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THE EFFECT OF PROCESSING ON STRENGTH OF NICALON
FIBERS IN NICALON FIBER-SiC MATRIX COMPOSITES®
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Degradation of strength of Nicalon®* (silicon carbide) fibers during processing of
Nicalon fiber-SiC matrix composites was studied. Strength distribution of as-
fabricated Nicalon fibers was obtained via bundle tests. Whereas, strengths of
fractured fibers in Nicalon fiber-reinforced SiC matrix composite specimens were
estimated by measuring fracture mirror radii. Comparison of fracture probability
plots indicate significant differences in the behavior of the as-fabricated fibers and

those in the composite. Possible causes leading to these differences are discussed.
Introduction

Continuous fiber-reinforced ceramic matrix composites have become an important
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** Manufactured by Nippon Carbon Co., Tokyo, Japan.



class of materials for structural applications because of their improved flaw
tolerance, large work of fracture and noncatastrophic mode of failure[1-3].
Fracture behavior of fiber-reinforced ceramic composites is strongly influenced by
the mechanical properties of reinforcing fibers and matrix, fiber/matrix interfacial
characteristics, and residual stresses arising from thermal expansion mismatch of
fibers and matrix. High strength of fibers and weak fiber/matrix interfaces along
with tensile radial residual stresses are requisites for a ‘tough’ ceramic
composite[4]. Strength of reinforcing fibers is critical because once a matrix crack
initiates and extends there is a load transfer from matrix to fibers in the wake of the
crack. Weak fibers fracture, leading to a catastrophic failure of the composite,
whereas, strong fibers accomodate the stresses. Thouless et al.[5] have shown by
theoretical analysis and experimental observations that the amount of fiber pullout,
which contributes to the toughening of the composite, is strongly influenced by the
mean strength and as well by the variability in strength of the reinforcing fibers.
Also, the ultimate load bearing capacity of the composite is determined by the fiber
strength characteristics[6]. It is, therefore, clear that strength of fibers is an
important parameter for the design and development of fiber-reinforced ceramic

matrix composites with superior mechanical properties.

Recently, research and development of thermally stable and oxidation resistant
continuous silicon carbide (SiC) fibers, such as commercially manufactured
Nicalon, has led to the fabrication of composites for elevated temperature
applications. Nicalon fibers are currently being used as reinforcements in such

matrices as silicon carbide, silicon nitride and glasses[7-9]. Over the past few years



there has been an extensive mechanical and microstructural characterization of
ceramic fibers[10-12] over a range of temperatures and enviornments. Clark et
al.[12] have shown that SiC fibers are susceptible to thermal degradation.
Moreover, it is possible to introduce surface defects or damage during handling of
fibers during composite fabrication, and hence, further contribute towards strength
degradation. Therefore, it becomes important to recognize and establish factors
leading to strength degradation during fabrication processes and subsequently

account for it in the prediction of the composite mechanical properties.

Results of an investigation into the effect of processing on the strength distribution
of Nicalon fibers are repdrted in this paper. Single fiber strength distribution of as-
received Nicalon fibers were obtained from bundle tests. Strength distribution of
fractured fibers in a Nicalon fiber-reinforced SiC matrix composite were assessed
from measurements of fracture mirror radii. Two-parameter Weibull distribution
function was found to adequately describe the strength distributions for the two
cases. Scale parameter for the as-received fibers was found to be larger compared
to the fibers incorporated in the composite. However, there is no significant
ditference in thé Weibull moduli for the two cases. Strength degradation of Nicalon
fibers in composites is believed to be due to thermal degradation and mechanical

damage to the fibers during fabrication.
Strength Distribution Function

For brittle materials, such as most ceramics, strength distribution is commonly
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described by the two—parameter Weibull distribution function which is expressed as

follows[13]:

F(o)=1-exp _[.9.]”“ 0

In equation 1, F(o) is the cumulative failure probability at an applied stress G, Og is
the scale parameter signifying a characteristic strength of the distribution, and m is
referred to as the Weibull modulus that characterizes the flaw distribution in the
material. It should be noted that the above representation is based on the
assumption that there is no interaction among the flaws in the material and failure of
ceramics follows the weakest-link principle, i.e., failure occurs at the most severe
flaw. Therefore, based on weakest-link principle, there is a size dependence of
fracture strengths of ceramics since the severity of the critical flaw increases as the
size of the specimen under stress increases. However, Weibull modulus does not
change with specimen size provided the flaw population remains the same. Such
experimental observations for brittle ceramic materials are well documented in

literature[13,14].

In the present study, since strength distribution of fibers has been investigated on
various fiber gage-lengths it is appropriate to account for the size effect and
represent Weibull distribution function at a standard gagelengtl. Therefore,

equation 1 was modified and represented as follows[10]:



F(o)=1-exp "EL_(_G_) 2

where L is the gagelength of fiber stressed, L is the standard gagelength, and rest
of the notations are as described above. Thus, by using the Weibull distribution
function as given by equation 2, it is possible to compare Weibull scale parameters

at equivalent fiber gagelcngthé.
Experimental Procedure
Material

Carbon-coated ceramic grade Nicalon fibers were used to study the effect of
processing on the fiber strength distribution. SiC fibers were chosen for this study
because of their high temperature stability and successful incorporations‘ as
reinforcements in composites for commercial applications[7-9]. Tows of Nicalon
fibers were used to determine single fiber strength distribution via bundle tests.
Nicalon fiber tows of various lengths were carefully extracted from Nicalon fiber
mats*** . Typically, each tow consisted of 500 individual fibers . Nominal diameter

of the fibers ranged from 10-15 um. Polymer-derived Nicalon fibers consist
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primarily of B-SiC crystallites of an average size of 1.7 nm along with excess
carbon and SiO[15,16]. Reported[17] density and elastic‘ modulus of Nicalon
fibers are 2.55 g/c.c. and 210 GPa, respectively.

Nicalon fiber-reinforced silicon carbide (SiC) matrix composites were used for the
evaluation of strength distribution of fibers in the composites. Composites were
fabricated at Oak Ridge National Laboratory by densifying multiple layers of
Nicalon mats stacked in graphite die. Chemical vapor infiltration (CVI) technique,
under forced conditions of thermal and pressure gradients, was used for
densification of the preforms with SiC. Resulting composites were close to 90%
dense. Details of specimen fabrication and mechanical properties of the composite
are described elsewhere[7,18].

Bundle and Flexure Tests

Fiber bundle test, originally developed by Manders and Chou[19], was employed
to determine single fiber strength distribution of as-fabricated Nicalon fibers.
‘Weibull parameters, needed to describe the strength distribution of fibers, were
estimated from the lcad versus strain plots of a fiber bundle loaded in uniaxial
tension[20]. Bundle tests were conducted on a universal testing system* using the
experimental set-up shown schematically in Figure 1. Tests were conducted on
fiber tows of various gage lengths ranging from 27 mm to 100 mm in ambient

conditions and at a loading rate of 0.5 mm/min.

# Model 4505, Instron Corp., Canton, MA.
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Figure 1 Schematic of the Experimental Set-up Used for Bundle Tests.

Continuous Nicalon fiber-reinforced SiC composites were fractured in four-point-
bznd mode on the universal testing system. Inner and outer loading spans were
9.53 mm and 19.05 mm, respectively. Typical dimensions of the flexure bar
specimens were 2.9 mm x 4.2 mm x 51.0 mm. Flexure tests were conducted at a

loading rate of 1.27 mm/min in ambient conditions. Fractured composite



specimens were examined on a scanning electron microscope## (SEM) to locate the
failure origin and establish the associated characteristic fracture surface morphology

for the fibers.
Results and Discussion

Figure 2 shows a typical load versus strain plot obtained from a bundle test. Strain
or the displacement in the fiber bundle, at a particular load, was determined by
subtracting the system (grips, conﬁectors, étc.) displacement from the absolute
displacement of the crosshead of the testing machine. Displacement contribution
due the system accessories was obtained by estimating system compliance

following the procedure described in ASTM D 3379 —75[21].
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Figure 2. Typical Load-Strain Variation Obtained From a Bundle Test of Nicalon
Fibers.

## Model JXA-840A, JEOL Co., Ltd., Tokyo, Japan.



Weibull parameters (og and m) of the as-recieved Nicalon fibers were obtained
from the maximum load Pp;,x, slopes Sp and Sa, (as indicated on Figure 2) and the

specimen gagelength, L, via the following equations[19]:

m= 5
ln{.?l] ( )
Sa
Pm =S ¢ (__i_)l/m (A‘)
2% 770 2.7183Lm
S, = E¢e, (5)

Results of seven tests conducted on fiber bundles with various gagelengths gave an
average value for Weibull modulus as 7.1. The average value for the scale
parameter, after correcting it for a gagelength of 10 mm via equation 2, was 3.45
GPa. These results are in accordance with the reported values in the literature’for
Nicalon fiber strength distribution. Goda and Fukunaga[10] obtained strength

distribution for Nicalon fibers by single fiber testing on fibers of gagelength of 10
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mm. Their reported values for the Weibull modulus and scale parameter are 4.7
and 4.24 GPa, respectively.

SEM investigation of the fibers showed that most failed from defects or flaws
located at the fiber surface. Typical surface morphology of a fractured fiber in
Nicalon fiber-reinforced SiC composite tested in four—point—bend mode is shown
in Figure 3. Characteristic features associated with brittle failure such as mirror

(smooth region around the fracture origin) and hackle (region of multiple fracture

planes) are clearly observed on the surface of fractured fibers.

Figure 3. Surface Morphology of a Fractured Fiber in a Nicalon Fiber-Reinforced

SiC Composite.



It is well known for glasses and ceramics that such fracture surface features as the
mirror radii can be correlated to the tensile strength through an empirica!

relationship[22,23]:

oot =Ap C@

where rp, is the mirror radii, of is the tensile strength and A, is the mirror constant
and is related to the fracture toughness of the material. In the present study, A, is
taken as 3.5 MPam1/2 following the Work of Thouless et al.[5]. Strengths of over
thirty Nicalon fibers from five different fractured composite specimens were
determined by measuring their fracture mirror radii and using equation 6. Figure 4
shows the linearized Weibull strength distribution plot for Nicalon fibers in a SiC
matrix composite. Weibull modulus and the corresponding scale parameter were

6.0 and 2.3 GPa, respectively.

Figure 5 compares the strength distribution of Nicalon fibers in the as—fabricated
state with those incorporated in the composite. As-received fibers exhibit an
average strength of more than one and a half times than that of fibers incorporated
in composites. Also shown in Figure 5, for comparison purposes, is the strength
distribution obtained by single fiber tests of Nicalon fibers{10]. Reduction of
strength of fibers suggests that either new flaws are generated or pre—existing flaws
become more severe during processing. SEM examination of the fractured fibers

revealed some interesting features. Figure 6 shows a fractured fiber with a distinct



surface flaw believed to be introduced by mechanical damage to the fiber.
Possiblities of this to occur are during the handling and stacking of fiber mats prior

to densification by vapor infiltration.
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Figure 4. Linearized Weibull Plot for Fractured Nicalon Fibers in SiC Matrix

Composites.

Strength degradation of Nicalon fibers due to exposure to high temperatures is well
documented in the literature[12]. Loss of tensile strength by more than 30% and
70% has been reported for ceramic grade Nicalon fibers by exposure at
temperatures 1000 °C and 1200 °C, respectively, for 12 hours in a wet-air
atmosphere[12]. This is attributed to microstructural and stochiometric changes that

occur in the fiber at elevated temperatures. Similar changes are expected, however,



to a lesser degree for the carbon—coated Nicalon fibers investigated in this study.
Due to the higher processing temperatures in the range of 1200 C and larger
exposure times of over 24 hours used in the farbrication of the composites makes it
difficult to prevent fiber degradation. Okamura et al.[24] have shown that
formation of SiO; film can also contribute to the reduction in both the tensile
strength and as well the Young’s modulus of the fibers. To establish the effects of
thermal degradation on the Nicalon fibers used in composites a quantitative
microstructural and phase analysis of the fibers is currently in progress. Also,
since there is no significant change observed in the Weibull modulus, it implies the
flaw population remains same except the flaws become more severs due to
degradation in the inherent material properties. This again is related to thermal

degradation of the fiber material.
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Figure 5. Comparison of Weibull Strength Distribution of Nicalon Fibers in As—

Recieved State and After Processing.
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Figure 6. Fractured Nicalon Fiber in SiC Matrix Composite Showing a Surface
| Defect as the Flaw Origin . |

Conclusions

1. Strength distribution of as-received Nicalon fibers was obtained using bundle
test procedure, whereas, fracture mirror radii measurements were made to
estimate strengths of fibers in composites.

2. Results indicate a significant decrease in the strength of the Nicalon fibers
in composites as compared to as-recieved fiberz. However, Weibull moduli for
the two cases were similar. |

3. Decrease in the average strengths of Nicalon fibers after incorporation in
composites is attributed to thermal and mechanical degradation of fibers

encountered during the processing procedures.
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