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Introduction

In this quarter, we employed a kinetic theory to set up the boundary
value problem for steady, fully developed, gravity-driven flows of identical,
smooth, highly inelastic spheres down bumpy inclines. We treated the solid
fraction, mean velocity, and components of the full second moment of
fluctuation velocity as mean fields. In addition to the balance equations for
mass and momentum, we treated the balance of the full second moment of
fluctuation velocity as an equation that must be satisfied by the mean fields.
However, in order to simplify the resulting boundary value problem, we
retain fluxes of second moments in its isotropic piece only. The constitutive
relations for the stresses and and coUisional source of second moment depend
explicitly on the second moment of fluctuation velocity, and the constitutive
relation for the energy flux depends on gradients of granular temperature,
solid fraction, and components of the second moment. The boundary
conditions require that the flows are free of stress and energy flux at their
tops, and that momentum and energy are balanced at the bumpy base.

In what follows, we provide the details of the boundary value problem.
In the next quarter, we will develop a solution procedure, and employ it to
obtain sample numerical solutions to the boundary value problem described
here.

Balance Equations and Constitutive Relations

We are concerned here with steady, fully developed, gravity-driven
flows of identical, smooth, highly inelastic spheres down bumpy inclines.
The diameter of each sphere is o, the mass density of each is pp, and the
coefficient of restitution between them is e. In what follows, e need not be
close to unity. The vertical acceleration due to gravity is g, and the angle
between the incline and the the horizontal is ¢. We introduce an xl-x2-x 3
Cartesian coordinate system such that x1 measures distance along the incline
parallel to the flows, and x2 measures distance above the incline
perpendicular to the the flows. The flows are infinitely extended in the x1-
and x3-directions.

The mean fields of interest in these granular flows are the solid
fraction v, the only non-zero velocity component u1, the granular
temperature T, and the components Au, A22,A33, and A12, of the deviatoric
part of the second moment of particle fluctuation velocity. Their
dimensionless counterparts v, u---u1/ ((_g)1/2,z-T/c_g, a_l---All/og, a22-=A22/(_g,
as3---A33/og, and a12----A12/(_g depend on the dimensionless coordinate y-x2/¢_

only. Their variations with y are governed by the x1- and x2-components of
the balance of momentum, the balance of energy, and the xl-xv x2-x2,xo-x3 and
x_-x2 components of the balance of second moment.



Under these circumstances, the balance of mass is satisfied identically.
If Pi" are the components of the pressure tensor, then in terms of theirJ o

dimensionless counterparts ptj-=Plj/ppog,the x1- and x2-components of the
balance of momentum are,

P12'=vsin_ , (1)

and

P22'= -vcos_ , (2)
i

where primes denote differentiation with respect to y. The x3-component of
the balance of momentum demonstrates that P32does not vary with y. The
balance of energy is the isotropic part of the balance of the full second
moment of fluctuation velocity. If Q2 is the x2-component of the energy flux,
r is the rate of energy dissipation due to inelastic collisions, and their
dimensionless counterparts are q=2Q2/Pp(og) 3/2 and y=--2r/ppt_l/2g3/2, then file
balance of energy is,

q' = y- 2p12u' . (3)

The remaining equations are obtained from the deviatoric part of the balance
of full second moment. In addition to the components Pij of the pressure
tensor, these equations involve the components Qlj_ and Xtjof the flux and
coUisional source of the deviatoric part of the second moment. If the spatial
gradients of Ql_ are small compared to X_j,then, in terms of the dimensionless
source components yli-=Xii/Ppc_l/2g3/2, the resulting approximate equations for
au, a22, and a12are th_ xl-xl deviatoric component of the balance of second
moment,

4
_'P12u' = Ytt ; (4)

the x2-x2 deviatoric component of the balance of second moment,

-2
3 P12u' = Y22 ; (5)

and the xl-x 2 component of the balance of second moment,

P22u' = Y12 • (6)



The x3-x3 deviatoric component of the second moment equation determines
a_, and to within a minus sign is given by the sum of equations (4) and (5).

In what follows, we employ the constitutive theory derived by
Richman and Martin [1993]. The constitutive relation for the shear stress P12
is given in terms of the solid fraction v, the granular temperature x, and the
second moment component a12by.

'p12=-2(l+e)vG'_ _ -H , (7)

in which G(v) is equal to v(2-v)/2(1-v) 3 and H(G) is equal to 2[l+5/4(l+e)G]/5.
The normal pressure Pn is given in terms of v, x, and the deviatoric
component an of second moment by,

p,, = 2(l+e)vGx[F + H 9._U.x] , (8)

in which F(G) is equal to [l+l/2(l+e)G]. Similarly, the remaining normal
pressures P22and P33are given by,

P22=2(l+e)vGx[F+ H-_] , (9)

and

p33=2(l+e)vGx[F+ Hax-_] . (10)

Differences between the normal stresses result from corresponding
differences between an, a22,and a_.

The energy flux q is related to gradients of x, a22, and v according to the
relation,

-4(l+e)vC_ 1/2
q = _1/2 ( lcx' + Xxv' + rl a22') , (11)

in which the coefficients _(v, e), L(v, e), and rl(V, e) are given by,

9n(1 +e)(2e-1) 5 5



9 o,1e,d,lnvG,I 5] ,13,X= 4(49-33e) dv 1 + 6(1+e) •

and

2 25_(3e+l)(_+a) 1 5

5r_ 1 5
+ 24(3-e)[1+ (l+e)_G][ 1+6(1+e)G]} ' (14)

where _-(49-33e) [-6(1+e)/5+4(1+e)2/3] / 14(3e+ 1), o_-[-4/5-9(1 +e)/5+2(1+e) 2/ 3],
and _--[-4/5+6(1+e)/5+4(1+e)2/21]. If gradients of a22 are ignored and e is set

equal to 1, then expression (11) reduces to the expression for the energy flux in
assemblies of nearly elastic spheres obtained by Jenkins and Richman [1985].

The remaining constitutive quantity is the collisional source of second
moment of fluctuation velocity. In it, we retain terms linear in au, a22, a3v a12,
and u'. In addition, we retain just those nonlinear terms that guarantee that,
in the tensoral form of the belance of of second moment, the coUisional

contribution to the stress is multiplied only by the rate of strain. In this
manner, the isotropic piece of the source of second moment is approximated
by,

-24vG(1-e2)_/2
= _1/, • (15)

The corresponding result obtained by Jenkins and Richman [1985] may be
obtained by replacing (1-e2) by 2(1-e) in expression (15). The deviatoric parts of
the xl-x 1 and x2-x 2 components of the source of second moment are given in
terms of v, z, au, a22, a12,P12, and u' by the constitutive relations,

"24vG(1+e)(3"e)z_/2 an + (pm-va12)u' (16)_11 ----" ,_1/2 I;

and

-24vG(l+e)(3-e)_/2 am
_/22= 5_1/2 I; " (P12- val2)U' , (17)

where P12 is given by equation (7). Similarly, the xl-x 2 component of the
source of second moment is,



-24vG(l+e)_12{(3-e)am. (2-e)u' }712 = 5 gl/2 Z 4 "Z1/--_ + [(P22"Pu)" v(a22- an)] 2 , (18)

where Pu and P22 are given by equations (8) and (9). Constitutive relations
(16), (17), and (18) have no counterparts in the theory of Jenkins and Richman
[1985] for nearly elastic spheres.

In order to reduce the number of equations in the governing system,
we employ constitutive relation (16) to eliminate 711 from balance (4) to
obtain,

a u -Sg1/2 [1 ]u--f- = 24vG(1+e)(3-e)_ L 3P12 + va12 ,cl/---2 , (19)

and constitutive relation (17) to eliminate ?22from balance (5) to obtain,

a22 -5/C 1/2 [1 ]u'"c = 24vG(1---_(3-e)z 3 P12- val2 _ • (20)

Equations (19) and (20) and constitutive relation (7) demonstrate that the
deviatoric components all and a22 are sums of terms proportional to (u') 2 or to
products of a12 and u'. These nonlinear terms were neglected by Jenkins and
Richman [1985]. Consequently, they predicted that, for flows of nearly elastic
spheres, the components al_, a22, and %3 all vanish. In that approximation,
the constitutive equations (8), (9), and (10) simplify and guarantee that the
normal pressures Pn, P22,and P33are all equal.

Finally, we employ constitutive relation (18) to eliminate 712 from
balance (6) to obtain,

a12 -_1/2(3e-1) [ 5 ]u'z = 12(3-e) 1+ 2(1+e)(3e-1)G z_/--_ ' (21)

where we have neglected terms that are cubic in u', a12,and products of u' and
a12. If equation (21) is employed to eliminate a12 from constitutive relation (7)
and e is set equal to 1, then the resulting expression for the shear stress is
identical to that obtained by Jenkins and Richman [1985].

Boundary Conditions

With appropriate conditions applied at the free surface and base of the
incline, equations (1), (2), (3), (7), (9), (11), (15), (20), and (21) determine the
variations with y of P12, P22, q_ ,c,?t u', v, a12, and a22. Although the location of



the free surface is not known, the stresses and the energy flux each vanish
there; i.e.

P12= 0 and Pm= 0 , (22)

and

q=O . (23)

Because the stresses both vanish at the top of the flow, v may be eliminated
between equations (1) and (2) to demonstrate that p12/P22=-tan_.

If v is equal to 0 and z is not, then according to constitutive relation (9)
the normal stress condition at the top of the flow is automatically satisfied.
Near the top of the flow, therefore, v is small, the normal stress may be
approximated by

Pz_= v(_+ az_) , (24)

and because the ratio Pro/P22 is everywhere equal to -tan0, the shear stress may
be approximated by

P12 = -v(z + an) tan_ . (25)

Furthermore, if equations (21) and (25) are employed to eliminate a12and P12
from constitutive relation (7), then we find that near the top of the flow, u' is
given approximately by,

24(3-e)(1+e)Cz+a22)tan¢
u' = 591/z_1/2 v . (26)

With u' given by equation (26), the lowest order approximation of equation
(7) dictates that,

am = -(z+ a22)tan_ , (27)

and with P12,u', and am given by equations (25), (26), and (27), balance (20)
yields,

1 + _ -3/2 + "_f9/4+ 6tan2_
z = 2tan2¢ • (28)
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For small values of v and prescribed values of _ and ¢, equation (28) fixes an,
equations (24) and (25) fix P22 and P12, and for prescribed values of e, equation
(26) fixes u'. As v approaches zero, so too do the stresses P22and P12 and the
velocity gradient u'. However, in the same limit the components a22 and a12
of second moment each approach nonzero limits that depend only on the
inclination angle _ and the local value of _.

Of interest also are the limiting behaviors of the gradients z', v', a12' a22'
and u" as v approaches zero. By differentiating approximations (24) and (28)
with respect to y, for example, we find that

-VCOS_ V'_'

v' - f(¢)z _ , (29)

where f(_) is given by the right-hand-side of equation (28), and

an' = [f(¢)-11 ' . (30)

If these are employed to eliminate v' and a22', then constitutive relation (11)
for the energy flux demonstrates that z', and therefore v' and a22' , each
approach zero with v. Simple differentiation of approximations (26) and (27)
with respect to y then demonstrates that both u" and a12' approach zero in the
same manner.

At the base of the incline (i.e. y=0), the rate M at which momentum is
supplied to the flows by inelastic collisions between flow particles and the
base must balance the traction vector at the base. Furthermore, the difference
between the rate -Mlu I at which energy is supplied by slip work and the rate D
at which it is absorbed bv inelastic collisions between flow particles and the
base must balance the energy flux at the base.

The transfer rates M and D depend on the geometry and dissipative
nature of the incline. Here we focus on inclines that are fiat surfaces to which

identical, smooth, hemispherical particles of diameter d are randomly
attached at an average _,stance s apart. In order to prevent flow particles from
colliding with the fiat part of the boundary, the maximum allowable value of
s/d is -1+(1+2a/d) 1/2. When a flow particle collides with a boundary particle
the distance between their centers is 8-((_+d)/2, and the energy dissipated is
fixed by the coefficient of restitution ew between them. A measure of the
bumpiness of the boundaries is the angle 0=-sin'l(d+s)/(d+o), which increases
from 0 to _/2 as the boundaries evolve from perfectly fiat to extremely
bumpy.

We employ the general expressions for M and D obtained by Richman
and Martin [1993] for assemblies of inelastic spheres that interact with bumpy
boundaries described above. The expression for M involves an unknown
factor that accounts for excluded volume and particle shielding at the
boundary. If we first employ the balance between the x2-components of M
and the traction vector to write the unknown factor in terms of P22, a22, 'c, and



0, then the balance between the xl-components of M and the traction vector
determines the slip velocity u(0) according to,

u = ._1/2 _ 1%2 3 20)] P_lZ 8 (2I - sin2e) u' _1/2 al 22-IL j + _" 23 _ + 2312T
(31)

P22

where I(O)-2[2csc20(1-cos0)-cos0]/3. Furthermore, the energy flux at the
boundary is determined by,

q = 2 -p12u - _ (1-ew)CSC20(1-cos0)1 + a22z(1 - _sin 0) 1:1/2p22 . (32)

Conditions (22), (23), (31), and (32) are the five conditions needed to complete
the set of equations (1), (2), (3), (7), (9), (11), (15), (20), and (21).
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