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Introduction

In this quarter, we employed a kinetic theory to set up the boundary
value problem for steady, fully developed, gravity-driven flows of identical,
smooth, highly inelastic spheres down bumpy inclines. We treated the solid
fraction, mean velocity, and components of the full second moment of
fluctuation velocity as mean fields. In addition to the balance equations for
mass and momentum, we treated the balance of the full second moment of
fluctuation velocity as an equation that must be satisfied by the mean fields.
However, in order to simplify the resulting boundary value problem, we
retain fluxes of second moments in its isotropic piece only. The constitutive
relations for the stresses and and collisional source of second moment depend
explicitly on the second moment of fluctuation velocity, and the constitutive
relation for the energy flux depends on gradients of granular temperature,
solid fraction, and components of the second moment. The boundary
conditions require that the flows are free of stress and energy flux at their
tops, and that momentum and energy are balanced at the bumpy base.

In what follows, we provide the details of the boundary value problem.
In the next quarter, we will develop a solution procedure, and employ it to
obtain sample numerical solutions to the boundary value probiem described
here.

Balance Equations and Constitutive Relations

We are concerned here with steady, fully developed, gravity-driven
flows of identical, smooth, highly inelastic spheres down bumpy inclines.
The diameter of each sphere is o, the mass density of each is Pprs and the
coefficient of restitution between them is e. In what follows, e need not be
close to unity. The vertical acceleration due to gravity is g, and the angle
between the incline and the the horizontal is ¢. We introduce an x;-x,-x3
Cartesian coordinate system such that x, measures distance along the incline
parallel to the flows, and x, measures distance above the incline
perpendicular to the the flows. The flows are infinitely extended in the x;-
and x,-directions.

The mean fields of interest in these granular flows are the solid
fraction v, the only non-zero velocity component u,, the granular
temperature T, and the components A,;, Ay, Az, and A,,, of the deviatoric
part of the second moment of particle fluctuation velocity. Their
dimensionless counterparts v, u=u,/(og)!/?, 1=T/og, a;;=A,,/ 68, ay=A,,/ 08,
ag=A,3/ g, and a;,;=A,,/cg depend on the dimensionless coordinate y=x,/c
only. Their variations with y are governed by the x,- and x,-components of
the balance of momentum, the balance of energy, and the x;-X;, X,-X,, X3-x3 and
X1=X, components of the balance of second moment.



Under these circumstances, the balance of mass is satisfied identically.
If P; are the components of the pressure tensor, then in terms of their
dimensionless counterparts py;=P;/p,0g, the x,- and x,-components of the
balance of momentum are,

pIZ' = VSil‘l¢ ’ (1)

and

P2’ =-vcosd (2)

where primes denote differentiation with respect to y. The x;-component of
the balance of momentum demonstrates that ps;, does not vary with y. The
balance of energy is the isotropic part of the balance of the full second
moment of fluctuation velocity. If Q, is the x,-component of the energy flux,
I is the rate of energy dissipation due to inelastic collisions, and their
dimensionless counterparts are q=2Q,/p,(0g)*? and y=-2T'/p,c'/2g*?, then the
balance of energy is,

q =7-2ppu’ . &)

The remaining equations are obtained from the deviatoric part of the balance
of full second moment. In addition to the components Py of the pressure
tensor, these equations involve the components Qy and x; of the flux and
collisional source of the deviatoric part of the second moment. If the spatial
gradients of Qy are small compared to y;, then, in terms of the dimensionless
source components y;=y;/p,0'/?g*?, the resulting approximate equations for
a,1, @y, and a,, are the x,-x; deviatoric component of the balance of second
moment,

4
aPuUW=v ; )

the x,-x, deviatoric component of the balance of second moment,

-2
3P2W =1 5)

and the x;,-x, component of the balance of second moment,

PaU =7, - v (6)




The x3-x3 deviatoric component of the second moment equation determines
agy, and to within a minus sign is given by the sum of equations (4) and (5).

In what follows, we employ the constitutive theory derived by
Richman and Martin [1993]. The constitutive relation for the shear stress p;,
is given in terms of the solid fraction v, the granular temperature t, and the
second moment component a;, by.

P12 = -2(1+e)vG*c|: gj-; u'-H E%Z:I , V)]

in which G(v) is equal to v(2-v)/2(1-v)? and H(QG) is equal to 2[1+5/4(1+e)G]/5.
The normal pressure p,; is given in terms of v,t, and the deviatoric
component a,; of second moment by,

Py, = 2(1+eWGe [F +H ?%l] , @®)

in which F(G) is equal to [1+1/2(1+e)G]. Similarly, the remaining normal
pressures p,, and pg; are given by,

P = 214enGe{F+ HZ | ©)

and

Pas = 2(1+e)vGr [F +H E%’*] : (10)

Differences between the normal stresses result from corresponding
differences between a;;, ay, and ag,.

The energy flux q is related to gradients of 7, a,,, and v according to the
relation,

~4(1 1/2
q=—£—+—1fl)7zv—Gt———(1ct'+Mv'+na22') , (11)

in which the coefficients x(v, ), A(v, e), and n(v, e) are given by,

e+ e | 1 smrETel  awae) 12



-9ne(1-e) d(InvG) 5
A= 4(49-33e) dv [ 1+ 6(1+e)G] ’ 13)
and
2 25n(3e+1)(B+o) 1 5
=5 { 1 +54(3-¢)(49-33¢) [ 1+ +e)(B+a)G][ 1+ 6(1+e)_G]
5nk 1 5
ot 24(3-e)[ 1+4d +'e)gc][ 1+ 6(1+e)G]} ' (14)

where B=(49-33e)[-6(1+e)/5+4(1+e)?/3]/14(3e+1), a=[-4/5-9(1+e)/ 5+2(1+e)%/3],
and &=[-4/5+6(1+e)/5+4(1+e)?/21]. If gradients of a,, are ignored and e is set
equal to 1, then expression (11) reduces to the expression for the energy flux in
assemblies of nearly elastic spheres obtained by Jenkins and Richman [1985].
The remaining constitutive quantity is the collisional source of second
moment of fluctuation velocity. In it, we retain terms linear in ay;, ag;, a3, 252
and u'. In addition, we retain just those nonlinear terms that guarantee that,
in the tensoral form of the balance of of second moment, the collisional
contribution to the stress is multiplied only by the rate of strain. In this
manner, the isotropic piece of the source of second moment is approximated

by,

24vG(1-e23/2
v= - fcl[z X . (15)

The corresponding result obtained by Jenkins and Richman [1985] may be
obtained by replacing (1-?) by 2(1-e) in expression (15). The deviatoric parts of
the x;-x, and x,-x, components of the source of second moment are given in
terms of v, T, 233, 859 219, P12- and U' by the constitutive relations,

24vG(1+e)(3-e)r*2 a;y

m= 5ri/2 7+ (Pp-vapu' (16)
and
-24vG(1+e)(3-e)r*/2 a
T2 = Eai/2 2 - (pp-vapt' (17)

where p;, is given by equation (7). Similarly, the X;-X, component of the
source of second moment is,



24vG(1+eyd ((B-0)a,  (2-e) U’ '
e e R P A R

where p;; and p,, are given by equations (8) and (9). Constitutive relations
(16), (17), and (18) have no counterparts in the theory of Jenkins and Richman
[1985] for nearly elastic spheres.

In order to reduce the number of equations in the governing system,
we employ constitutive relation (16) to eliminate y;; from balance (4) to
obtain,

ay -5m1/2 ' 1 u'
T T 24vG(1 +e)(3-e)‘t|: 3Pt vau] a7 s (19)

and constitutive relation (17) to eliminate v,, from balance (5) to obtain,

e 14
T = 24vG(1+e)(3-e)yr| 3 P2~Vanz gz - (20)

Equations (19) and (20) and constitutive relation (7) demonstrate that the
deviatoric components a,; and a,, are sums of terms proportional to (u')? or to
products of a;; and u'. These nonlinear terms were neglected by Jenkins and
Richman [1985]. Consequently, they predicted that, for flows of nearly elastic
spheres, the components a;;, a5, and ay; all vanish. In that approximation,
the constitutive equations (8), (9), and (10) simplify and guarantee that the
normal pressures pj,, Py, and pa; are all equal.

Finally, we employ constitutive relation (18) to eliminate v, from
balance (6) to obtain,

a;,  -x/%3e-1) 5 u'
T T 12(3-e) [ ]

= 4 50%0Ge1)G |d7 - (21)

where we have neglected terms that are cubic in u', a,,, and products of u' and
aj,. If equation (21) is employed to eliminate a;, from constitutive relation (7)
and e is set equal to 1, then the resulting expression for the shear stress is
identical to that obtained by Jenkins and Richman [1985].

Boundary Conditions
With appropriate conditions applied at the free surface and base of the

incline, equations (1), (2), (3), (7), (9), (11), (15), (20), and (21) determine the
variations with y of pyy, P22, 4, T, ¥, U, V, 2y, and ay,. Although the location of



the free surface is not known, the stresses and the energy flux each vanish
there; i.e. :

P12=0 and pp=0 |, (22)
and
q=0 . (23)

Because the stresses both vanish at the top of the flow, v may be eliminated
between equations (1) and (2) to demonstrate that p;,/psy=-tan¢.

If v is equal to 0 and t is not, then according to constitutive relation (9)
the normal stress condition at the top of the flow is automatically satisfied.
Near the top of the flow, therefore, v is small, the normal stress may be
approximated by

Py = Vt+ay) , (24)

and because the ratio p;,/p,; is everywhere equal to -tan¢, the shear stress may
be approximated by

P12 = v(t+ay) tany . (25)

Furthermore, if equations (21) and (25) are employed to eliminate a;, and p;,
from constitutive relation (7), then we find that near the top of the flow, u' is
given approximately by,

o = 24(3-e)(;5)2%;azz)tan¢v . (26)

With u' given by equation (26), the lowest order approximation of equation
(7) dictates that,

ap = '(T'I‘ azz) tan¢ ’ (27)

and with p;,, u', and a,, given by equations (25), (26), and (27), balance (20)
yields,

1 32 _ B2+ V9/4 + 6tan’p

T 2tan?y : | (28)




For small values of v and prescribed values of 1 and ¢, equation (28) fixes a,,,
equations (24) and (25) fix p,; and p,,, and for prescribed values of e, equation
(26) fixes u'. As v approaches zero, so too do the stresses p,, and p;, and the
velocity gradient u'. However, in the same limit the components a,, and a;,
of second moment each approach nonzero limits that depend only on the
inclination angle ¢ and the local value of 7.

Of interest also are the limiting behaviors of the gradients 1', v', a;5' a'
and u" as v approaches zero. By differentiating approximations (24) and (28)
with respect to y, for example, we find that

,  -vcosp¢ vt
Ay PR (29)

where £(¢) is given by the right-hand-side of equation (28), and
ayp' = [f9)-117 . (30)

If these are employed to eliminate v' and a,,', then constitutive relation (11)
for the energy flux demonstrates that t', and therefore v' and a,,', each
approach zero with v. Simple differentiation of approximations (26) and (27)
with respect to y then demonstrates that both u" and a,,' approach zero in the
same manner.

At the base of the incline (i.e. y=0), the rate M at which momentum is
supplied to the flows by inelastic collisions between flow particles and the
base must balance the traction vector at the base. Furthermore, the difference
between the rate -M,u, at which energy is supplied by slip work and the rate D
at which it is absorbed by inelastic collisions between flow particles and the
base must balance the energy flux at the base.

The transfer rates M and D depend on the geometry and dissipative
nature of the incline. Here we focus on inclines that are flat surfaces to which
identical, smooth, hemispherical particles of diameter d are randomly
attached at an average distance s apart. In order to prevent flow particles from
colliding with the flat part of the boundary, the maximum allowable value of
s/d is -1+(1+20/d)'/2. When a flow particle collides with a boundary particle
the distance between their centers is é=(c+d)/2, and the energy dissipated is
fixed by the coefficient of restitution e, between them. A measure of the
bumpiness of the boundaries is the angle 6=sin’/(d+s)/(d+0), which increases
from 0 to ©/2 as the boundaries evolve from perfectly flat to extremely
bumpy.

We employ the general expressions for M and D obtained by Richman
and Martin [1993] for assemblies of inelastic spheres that interact with bumpy
boundaries described above. The expression for M involves an unknown
factor that accounts for excluded volume and particle shielding at the
boundary. If we first employ the balance between the x,-components of M
and the traction vector to write the unknown factor in terms of p,,, a,,, 7, and



6, then the balance between the x;-components of M and the traction vector
determines the slip velocity u(0) according to,

u -r1/2 a 3, 5 (21 - sin%0) u' /2 a
a7 = m[1+—%2(1-251n26)]512§ +ts o Rt prit (31)

where 1(0)=2[2csc?0(1-cos6)-cos8]/3. Furthermore, the energy flux at the
boundary is determined by,

1

23/2 ay,. 3 -
q = 29 -pput - 77z (1-e,)esc?0(1-cos6) | 1+74(1-3sin?) | ©/2pp ¢ . (32)

Conditions (22), (23), (31), and (32) are the five conditions needed to complete
the set of equations (1), (2), (3), (7), (9), (11), (15), (20), and (21).
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