5.'0':7.... Compute'2.SD surface map from octrce "" None '"

R5.08 Compare 2.5D surt_tce maps', compute d'iff ' None

i<,6 MISCEI]I.AN E'0US FUNCTIONS

R6.01 Fdit systetu parameters Partial.... Smtple'versio. Ibr phase
1

R6.0'2 Save/i_,etrieve modelsto/from disk Full

R6.03 Build octree from'backup raw data ' " None

R6.04 ' ' " Maintain operator log None Design inlluence

R6.05 Multiple systems ofunits 'None Design inliuence "'

R6.06 Deline disassembly data None "

R7 ' I)/{'I'A INTERFACE

R7.01 input: 'x,y,z position Full

1_7.02 Input: optional resolution i_one l)esig,'_ influenc'e
........................

R7.03 Input: optional property values None l)csign mlhlence

17,7.04 Input: optional sensor Iocati'on None I)eslgJ; mlluence; assume

sensor at infi.!Ut)'
R7.05 " Input: 'station angles during vis. inspection None l)esi_i mlluence

17,7.06 Output: geometric model daut Partial' Text repot1

R7.07 Output: 2.51) surface map data None

'Ii8 OPEP,ATOR INTERFACE
....

P,8.01 Graphic tools Pallial Spaccl);dl or mouse

1'_9 SENS'0RS
.......

R9.01 Tele-operation position and rate commands None I)eslgn mllucrlcc
,

R9.02 Tele-operatton display line of sight None
......

R9.03 "l'ele-operation text display stahon angles None

I0,9,04 'Au'tomatlcallv map surlaces N(Ji'lc
...... l ,

I0,9,(15 Operator parameters Nt)tle

R9.06 '" Drawil)isplay scan paths " None
.................

R9.07 Continual backup raw data None
..........

R9.08 Flexible coh)r TV camera Noue
.........................

R9.'i 0 ' Surface mapping sensor None I)cslv)))))lluellcC
......

R9. I I Sensor pcfl'ol'lllllnce Nolle

R l(I SITE I'_Nk"i"R()NMENT '.....
...........................

I_,I0.1 Surface characteristics N(me l

RIO.2 Illummatltm and visibility Ntmc
, ,

R 11.).3 l'_llVII()lllllCllhd coust)amts None
...................

I<_10,-| I)CSH.'IIco)lslramts None 1

Subsystem Design Report 3-3

e_ iii

i

Remote Viewinq Subsystem

II I I ii II

[surface Mapping CC TV Color/

I Sensor Camera.... _ Robot

[_a _ P--_ooeI_y RVS _ Controller

[Sensors Controller _ Interface

Computation Subsystem

I,CERYSContro,ler I _!iii!'_iiii!!iiii_

Model Operator CCTV Display

Building Input

I
image I Display:.:,:::.,,,,.

Comparison !, , Engine Comouter-Generatecl
Display

Data Library Subsystem

Data Library
Controller

World Volumetric Object
Model Data Base Data

Figure 3-1 -- System context diagram

Subsystem Design Report 3-4

i i Jl

Software
subsystem

! Spaceball !
L 1

Sensors _ _ Computational _-,1_"

subsystem subsystem [Keyboard

1-" L
Monitor

System Block Diagram
System Architect

Tue Nov 10, 1992 15:41
Comment.

Figure 3-2 -- System block diagram

Subsystem Design Report 3-5

v! |l

3.2 Sensor subsystem

The sensor subsystem shall contain a color TV camera, a surface mapping sensor, and
appropriate illumination means. The equipment will be designed to function for a specified
period in the environment of the site. The sensing equipment will be physically located at the
site and operated remotely. The TV camera and its mounting shall provide the operator with
the ability to visually scan the site and to vary the resolution, as with a zoom lens. The
operator shall have control of the lighting and the ability to adjust the focus and iris setting of
the lens. The camera and display monitor shall have adequate resolution to show details of the
features of interest.

The sensor subsystem is not part of the Phase 1 scope, and is included here for reference only.

3.3 Computational subsystem

The computational subsystem shall:

o support native software development
o provide high speed graphical display operations
o provide keyboard operator input
o provide a graphical/spatial operator input device
o provide disk storage for large data models
o provide network interconnection

The computational subsystem is provided by a Silicon Graphics Indigo workstation.

3.4 Software subsystem

The software subsystem contains all software to support the system. It includes software
written for rapid prototyping as well as non-developmental software. This software breakdown
comprises the data library and tool kit subsystems described in MTI technical proposal Q2-
030.

The software subsystem is a single computer software configuration item (CSCI). The software
is divided into the following six CSCs and the requirements for Phase I are assigned.

Subsystem Design Report 3-6

l0 II

Table 3-2 Allocation Of ICERVS Requirements To CSCs For Phase I

CSC Name Full Partial Design Influence
Implementation Implementation

,=,

User Interface R2.05 R3.01 R3.03 R3.05 R2.07 R3.02
R3.04 R3.06 R6.01 R8.01 R3.07 R3.08
R3.11 R6.02 R7.01 R3.10 R5.03

R6.04 R6.05

Octree Engine R1.01 R1.04 R7.01 R1.02 R1.03
R3.06 R6,02 R5.02

Objects R1.05 R1.07 R2.06 R3.05 R1.06 R2.01
R1.08 R2.05 R7.06 R2.03 R5.03
R2.08 R6.02

Octree-Objects
Interaction

Operational
Sequencing

Sensor I/O
.,

Subsystem Design Report 3-7

4.0 SOFTWARE SUBSYSTEM DETAILED DESIGN

The ICERVS Software Subsystem is a single Computer Software Configuration Item (CSCI).
It is divided into several Computer Software Components (CSC), which in some cases are
further divided into Computer Software Units (CSU).

The list below illustrates the organization of the ICERVS Software Subsystem. (Phase I items
are in bold type):

ICERVS Software Subsystem

User Interface (UI-CSC)

Octree Engine (OE-CSC)

Object Modeling (OM-CSC)

Octree-Objects Interface (OE/OM-CSC)

Operational Sequencing (OS-CSC)

Sensor I/O (SIO-CSC)

The following sections describe the design of the three Computer Software Components for the
ICERVS Phase I system.

Subsystem Design Report 4-1

4.1 User Interface Computer Software Component (UI-CSC)

The UI-CSC encompasses all functions that display data on the operator screen and take input
from the operator. The user interface is graphical with pull-down menus, windows, and dialog
boxes.

The UI-CSC relies heavily upon the Rogue Wave Tools.h + + and Views.h+ + class libraries.
The Tools.h++ library provides a complete toolbox including Smalltalk-like collections,
generic collections, string and character manipulation classes, date and time handling, file I/O,
virtual I/O streams, virtual arrays, and much more. The Views.h++ library provides a
complete and easy to use encapsulation of the Open Software Foundation's Motif Graphical
User Interface. In many cases windowed user interfaces with complex menuing systems can
be constructed quickly with little knowledge of Motif.

4.1.1 Preliminary_ Design Reouirements and Functions

The requirements for the UI-CSC are summarized in Table 4-1. For a more detailed
description of each requirement, refer to the ICERVS System Design Report. Requirements
that apply to Phase I are in bold type. Requirements that not part of Phase I requirements but
strongly influence the software design are italicized. Some requirements that span multiple
phases have been reworded to clarify the Phase I requirement. These requirements are marked
with an asterisk. Requirements that span multiple CSCs are also identified.

Table 4-1 - ICERVS Requirements for the User Interface CSC

System
Requirement
Number Description

R2.05 * Def'me, modify, display and erase 2D convex polygons .

R2.07 Dimensioning Tools- tick marks, measuring cursors

R3.01 Translate and scale

R3.02 Display coordinate axesgrid

R3.03 * Pair of parallel cutplanes

R3.04 Geometric Objects: display/edit associated text data

R3.05 Geometric Objects: wire frame polygons (shared with OM-CSC)

Subsystem Design Report 4-2

• s tl

Table 4-1 - ICERVS Requirements for the User Interface CSC (continued)

R3.06 Update octree display as input points received (shared with OE-CSC)
,, ,,,,

R3.07 Pseudo-color octree display based on property or dimension
,,,. , ,,,, , ,, ,,,,

R3.08 Property derived coloring for objects (shared with OM-CSC)
....... , , ,. , ,, ,,

R3.09 Text display of current view parameters
,,,, ,.,

R3.10 Save and recall view parameter set
, ,, ,,

R3.11 Multiple view windows displaying the same data
..,,.

R3.12 View tracks sensor station viewpoint
.... ,,,....

R3.13 Display 2.5D surface map data, pseudo color by Z
,,,,....

R5.02 Set Region with octree to selected state (shared with OE-CSC)

R5.03 Operator delete objects. (shared with OM-CSC)
.... ,....

R6.01 Operator edit Phase I system parameters

R6.02 Save/retrieve models to/from disk (Distributed among CSCs)

R6.03 Rebuild octree from backup raw data points (shared with OE-CSC)

R6.04 Maintain operator log and notebook for observations and other notes
....

R6.05 Support multiple system of units (shared with OE-CSC)
, ,

R6.06 Define disassembly data. (Shared with OM-CSC)
,., ,.......

R_.01 Graphics tools: mouse, pull down menus, dialog boxes
......

R9.02 Display sensor line-of-sight

R9.03 Text display of station angles
.......

R9.04 Automatically map surfaces
,,o

R9.05 Automatic surface mapping parameters
..........

R9.06 Draw / display scan paths

Subsystem Design Report 4-3

DI _,

4.1.2 Dfrived Reoulrements and Functions
Derived requirements relate to the specialization of the basic requirements such that basic
functions and primitives are readily identifiable. For the UI-CSC, the approach taken is to
identify the primary requirementand then to list the individual derived requirements. Several
basic requirements that are not part of Phase I have a strong impact on the design of the UI-
CSC; these requirements were italicized in Table 4-1 and are also italicized below. For
completeness and understandability, these requirements are treated as though they were part of
the Phase I requirements.

4.1.2.1 R2,05 Create, mod|D, and display 2D convex polygons
a. Screen graphics: point, line, rectangle, circle, polygon
b. Draw screen graphic
c. Erase a screen graphic
d. Select a screen graphic
e. Move a screen graphic
f. Resize line, rectangle and circle graphics
g. Reshape polygon graphic (move vertex, drop vertex, add vertex)
h. 2D polygons: point, line, rectangle, circle, general polygon
i. Interactively create 2D polygon
j. Create 2D polygon from list of vertices
k. Draw 2D polygon
1. Erase 2D polygon
m. Select 2D polygon
n. Move 2D polygon
o. Resize 2D polygon
p. Reshape 2D general polygon
q. Associate screen graphic with a 2D polygon
r. Convert 2D polygon into screen graphic
s. Convert screen graphic into 2D polygon
t. Notify OM-CSC when polygon has been moved or changed

4.1.2.2 R2 Di "o "n T_ ls- tick marks, me urine cursors
a. Readoutfor view scale slider
b. Readouts for view translation scroll bars
c. Readouts for view cutplanes

4.1.2.3 R3,01 Translate and Scale
a. Use slider bars for translation controls

b. Use slider bar for scaling control
c. Convert translation slider position into view window offset factors
d. Convert scale slider position into view window scaling factors
e. Notify OE-CSC when translation or scaling has changed
f. Redisplay the view after slider stops.

Subsystem Design Report 4-4

• e _t

4.1.2.4 R3,02 Display_coord#late axesgrid.
a, Enable / disable coordinate axes

b, Compute grid scaling from tree display level

4.1.2.5 R3.03 Pair of parallelcutplanes
a. Enable / disable cutplanes
b, Use icon (arrow/line) for each cutplane
c. Convert icon position into cutplane description parameters
d, Notify OE-CSC when cutplane position has changed

e. Redisplay all views after eutplane icon stops

4.1.2.6 R3.04 Geometric Obiect_- display/edit associated text data
a. Select a 2D geometric object
b. Determine associated 3D geometric object
c. Call to OM-CSC to get associated text
d. Use general purpose text editing window as editor
e. Call to OM-CSC to update text

4.1.2.7 R3.05 Geometric Obiec_-wire frame polygons
a. Interface with OM-CSC

b. Assemble 3D geometric object from set of 2D polygons
c. Convert 3D geometric object into set of 2D polygons
d. Associate 2D polygon with 3D geometric object

4.1.2.8 R3.06 Update octreedisplay as input pointsreceiyed
a. Use dialog box to get new point data from user
b. Use file selection box to get file of points to add
c. Interface with OE-CSC to add points/list of points

4.1.2.9 R3, 07 Pseudo-color octree display based onproperty or dimension
a. View window menu option for type of display
b. Display routine supports color mapping

4.1.2.10 R3.08 Propertgyderived coloring for objects (shared with OM-CSC)
a. User setable geometric object and object category colors
b. Display routine supports color mapping

4.1.2.11 R3,10 SaveandrefqU viewparameter set
a. Read / write saved view files
b. Read / write saved view index files
c. Save a view
d. Restore a saved view

Subsysteln Design Report 4-5

4.1.2.12 R3.H MultiDie windows disp!ayina the same data
a. Interface with OE-CSC

b. Create, clear and delete view windows
c. Select view window
d. Position / resize view windows

e. Support x,y,z orthogonal views
f. Color code the windows for each type of view
g. Display (DrawPoint) routine for octree data
h. Associate set of view windows with octree

i. Update shared octree attributes when view window attributes are updated
j. Compute size of smallest displayable area
k. View window graphic drawing primitives: DrawPoint, DrawLine

4.1.2.13 135.03 Operator delete objects
a. Select 2D object to delete
b. Find associated 3D object index
c. Interface with OM-CSC to delete 3D geometric object

4.1.2.14 R6.01 Operator edit phase I system parameters
a. Use general purpose text editing window as editor

b. Verify consistency/completeness of parameters
c. Print parameters and parameter file

4.1.2.15 R6.02 Save/re_ri_ve model_ to/from disk
a. Read / write model parameter file
b. Select a model to make active
c. Create new model

d. Delete existing model

4.1.2.16 R6,0d Maintain operator log and notebook for observations and other notes
a. Read / write history log file

b. Edit history log file
c. Append log entry to log file
d. Print log file.

4.1.2.17 R6.05 Support Ml_lt(Dle System Of Units
a. Internal -- The freed system of units used internally by ICERVS will be SI units.
b. External -- A user specified system of units for data input and display
c. Convert tofrom internal units when adding data / displaying data
d. Convert tofrom internal units when adding objects / displaying objects

Subsystem Design Report 4-6

t #

4.1.2.18 R8.0! Graphics tools - space balllmouse, pull-down menus, dialog boxes
a. Main Window Menu Bar Functions: Model, View, Window, Help

b. Main Window MODEL Functions: Select, Create, Delete,
Edit Notebook, Print Notebook,
Edit Parameters, Print Parameters

c. Main Window VIEW Functions: Select, Create, Close, Restore, Save,
Save All

d. Main Window WINDOW Functions: Select

e. Main Window HELP Functions: Index, Extended, About ICERVS

f. View Window Menu Bar Functions: Data, Add, Display, Objects, Debug

g. View Window DATA Menu Functions: New, Open, Save

h. View Window ADD Menu Functions: Point, List

i. View Window OBJECTS Menu Functions: Show, Create, Delete, Edit,
Print, Print All

j. View Window DEBUG Menu Functions: Show Tree, Statistics, Refresh

4.1.3 Class. Descriptions
The UI-CSC software is objected oriented, implemented in C++ and consists of
approximately thirty (30) classes. The C+ + class provides a mechanism for combining the
data and the manipulation procedures related to a high-level entity into a single construct.
Classes facilitate abstraction (ignoring details of processes and how data is represented),
promote encapsulation (hiding of the internal workings of entities) and support inheritance
(defining new entities as specializations of other entities). The first step in object-oriented
design is to identify the classes. Later steps involve assignment of attributes and behavior,
identification of relationships between classes and arrangement of the classes into hierarchies.
This section identifies the UI-CSC classes and discusses their general characteristics (attributes,
behavior and relationships). The last subsection (4.1.3.7) will describe the relationship of the
classes to the basic and derived requirements defined in previous sections (4.1.1 and 4.1.2).
Section 4.1.4 will discuss the major functions assigned to the UI-CSC and describe how the
software classes implement the functions.

Subsystem Design Report 4-7

6 Ii

To simplify the discussion of the UI-CSC software, the classes have been organized into six
(6) groups, as follows:

1. Utility Classes
2. Main Window Related Classes

3. System Parameters and Work Volume Related Classes
4. View Window Related Classes

5. Object Modeling Interface Classes
6. Octree Engine Interface Classes

The following sections describe the purpose and function of each group and each class within
the group. Figures 4-I through 4-3 provide illustrations of the interactions among the UI-CSC
classes.

4.1.3.1 Utility Class_

Utility classes provide a set of common services that other software components may use when
needed. These classes are included as part of the UI-CSC only as a convenience. In general,

the requirement for the utility class was first identified during the UI-CSC design. The
window classes (CBrowseWindow, CEditorWindow, etc.) are ICEKVS application shells
(another level of abstraction) that surround several elements of the Rogue Wave Views.h+ +

library.

CBrowseWindo.w: A general purpose read-only window class for viewing and

optionally printing an ASCII text file. This class is a higher level abstraction of a Rogue
Wave RWScrolledTextWindow.

CConfigManager: A class that manages configuration parameter files. These files
contain groups of key/value pairs that may be read/written in random order. The
parameter file itself is ASCII and may be maintained with any general purpose text
editor such as a CEditorWindow.

CEditorWindow: A general purpose read/write window class for viewing and editing an
ASCII text file. No attempt is made to assess the validity or correctness of the edited
information. This class is a higher level abstraction of a Rogue Wave
RWScrolledTextWindow.

CFileListWindow: A general purpose dialog box class for presenting the operator with a
selection list of filenames. The operator will be allowed to select one filename from the
list. This class is derived from a Rogue Wave RWFileListDialog.

Subsystem Design Report 4-8

ICER MAIN WINDOW INTERACTIONS

ICER MODEL INTERACTIE]NS
__

ClcerWindow: The base class for all ICERVS window classes (except
ClcerMainWindow, CBrowseWindow and CEditorWindow). This class provides all the
common functionality for ICERVS windows and is derived from the Rogue Wave
RWAuxView class.

COrderedStringList: An ordered list of string items. Entries are sequenced by insertion
order. Once added to the list, an item may be accessed by index number. Deleting an
item does not alter the index position of other items. Items in the list must be a Rogue
Wave RWCollectableString class.

C3dPoint: An ordered triplet of values (x,y,z) that represents the coordinates of a point
in space. Methods are provided for defining and examining individual coordinate
values.

CVertex: A vertex of a three-dimensional polyhedra. The CVertex class is derived
from the C3dPoint class.

4.1.3.2 Main Window Related Classes

Main window related classes are all concerned with the topmost interface with the operator.
This level of the user interface manages the main menus, establishes the work volume context,

accepts and dispatches top-level commands, launches the view windows, maintains lists of
other active windows, and sequences the orderly shutdown of the software system.

ClcerHelpManager: The class that implements the ICERVS help system. This class is
not implemented in Phase I.

ClcerMainWindow: A class that implements the ICERVS main window and its menus.
The ClcerMainWindow class is derived from the Rogue Wave RWMainView class.
Exactly one instance of ClcerMainWindow exists while the ICERVS software subsystem
is active.

CLoginDisplay: A class that encapsulates all aspects of logging into the ICERVS

system. An instance of this class is created, used and destroyed during the start-up of
the ICERVS software subsystem.

CSavedViewList: A class that examines the disk, creates a list of saved view files, and
allows the operator to select one of the files for restoration. Instances of this class are
usually created, used and destroyed whenever needed. This class is derived from the
utility class CFileListWindow.

Subsystem Design Report 4-12

f

CVicwList: A class that creates and maintains a list of all active view windows. There

is only one instance of CViewList and it is owned by the ICERVS main window.

_WindowList: A class that creates and maintains a list of all active windows (other than
the main window). There is only one instance of CWindowList and it is owned by the
ICERVS main window.

4.1.3.3 System Parameters and Work Volume Related Classes

The system parameters and work volume related classes provide/control access to the world
model parameter and log files. The ClcerModel class contains the other classes and the
ClcerModel object will in turn be owned by the ClcerMainWindow object. All access to the
model's data will be controlled by the ClcerModel object.

ClcerM0del: A class that encapsulates all the world model (work space) specific data

parameters. Only one instance of this class exists at any one time and it is owned by the
ICERVS main window. The ClcerModel class is derived from CModelData class.

When a new world model is selected, the old ClcerModel object is destroyed and a new
instance created.

CModelData: A class that encapsulates all aspects of the world model parameter file and
the data items contained in the file. Read, write and edit capabilities are provided.

CM0delLi_t: A class that maintains a list of ICERVS world models stored on disk.
This class is used exclusively by the ClcerModel object.

CModelLog: A class that encapsulates all aspects of the world model log file.

4.1.3.4 View Window Related Classes

The view window related classes handle all aspects of the user's view of an octree and the

geometric objects. Several view windows may exist at one time and display different portions
of the same octree and set of geometric objects.

ClcerViewWindow: The ICERVS octree view window class. A unique instance of this

class is created for each view window requested by the operator. Each view window
manages all aspects of its octree view and has menu functions to allow the operator to
interact with the view and the octree. Several view windows may be built on the same
octree data set. The view window also provides an interface to the object modeling

CSC. Polygons and other 2D figures may be drawn in a set of view windows and
combined to represent a 3D geometric object. A 3D geometric object may be selected,
translated, scaled, modified or deleted by manipulating the associated 2D polygons in the
view windows.

Subsystem Design Report 4-13

t t

ClcerVicwData: A class that encapsulates the data (size, position, colors, etc.) that
describes a view window. This class is also capable of creating saved view files that can
later be restored.

CCutPlaneHandler: A class that encapsulates all aspects of the view window's
cutplanes. Cutplanes are represented by two vertical lines in the view window. The
cutplanes may be disabled, enabled and moved independently in each view window.
The position of all cutplanes in all of the view windows affects the data displayed in
each of the view windows.

C(_raphicHandler: A class that encapsulates all aspects of the creation, manipulation,
and destruction of 2D geometric object graphics. This class relies upon the Rogue Wave
Mouse Wrapper portion of Views.h++. Most of the ability to position, resize,
reshape, and select 2D objects is directly performed by the Rogue Wave software. The
CGraphicHandler receives notification after the Rogue Wave operations are completed
and will then update the necessary ICERVS geometric objects.

CScalingHandler: A class that encapsulates all aspects of scaling the view window.
Most of the ability to rescale is directly performed by the Rogue Wave software.
CScalingHandler receives notification after the Rogue Wave operations are complete and
the user has stopped moving the scaling slider bar. The view window will then be
commanded to redraw itself.

CTranslateHandler: A class that encapsulates all aspects of translating the view window.
Most of the ability to translate is directly performed by the Rogue Wave software.
CTranslateHandler receives notification after the Rogue Wave operations are complete

and the user has stopped moving the translation slider bars. The view window will then
be commanded to redraw itself.

CTreeList: A class for maintaining a list of CTreelnterface instances, qChis list is part
of the mechanism for allowing multiple view to display the same octree. There is only
one instance of a CTreeList and it is owned by all active views. The CTreeList object is
a static member of ClcerViewWindow class.

CViewGrid: A class for creating and displaying a grid on a view window. If an
instance of CViewGrid exists, then the grid is visible. If no instance exists, the grid is
not visible.

Subsystem Design Report 4-14

I J

4.1.3.5 Ob_iect Modeling Interface Classes
These interface classes establish and control the communications between the UI-CSC and the

OM-CSC. This is done to simplify the software design, to permit parallel design and
implementation of the software, and to promote the modularity of the software.

CM0delOb_iectlnterface: A class that implements a controlled interface between the User
Interface and the Object Modeling CSC. Its primary function is to isolate the UI-CSC
and the OM-CSC by ensuring that implementation details and dependencies of one CSC
will never affect the other CSC. Only one instance of CModelObjectlnterface will exist.
All view windows will share this one interface instance.

CObjectDisplayAttribute: A class that defines the display attributes that apply to all
geometric objects such as visibility by category, color by category, etc.

ClcerGraphi¢: The abstract base class for all 2D displayable graphic object classes.
This class provides all the common behavior for 2D graphic objects. All other 2D
graphic object classes must be derived from ClcerGraphic. Dimensional information for
ClcerGraphic objects is always expressed in ICERVS internal units. For Phase I, only
ClcerRectangle and ClcerPolygon are implemented. Future derived types will include
ClcerPoint, ClcerLine, ClcerCircle, and others.

ClcerRectangle: A class that encapsulates a drawable 2D rectangle.

.ClcerPolygon: A class that encapsulates a drawable 2D polygon.

4.1.3.6 Octree Enaine Interface Classes
These interface classes establish and control the communications between the UI-CSC and the

OE-CSC. This is done to simplify the software design, to permit parallel design and
implementation of the software, and to promote the modularity of the software.

CTreelnterface:: A class that implements a controlled interface between the User
Interface and the Octree Engine CSC. Its primary function is to isolate the UI-CSC and
the OE-CSC by ensuring that implementation details and dependencies of one CSC will
never affect the other CSC. Multiple instances of CTreelnterface may exist. All view
windows that share the same octree data will share a common interface instance.

CDisplayAttribute: A class that provides an encapsulation for defining how octree data
is displayed. It contains CCutplane and CColorMap objects.

CCutplane: A class that defines and implements a half-space. The volume in the half-
space is visible, the rest is not visible.

Subsystem Design Report 4-15

CColorMap: A class for converting an octree CNodeData to a color value.

4.1.3.7 Relationship Between UI-CSC Reauirements and Classes
Previous sections have enumerated the ICERVS basic requirements for the UI-CSC, defined a

set of derived requirements for each basic requirement and identified a set of software classes
for the UI-CSC. This section will define the relationships between the requirements and the
classes.

. Table 4-2 identifies the classes that implement each ICERVS basic requirement. Requirements

that apply to Phase I are in bold type. Requirements that not part of Phase I requirements but
strongly influence the software design are italicized. Some requirements that span multiple
phases have been reworded to clarify the Phase I requirement. These requirements are marked
with a asterisk. The order in which the classes are listed for each requirement (except R8.01)

is significant. The first class listed is either ClcerMainWindow or ClcerViewWindow and
depends upon which ICERVS menu function the operator would select to exercise the
requirement. The remaining classes are ordered roughly in the sequence that would be
encountered during execution of the selected menu function. Note that the list of classes for
each requirement generally ends with a class that interfaces to another CSC or with a utility
class.

Table 4-3 identifies the ICERVS basic requirements related to each UI-CSC class.

Table 4-4 identifies the detailed relationships between the derived requirements and the UI-
CSC classes. Most of the derived requirements relate to one data member or one function
member of a single class. These relationships are denoted by the expression
class_name::data_member_name or class_name:'.function_nameO. In many cases, a derived
requirement is implemented by a Rogue Wave class. This is indicated by listing the name(s)
of the Rogue Wave class. All Rogue Wave class names start with "RW" (e.g. RWScale,
RWScrollBar, etc.).

Subsystem Design Report 4-16

j

Table 4-2 -- UI-CSC Classes For Each ICERVS Requirement

Requirement
Number Requirement Description and List Of Related Classes

...... , , ,,,,, ,,,,

R2.05 Def'me, modify, display and erase 2D convex polygons
ClcerViewWindow

CGraphicHandler
C3dPoint
CVertex

ClcerGraphic, ClcerRectangle, ClcerPolygon
CModelObjectlnterface

R2.07 Dimensioning Tools- tick marks, measuring cursors
ClcerViewWindow

CCutplaneHandler
CTranslateHandler

CScalingHandler

R3.01 Translate and scale
CIcerViewWindow
CTranslateHandler

CScalingHandler
CTreelnterface

...... ,

R3.02 Display coordinate axesgrid
CIcerViewWindow
CViewGrid

R3.03 Pair ef parallel cutplanes
CIcerViewWindow

CCutplaneHandler
CTreeInterface

R3.04 * Geometric Objects: display/edit associated text data
CIcerViewWindow

CModelObjectInterface
CBrowseWindow
CEditorWindow

COrderedStringList
..........

Subsystem Design Report 4-17

Q !

Table 4-2 - UI-CSC Classes For Each ICERVS Requirement (continued)

R3.05 * Geometric Objects: wire frame polygons
CIcerViewWindow

CGraphicHandler
CIcerGraphic, CIcerRectangle, CIcerPolygon
C3dPoint
CVertex

CModelObjectIntefface
i, i,i i i i .,.,111 i1,11, i i, i ilml

R3.06 * Update octree display as input points received
CIcerViewWindow
CTreeInterface

ii iii i,,i

R3.07 Pseudo-color octree display based on property or dimension
CIcerViewWindow

CColorMap
i, i i,iii i

R3.08 Property derived coloring for objects (shared with OM-CSC)
CIcerViewWindow

CObjectDisplayAttribute

R3.10 Save and recall view parameter set
CIcerMainWindow
CSavedViewList
CIcerViewWindow
CIcerViewData

R3.11 Multiple view windows displaying the same data
CIcerMainWindow
CViewList
CIcerViewWindow
CTreeList
CTreeInterface

I7,5.03 Operator delete objects
CIcerViewWindow

CGraphicHandler
CModelObj ectInterface

Subsystem Design Report 4-18

6 b

Table 4-2 -- UI-CSC Classes For Each ICERVS Requirement (continued)
..

R6.01 * Operator edlt Phase I system parameters
CleerMainWindow
CModelData
CEditorWindow

R6.02 Save/retrieve models to/from disk
CIcerMainWindow
CIcerModel
CModelList
CModelData

CConfigManager
i ,,,, , ,,,, , , , , ,,, , ,

R6.04 Maintain operator log and notebookfor observations and other notes
ClcerMainWindow

CModelLogFile
CEditorWindow
CBrowseWindow

COrderStringList
,,,, ,, ,, , ,

R6.05 Support multiple system of units
ClcerMainWindow
CModelData
ClcerViewWindow
ClcerViewData
CTreelnterface

.... ,...... ,,

R8.01 * Graphics tools: mouse, pull down menus, dialog boxes
i

ClcerMainWindow, ClcerWindow, ClcerViewWindow,
CBrowseWindow, CEditorWindow, CFileListWindow,
CViewList, CWindowList, CSavedViewList, CModelList, CTreeList,
CLoginDisplay, ClcerHelplnterface

..........

Subsystem Design Report 4-19

t_ b

Table 4-3 -- ICERVS Requirements For Each UI-CSC Class
i
i

Class Related Requirements

Utility Classes
CBrowseWindow R3.04, R6.04
CConfigManager R6.02
CEditorWindow R3.04, R6.O1, R6.04
CFileListWindow R8.01
CIcerWindow R8.01

COrderedStringList R3.04, R6.04
C3dPoint R2.05, R3.05
CVertex R2.05, R3.05

Main Window Classes

CIcerHelpManager R8.01
CIcerMainWindow R3.10, R3.11, R6.01, R6.02, R6.04, R6.05, R8.01

CLoginDisplay R8.01
CSavedViewList R3.10, R8.01
CViewList R3.11, R8.01
CWindowList R8.01

Work Volume Classes
ClcerModel R6.02

CModelData R6.01, R6.02, R6.05
CModelList R6.02

CModelLogFile R6.04

View Window Classes

ClcerViewWindow R2.05, R2.07, R3.01, R3.02, R3.03, R3.04, R3.05, R3.06,
R3.07, R3.08, R3.10, R3.11, R5.03, R6.05,R8.01

ClcerViewData R3.10, R6.05

CCutplaneHandler R2.07, R3.03
CGraphicHandler R2.05, R2.07, R3.05, R5.03
CScalingHandler R2.07, R3.01
CTranslateHandler R2.07, R3.01
CTreeList R3.11
CViewGrid R3.02

Subsystem Design Report 4-20

iI I

Table 4-3 - ICERVS Requirements For Each UI-CSC Class (continued)

Class Related Requirements

Modeling Interface Classes
CModelObjectlnterface R2.05, R3.04, R3.05, R5.03
CObjectDisplayAttribute R2.05, R3.05, R3.08
ClcerGraphic R2.05, R3.05

ClcerReetangle R2.05, R3.05
ClcerPolygon R2.05, R3.05

Oetree Interface Classes

CTreelnterface R3.01, R3.03, R3.06, R3.11, R6.05

CDisplayAttribute R3.06
CCutplane R3.03
CColorMap R3.06, R3.07

Subsystem Design Report 4-21

8 Iw

Table 4-4 - UI-CSC Detailed Requirements / Class Relationships

Requirement
Number Requirement Description and Deta).led Class Relationships

R2.05 Def'me, modify, display and erase 2D convex polygons
a. RWGmphic, RWXCanvas
b. RWXCanvas
c. RWXCanvas
d. RWXCanvas
e. RWXCanvas

f. RWXCanvas

g. RWXCanvas

h. ClcerGraphic. ClcerRectangle, ClcerPolygon constructors
i. CGraphicHandler:: AddGraphic0
j. RWXCanvas
k. CGraphic: :ShowGraphic0
1. CGraphic: :EraseGraphic0
m. CGmphic:: Sel_tGraphic0
n. RWXCanvas, CGraphicHandler: :MovedCallBack0
o. RWXCanvas, CGraphicHandler: :MovedCallBack0
p. RWXCanvas, CGraphicHandler: :MovedCallBack0

q. CGraphicHandler:: graphicList
r. CGraphicHandler:: AddGraphic0
s. CGraphic: :MovedCallBack0
t. CModelObj ectlnterface:: Update0

R2.07 Dimensioning Tools - tick marks, measuring cursors
a. CScalingHandler: :MovedCallBack0
b. CTranslationHandler: :MovedCallBack0
c. CCutPlaneHandler: :MovedCallBack0

,.,

R3.01 Translate and scale

a. CTranslateHandler constructor, RWScale

b. CScalingHandler constructor, RWScale
c. CTranslateHandler: :MovedCallBack0
d. CScalingHandler:: MovedCallBack0
e. CTranslateHandler: :MovedCallBack0, CScalingHandler: :MovedCallback0
f. CTranslateHandler: :MovedCallBack0, CScalingHandler: :MovedCallback0

SubsystemDesignReport 4-22

Table 4-4 - UI-CSC Detailed Required/Class Relationships (continued)

R3.02 Display coordinate axes / grid
a. CViewGrid constructor

b. CViewGrid: :GridSize0

R3.03 Pair of parallel eutplan_
a. ClcerViewWindow: :DisplayCutPlaneON/OFF0
b. CCutPIaneHandler constructor

c. CCutPlaneHandler: :MovedCaUBack0
d. CCutPlaneHandler: :MovedCallBack0
e. CCutPlaneHandler: :MovedCallBack0

R3.04 * Geometric Objects: display/edit associated text data
a. RWXCanvas

b. CGraphicHandler: :FindGraphie0
c. CModelObj ectIntefface: :Edit0
d. CEditorWindow constructor

e. CModelObjectList: :Replace0

R3.05 * Geometric Objects: wire frame polygons
a. CModelObj ectInterface: :ConnectView0
b. CModelObjectInterface:: AddObject0
c. CModelEntity: :ConvertObjectTo2D0
d. CGraphicHandler: :graphicList

R3.06 * Update octree display as input points received
a. CIcerViewWindow: :Add0, RWDialog
b. CIcerViewWindow: :AddList0, RWDialog
c. CTreeInterface: :AddPoint0, AddList0

R3.10 Save and recall view parameter set
a. CICerViewData: :ReadSavedViewFile0, WriteSavedVIewFile0
b. CSavedViewList: :ReadSavedViewlndex0, WriteSavedViewlndex0
c. ClcerMainWindow:: ViewSave0, ViewSaveAll0
d. ClcerMainWindow:: ViewRestore0

i

i Subsystem Design Report 4-23

Table 4-4 - UI-CSC Detailed Required/Class Relationships (continued)
-

R3.07 Pseudo-color octree display based on property or dimension
a. CIcerViewWindow:: DisplayColor0;
b. CIcerViewWindow: :DrawPoint0

R3.08 Property derived coloring for objects (shared with OM-CSC)
a. CIcerViewWindow:: DisplayColor0;
b. CIeerViewWindow: :DrawLine0

R3.11 Multiple view windows displaying the same data
a. CTreeInterface constructor

b. CIcerViewWindow constructor, destructor
c. CIcerWindow: :ToTop0, RWView
d. RWView

e. CIcerViewWindow:: DisplayOrthogonalView0
f. ClcerViewWindow:: DisplayOrthogonalView0
g. CTreelnterface: :DrawPoint0
h. CTreeList: :Add0, Find0
i. CTreelnterface:: UpdateAttributes0

j. CViewData: :SmallestDisplayableRectangle0
k. ClcerViewWindow: :DrawPoint0, DrawLine0

R5.03 Operator delete objects
a. RWXCanvas

b. CGraphicHandler:: FindGraphic0
c. CModelObjectlnterface:: Delete0

R6.01 * Operator edit Phase I system parameters
a. CEditorWindow constructor

b. CModelData: :Read0
c. CIcerModel: :PrintParameters0, CModelData: :Print0

Subsystem Design Report 4-24

Table 4-4 - UI-CSC Detailed Required/Class Relationships (continued)

R6.02 Save/retrieve models to/from disk

a. CConfigManager constructor, RWCString
b. CIcerMainWindow: :ModelSelect0, CIcerModel: :Select0
c. CIcerMainWindow: :ModelCreate0, CIcerModel: :Create0
d. CIcerMainWindow: :ModelDelete0, CIcerModel: :Delete0

R6.04 Maintain operator log and notebook for observations and other notes
a. RWCString
b. ClcerModel: :EditModelLog0, CModelLogFile: :EditLog0
c. CModelLogFile: :AppendLog0
d. ClcerModel: :PrintModelLog0, CModelLogFile: :PrintLog0

R6.05 Support multiple system of units
a. CModelData:: Get/SetTanklntemalUnits0,Get/SetTanklntemalUnits0
b. CModelData: :Get/SetTankExternalUnits, Get/SetUnitsMultiplier0,

Get/SetUnitsOffset

c. CTreelnterface: :AddPoint0, AddList0, DisplayPoint0
d. CModelObjectlnterface: :Add0, Display0

......

R8.01 * Graphics tools: mouse, pull down menus, dialog boxes
a. ClcerMainWindow::modelMenu, viewMenu, windowMenu, helpMenu
b. ClcerMainWindow::ModelSelect0, ModelCreate0, ModelDelete0,

ModelEditNotebook0, ModelPrintNotebook0, ModelEditParameters0,

ModelPfintParameters0
c. ClcerMainWindow::ViewSelect0, ViewCreate0, ViewClose,

ViewRestore0, ViewSave0, ViewSaveAll0
d. ClcerMainWindow: :WindowSelect0

e. ClcerMainWindow::Helplndex0, HelpExtended0, HelpAboutlcervs0
f. ClcerViewWindow::dataMenu, addMenu, displayMenu, objectsMenu,

debugMenu
g. ClcerViewWindow::DataNew0, DataOpen0, DataSave0
h. ClcerViewWindow: :AddPoint0, AddList0

i. ClcerViewWindow::ObjectsShow0, ObjectsCreate0, ObjectsDelete0,
ObjectsEdit0, ObjectsPrint0, ObjectsPrintAll0

j. ClcerViewWindow::DebufShowTree0, DebugStatistics0, DebugRefresh0

Subsystem Design Report 4-25

o

4.1.4 Maj'or Function Descriptions
The UI-CSC software's major functions are implemented via pull-down menus which are
available from both the main window and the view windows. These functions are organized

into two groups, as follows:

M_n Window MenuFunctions: MODEL, VIEW, WINDOW, HELP

View Window Menu Functions: DATA, ADD, DISPLAY, OBJECT, DEBUG

In order to understand the functions of the UI-CSC and their implementation, it is ner.essary
understand the structure and operation of the ICERVS main program, the ICerMainWindow
class menus, and the ICerViewWindow class menus• The ICERVS main program code is very
short and is listed below:

void main(int argc, char **argv) {
CIcerMainWindow mainWindow(argc,argv,"ICERVS MAIN WINDOW"); 1
mainWindow, startO; 2

return; }

This code shows that the main program 1) creates an instance of a ClcerMainWindow as its
main window and 2) starts the windowing system. All subsequent actions are performed as a
consequence of the operator selecting some menu function.

The key to understanding how the menus operate (and how user commands are initiated) is the
constructor function for the ClcerMainWindow and ClcerViewWindow classes. After Rogue
Wave Views.h+ + has created the window, the most important action of these constructor

functions is to build the window menu system. Using the Views.h+ + library makes building
the menus very simple. All it takes is code similar to the following:

menu.addOptionCSelect", //Name for menu item
'S', //Hot key for menu item
this, //Owner of the menu
&ClcerModel: :Select, //Callback function
0, //Callback function data
some value); //Callback function data

• //Define other menu items

menu.attachTo(*menubar, "MODEL", 'M'); //Attach menu to menu bar

This code creates a menu item called "Select" and attaches it to the ClcerMainWindow menu

bar at a position called MODEL. The callback function ClcerModel::Select is defined as the

Subsystem Design Report 4-26

function to be called when the user selects this menu item. Using similar code, the constructor
for CIcerMainWindow completes its menu system and then returns control to the main
program.

The main program turns over control to the Rogue Wave function startO to initiate the main
window input loop. From this point on, the Rogue Wave Views.h+ + will perform all
necessary actions to permit the operator to select a menu item. Control will be returned to the
ICERVS software via the callback function associated with the menu item after the operator
has selected a menu item.

The key point to bear in mind during the discussion of the UI-CSC functions is that there is
not a single entry point in the software. Each menu item has its own separate entry point (via
its callback function) into the ICERVS software. Consequently, the first step in establishing
the relationships between the UI-CSC functions and the UI-CSC classes is to determine the
associated callback function for the menu function being discussed. In general, this will be a
unique member function c" a particular class (generally, ClcerMainWindow or
ClcerViewWindow).

4.1.4.1 Main Window Menu Functions

The main window is the top level window which appears as soon as the program is started and
remains on the screen until the program is exited. See Figure 4-4 for an example of this
screen. All other windows created are displayed on top of this window.

When the ICERVS program is started, the operator will be automatically prompted to logon
the ICERVS system (another operation of the CIcerMainWindow constructor). See Figure 4-5
for an example logon screen. When the operator has successfully logged in, the last used world
model from the previous ICERVS session will become the current working model. The
operator may change the current working model by clicking on the MODEL-SELECT menu
function and selecting another world model to be the current working model. The main
window menu functions and their subfunctions are listed below:

MODEL VIEW WINDOW HELP

SELECT CREATE DISPLAY EXTENDED

CREATE SELECT INDEX

DELETE CLOSE ABOUT

NOTEBOOK EDIT RESTORE VIEW

PRINT SAVE VIEW

PARAMETERS...EDIT SAVE ALL

PRINT

QUIT

Subsystem Design Reix_rt 4-27

• o

Figure 4-4- ICERVS Main Window

Subsystem Design Report 4-28

Figure 4-5- ICERVS Logon Dialog

Subsystem De,sign Rel_)rt 4-29

4.1.4.1.1 MODEL Sub-Menu Functions: MODEL sub-menu functions consist of all the

functionality needed to maintain world models in the ICERVS system. A world model can be
thought of as a single workspace (tank) configuration. There can be several world models
defined in the ICERVS system; however, there is only one current model defined at any time.
Each model is contained in a model subdirectory located under the main model directory:
...\MODELS. They are named MODEL1, MODEL2, etc. Each world model subdirectory
contains the following files necessary to describe the world model:

Model Parameter File: This file contains all the parameters that pertain to the world
model (i.e. tank description, system defaults, etc.). It is initially created by the
MODEL-CREATE menu function from a default Model Parameter file and can be

subsequently edited by the MODEL-PARAMETERS EDIT menu function. The file is
an ASCII file. Each parameter in the file will have a keyword for identification in the
file for ease of operator editing. There is one Model Parameter File per world model.

Model Log File: This file contains the logbook history of the world model and is

written to by the operator over time. It is initially created by the MODEL-CREATE
menu function from a default Log file and can be subsequently edited by the MODEL-
NOTEBOOK EDIT menu function. The file is an ASCII file. Each time a operator

logs onto the system or creates/selects a world model, an entry is written to the log file
containing the operator's name, date and time. There is one Model Log File per world
model.

Geometric Objects List File: This file contains information about all the 3D polyhedral

objects defined for the world model. It is initially created by the MODEL-CREATE
menu function from a default file and can be subsequently edited by the OBJECT-
INFO EDIT menu function. There is one Geometric Objects List File per world
model. A similar file, called the Geometric Objects Library File, contains standard

and user defined geometric object templates. These templates may be recalled and
inserted into a view window. There is only one library file in the ICERVS system and
all world models share that one file.

Tree File: This file contains the volumetric data (either physical or property)
describing the mapped storage tank. It is stored as an octree data structure. The word
tree is used throughout this manual to refer to the volumetric data described as an
octree data structure. It is initially created by the DATA-SAVE menu function. There
may be several Tree Files per world model.

Saved View File: This file contains all the information necessary to describe one view
window. It is initially created by the VIEW-SAVE VIEW or VIEW-SAVE ALL menu

functions. The Saved View Files are managed by a Saved View Index File which

Subsystem Design Report 4-30

6 J

contains the names of all the Saved View Files which are to be stored together,
allowing multiple views to be saved and restoredas a group. There may several Saved
View Files per world model.

The following describes the MODEL sub-menu functions in detail:

MODEL-SELECT (Select a current working mode/): This function allows selection from a
list of available world models (workspace configurations) via a list selection dialog
window. The selected world model will become the working model in the system.
The callback functionis CIcerMainWindow::ModelSelectO.

MODEL-CREATE: (Create a new model): This function creates a new model directory with
default world model files in it. The operator is prompted for a model name to identify
the model being created. The newly created model will become the working model in
the system. The operator may wish to edit the model parameter file at this time by
clicking on the MODEL-PARAMETERS EDIT menu function to customize the tank
configuration parameters. The operator may also wish to edit the model log file at this
time by clicking on the MODEL-NOTEBOOK EDIT menu function to make an entry
in the model historical log. The callback function is
ClcerMainWindow: :ModelCreate0.

MODEL-DELETE: (Delete an existing mode/): This function removes an existing world
model directory and its files. The operator is prompted to confirm verification before
deletion occurs. If the current working directory is the one being deleted, the
MODEL-SELECT function will be automatically invoked for the operator to select a
new working model. The callback function is ClcerMainWindow::ModelDelete0.

MODEL-NOTEBOOK EDIT: (FMit the model notebook log file): This function allows
editing of the current model's notebook log file via a scrollable multi-line edit dialog
window. The notebook log file contains automatic entries when the model is created or
selected. The file is meant to be used as a logbook of historical information concerning
the model (tank configuration). The callback function is
ClcerMainWindow: :ModelNotebookEdit0.

MODEL-NOTEBOOK PRINT: (Print the model notebook log file): This function allows
printing of the current model's notebook log file. The notebook log file contains
automatic entries when the model is created or selected. The file is meant to be used as

a notebook of historical information concerning the world model (tank configuration).
The callback function is ClcerMainWindow::ModelNotebookPrint0.

MODEL-PARAMETERS EDIT: (Edit the model parameter file): This function allows
editing of the current model's parameter file via a scrollable multi-line edit dialog
window. The model parameter file contains all the necessary information pertaining to

Subsystem Design Report 4-31

t 8

the world model (tank configuration) such as tank size, units, and default settings. The
file being edited is an ASCII file so caution should be taken when editing to maintain
the proper format of the file. The callback function is
CIcerMainWindow:: ModelParametersEditO.

MODEL-PARAMETERS PRINT: (Print the model parameter file): This function allows

printing of the current model's parameter file. The model parameter file contains all
the necessary information pertaining to the world model (tank configuration) such as
tank size, units, and default system settings. The callback function is
CIcerMainWindow:: ModelParametersPrint0.

MODEL-QUIT: (Exit the ICERVS system): This function closes all windows and exits the

ICERVS system. The callback function is CIcerMainWindow: :Quiflcervs0.

4.1.4.1.2 VIEW Sub-Menu Functions: VIEW sub-menu functions consist of all the

functionality needed to manage a view window in the ICERVS system. A view window
contains a 2D display of the volumetric data as well as a 2D representation of the 3D
polyhedral geometric objects. There can be as many view windows as desired in the ICERVS
system. The following describes the VIEW sub-menu functions in detail:

VIEW-CREATE: (Create a new view window): This function creates a new view window

and allows the operator to select an existing tree file or a new tree file (named
NEW.TRE) to be displayed in the newly created view via a filelist selection dialog
window. If the operator selects to display a new tree file, a name will be prompted for
to identify the new tree file; however, a tree file will not be created until the operator
explicitly saves the tree with the DATA-SAVE view menu function. The callback
function is ClcerMainWindow::ViewCreate0.

VIEW-SELECT: (Select a current view window): This function allows selection of a view

window from a list of existing views via a list selection dialog window. A view
automatically becomes the current view when the mouse is moved over it; however, if
a view window becomes completely hidden behind another view, the VIEW-SELECT
menu function will cause the selected view to pop to the top. The callback function is
ClcerMainWindow:: ViewSelect0.

VIEW-CLOSE: (Close a view window): This function closes a selected view window. A list

selection dialog window is displayed for the operator to select the view window to be
closed. If the tree in the selected view window has changed, the operator will be

prompted to save the tree to a file before closing the view window via a filelist dialog
window. The callback function is ClcerMainWindow::ViewClose0.

Subsystem Design Report 4-32

VIEW-RESTORE VIEW: (Open a previously saved view): This function allows selection of
a previously saved view file from a list of existing view files via a filelist selection
dialog window. Saved view files contain tree information (i.e. tree file used) as well as
view context information (i.e. current display options). A saved view file may contain

one or many previously saved view windows. When a saved view file has been
selected, the view window(s) will be displayed on the screen exactly as they were when
they were originally saved with the VIEW-SAVE VIEW menu function. The callback
function is CIcerMainWindow::ViewRestore0.

VIEW-SAVE VIEW: (Save a current view): This function saves a selected view window to
a saved view file. A list selection dialog window is displayed for the operator to select
the view window to be saved. A filelist selection dialog window is then displayed for
the operator to enter a saved view file name in which to save the selected view. Saved
view files contain tree information (i.e. tree file used) as well as view context
information (i.e. current display options). The saved view can later be restored with
the VIEW-RESTORE VIEW menu function. The callback function is

CIcerMainWindow:: ViewSave0.

VIEW-SAVE ALL: (Save all views): This function saves all displayed views to a saved view
file. A filelist selection dialog window is displayed for the operator to enter a saved
view file name in which to save the views. Saved view files contain tree information

(i.e. tree file used) as well as view context information (i.e. current display options) for
each saved view. The saved views can later be restored with the VIEW-RESTORE

VIEW menu function. The callback function is CIcerMainWindow::ViewSaveAll0.

4.1.4.1.3 WINDOW Sub-Menu Function_: WINDOW sub-menu functions consist of

all the functionality needed to manage the windows in the ICERVS system. There is always
one main window in the system. There may be one or more view windows as well as some
other extraneous windows at any point in time. The following describes the WINDOW sub-
menu functions in detail:

WINDOW-DISPLAY: (Display all windows): This function allows selection of a windows
from a list of existing windows via a list selection dialog box. The list of window
contains all view windows and any other window (i.e.: sensor window, interface
window, etc.) that may be currently displayed. A window automatically becomes the
current window when the mouse is moved over it; however, if a window becomes

completely hidden behind another window, the WINDOW-DISPLAY menu function
will cause the selected window to pop to the top. The callback function is
CIcerMainWindow:: WindowSelect0.

Subsystem Design Report 4-33

Ill j

4.1.4.1.4 HELP Sub-Menu FunctiOns: HELP sub-menu functions consist of all the

functionality needed to get HELP for the ICERVS system. The following describes the HELP
sub-menu functions in detail:

HELP-EXTENDED: (Display extended HELP for the system): This function displays a
scrollable multi-line browse dialog window containing system wide HELP information.
The callback function is CIcerMainWindow::HelpExtended 0.

HELP-INDEX: (Display HELP index): This function displays an index of HELP information
in a list selection dialog window. When the operator selects the desired HELP index

item, all information about that item will be displayed in a scrollable multi-line browse
dialog window. The callback function is CIcerMainWindow::HelpIndex0.

HELP-ABOUT: (Display ABOUT ICERVS information): This function displays an ABOUT
message for the ICERVS system in an about dialog window. The callback function is
CIcerMainWindow: :HelpAboutIcervs0.

4.1.4.2 Vigw Window Menu Functions
The view windows are created from the main window's VIEW-CREATE or VIEW-RESTORE

menu functions. See Figure 4-6 for an example of a View Window. View windows contain

volumetric data that represent the 3D surface of the storage tank. As many view windows as
desired can be created; however, only 4 view windows will fit on the screen before window
overlapping occurs and window resizing becomes necessary.

Each view can contain unique volumetric data or the same volumetric data as another view.
Different views that contain the same volumetric data are "linked" in the sense that certain

display attributes of one view will be echoed in all other linked views. The display attributes
that are linked axe: data colors and cutplanes. Also, when any ADD menu function is
invoked, the function will also be automatically performed on all linked views.

All view windows contain scrolling controls on the right and bottom of the window which are
used for panning or translating the data. They also contain a slider bar on the left of the
window which is used for zooming or scaling the image. When the data is first displayed on
the view, the data is displayed at full scale and no translation is necessary. However, as the
data is scaled, the data may need to be translated in order to view the region of interest.

,Each view window's title bar contains a view name (view 1, view 2, etc.), as well as a

volumetric data name (the name of the tree file which is currently displayed in the view. Each
view's title bar is color coded to represent the type of orthogonal view that is being displayed
(x, y, z, etc.).

Subsystem Design Report 4-34

d J

Figure 4-6- ICERVS View Window

Subsystem Design Report 4-35

i

The view window menu functions and their subfunctions are listed below:

DATA AD___DD DISPLAY OBJECT DEBUG

NEW POINT TREE LEVEL SHOW...ON SHOW TREE

OPEN LIST CUTPLANE...ON OFF STATISTICS

SAVE OFF CREATE REFRESH

COLOR DELETE

GRID ON INFO...EDIT

OFF PRINT

ORTHO VIEW PRINT ALL

4.1.4.2.1 DATA Sub-Menu Functions: DATA sub-menu functions consist of all the

functionality needed to manage the tree files which contain volumetric data. The following
describes the DATA sub-menu functions in detail:

DATA-NEW: (Open a new tree file): This function clears the view window of any currently

displayed volumetric data and replaces it with a new tree file which contains no
volumetric data. It also resets all display attributes back to the system defaults. If a
tree file is displayed in the view before this function is invoked, the operator will be
asked if the current volumetric data should be saved to a tree file first. When the

function is invoked, a name will be prompted for to identify the new tree file, however,
a tree file will not be created until the operator explicitly saves the tree with the
DATA-SAVE menu function. This name will be displayed in the view window's title
bar along with the view name. The callback function is
ClcerViewWindow: :DataNew0.

DATA-OPEN: (Open an existing tree file): This function allows the operator to select via a
filelist selection dialog window the tree file (which contains volumetric data) to be

displayed in the view. It also resets all display attributes back to the system defaults.
If a tree file is displayed in the view before this function is invoked, the operator will
be asked if the current volumetric data should be saved to a tree file first. The selected

tree filename will be displayed in the view window's title bar along with the view
name. The callback function is CIcerViewWindow: :DataOpen0.

DATA-SAVE: (Save the volumetric data to a tree file): This function saves the view's
volumetric data to a tree file. A filelist selection dialog window is displayed for the

operator to select the tree file in which to save the data. The callback function is
ClcerViewWindow: :DataSave0.

Subsystem ,.,,.:,ign Report 4-36

1 •

4.1.4.2.2 ADD Sub-Menu l_nctions: ADD sub-menu functions consist of all the

functionality needed to add volumetric data to the ICERVS system. The following describes
the ADD sub-menu functions in detail:

ADD-POINT: (Add a point to the volumetric data): This function allows the operator to

interactively add a point to the volumetric data. An input dialog window is displayed
for the operator to enter the x,y,z and property values for the data point to be added.
The entered point is then displayed on the view and all other linked views. The
callback function is CIcerViewWindow: :AddPoint0.

ADD-LIST: (Add list of points to the volumetric data): This function allows the operator to
add a list of points contained in an ASCII file to the volumetric data. A filelist
selection dialog window is displayed for the operator to enter the name of the ASCII
file containing the x,y,z and property values of each data point to be added. The
entered points are then displayed on the view and all other linked views. The callback
function is ClcerViewWindow: :AddList0.

4.1.4.2.3 DISPLAY Sub-MenuFuncti0ns: DISPLAY sub-menu functions consist of all

the functionality needed to control the display attributes of the volumetric data in the view
windows. The following describes the DISPLAY sub-menu functions in detail:

DISPLAY-TREE LEVEL: (Get a new volumetric data level): This function allows the
operator to get the data level to be used when displaying the volumetric data. This data
level pertains to the resolution of the view generated by the volumetric data. A list
selection dialog window is displayed for the operator to select the level (1-9) which
correlates to the number of pixels used to represent the data (i.e. level 5 = 32 pixels,

level 9 = 512 pixels). This selection effects the resolution of the view generated, not
the size of the display window. The data is then redisplayed using the new level. The
callback function is ClcerViewWindow::DisplayTreeLevel0.

DISPLAY-CUTPLANE: (Enable / Disable a cutplane): This function allows the operator to
turn ON or OFF a set of cutplanes. When turned on, a default cutplane will be
displayed at the left and right edges of the view window. They will appear as vertical
lines attached to a readout of the axis position. The operator will move the lines to
their desired positions by dragging the appropriate line across the view window with
the mouse and dropping it at the desired cutplane location. The data will be

redisplayed with only the data between the 2 cutplanes visible. If the 2 cutplanes
should cross as they are being defined, then only the data outside the cutplanes will be
visible. A cutplane's position will affect the displayed data in all linked views;

however, the act of turning on or off cutplanes is view specific. The callback function
is ClcerViewWindow: :DisplayCutPlane0.

Subsystem Design Report 4-37

DISPLAY-COLOR: (Define the volumetric data colors): This function allows the operator
to define the colors used to display the volumetric data (i.e. filled nodes, empty nodes,

partial nodes, unknown nodes). This will be done via radio buttons in a dialog
window. The volumetric data is then redisplayed in the view using the new colors, as
well as in all other linked views. Note that colors having to do with the windows are

changeable only from the MODEL-PARAMETERS EDIT menu function. The
callback function is CIcerViewWindow: :DisplayColor0.

DISPLAY-GRID: (Set the grid): This function allows the operator to turn a grid ON or OFF
via a 2nd level menu. The callback function is CIcerViewWindow: :DisplayGrid0.

DISPLAY-ORTHOGONAL VIEW: (Set the orthogonal view): This function allows the
operator to select the orthogonal view to be used when displaying the volumetric data
in the view window. A list selection dialog window will be displayed which contains

the view choices (x,y,z,etc.). Each view type will have a different color title bar to
allow easy identification of the view type. _When the orthogonal view has been
selected, the volumetric data will be redisplayed using the new view type. The
callback function is ClcerViewWindow: :DisplayOrthoginalView0.

4.1.4.2.4 OBJECT Sub-Menu Functions: OBJECT sub-menu functions consist of all

the functionality needed to control the volumetric geometric objects in the view window. The
following describes the OBJECT sub-menu functions in detail:

OBJECT-SHOW: (Show the geometric objects): This function allows the operator to turn
ON or OFF the geometric objects which pertain to the current model (workspace
configuration). Only those objects which are visible given the data display
configuration are displayed. The callback function is
CIcerViewWindow: :ObjectShow0.

OBJECT-CREATE: (Create a geometric object): This function allows the operator to create

a geometric object on the view window. A list selection dialog window will be
displayed for the operator to select the type of object to create (i.e. point, line,
rectangle, circle, polygon, etc.). When the type of object has been selected, the object
will appear on the view window and can be moved or resized on the view by selecting
the sides and/or vertices of the object with the mouse. The OBJECT-INFO EDIT
menu function will be automatically invoked to allow the operator to identify the newly
created object. All other linked views will also show the newly created object. The
object can be created in any orthogonal view, and then extruded in any of the other two
views to give it dimension. For example, if the object is created in the X orthogonal
view, the object in either of the other views (Y and Z) is shown as a collapsed
rectangle which can be stretched to give it dimension. Each time the object is moved
or sized, its effects will also be seen in the other linked views. This function is

Subsystem Design Report 4-38

4

disabled until the OBJECT-SHOW menu item is turned ON. The callback function is

CIcerViewWindow: :ObjectCreate0

OBJECT-DELETE: (Delete a geometric object): This function allows the operator to delete
a geometric object currently displayed on the view window. The object must have been
first selected with the mouse to identify the object to be deleted. The object will be
deleted in all views which are currently showing the objects. This function is disabled
until the OBJECT-SHOW menu item is turned ON. The callback function is

ClcerViewWindow" •ObjectDelete0

OBJECT-INFO EDIT: (Display geometric object information): This function allows the
operator to edit an object's information via a scrollable multi-line edit dialog window.
The object must have been first selected with the mouse to identify the object to be
edited. The object information includes such things as name, color, description,

category, and data vertices. When an object is created, this function is automatically
invoked to allow the operator to identify the newly created object. This function is
disabled until the OBJECT-SHOW menu item is turned ON. The callback function is

CIcerViewWindow: :ObjectEdit0

OBJECT-INFO PRINT: (Prim selected geometric object info): This function allows the
operator to display and optionally print an object's information via a scrollable multi-
line browse dialog window. The object must have been first selected with the mouse to

identify the object to be printed. The object information includes such things as name,
color, description, category, and data vertices. This function is disabled until the
OBJECT-SHOW menu item is turned ON. The callback function is

CIcerViewWindow: :ObjectPrint0

OBJECT-INFO PRINT ALL: (Print all geometric objects info): This function allows the

operator to display and optionally print each object's information via a scrollable multi-
line browse dialog window. The object information includes such things as name,
color, description, category, and data vertices. The callback function is
ClcerViewWindow:: Obj ectPrin tAll 0

4.1.4.2.5 DEBUG Sub-Menu Functions: DEBUG sub-menu functions consist of all the

functionality needed for debugging the octree data in the view window. The following
describes the DEBUG sub-menu functions in detail:

DEBUG-SHOW TREE: (Show the tree nodes): This function allows the operator to view
the tree node information via a scrollable multi-line browse dialog window. This
function is used for debug purposes only. The callback function is
ClcerViewWindow:: DebugShowTree0.

Subsystem Design Report 4-39

I

DEBUG-STATISTICS: (Show the tree statistics): This function _lows the operator to view
the tree statistics information via a scrollable multi-line browse dialog window. This
function is used for debug purposes only. The callback function is
CIcerViewWindow: :DebugStatisticsO.

DEBUG-REFRESH: (Refresh the view): This function allows the operator to redraw
everything in the view window. This function is used for debug purposes only. The
callback function is CIcerViewWindow: :DebugRefresh0.

Subsystem Design Report 4-40

J

4.2 Octree Engine Computer Software Component (OE-CSC)

The OE-CSC encompasses all functions that relate to the representation, storage and
management of volumetric data. Each world model (workspace) in the ICERVS system will
contain one or more octree based data sets which represents some volumetric aspect of the
model.

4.2.1 Preliminary Desien Requirements and Functions
The requirements for the OE-CSC are summarized in Table 4-5. For a more detailed
description of each requirement, refer to the ICERVS System Design Report. Requirements
that apply to Phase I are in bold type. Requirements that not part of Phase I requirements but
strongly influence the software design are italicized. Some requirements that span multiple
phases have been reworded to clarify the Phase I requirement. These requirements are marked
with a asterisk. Requirements that span multiple CSCs are also identified.

Table 4-5 - ICERVS Requirements for the Octree Engine CSC

System
Requirement
Number Description

R1.01 * Octree representation, spatial data

R 1.02 * Octree representation, property data

R1.03 Octree representation, spatial interpolation

R1.04 Octree representation: linear resolution of 1:512

R3.06 Update oetree representation as input points received
(shared with UI-SCS)

R5.01 Copy octree

R5.02 Set region within octree to selected state (shared with UI-CSC)

R5.04 Scan model for consistency - no suspended objects (shared with OM-CSC)

R5.05 Compute volumetric difference between octree and object
(shared with OM-CSC)

R5.06 Compute volumetric difference between two octrees
...........

Subsystem Design Report 4-41

Table 4-5 - ICERVS Requirements for the Octree Engine CSC (continued)

R5.07 Compute 2.5D surface map as projection of 3D data

R5.08 Compute absolute and difference 2.5D surface maps
,,,

R5.02 Save/retrieve models to/from disk (Distributed among CSCs)

R6.03 Rebuild octree from backup raw data points (shared with UI-CSC)

R7.07 Output: waste surface maps, absolute and difference

4.2.2 Derived Requirements and Functions
Derived requirements relate to the specialization of the basic requirements such that basic
functions and primitives are readily identifiable. For the OE-CSC, the approach taken is to
identify the primary requirement and then to list the individual derived requirements. Several
basic requirements that are not part of Phase I have a strong impact on the design of the OE-
CSC; these requirements were italicized in Table 4-5 and are also italicized below. For
completeness and understandability, those requirements are treated as though they were part of
the Phase I requirements.

4.2.2.1 R1.01 Oetree representation - spatial data
a. Create and delete an octree

b. Set/Get octree volumetric dimensions (i.e. the tank size)
c. Create/Delete/Maintain tree nodes

d. Link nodes together to form a tree
e. Conversion of ICERVS internal engineering units to/from tree units

f. Perform depth first tree traversals for display, printing, etc.

4.2.2.2 R1. 02 Octree representation - property_ data
a. Storerecover property data infrom tree
b. Storerecover property data infrom tree nodes

4.2.2.3 R1.03 Octree representation- spatial interpolation
a. Identify undefined regions of tree

b. Perform an interpolation to fill in tree gaps

4.2.2.4 R1.04 Oetree representation - linear resolution of 1:512
a. Set/Get the number of levels in the tree

b. Default level for adding points / display tree is 9

Subsystem Design Report 4-42

4.2.2.5 R3.06 Update 0ctree representation as input points received
a. Add single data points as real data
b. Add list of data points as real data
c. Add and sculpt single data points as real data
d. Add and sculpt list of data points as real data
e. Add display attributes (i.e. property values) at data points

4.2.2.6 RS, 02 Set region within octree to selected state (shared with UI-CSC)
a. Convert region to list of tree nodes
b. Traverse node list and redefine node state

4.2.2.7 R6,02 Save/retrieve models to/from disk fDistributed.lamong CSCs)
a. Read/write octree data from/to disk
b. Read/write octree node data from/to disk

4.2.3 Class Descriptions
The OE-CSC is implemented in C + + and consists of approximately eleven (11) classes. The
C + + class provides a mechanism for combining the data and the manipulation procedures
related to a high-level entity into a single construct. Classes facilitate abstraction (ignoring
details of processes and how data is represented), promote encapsulation (hiding of the internal
workings of entities) and support inheritance (defining new entities as specializations of other
entities). The first step in object-oriented design is to identify the classes. Later steps involve
assignment of attributes and behavior, identification of relationships between classes and
arrangement of the classes into hierarchies. This section identifies the OE-CSC classes and
discusses their general characteristics (attributes, behavior and relationships). The last
subsection (4.2.3.4) will describe the relationship of the classes to the basic and derived

requirements defined in previous sections (4.2.1 and 4.2.2). Section 4.2.4 will discuss the
major functions assigned to the OE-CSC and describe how the software classes implement the
functions.

To simplify the discussion of the OE-CSC software, these classes have been organized into
three (3) groups.

1. Tree related classes

2. Scaling class
3. Tree traversal classes

Two classes are included in the Tree Traversal classes that support octree debugging. These
classes are COctStats and COctPrint.

Subsystem Design Report 4-43

The following sections describe the purpose and function of each group and each class within
the group. Figure 4-7 provides illustrations of the interactions among the OE-CSC classes.

4.2.3.1 Tree Related Classes

Tree related classes are all concerned with the overall structure and management of trees. That
is creation/deletion of trees; creation/deletion/maintenance of tree nodes, and addition of data
to the tree.

COctNode: This class implements an octree node object. Each node of the tree contains
eight (8) octants and the methods to access and add child nodes.

CNodeData: This class defines the data for a node of an octree. This allows a method

of storing the node data on any medium, and the data may be modified at anytime. The
node data could be stored on disk, for example. All accesses of the data must be done
by access method.

CNodeNext: This class implements the pointer to the next element in the tree. This is
implemented as a class so that no other object will rely on the next node being in
memory. This separation allows the tree to reside partially on disk.

CCube: This class implements a cube region that knows how to divide itself into
octants. This facilitates the process of subdividing when data is added at high
resolutions. A CCube object stores the geometric position associated with a COctNode.

COctree: This is a class derived from COctNode. It is used to define the root of an
octree. When COctree is constructed it contains the first level of octants to which all
new nodes are attached.

4.2.3.2 Sealing Class
The Scaling class performs conversions of ICERVS internal units to tree units. This is
necessary because the octree units are always positive integers, and the ICERVS internal units
may be any real units (e.g. meters, feet, etc.). The internal units chosen for ICERVS are SI
units. The conversion to/from ICERVS internal units to external user units is the concern of
the UI-CSC.

CTreeScaling: This class implements a linear scaling transformation which converts
between internal and tree units. Scaling is performed as data is added to the tree and it
is unsealed when output from the tree. The octree space is an integer space of
dimension 2,097,152 (21 bits). The ICERVS internal coordinate system uses SI units
and has its origin at (0,0,0). CTreeScaling implements these conventions and provides

the necessary transformations between coordinate spaces. The conversion between
ICERVS internal units and the users external units is performed in the the UI-CSC.

Subsystem Design Report 4-44

COc_Disp_oy

- @e_'_e_

OCTREE ENGINE CSC CLASS INTERACTIONS

4.2.3.3 Tree Tr_versal Classes

The tree traversal classes provide the basis for accessing data in the tree.

COctScan: This is an abstract class that is the basis for traversing an octree. The
scanning procedure traverses the tree in a depth-first order and calls a method
(pScanProc) for each oetant encountered. A derived class must override this method to
implement the desired function. The octants and suboctants are scanned in specified
order to account for a different point of view or other requirements.

COctDualS_: This class scans two trees in synchronization. The octants of each tree
can be scanned in a specified order which may be different for each tree. The scanner

can optionally extend one or both trees so that their topology matches. The initial use
for this class is to support COctDisplay. In later phases, this class will support

comparisons among multiple trees.

COctPrint: This class is derived from COctScan and is used to print a graphical

representation of the tree.

COctStats: This class is derived from COctScan and is used to accumulate and print
statistics about the tree.

COctDisplay: This class is derived from COctDualScan and is used to traverse the tree
and display the tree data in a ClcerViewWindow.

4.2.3.4 Relationship Between OE-CSC Requirements and Classes
Previous sections have enumerated the ICERVS basic requirements for the OE-CSC, defined a
set of derived requirements for each basic requirement and identified a set of software classes

for the OE-CSC. This section will define the relationships between the requirements and the
classes.

Table 4-6 identifies the classes that implement each ICERVS basic requirement. Requirements

that apply to Phase I are in bold type. Requirements that not part of Phase I requirements but
strongly influence the software design are italicized. Some requirements that span multiple
phases have been reworded to clarify the Phase I requirement. These requirements are marked
with an asterisk.

Table 4-7 identifies the ICERVS basic requirements related to each OE-CSC class.

Table 4-8 identifies the detailed relationships between the derived requirements and the OE-
CSC classes. Most of the derivexi requirements relate to one data member or one function
member of a single class. These relationships are denoted by the expression

class_name: :data_membe rname or class_name: :function_name().

Subsystem Design Report 4-46

Table ,4-6 --OE-CSC Classes For Each ICERVS Requirement

Requirement
Number Description

,, ,,,, i , , ,,,, ,

RI.OI Octree representation, spatial data.
COctree COctScan

COctNode COctDualScan

CTreeScaling COctDisplay
CNodeData COctStats

CNodeNext COctPrint

,,, ,.,, , , , , , , ,,,i

R1.02 Oc,tree representation, property data.
COctree

COctNode
CNodeData

R1.03 Octree representation, spatial interpolation.
COctree
COctNode
CNodeData

t ,,

R1.04 Octree representation, linear resolution of 1:512.
COctree
COctNode

R3.06 * Update octree representation as input points received.
COctree
COctNode
CCube

R5.02 Set region within octree to selected state.
COctree
COctNode

.................

R6.02 Save/retrieve models to/from disk.
COctree
COctNode

.-

Subsystem Design Report 4-47

Table 4-7 - ICERVS Requirements For Each OE-CSC Class

Class Related Requirements

Tree Classes

COctree R1.01, R1.02, R1.03, R1.04, R3.06, RS.02,R6.02
COctNode R1.01, R1.02, R1.03, R1.04, R3.06, RS.02,R6.02
CNodeData R1.01, R1.02, R1.03
CNodeNext R1.01
CCube R3.06

f

Scaling Class
CTreeScaling R1.01

i

Tree Traversal Classes
COctScan R1.01
COctDualScan R1.01

COctDisplay RI.01
COctStats R1.01
COctPrint RI.01

Subsystem Design Report 4-48

4 i

Table 4-8 -- OE-CSC Detailed Required/Class Relationships

Requirement
Number Requirement Description and Detailed Class Relationships

R1.01 Octree representation, spatial data.
a. COctree Constructor, Destructor

b. COctree Constructor, COctree::SetSize0, GetSize0
c. COctrcc::Add0,COctNode::GetNode0

d. COctNode::GetNextCluster0,SctNextCluster,

CNodeNext::GctNextClustcr0,SetNextCluster0

e. CTrceScaling::Sc.:de0,Unscale0,COctrcc::ScalePoint0,UnScalePoint0

f. COctDisplay::Display,COctPrint::Print0,COctStats::GetTheStats0
,,,,,

R1.02 Octree representation, property data.
a. COctree::Add0

b. COctNode:'GetProp0,PutProP0, COctData: :GetProp0, PutProp0
..................

R1.03 Octree representation, spatial interpolation.

a. COctTree:: Interpolate0
b. COctTree: :Interpolate0

...........,,

R1.04 Oetree representation, linear resolution of 1:512.
a. COctree: :GetLevel0, SetLevel0
b. COctree Constructor

....

R3.06 * Update oetree representation as input points received.
a. COctree: :Add0, COctNode:" Add0
b. COctree: :Add0, COctNode:'Add0
c. COctree: :AddAndSculpt0, COctNode: :Add0
d. COctree: :AddAndSculpt0, COctNode: :Add0
e. COctree: :Add0, COctNode: :PutProp0

-.......

R5.02 Set region within octree to selected state.
a. COctree: :SetRegion0
b. COctree: :SetRegion0

............

R6.02 Save/retrieve models to/from disk.

a. COctTree: :Read0, Write0
b. COctNode: :ReadSubTree0, WriteSubTree0

............

l Subsystem Design Report 4-49

. • ¢

4.2.4 Major Function Descriptions

The functions of the OE-CSC are used internally by the ICERVS software subsystem. No
operator will directly interface with these functions. Instead, the operator will interact with
the UI-CSC and the UI-CSC will activate functions from the OE-CSC on the operator's
behalf. The OE-CSC software's major functions are described below:

4.2.4.1 Write Octree Data To Disk File

This function is initiated as a consequence, of closing a view or opening a new tree for an
existing view. In either case, if the tree data has changed, a file dialog box will prompt the
user for the name of the tree file in which to save the tree data. A call is made to
COctree::Write to transfer the data from the tree structure to the disk file. The octree data is

written to disk in binary format matching the internal format of the COctNode class.

4.2.4.2 Read Octree Data From Disk File

This function is initiated as a consequence of creating a new view or opening a new tree for an
existing view. In either case, a file dialog box will prompt the user for the name of the tree
file to load into the view. A call is made to COctree::Read to transfer the data from disk to
the tree structure.

4.2.4.3 Add Single Point TO Octree
This function is initiated in the UI-CSC from _' 7W-ADD menu. A dialog box will be
displayed so that the user can define the coo: property value and level for the new
point. A call to COctree::Add is made to inser_ _=wpoint into the tree. The data for the
point must be in ICERVS internal units.

4.2.4.4 Add List Of Points To Octree

This function is initiated in the UI-CSC from the VIEW-ADD menu. A dialog box will be
displayed so that the user can specify the filename for the list of points. A call to
COctree::Add is made to insert a file of points into the tree. Note that the data contained in
the file must be in ICERVS internal units. The UI-CSC must translate the user's datafile into

a temporary file using ICERVS internal units. Otherwise, the UI-CSC must use the Add
Single Point function (section 4.3.4.3) and add the user's points one at a time.

4.2.4.5 Add With Sculpting_Single Point To Octree

This function is similar to the Add function (4.2.4.3). A dialog box will be displayed so that
the user can define the coordinates, property value and level for the new point. A call to
COctree: :AddAndSculpt is made to ins_,:t the new point into the tree. When added, all points
above the new point will be cleared. This function is used specifically when adding points
from sensor data. As surface points are added, it is assumed that the space between the sensor
and the surface is empty. Therefore, the state of nodes in the octree which represent that space

Subsystem Design Report 4-50

ii J 4

are automatically set to empty as the new data points are added to the tree. The data for the
point must be in ICERVS internal units.

4.2.4.6 Add With Sculvtine List Of Points To Octree_

This function is similar to the AddList function (4.2.4.4). A dialog box will be displayed so
that the user can specify the filename for the list of points. A call to COctree: :AddAndSculpt
is made to insert a file of points into the tree. Note that the data contained in the file must be
in ICERVS internal units. The UI-CSC must translate the user's datafile into a temporary file
using ICERVS internal units. Otherwise, the UI-CSC must use the Add With Sculpting Single
Point function (section 4.3.4.5) and add the user's points one at a time. When added, all

points above the new point will be cleared.

4.2.4.7 Perform Tree Scan To Print Tree Data
This function is initiated in the (TT-CSC from the VIEW-DEBUG menu. A call to

COctPdnt: :Print is made to scan the tree and print the data to an intermediate disk file. Upon
return from the print routine, the UI-CSC will pass the internlediate file to a CBrowseWindow

object for viewing. Data will be printed in ICERVS internal units.

4.2.4.8 Pcrf0rm Trfe Scan TOPrint Tree Statics
This function is initiated in the UI-CSC from the VIEW-DEBUG menu. A call to

COctStat::GetTheStats is made to scan the tree and print the statistics data to an intermediate
disk file. Upon return from the print routine, the UI-CSC will pass the intermediate file to a
CBrowseWindow object for viewing.

4.2.4.9 Perform Tree Scan To Display Tree In View Window
This function is initiated in the UI-CSC as a result of one of the following:

1. Translation of any view
2. Rescaling of any view
3. Movement of the cutplanes in any view
4. Redefinition of view parameters (color, level, etc.)
5. Addition of new data in any view

A call is made to CTreeInterface::Display by the UI-CSC. This routine will extract view-
specific parameters (window size, translation offsets, scaling factors, display level, cutplane
locations, etc.) and pass these parameters to the associated octree using a variety of
COctDisplay::Set/Get functions. In addition, the CTreeInterface.:DisplayRoutine will pass the
view shared parameters (node colors, etc.) to COctDisplay. Finally, COctDisplay::Display is
called to scan the tree and display each visible octree point. The view parameters passed by
CTreeInterface are used to determine the visibility of each tree point. The data for a point
(coordinates, property, state, etc.) are sent to a view-specific DrawPoint0 routine in ICERVS
internal units. However, the data will be displayed in the user's external units.

Subsystem Design Report 4-51

D t. |

4.3 Object Modeling Computer Software Component (OM-CSC)

The OM-CSC encompasses all functions relating to the representation, storage, and
management of 3D geometric objects. Geometric objects are an arbitrary collection of
polyhedral objects and primitives with attached text and other attributes.

Two sets of geometric objects are maintained by the system:

1) The Geometric Objects List contains all the geometric objects for a particular
world model (work space). A separate list exists for every world model.

2) The Geometric Objects Library contains templates for objects that can be
recalled by the user and placed into the current world model. A single library
exists in the ICERVS system.

4.3.1 Preliminary Design Requirements and Functions
The requirements for the OM-CS_ are summarized in Table 4-9. For a more detailed
description of each requirement, ,efer to the ICERVS System Design Report. Requirements
that apply to Phase I are in bold type. Requirements that not part of Phase I requirements but
strongly influence the software design are italicized. Some requirements that span multiple
phases have been reworded to clarify the Phase I requirement. These requirements are marked
with an asterisk. Requirements that span multiple CSCs are also identified.

Table 4-9 - System Requirements for the Object Modeling CSC

System
Requirement
Number Description

R1.05 * Geometric models, polyhedral objects
I

R1.06 Geometric models, geometric primitives

R1.07 Geometric models, associated text each object

R1.08 Geometric models, support at least I00 objects, expansion capability

R1.09 Geometric models, enter architectural plans and robot descriptions

R2.01 * Create, modify and store primitives / templates

R2.02 Standard templates: station, registration targets, core sample

Subsystem Design Report 4-52

ii

Table 4-3 - System Requirements for the Object Modeling CSC (continued)

17,2.03 Operator can define templates and add to library (shared with UI-CSC)

R2.04 Automatic waste surface modeling (shared with OE-CSC)

R2.06 Create, modify, delete 3D polyhedral objects (swept volume)

R2.08 Attach text to objects (duplicates R1.07)

R3.05 Geometric Objects: wire frame polygons (shared with UI-CSC)

R3.08 Property (object category) derived coloring (shared with UI-CSC)

R5.03 Operator delete objects. (shared with UI-CSC)

R5.04 Scan model for consistency - no suspended objects. (shared with OE-CSC)

R5.05 Compute volumetric difference between octree and object
(shared with OE-CSC)

R6.02 Save/retrieve models to/from disk (Distributed among CSCs)

R6.06 Define disassembly data (Shared with OM-CSC)

R7.06 * Output: geometric models as text reports

4.3.2 Derived Requirements and Functions

Derived requirements relate to the specialization of the basic requirements such that basic
functions and primitives are readily identifiable. For the OM-CSC, the approach taken is to
identify the primary requirement and then to list the individual derived requirements. Several
basic requirements that are not part of Phase I have a strong impact on the design of the OM-
CSC; these requirements were italicized in Table 4-9 and are also italicized below. For
completeness and understandability, those requirements are treated as though they were part of
the Phase I requirements.

4.3.2.1 R1.05 Geometric models, polyhedral objects
a. Prismoids stored in model list

b. Set and get prismoid's front and rear vertices

i Subsystem Design Report 4-53

4.3.2.2 R1,06 Geometric models, geometric primitives
a. Cylinders stored in model list
b. Set and get cylinder's diameter, height, and center

c. Cones stored in model list

d. Set and get cones's diameter, height, and center

e. Planes stored in model list

f. Set and get planes's normal and point

g. Spheres stored in model list
h. Set and get sphere's diameter and center

i. Groups of geometric primitives stored in model list
j. Add object to group
k. Delete object from group
1. Get object from group

4.3.2.3 R1,07 Gegmetri¢ models, associate text with each object
a. Store text in model list along with geometric objects
b. Set and get object name
c. Set and get object notes
d. Set and get object creation date and time
e. Set and get operator name
f. Set and get object category

4.3.2.4 RI,08 Geometric models, Support at least I00 objects, expansion capability
a. Store geometric objects in disk file limited only by available disk space

4.3.2.5 R2.01 Create, modify, and store primitives / templates
a. Store predefined set of geometric objects in the Geometric Object Library
b. Get a geometric object from the library
c. Add a new geometric object to the library
d. Replace an existing geometric object in the lib;ary
e. Delete an existing geometric object in the library

4.3.2.6 R2.03 Operator can define templates and add to library
a. Get predefined geometric object from Geometric Object Library
b. Interface with UI-CSC to create, modify, and display 2D convex polygons
c. Store user-defined geometric object to Geometric Object Library

Subsystem Design Report 4-54

i, ', * It

4.3.2.7 R2,06 Create. modify, delete 3D polyhedral objects (swept volume)
a. Storesetofoperatorgenerated3D polyhedralobjectsinthemodellist

b. Geta polyhedralobjectfromthelist

c. Add a new polyhedralobjecttothelist

d. Replaceanexistingpolyhedralobjectinthelist

e. Deleteanexistingpolyhedralobjectinthelist

4.3.2.8 R2,08 Attach text to objects (duplicates R!,07)

a. Storetextingeometricobjectlistalongwithgeometricobjects

b. Setand getobjectname

c. Setand getobjectnotes

d. Setand getobjectcreationdateandtime

e. Setandgetoperatorname

f. Setandgetobjectcategory

4.3.2.9 R3,05 Geometric Object- wire frame polygons
a. Store geometric objects in model list as set of front and rear vertices
b. Interface with UI-CSC to display 2D representation of 3D geometric object

4.3.2.10 R5,03 Operatordeleteobjects
a. Interface with UI-CSC to select a 3D geometric object for deletion
b. Delete an existing polyhedral object in the Data List

4.3.2.11 R6.02 Save/retrieve models to/from disk

a. Read/write the CModelObjectList from/to disk file (MODELOBJ.DIC)

b. Read/write the CModelObjectLibrary from/to disk file (MODELOBJ.LIB)
c. Read / write each geometric object entity type

4.3.2.12 R7. 06 Output -geometric models, text report

a. Print each geometric object entity type to file in human readable form
b. Write Geometric Object List contents to temporary disk file
c. Write Geometric Object Library contents to temporary disk file
d. Interface with UI-CSC to use general purpose text browsing window

Subsystem Design Report 4-55

e o ;

4.3.3 Class Descriptions

The OM-CSC is implemented in C+ + and consists of approximately nine (9) classes. The
C + + class provides a mechanism for combining the data and the manipulation procedures
related to a high-level entity into a single construct. Classes facilitate abstraction (ignoring

details of processes and how data is represented), promote encapsulation (hiding of the internal
workings of entities) and support inheritance (defining new entities as specializations of other
entities). The first step in object-oriented design is to identify the classes. Later steps involve
assignment of attributes and behavior, identification of relationships between classes and
arrangement of the classes into hierarchies. This section identifies the OM-CSC classes and
discusses their general characteristics (attributes, behavior and relationships). The last
subsection (4.3.3.3) will describe the relationship of the classes to the basic and derived
requirements defined in previous sections (4.3.1 and 4.3.2). Section 4.3.4 will discuss the
major functions assigned to the OM-CSC and describe how the software classes implement the
functions.

To simplify the discussion of the OM-CSC software, these classes have been organized into
two groups: 1) Collection classes and 2) Object classes. In addition, several of the classes
from the Utility group of classes (see UI-CSC above) are used by the OM-CSC.

The sections that follow describe the purpose and function of each group and each class with

the group. Figure 4-8 provides an illustration of the interactions among the OM-CSC
classes.

4.3.3.1 Collection Classes
The OM-CSC maintains two collections of geometric objects: the objects in the work volume

and a library of object templates. These two collections are similar, but are encapsulated in
two different classes.

CModelObjectList: A class that contains all the geometric objects for the current word
model and encapsulates all accesses to the set of geometric objects. An instance of
CModelObjectList is created and owned by a CModelObjectlnterface instance.

CModelObjectLibrary: A class that contains templates for geometric objects and

encapsulates all accesses to the set of templates. An instance of CModelObjectLibrary is
created and owned by a CModelObjectlnterface instance.

4.3.3.2 Object Classes
Many different types of object classes are required to represent the various types of geometric
objects.

Subsystem Design Report 4-56

ICER OBJECT HrlIDELING CLASS INTERACTIEINS

IA I I iI

CModelEntity: The abstract base class for all geometric object classes. This class
provides all the common behavior for geometric objects, including a common type that
can be handled by the CModelObjectList and CModelObjectLibrary classes. The class
data members include object name, type, notes, creation date/time, operator
identification, object category name, and color of the object. All other geometric object
classes must be derived from CModelEntity.

CModelPrismoid: A class that implements a type of geometric objectcharacterized by
two parallel polygonal faces and orthogonal facets. The two faces have the same
number of vertices. The extra data members of this class include the list of coordinates
for the front and rear face vertices.

CModelCylinder: A class that implements a geometric cylinder type of geometric
object. The extra data members of this class include the center of the base, the
diameter of the base and the height of the cylinder.

CModelCone: A class that implements a geometric cone type of geometric object. The
extra data members of this class include the center of the base, the diameter of the base

and the height of the cone.

CModelSphere: A class that implements a geometric sphere type of geometric object.
The extra data members of this class include the center of the sphere and its diameter.

CModelPlane: A class that implements a planar geometric object. The extra data
members of this class include a point on the plane and the normal vector to the plane.

CM_elGroup: A class that implements a composite geometric object that is composed
of several other geometric objects. The extra data members of this class include a list of
other objects that comprise the group.

4.3.3.3 Relationship Between OM-CSC Requirements and Classes
Previous sections have enumerated the ICERVS basic requirements for the OM-CSC, defined

a set of derived requirements for each basic requirement and identified a set of software classes
for thc OM-CSC. This section will defi_? the relationships between the requirements and the
classes.

Table 4-10 identifies the classes _hat implement each ICERVS basic requirement.

Requirements that apply to Phase I are in bold type. Requirements that are not part of Phase I
requirements but strongly influence the software design are italicized. Some requirements that
span multiple phases have been reworded to clarify the Phase I requirement. These
requirements are marked with an asterisk.

Subsystem Design Report 4-58

Table 4-11 identifies the ICERVS basic requirementsrelated to each OM-CSC class.
i

Table 4-12 identifies the detailed relationships between the derived requirements and the OE-
CSC classes. Most of the derived requirements relate to one data member or one function

member of a single class. These relationships are denoted by the expression
classname: :datamembername or class name:'.funcfion_nameO.

Table 4-10 - OM-CSC Classes For Each ICERVS Requirement

Requirement
Number Description

R1.05 Geometric models, polyhedral objects
CModelObjectList
CModelEntity
CModelPrismoid

R1.06 Geometric models, geometric primitives

CModelObjectList
CModelEntity
CModelCylinder
CModelCone

CModelSphere
CModelPlane

CModelGroup

R1.07 Geometric models, assoeiated text each object
CModelObjectList
CModelEntity

R1.08 Geometric models, support at least 100 objects, expansion capability
CModelObjectList

R2.01 Create, modify and store primitives / templates
CModelObjectsLibrary
CModelEntity

R2.03 Operator can define templates and add to library
CModelObjectLibrary
CModelGroup

.

I Subsystem Design Report 4-59
J

Table 4-10 - OM-CSC Classes For Each ICERVS Requirement (continued)

R2.06 Create, modify, delete 3D polyhedral objects (swept volume)
CModelObjectsList

R2.08 Attach text to objects
CModelEntity

R3.05 Geometric Objects: wire frame polygons
CModelObjectList
CModelEntity
CModelPrismoid

R5.03 Operator delete objects
CModelObjectList

R6.02 Save/retrieve models to/from disk

CModelObjectList
CModelObjectLibrary
CModelEntity

R7.06 * Output - geometric models as text reports
CModelObjectList
CModelObjectLibrary
CModelObjectEntity

,,,

Subsystem Design Report 4-60

Table 4-11 -- ICERVS Requirements For Each OM-CSC Class

Class Related Requirements

Collection Classes

CModelObjectList R1.05, RI.06, R1.07, R1.08, R2.06, R3.05, R5.03, R6.02,
R7.06

CModelObjectLibrary R2.03, R6.02, R7.06

i

Object Classes
CModelEntity R1.05, R1.06, R1.07, 17.2.01, R2.08, R3.05, R6.02, R7.06
CModelPfismoid R1.05, R3.05

CModelCylinder R1.06
CModelCone R1.06

CModelSphere R1.06
CModelPlane R1.06

CModelGroup R1.06

Subsystem Design Report 4-61

w t

Table 4-12 -- OM-CSC Detailed Required/Class Relationships

Requirement
Number Requirement Description and Detailed Class Relationships

R1.05 Geometric models, polyhedral objects.
a. CModelObjectList: :Add0, Replace0

CModelEntity: :DeepCopy0, CModelPrismoid: :DeepCopy0
b. CmodelPrismoid: :SetVertices0,SetFrontVertex, SetRearVertices0,

GetFrontVertices0, GetRearVertices0

R1.06 Geometric models, geometric primitives.
a. CModelModelObjectList: :Add0, Replace0, CModelCylinder: :DeepCopy0

b. CmodelCylinder::GetDiameter0, GetHeight0, GetCenter0,
SetDiameter0, SetHeight0, SetCenter0

c. CModelModelObjectList: :Add0,Replace0, CModelCone: :DeepCopy0
d. CModelCone::GetDiameter0, GetHeight0,GetCenter0, SetDiameter0,

SetHeight0, SetCenter0
e. CModelModelObjectList: :Add0, Replace0, CModelPlane: :DeepCopy0
f. CModelPlane::GetNormal0, GetPoint0, SetNormal0, SetPoint0

g. CModelModelObjectList: :Add0, Replace0, CModelSphere: :DeepCopy0
h. CModelSphere::GetDiameter0, GetCenter0, SetDiameter0, SetCenter0
i. CModelObjectList: :Add0, Replace0, CModelGroup: :DeepCopy0

j. CModelGroup: :AddObjectToGroup0
k. CModelGroup: :DeleteObjectFromGroup0
I. CModeIGroup: :GetGroupObject0

R1.07 Geometric models, associated text each object.
a. CModelObj ectList: :Add0, Replace0
b. CModelObjectList: :Set/GetNameC, CModelEntity: :Set/GetName0
c. CModelObjectList: :Set/GetNotes0, CModelEntity: :Set/GetNotes0
d. CModelObj ectList:: Set/ GetCreateDate0, Set/G etC reateTi me0,

CModelEntity: :Set/GetCreateDate0, Set/GetCreateTime0
e. CModelObjectList: :Set/GetOperatorlD0,

CModelEntity:: Set/GetOperatorID 0
f. CModelObj ectList:: Set/ GetCategory0, CModelEnti ty: :Set/GetCategory 0

R1.08 Geometric models, support at least 100 objects, expansion capability.

a. CModelObjectList Constructor and Destructor

Subsystem Design Report 4-62

Table 4-12 - OM-CSC Detailed Required/Class Relationships (continued)

R2.01 Create, modify and swre primitives / templates
a. CModelObjectLibrary: :Add0, Replace0
b. CModelObjectLibrary:: GetObject0
c. CModelObjectLibrary: :Add0, CModelEntity: :DeepCopy0
d. CModelObjectLibrary: :Replace0, CModelEntity: :DeepCopy0
e. CModelObjectLibrary::Delete0, DeleteAll0

... ,,, ,, ,,,,,,

P,2.03 Operator can define templates and add to library.
a. CModelObj ectLibrary:: GetObject0
b. CModelObjectIntefface::Add0, Display0
c. CModelObjectLibrary: :Add0, Replace0,

CModelGroup: :AddObjectToGroup0

R2.06 Create, modify, delete 3D polyhedral objects (swept volume).
a. CModelObjectList: :Add0, Replace0
b. CModelObjectList:: GetObject0

c. CModelObjectList: :Add0, CModelEntity: :DeepCopy0
d. CModelObjectList: :Replace0, CModelEntity: :DeepCopy0
e. CModelObjectList: :Delete0, DeleteAll0

R2.08 Attach text to objects

a. CModelObj ectList: :Add0,Replace()
b. CModelObjectList: :Set/GetName0, CModelEntity: :Set/GetName0
c. CModelObjectList: :Set/GetNotes0, CModelEntity: :Set/GetNotes0
d. CModelObjectList:: Set/GetCreateDate0 ,Set/GetCreateTime0,

CModelEntity::Set/GetCreateDate0,Set/GetCreateTime0
e. CModelObj ectList: :Set/GetOperatorID0,

CModelEntity: :Set/GetOpemtorlD0

f. CModel Obj ectList:: Set/GetCategory 0, CModelEntity: :Set/GetCategory0

R3.05 Geometric Objects: wire frame polygons.
a. CModelObjectList: :Add0, Replace0, CModelPrismoid: :DeepCopy0,

SetVertices0, SetFrontVertex0, SetRearVertex0,
b. CModelInterface: :Display0

,,m

R5.03 Operator delete objects.
a. CModelObj ectInterface: :Delete0
b. CModelObjectList: :Delete0

j Subsystem Design Report 4-63

IIIIITIlllI-IIlll
Fr

_ IN_IIIII_IIIII_

IIIII_IIllI__ IIIL1_e

I

Table 4-12 -- OM-CSC Detailed Required/Class Relationships (continued)

R6.02 Save/retrieve models to/from disk.

a. CModelObjectList: :ReadtDictionaryFile0, WriteDictionaryFile0
b. CModelObjectLibrary: :ReadLibraryFile0, WriteLibraryFile0
c. CModelEntity:: SaveGuts0,RestoreGuts0

R7.06 * Output - geometric models as text reports
a. CModelEntity: :Print0
b. CModelObjectList: :PrintTextReport0
c. CModelObjectLibrary: :PrintTextReport0
d. CModelObj ectInterface: :Print0

4.3.4 Major Function Descriptions
The functions of the OM-CSC are used internally by the ICERVS software subsystem. No
operator will directly interface with these functions. Instead, the operator will interact with
the UI-CSC and the UI-CSC will activate functions from the OM-CSC on the operator's
behalf. The OM-CSC software's major functions are described below:

4.3.4.1 Read Geometric Objects List/Library Files
This function is internal to the CModelObjectList and CModelObjectLibrary classes. When an
instance of either class is created, the constructor for the object will read the appropriate disk
file and load the CModelObjectList or CModelObjectLibrary with the object data. Since both
the CModelObjectList and CModelObjectLibrary are both based upon Rogue Wave collection
classes (RWOrdered), the Rogue Wave virtual stream I/O capability built into RWCollection-
type classes will be used to write/read these collections. This Rogue Wave supplied facility is
simple to use and ideal for storing the ICERVS geometric objects on disk.

4.3.4.2 Write Geometric Objects List/Library Files
This function is internal to the CModelObjectList and CModelObjectLibmry classes. When an
instance of either class is destroyed, the destructor for the object will write the appropriate disk
file and store the CModelObjectList or CModelObjectLibrary object data to disk. If no
changes have been made to the object data, the file write process will be bypassed. Since both
the CModelObjectList and CModelObjectLibrary are both based upon Rogue Wave collection
classes (RWOrdered), the Rogue Wave virtual stream I/O capability built into RWCollection-
type classes will be used to write/read these collections. This Rogue Wave supplied facility is

simple to use and ideal for stored the ICERVS geometric objects on disk.

Subsystem Design Report 4-64

4.3.4.3 C0nve_i0n Of A..3D Geometric Object Int0 A Set Of 2D Display abl¢
Objects
A 3D geometricobjectwillbe displayedas a setof 2D polygonsin one or more view

windows. Beforedisplay,itwillbe necessarytoconvertthe3D geometricobjectintotheset
of2D displayablepolygons.Eachgeometricobjectclasswillcontaina GctGraphic0method

toaccomplishthisconversion.

4.3.4.4 Conversion Of A Set Of 2D Displayable Objects Int0 A 3D Geomftri¢
object

A 3D geometric object will be displayed as a set of 2D polygons in one or more view
windows. Before creating or updating the 3D geometric object, it will be necessary to convert
the 2D polygon data. Each geometric object class will contain a SetGraphic0 method to
accomplish this conversion.

4.3.4.5 Add New 3I) Object To List or Library

Addition of new geometric objects to the list or library involves only the creation of a new
instance of CModelEntity (actually one of its derived classes) and the addition of the new
instance to the list or library. The data from which to create the new object is supplied by the
UI-CSC. The UI-CSC is also responsible for any interaction with the operator to define the
required data.

4.3.4.6 Delete 3D Ob_ieet From List or Library

Deletion of a geometric object from the list or library involves only the removal of the object
from the list or library. The UI-CSC is responsible for interfacing with the operator to select
the desired object. The association of the selected 2D objects with the appropriate 3D object is
performed before the delete operation.

4.3.4.7 Modify 3D Object In List or Library

Modification of a geometric object in the list or library invol,,es the extraction of the objects
data, modification of that data, and re-insertion of the object into the list or library. Since the

2D display of an object requires the extraction of the objects data, it is not necessary to extract
the data again. The UI-CSC will interface with the operator to select and modify a 2D object.
After that modification is completed, the associated 3D object data will be modified to be
consistent with the new 2D data. Then the new data for the object can be sent to the OM-CSC
for insertion into the 3D object.

Subsystem Design Report 4-65

4.3.4.8 Associate (add or modify) Text With Geometric Object
This function allows for the association of text with the 3D polyhedral objects that currently

exist in the geometric object list. This text consists of an object name and description, the
operator name who created the object, the date and time the object was first created, the
category of the object, the color of the object, and a list of vertices that describe the object.
The OM-CSC is responsible for inserting and extracting the text data into/from the geometric

object. The UI-CSC will perform all editing and display of the text data.

4.3.4.9 Output Text Report Of Geometric Objects
This function allows for the browsing and optional printing of any or all 3D polyhedral objects

that currently exist in the geometric object list/library. The output consists of an object name
and description, the operator name who created the object, the date and time the object was
first created, the category of the object, the color of the object, and a list of vertices that
describe the object. The output is formatted and written to an ASCII disk file. The OM-CSC

simply creates the output file. The UI-CSC will handle the display and printing of the file.

Subsystem Design Report 4-66

Appendix A: Revised Requirements

The requirements for the ICERVS were developed from the set of mission profiles set forth in
the System Design Report, issued in Dec. 21, 1992. In determining the subsystem design,
these requirements were studied and a set of derived requirements was determined. This
study led to greater insights into the requirements and identified instances where

- the wording needed to be clarified,
- the allocation of requirements to CSCs required adjustment, and
- the set of requirements having design influence in Phase 1 needed to be altered.

Each of these revisions is described below.

1. Clarification of Wording
I

The following requirements have been revised as follows. The changes are indicated in italics.

Delete

R1.01 octree representation, spatial data--Spatial data will be represented in octree
format. Each volume element will represent a state of empty, partial, full, or
unknown.

Insert

R1.01 octree representation, spatial data--Spatial data will be represented in octree

format and will be provided in rectangular coordinates. Each volume element
will represent a state of empty, partial, full, or unknown.

Delete

R1.02 octree representation, property data-Each volume element within the octree

representation will optionally include at least 16 bits of property information.
Insert

R1.02 octree representation, property data--Each volume element within the octree

representation will optionally include at least 16 bits to represent property
information.

i

i Subsystem Design Report A-1

i

Delete

R1.05 geometric models, polyhedral objects--The system will build polyhedral
objects to model real objects in the work volume.

Insert

R1.05 geometric models, polyhedral objects--The system will provide a

representation of polyhedral objects to model real objects in the work volume.

Delete

1L2.01 createmodifydisplay primitives/templates--The system will support
primitives and templates for object modeling. The operator will be able to
create, modify and display geometric templates.

Insert

1L2.01 create/modify primitives/templates--The system will support primitives and

templates for object modeling. The operator will be able to create a_ mod/fy
geometric templates.

Delete

R2.05 create/modify/display 2D polygons (sequence of vertices)--The system will
allow the operator to create, modify, delete, and display 2D polygons. It is
assumed that convex polygons will be sufficient to support all mission profiles.

Insert

R2.05 definemodifydisplay 2D polygons (sequence of vertices)--The system will
allow the operator to define, modify, erase, and display 2D polygons. It is
assumed that convex polygons will be sufficient to support all mission profiles.

Delete

R3.01 translate and scale--The graphical display will be able to scale the display of
the volume in the window, from the whole volume to a single volume element.

The graphical display will be able to display any portion of the volume in the
window.

Insert
R3.01 translate and scale--The 1CERVS will allow the user to scale the display of the

volume in the window, from the whole volume to a single volume element.
The ICERVS will allow the user to display any portion of the volume in the
window.

Subsystem Design Report A-2

!

Delete

R3.03 pair of parallel cut planes--The graphical display will support a single pair of
parallel cut planes to be used in defining the region of the volume to be viewed.

Insert

R3.03 pair of parallel cut planes--The graphical display will support at least a single
pair of parallel cut planes to be used in defining the region of the volume to be
viewed.

Delete

R7.01 input: x,y,z position--The input data to the oetree will contain full 3D
coordinates (X, Y, Z).

Insert

RT.01 input: x,y,z position--The input data provided by the mapping system or its
equivalent will contain full 3D coordinates such as rectangular coordinates (X,
Y, Z) or polar coordinates (R, j, q).

For requirements R7.02 to R7.05, the phrase

"input data to the octree"

should be replaced with

" "input data provided by the mapping system or its equivalent".

2. Allocation to CSCs

The more detailed understanding of the User Interface CSC obtained during the study indicated
the need for the following re-allocation of requirements.

User Interface CSC

Add: R2.05, R3.05, R3.06, R6.02, R7.01

Octree Engine CSC
Add: R6.02, R7.01
Delete:R3.01, R3.03, R3.11

It should be noted (Table 3-2) that the three deleted requirements had already been allocated to
the User Interface CSC, so that none of the Phase 1 requirements have been omitted.

SubsystemDesignReport A-3

3. Design Influence

Greater insight into the nature of the CSCs prompted the following changes in the set of
requirements having design influence during Phase 1.

Requirements added to the set include:
R2.01, R2.03, R3.10, R5.03.

Requirements deleted from the set include:
R7.02,R7.03, R7.04, R7.05,
R9.01, R9.11

All the deleted requirement affect CSCs to be developed in later Phases of the project.

Subsystem Design Report A-4

I

_b

