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ABSTRACT

Spatial heterogeneity of geologic media leads to uncertainty in predicting both flow and
transport in the vadose zone. In this work an efficient and flexible, combined analytical-
numerical Monte Carlo approach is developed for the analysis of steady-state flow and transient
transport processes in highly heterogeneous, variably saturated porous media. The approach is
also used for the investigation of the validity of linear, first order analytical stochastic models.
With the Monte Carlo analysis accurate estimates of the ensemble conductivity, head, velocity,
and concentration mean and covariance are obtained; the statistical moments describing
displacement of solute plumes, solute breakthrough at a compliance surface, and time of first
exceedance of a given solute flux level are analyzed; and the cumulative probability density
functions for solute flux across a compliance surface are investigated. The results of the Monte
Carlo analysis show that for very hetr;.rogeneous flow fields, and particularly in anisotropic soils,
the linearized, analytical predictions of soil water tension and soil moisture flux become
erroneous. Analytical, linearized Lagrangian transport models also overestimate both the
longitudinal and the transverse spreading of the mean solute plume in very heterogeneous soils
and in dry soils.

A combined analytical-numerical conditional simulation algorithm is developed to
estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of
concentration and solute flux predictions. In soils with large spatial variability and in dry soils,
soil water tension measurements significantly reduce the uncertainty in the predicted solute
concentration. Saturated hydraulic conductivity data are valuable in relatively wet soils. A
combination of tension and saturated hydraulic conductivity data gives the best results, especially
if some data are available on the unsaturated hydraulic conductivity function. It is also found
that if soil heterogeneity is large, the conditional spatial moments of inertia of the mean

concentration plume and the conditional mean breakthrough curves are poor means of depicting
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the actual solute plume distribution and the actual solute flux. Nevertheless, conditional
simulation is one of the most rational approaches for modeling unsaturated flow and transport,

if in-situ data are available.
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1. INTRODUCTION

In recent years consideration of the unsaturated zone has received increasing attention
among scientists, regulators, and engineers involved with subsurface contaminant transport.
Regarding groundwater pollution, the unsaturated zone acts as buffer but also as conveyor belt
between the land surface, where most contaminants originate, and groundwater, which is a
resource protected under a number of environmental regulations. Pesticides and fertilizers leach
to the water table from agricultural areas; underground storage tanks leak petroleum products;
landfills, septic tanks, waste water lagoons, and other man-made features are potential hazards
to drinking water if the underlying aquifer is used as a potable water resource. For the cleanup
of soil contamination and for the evaluation and control of waste storage and disposal sites,
flow and transport processes in the area between the actual or potential contaminant source and
the groundwater table must be well understood. Unsaturated flow processes above the water
table play an important role in determining the pathways of a contamination plume before it
reaches the aquifer, particularly in semiarid and arid regions where the unsaturated zone may
be several tens of meters thick.

Modeling unsaturated flow and transport with mathematical or numerical methods is
an important tool for predicting the infiltration and redistribution of soil water and the transport
of solutes in the unsaturated zone. Flow and transport models are commonly used to support
the decision making process in agricultural management, environmental impact assessment,
toxic waste control, remediation design, and subsurface cleanup monitoring.

The modeling process, however, requires knowledge of the fundamental properties of
porous media. Field research has shown that these porous media properties change
continuously from location to location ("spatial heterogeneity"). Spatial heterogeneity may
significantly influence flow and transport processes in the vadose zone. Modeling efforts must

inherently cope with "uncertain" information i.e., information that has been extrapolated from
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measurement locations to the surrounding areas because it is impossible to measure all soil
properties at all locations. Since the model input is uncertain, the model results are uncertain
and the validity of the modeling may be questioned.

In the past two decades, research efforts have been directed towards developing general
quantitative concepts to describe the spatial heterogeneity of subsurface porous media. With
mathematical tools the impact of model input uncertainty (due to heterogeneity) on the
uncertainty of flow and transport predictions is quantified. Many of these research efforts have
applied the so-called "geostatistical” description of porous media properties and used it. for the
“stochastic analysis" of model uncertainty. Geostatistics is a tool to quantify spatial variability
of natural phenomena in terms of statistical parameters. Given the spatial variability of some
environmental properties (model input) stochastic analysis, a particular form of mathematical
analysis, finds the statistical parameters describing the spatial variability of and the prediction
uncertainty about other environmental phenomena (model output). Most applications of the
stochastic analysis of subsurface flow and transport processes have been with respect to
groundwater.

Moisture movement in unsaturated or variably saturated soils is a physically more
complex process than water flow in saturated porous media. The stochastic analysis of such
processes in heterogeneous soils has therefore been limited to a relatively few, simplified
analytical models. These models are known to be valid only if the spatial heterogeneity of the
soil is moderate. None of the analytical stochastic models describing variably saturated flow
and transport in heterogeneous porous media have been rigorously verified.

This work is an attempt to partially remedy the lack of stochastic tools that predict not
only the most likely path and rate of water and solute movement in soils but also the spatial
variability (i.e. uncertainty) of water movement and solute transport in the unsaturated zone.
Combined analytical-numerical stochastic methods are developed, with which the characteristics

and the prediction uncertainty of steady-state flow and transient transport in highly
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heterogeneous soils can be assessed. The stochastic methods developed in this work are also
able to predict the uncertainty about water movement and contaminant transport as a function
of the number, location, and type of measurements taken at a particular field site of interest.

The scope of this work is two-fold: In part II, the stochastic framework is defined,
within which the rest of this study operates. Analytical, quasi-analytical, and numerical tools
are developed for the highly flexible analysis of many unsaturated flow and transport problems
in moderately and strongly heterogeneous soils. In part III, these mostly numerical (computer
modeling) tools are applied to verify existing analytical models of unsaturated flow and
transport, to implement a numerical stochastic analysis of the spatial heterogeneity of soil
hydraulic conductivity, soil water tension, soil water flux, and solute (or contaminant) transport
as a function of the soil heterogeneity, and to demonstrate how the design of measurement and
monitoring networks in the unsaturated zone may or may not reduce the uncertainty about these
flow and transport variables.

The dissertation is organized into ten chapters. This introduction is both chapter one
and part I. Part II consists of six chapters: In chapter 2, the concepts of probability and
random variables are introduced. An attempt is made to link the physical phenomena "spatial
he&méeneity" and "uncertainty" with the conceptual rigor of probability theory and stochastic
analysis. The chapter is intended to give a detailed answer to the question of why we use
stochastic analysis to understand model uncertainty. Chapter 3 then introduces, compares, and
validates several numerical methods to artificially generate random, spatially heterogeneous soils
that can be used to study the effects of soil heterogeneity on flow and transport variability.
These methods are of very general nature and have found applications in a wide range of
physicé, engineering and earth-sciences applications and are commonly known as "random field
generators". In chapter 4 a purely analytical stochastic theory of flow in unsaturated soils is
developed based on similar work by other authors. The analytical unsaturated stochastic flow

theory serves three important purposes: it is an inexpensive, approximate method to assess the
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spatial variability of soil water tension and soil water flux; it is necessary for the application
of existing transport theories to heterogeneous, unsaturated soils; and - as will be shown in
chapter 7 - it is an invaluable catalyst needed to reduce the computation time associated with
the numerical (computer) solution of the unsaturated, steady-state flow problem to just a
fraction of the time hitherto necessary. In chapter 5 a computer simulation program is
introduced that solves the physical equations governing variably saturated, flow and transport
for any given random realization of a heterogeneous soil. Chapter 6 investigates several aspects
of the numerical grid design for the finite element flow model introduced in chapter 5. Finally
in chapter 7 an efficient combined analytical-numerical computer solution al gorithm is described
for the unsaturated stochastic flow problem based on the methods introduced in chapters 3
through 6.

Part III consists of three chapters, all of which are based on the conceptually simple but
computationally expensive Monte Carlo method: a large number of "random"” soils that are
statistically identical to the field site of interest are generated. The flow and transport problems
are solved for each soil, the individual results are compiled, and eventually analyzed statistically
to give an overall assessment of the spatial variability of flow and transport in heterogeneous
soils. The key to a successful Monte Carlo simulation is a high number of realizations
(repetitions) such that the Monte Carlo results are truly representative of the stochastic nature
of spatial heterogeneity and uncertainty. Monte Carlo analysis is therefore only possible with
the efficient computational algorithms introduced in part IL.

Chapter 8 is dedicated to the analysis of spatial variability and uncertainty of the
unsaturated hydraulic conductivity, ;he soil water tension, and the soil moisture flux in a steady-
state unsaturated flow regime. It compares the highly accurate numerical solutions with the
analytical solutions of chapter 4 to discern the strengths and weaknesses of the analytical
stochastic approach. In chapter 9 the nature of solute transport in heterogeneous soils is

described and both the spatial variability of solute concentration as a function of time and the
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temporal variability of solute flux as a function of space in heterogeneous soils is investigated.
The analysis is specificaily applied to a point or small pollution source (as opposed to a
spatially extensive non-point pollution source). This chapter also compares the highly accurate
numerical results with approximate analytical stochastic transport theories to highlight their
advantages and disadvantages. Finally, in chapter 10, I investigate how prediction uncertainty
can be reduced by measuring various soil properties in situ and by using a conditional stochastic
method that honors the degree of deterministic knowledge available about a soil site. The

results are contrasted with the unconditional stochastic analyses of chapters 8 and 9.




2. HETEROGENEITY, PROBABILITY, AND RANDOM FIELDS

21 Introduction: Heterogeneity and Stochastic Analysis

Spatial heterogeneity refers to the variation of a physical property in two- or three-
dimensional space. This physical variation is encountered in many earth science applications;
it is of particular interest when studying flow and transport processes in the unsaturated zone.
When examining soil media, spatial heterogeneity is observed on many different scales such as
the microscale of a single pore, the intermediate scale of laboratory experiments, the scale of
field experiments, and -the megascale, which encompasses entire regions. This work is not
concerned with the spatial heterogeneity on the microscale or pore scale because the governing
physical laws for porous media flow (chapter 4) are only valid on a scale larger than the
microscale. Bear (1972) defined "Representative Elementary Volume" as the smallest volume
over which there is a constant "effective” proportionality factor between the flux and the total
pressure gradient or total head gradient. This proportionality factor is called the hydraulic
conductivity of the REV. By definition of the REV, the hydraulic conductivity does not rapidly
change as the volume to which it applies is increased to sizes larger than the REV. This is
based on the conceptual notion that either no heterogeneity is encountered at a scale larger than
the REV or that heterogeneity occurs on distinctly scales, the smallest of which is the REV
(Marsily, 1986). The latter model assumes that within each scale relatively homogeneous
regions exist. Within these homogeneous units heterogeneities can only be defined on a
significantly smaller scale. Geologists refer to these different scales as facies (Anderson, 1991)
while hydrologists commonly speak in terms of hydrologic units (Neuman, 1991). Analysis of
a large number of hydrologic and geologic data from different sites associated with different
scales has shown that the existence of discrete hierarchical scales for any particular geologic

or hydrologic system vanishes in the global view as the multitude of different geologic or
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hydrologic units allows for a continuous spectrum of scales (Neuman, 1990). This study is
limited to the scale of a typical research field site; this is representative for many field
contamination studies i.e., roughly the meter and decameter scale (10°-10° m).

For the scale of the REV, mathematical models based on the physics of flow and
transport in homogeneous porous media have been well-established in the literature and their
accuracy has been verified in many laboratory experiments (c.f. Hillel, 1980). The physical
meaning of the underlying model parameters is already well-understood (c.f. Jury, 1991). It is
the fundamental mathematical treatment of flow and transport in heterogeneous porous media,
which is of concem in this study.

Spatially heterogeneous properties can belong in either one of the following two classes
depending on the problem formulation:

(@) porous medium properties that are measurable and that are seen as the cause of flow
and transport behavior in soils such as pore geometry, the saturated permeability of the
soil, the soil textural properties, and the soil water distribution;

(b) porous medium properties that are predictable based on physical laws or functions of
class (a) properties e.g., the distribution of soil moisture flow and the solute
concentration at some future time.

In very general terms, this dissertation is about the spatial heterogeneity of class (b) properties
given some knowledge about the heterogeneity of class (a) properties. More specifically, the
spatial heterogeneity of (and hence the uncertainty about) soil water tension, soil moisture flux,
and solute transport in soils is computed based on some information about the spatial
heterogeneity of the hydraulic properties of unsaturated porous media. Mathematically, spatial
heterogeneity can be dealt with in one of three ways:

1. The local (REV-scale) porous media properties (soil property class (a)) are described
at every point throughout the field area of interest. Then the classic flow and transport

equation are used in a numerical model to obtain the output variables (soil property
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class (b)). This approach requires an enormous amount of measurement data and is for
all practical purposes impossible to implement.

2 Spatial heterogeneity is neglected and instead some form of "effective” parameter is
determined to define the flow and transport problem on the scale of interest. Classical
flow and transport solutions (analytical or numerical) are applied to solve the problem
for a quasi-homogeneous domain with "effective” parameters. This is probably the
most widely used approach in both soil and groundwater hydrology due to its relative
simplicity and low computational cost. The disadvantage of the method lies in the
uncertainty of the prediction, since the "real" field parameters may differ significantly
from those assumed in the model.

T3 An entirely new mathematical approach is developed that considers the limitations of
our knowledge about the field site and that quantifies the uncertainty in the prediction
of soil property class (b) given that only a small and economically reasonable amount
of measurements are available from the field site (class (a) data or class (b) data). To
that end, spatial stochastic analysis has been developed over the past three decades for
a wide variety of similar problems not only in the treatment of unsaturated zone flow
and solute transport but in the treatment of many earth science problems.

The stochastic approach is adopted in this study since the primary interest lies not only in

making a best prediction but also in quantifying the uncertainty of the prediction. In this

chapter probability theory is introduced together with some of its most important lemmas to
show, how - in principle - spatial heterogeneity is conceptualized in form of a mathematical
model. Based on probability theory, stochastic analysis (which is a particular form of
mathematical analysis) allows the derivation of the probabilistic parameters describing the
spatial heterogeneity of class (b) properties given the probabilistic parameters describing the
heterogeneity of class (a) properties. A particular challenge arises, when deterministic

measurement data of either class (a) or class (b) properties are given in addition to the
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parameters describing the degree of heterogeneity. The additional deterministic information
must be reflected in the derivation of the probabilistic parameters describing the spatial
heterogeneity of class (b) properties. Conditional probability theory and conditional stochastic
analysis will be introduced for this type of application.

Stochastic analysis is closely associated with the theory of random processes, which is
a branch of mathematics called probability theory. Probability theory itself is a branch of
mathematics called measure theory. "Probability theory and measure theory both concentrate
on functions that assign real numbers to certain sets in an abstract space according to certain
rules." (Gray and Davisson, 1986 p.27). The treatment of spatial heterogeneity in terms of
random processes is a highly abstract procedure, the appropriateness of which has been
questioned. However, this treatment is justified by Athanasios Papoulis (1984, p. xi):
"Scientific theories deal with concepts, not with reality. All theoretical results are
derived from certain axioms by deductive logic. In physical sciences the theories are
so formulated as to correspond in some useful sense to the real world, whatever that
may mean. However, this correspondence is approximate, and the physical justification
of all theoretical conclusions must be based on some form of inductive reasoning.”
For a complete derivation of the concepts of random variables, random processes, and stochastic
differential equations there is a vast amount of literature that has been published in this area for
many different applications (see e.g. Gray and Davisson, 1986; Papoulis, 1984; Priestley,
1981). The intent of this chapter is to give the reader a full appreciation of the theoretical basis
of random processes. This should allow a better understanding of the scope of stochastic

modeling,

22 Principles of Probability Theory

Probability theory is a construct that allows rigorous quantification of rather imprecise
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statements suc;h as "tomorrow there may be rain", or "the contaminant plume may already have
reached the groundwater table". Such statements are mostly based on past experiences in
similar circumstances. The statements are about the chances of one particular result or outcome
out of a total of two possible outcomes (a "sample space” of two outcomes), for example,
groundwater is either contaminated or not.

There could be more than two possible results e.g., a: "groundwater is contaminated to
the extent that it affects a well-field", or b: "it is contaminated without affecting any wells", or
¢: "itis not contaminated at all". In this example there are three possible outcomes, which form
a set called the "sample space” Q={a,b,c} of all possible outcomes. The two outcomes with
contaminated groundwater can be grouped together in a set or "event" F={a,b}, which is equal
to the event "groundwater is contaminated” in the very first example. The complementary set
to the event F={a,b} is the event F°={c}: "groundwater is not contaminated". The latter event
is a singleton set or a set with only one element (outcome). Another possible event is "no well
is contaminated” i.e., the set F={b,c}. This event also possesses a complementary set within
the sample space Q: F°={a} or "groundwater is contaminated to the extent that it affects some
wells". Yet another possible event is F={a,c} "some wells are contaminated or the groundwater
is not contaminated at all", which has the complementary event F°={b} " groundwater is
contaminated without affecting any wells". Finally there is the trivial event F={a,b,c} "the
contamination has either not reached the groundwater, has reached the groundwater but no
wells, or has already reached the wells", which is equal to the sample space Q2. This event
possesses the complementary event F°={4}, the so-called empty set with no elements at all.
All possible events for the sample space Q={a,b,c} are now defined. Each of these events is
a set. A set of all eight possible events (or sets) in the sample space §, can also be defined.
In set theory "sets of sets" are called "classes" of sets, and the class of all eight possible sets
mentioned above is called the "power set" of Q. Since each set is also an event, the power set

is called a "class F of events" or simply an "event space”. To be precise, each set is called
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an event only, if a probability measure P is assigned to the set. Only then the above
probabilistic "experiment"” is completely defined. As in this example, the theory of probability
rests upon the principles of set theory.

In this simple example all basic elements necessary to define a probability problem, or -
in mathematical terms - a "probability space" are encountered. Formally, a probability space
consists of three basic, well-defined objects: The sample space Q, which is a set of all possible
elementary outcomes; the event space F, which is the group of all possible events F such that
each event F, is some combination of the elementary outcomes and such that the event space
F is closed under certain set-operations e.g., if FEF then F°EF. Finally, the space (R,F) must
be "measurable” such that there exists a probability measure P, which assigns a probability to
each event F; in the event space. The three fundamental axioms of the probability measure P

are:
P(F)=0 forall FEF

PO =1
2-1)

fo'e) 0
P(U F) =) P(F) if all F, are mutually exclusive
i= i=1

where the last equation is for both a finite event space (finite countable number of events) and
an infinite event space (infinite number of events).

The above contamination example was a finite event space. An infinite number of
events can occur in a discrete sample space e.g., the sample space Q(N) of all integer numbers,
or in a continuous sample space e.g., the sample space S of all spatial points in a particular soil
cross-section. An event space F with an infinite number of events is called a "Borel Field" B.
One of the most common Borel fields is the class B(R) of all open intervals on the real line.

A very useful probability measure for discrete events can be derived from the

"probability mass function" (pmf) p(w), which assigns a real number p(w) to each elementary
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outcome ® in the sample space Q, and which has the following properties:

p(w) = 0 for all w € Q

2-2)
L b =1

The probability measure P(F) is defined as:

P(F) = ¥} p(w , allFEF 2-3)

oE€F

Note that the pmf is not a probability measure since it is defined for the elementary outcomes
themselves and not for a collection of sets. An example of a commonly used pmf is the
uniform pmf. Q =N, = {0, 1, 2, ..., n-1} and p(k) = 1/n, kEN.

Similarly the "probability density function" (pdf) f(w) for continuous sample spaces is

defiried by:
flw) =2 0 , all WEQ

Lf(w) do =1 (2-4)

P(F) = 1_[ f(wdow , FEB

where P(F) is the probability measure for the continuous sample space B. The probability
density function of a random variable is often expressed in functional form. The following pdfs

are of importance in this study:
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uniform pdf: f(w) = Fl—'; wE[a,b], [a,b]ER

normal pdf: f(w) = 1 exp( —((1;-2/1 )2) weER
. 2no? 2-5)
lognormal pdf  f(&) = —~__ exp(Z0082"#’y  ep-

Vo 2
Laplace pdf: f(w) = _21.[3_ exp(-| w-a|) oER

where u and o2 are parameters of the normal and lognormal pdf. The normal pdf is also called
the "Gaussian" pdf. o and B are parameters of the Laplace or double exponential pdf.

In the previous ‘paragraphs the properties of the probability space (Q,F,P) are defined
and the pmf and pdf are introduced as tools to compute the probability measure P. The entire
framework of stochastic analysis, which is a part of probability theory, rests like probability
theory itself upon these definitions of the probability space, the basic operations of set theory,
and the principles of mapping or functions. Mapping one probability space into another via
some functional relationshi]; is the key to the work presented in this dissertation, since the
essence of stochastic analysis is the "connection of a system to a probability space with a
description of the output" (Gray and Davisson, 1986, p.29) and the main objective of
probability theory is "to find the probability of some new event formed by set-theoretic
operations on given events, given a probabilistic description of a collection of events” (ibid.).

The first quoted statement was illustrated in the contamination example above. The
second statement concerns itself both with the additivity property of the probability measure and
with the mapping of a probability space into another probability space. The additivity property
of P can be exemplified again with the contamination problem: Assuming the following
probabilities are known: P({c}) "the groundwater is not contaminated" is 20%, and the
probability P({b}) that "the groundwater is contaminated, but the contamination does not affect

any wells" is 10%. What is the probability P({a}) that "the groundwater is contaminated, and
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the contamination has also reached some welis"? From.(2-3) it can easily be seen that
P({a})=P(Q)-P({b})-P({c})=70%.  Similarly the probability P({a,b}) of the event {a,b}
"groundwater is contaminated” is then P({a,b})=P({a})+P({b})=80%.

Mapping (also called filtering, sampling, estimating, averaging, or measuring) is the
process of mapping each element w, in a sample space Q, into another sample space Qz. An
example is &, = {a,b,c} of the contamination example. A second sample space Qg = {d,e,f}
is defined such that d: "remedial action taken by EPA", e: "remedial action taken by fire
department”, f "no remedial action taken". Also the following mapping (or function) is
defined: g:w -> Qg, such that g(a)=d, g(b)=d, g(c)=f i.e., if the groundwater is contaminated at
all, EPA will take remedial action; if it is not (yet) contaminated, no remedial action will be
initialized. The sample space Q, = {a,b,c} is called the domain of the function g, the sample
space Qg = {d,e,f} is called the range of g, and the set of all g(Q2,) in Q;, Q. = {d,f} is called
the range space of g. g is a completely deterministic process, because it defines an exact
mapping of the éample space L, into the sample space Qg. Since each element of Q, is
associated with a probability, g provides a tool to determine the probabilities in the range Q.
of the domain Q,: The chances of {d} "EPA taking remedial action" are equal to the chances
of {a,b} "groundwater is contaminated", which is 80%. Then the chances of "no action taken"
are 20%.

Notice that the above example is not a one-to-one mapping and that there is no inverse
mapping g”(d). Defining g(a)=d, g(b)=e, and g(c)=f, §2, is mapped "onto" Qg and the range Qg
is equal the range space Q. = {d,e,f}. g is said to have an inverse function g, because the
mapping is one-to-one.

A mapping can occur between a discrete domain and a discrete range, between a
discrete domain and a continuous range (albeit the range space is still discrete), between a
continuous domain and a continuous range, and also between a continuous domain and a

discrete range. The contamination example was of the first category. Considering, for example,
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the amount of contaminant mass in the aquifer as a function of the outcome Q, would be a
mapping between a discrete domain and the (continuous) real line R The stochastic analysis
of unsaturated flow and transport processes is in principal the mapping of the sample space of

soil hydraulic properties into the sample space of flow and transport properties.

23 Independence and Conditional Probabilities

Reconsider the initial contamination example with the sample space Q,={a,b,c}. The
elementary events of this sample space are "mutually exclusive", since given one of the events
{a}, {b}, or {c}, none of the others can occur at the same contamination site (in the same
experiment): Either the groundwater and the wells are contaminated, or only the groundwater
is contaminated or the groundwater is not contaminated at all. It is impossible that the
groundwater is contaminated AND that it is not contaminated. The probability of one event

F, occurring, if any other mutually exclusive event F, has occurred is therefore zero:

P(F,(F,) = P(F)P(F,) =0 (2-6)

In contrast, one speaks of "independent" events, if the probability of one occurring is
independent of whether the other event occurred. Independent events must be from at least two
different experiments, each of which has a well-defined sample space. Say, for example, there
exist two identical contamination sites at different locations, with a given probability space
(2,F,P) for each of the two sites. The two events occurring at the two sites are called
"independent”, since the probability of the event occurring at one site is independent of the
probability of the event occurring at the other site. Then the probability of the event F, at site

A AND the event Fy at site B to occur concurrently is:

P(F,(F,) = P(F)P(F,) = 0 @7

Similarly a collection of events {F, i=1,k} is called "mutually independent", if
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P( " F) = 5 P(F) 2-8)
i=1 i=1
An example of the latter is the probability of wells contaminated at all of several contamination
sites throughout an area, each of which has a probability space (Q,F,P). If, however, two
contamination sites are located very close to each other, the resulting events may not be
independent. Then their combined probability space has to be taken into account. The
combined probability space is also called the *multivariate’ probability space.

The conditional probability is the probability that an event F, occurs given that another
event F, has already been determined to have taken place. It must be emphasized that
conditional probabilities can be defined for events at the same site or of the same experiment,
but also for events from two different sites or experiments if their combined or multivariate
probability space is considered. For example, the probability P({a}{{a,b}) of {a} "a well is
affected by groundwater contamination", given that somehow it is known that the event {a,b}
"groundwater is contaminated" has occurred is defined as:

_ P(almabl) _ P(al) 2.9
P ((alffa,b}) TR~ Tt 2-9)

More generally, the conditional probability of an event F, given the occurrence of event F, is:

P(F,NF
P(F |F) = ﬁ_") (2-10)
: P(Fy)
It can be shown that conditional probabilities satisfy all the basic axioms of a probability space
(2-1). An important property of conditional probabilities, which is derived from the above

definition is "Bayes’ theorem":
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P(F, |F,)

- o (2-11)
B(F, [F, ) B(F, )+ +P(F, |F, ) P(F, )

P(FAllFb) =

where the events F,; are mutually exclusive and the union of all events U F,; = Q. The event
F, is an arbitrary event in Q2. The denominator on the right hand side is called the "total
probability" of the event F,. It is the sum of all conditional probabilities of the event F, given
the collection of events {F,;, i=1,n}.

In the contamination example, the class of events {{a},{b},{c}} is one of several
possible classes that are mutually exclusive and exhaustive of the sample space Q (a "partition”
of Q). Assume soil samples were taken nearby the well. It is further assumed that the
following conditional probabilities are known: If the well is affected by groundwater
contamination, chances are 40% that the soil sample is also contaminated. If the groundwater
is contaminated, but no wells are affected, chances are 30% that the soil sample is
contaminated. If the groundwater is not contaminated at all, chances are 5% that the soil
sample is contaminated. Bayes’ theorem is used to determine the conditional probability of the
event {a} "groundwater contaminated to the extent where it affects wells" given that the event
{d} "soil sample contaminated" has occurred: The total probability of {d} (denominator of (2-
11)) is:

P({d}) =04 0.7 + 0.3 0.1 + 0.05 0.2 = 0.32
Then the conditional probability
P({a}|{d}) = 0.4 0.7 / 0.32 = 0.875
In silbsequent chapters, the concept of conditional probabilities is applied extensively to random
variables and functions of random variables. Bayes’ theorem plays a fundamental role in the

development of this study.
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24 Random Variables and Random Vectors

24.1 Random Variables

With the basic definitions of the probability space, of independence, of the conditional
probability space, and of functions, we are well-equipped to proceed with the definition of a
random variable X. The term random variable (RV) is actually improper, since by its formal
definition a random variable is neither random nor a variable. Mathematically speaking a
random variable X(w) is a function that maps one to one any elementary outcome of an
experiment (or probability space) (Q,F,P) into a subset of the real line:

X: 0€EQ R . 2-12)

such that: X *(B) = {ox X(w)EB} € F, if BEBW)
where B(R) is a Borel ficld on a subset of the real line (where the "subset” is an interval and
may be the entire real line itself). In other words, every outcome w in the abstract sample space
Q is assigned a real number B through the random variable X(w). S is the domain to the
random variable, and the subset B(R) of the real line R is the range of the random variable X.

As an example, let us consider a small core sample of soil . S, is the sample space
of all saturated permeabilities. Then X:w -> B(R), w € Q,, is the saturated permeability of this
soil sample measured in units of [length/time]. X is a real number corresponding to the
physical property in the soil core called saturated permeability. Other random variables
measured on the soil core are e.g. the water content, the matric potential, and the unsaturated
hydraulic conductivity. Generally random variables can be considered as "measurements of an
experiment” of which the outcome is unknown a priori.

The probability distribution of the random variable X (which may be a pmf, a pdf, or
a mixture of both) can be derived from the probability distribution of the underlying experiment

§2 since the probability Py(b) that X takes on a value in b is the probability that the inverse of
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X, X! takes on w:

P,(b) = PX"'(b)) = PlaX(w)EB) beEB® (2-13)

For most applications it is convenient to use the probability measure Py rather than the original
probability measure P, i.e., one generally operates with the probability space (Qy,B,Px) where
Qy is the range space of the random variable X(w). It is important, however, to keep in mind
that the probability space of X is only inherited from the original sample space. There may be
other random variables that are derived from the same original sample space Q. When
analyzing the relationship between different random variables, their origins must be considered
since common origins generally suggest certain dependencies between RVs of the same sample
space. As an example consider the above mentioned soil core itself as being from the sample
space ., at which different random variables are measured: the saturated hydraulic
conductivity, the unsaturated hydraulic conductivity, the soil water potential, the water content,
etc. Each of these random variables is a different type measurement of the exact same physical
soil core. Mathematically speaking all random variables are in the same domain Q..
Although the derived probability measures or probability distributions of these random variables
may vary, they are not necessarily independent of each other.

The relationship between the pmf py(x) of a discrete RV X and its probability
distribution Py is defined equivalently to (2-2):

Px(X) = Py(x) XER

(2-14)
P,® =X p,x) BEB

and in the case of a continuous X with a pdf fy(x):
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Py(x) = ! f(x)dx , BEB

dF
o) = ) (2-15)

where

Fy(x) = P((-x])

Fy(x;) is called the cumulative distribution function (cdf) of X. Tt represents the cumulative

probability of X s x,. Note the following properties of the cdf:

Fy() =1
F (- =0
(= 2-16)
Fy(x)) s Fy(x,) for x; s x2

P (x>x) = 1-F,(x)

The definition of the cdf allows for the construction of a relationship between the pdf and the
probability measure of X such that one can be defined in terms of the other. The definitions of
some of the most important pdfs including all those that will be used through the course of this
study are already given in (2-5). Their respective cdfs are found by integration of the pdf over
the half open interval (-%,x].

The conditional cdf of a random variable X, given the event F, is defined equivalently

to (2-10):

P(x=x,NF,)
P(F)
The conditional pdf of X is fy(x|F,) = dFy(x|F,)/dx. With these definitions Bayes’ theorem for

Fy(x,|F,) = @2-17)

continuous random variables becomes:
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P(F, | x=x) . (x.
fx(xilFb)'- (Fbl x)x(l)
* (2-18)
J’ P(F, | x=a)f,(a)da
-0
With Bayes’ theorem the conditional pdf of a random variable X given an event F, is
determined from the unconditional pdf of the random variable X and from the conditional pdf
of the event F, given the outcome of the random variable X. Bayes’ theorem establishes the
foundation for conditional simulation (also see chapter 3, chapter 10).

Given the (unconditional or conditional) pdf fy(x) of a random variable X the

(unconditional or conditional) mean or expectation of X are defined as:

(o]

i = EX) = <X> = f x f(x)dx (2-19)

-0
where the notation E() and < > are interchangeable and stand for ’expectation of’. The

(unconditional or conditional) variance of X is defined as:
®

02 = <(X—p)?> = J’ (X=4)? £, (x)dx (2-20)

-0

From the definition of the variance of X it follows that

0% = <X> - (<X>)2 (2-21)

The variance is the second-order central moment. Higher order central moments of X are

defined as:

<K= = f (X~ £ (X)dx 2-22)

The skewness of X is obtained for n=3, and the kurtosis of X for n=4. In most of the
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applications in this study, it is assumed that a random variable has a Gaussian (or normal)
distribution function (2.5). Using the above definitions of the various moments, it is seen that
the mean of X corresponds to the parameter 4 in the Gaussian pdf, the variance of X
corresponds to the parameter o? in the Gaussian pdf, the skewness is 0, and the kurtosis is 3o".
If one can reasonably assume that a random variable is Gaussian distributed, the actual form
of the pdf is completely determined by the first two moments, the mean and the variance of X.

Before proceeding to describe random vectors and random processes, another important
concept related to random variables must be introduced: functions of random variables.
Functions of random variables - like the random variable itself - allow the derivation of
probabilities of new random variables through functional relationships. Suppose that g(x) is

a function of the real variable x. Then the random variable Y defined by

Y = g% : (2-23)a

is also a random variable, since Y is also a function on the original sample space Q through

Y(@) = g(X(o) (2-23)b
if the domain of the RV Y is X. Depending on the nature of g(X) various methods exist to
derive the probability of Y from the probability of X. In this study, partial differential
equations describe the relationship between most random variables of interest. In subsequent
chapters methods are introduced to derive the pdf of Y from a given pdf of X if Y and X are

related through a partial differential equation.
24.2 Random Vectors

So far, only one random variable and its probability distribution has been considered.
Now we turn to the probability measure (probability distribution) of two or more random

variables X, X,, ..., X;. Note that throughout this study vectors are denoted by boldface letters.
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A vector X = (X,, X,, ..., X.)T (7 indicates the transpose) is called a random vector if it is a
finite collection of n random variables X defined on a common probability space (2,F,P) The
range space of a random vector is B(R)" or a discrete subset of B(R)", since the vector has n
dimensions. The probability measure Py of a random vector is different .from the probability
measure Py of a random variable, since a vector is the joint outcome of several different
measurements. Hence, a "joint probability distribution” of the random vector X must be
defined. The formal definition of the cumulative probability distribution function Fy(x) of a

random vector X with a continuous range space is:

F(x) = Fx‘. x,,qx_(xv Xgpeers X))

X, X, (2-24)
= P (x: XE(-x]; i=1,..n) = J' f f (x)dx

The corresponding joint pdf fy(x) is obtained by taking the total derivative of Fy(x):

9Fy(x)

S, (2-25)
axlaxz...axn

£ (%) =

The joint cumulative distribution describes the probability that the random vector X takes on
a particular value x = (X;, X,,..., X,)" or less. But the joint probability distribution can also be
used to derive the probability distribution Py, of a random variable X; within a random vector.
This is called the "marginal probability distribution” fy(x,) i.e., the probability distribution of
the random variable X; without regard for the outcome of any of the other random variables in

the random vector X:

Fy(@@) = Px'(xisai) = F(®,%,...,9,3,%,...,%) (2-26)

The marginal probability density function fy;(x;) is found by integrating the joint pdf over all

random variables other then X:

e v e e - = e e greve— - v -
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[e-] @
fx@@) = f f fo(xx=a)dx,...dx,_dx, ...dx_ (2-27)
-0

o
Equivalent definitions for the marginal and joint distributions can be derived for discrete range
spaces of X (i.e. if the components X of X can take on a finite discrete set of real numbers
only).

Like for random variables, mathematical models are used to describe the joint pdf of
X. In section 2.2 several pdfs are introduced for single random variables. An important joint
pdf is the "joint Gaussian" pdf or "multidimensional Gaussian" pdf, where "multidimensional”
refers to the dimensions of the random vector. The formal definition of the multidimensional
Gaussian pdf involves two parameters similar to the two parameters 4 and o? in the one-
dimensional or univariate Gaussian pdf: If m is a n-dimensional column vector and C a n by
n matrix that is symmetric and positive definite, then a joint pdf is said to be Gaussian if it has

the following form for any m and C:

f(x) = exp[-%(x-m)T C ! (x-m)]

J2n)" detC

(2-28)

where detC is the determinant of C. The vector m corresponds to the mean of the random
vector X. It can be shown that each entry C;; = C; (symmetry!) can be found by determining

the "covariance" of X, and X; The covariance is a second order moment defined as:

Cov(X,X) = <(X; - m) (X, - m)> (2-29)

Then C; = Cov(X,, X;). The covariance is a measure of the physical correlation between the
random variable X; and X; e.g., between the saturated hydraulic conductivity and the matric
potential in a soil core. Notice that Cov(X,, X)) = Var(X) for i=j.

If the random variables of a random vector are independent of each other (2-8) then the

joint pdf for continuous random variables becomes simply the product of the marginal
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probability density functions:

n
f(x) = I f(x) 2-30
i=1

Similarly, the joint pmf for a discrete random variable is the product of the marginal pmf. The
probability distributions related to these independent pdfs and pmfs are called "product
distributions". If the pdf or pmf for each of the independent random variables in the random
vector are the same, the vector is called an "independent and identical distributed" (i.i.d.)
random vector.

Like for random variables, one may define a function of a random vector:

Y = gX) = X XpX) @2-31)
where Y is a new random variable. This definition is then used to derive the probability
distribution of Y in terms of the joint probability distribution of X.

Random vectors are used in this study in two different ways that are mathematically
equivalent, but differ in their physical interpretation. Random vectors of random variables may
represent different physical properties such as X=(K,h,0)", where K denotes the saturated
hydraulic conductivity, h the matric potential, and © the moisture content of the soil core
mentioned in previous examples. If, for example, this random vector has a joint Gaussian pdf,
the joint probability measure is determined by specifying the mean m = (my, m,, mg)” of each
of the random variables and the (cross-) covariance C between each of the physical properties
in the same soil core.

Alternatively, a random vector may represent the same physical property at different
spatial locations in the soil: X=((x,),0(x,),--.,©(x,))". Since each spatial location - statistically
speaking - represents the outcome of a joint experiment with its own (marginal) probability
space £2,, each physical property at each spatial location x forms a random variable by itself.

If, for example, the water content throughout a field site possesses a joint Gaussian pdf, then




43
the joint probability distribution is uniquely determined by the mean vector m = (<O(x,)>,
<6(x,)>,...,<6(x,)>)" of © at each location separately (i.e. it doesn’t have to be the same
everywhere!), and the covariance matrix Cg that defines the covariance between the ©s of each
location pair.

While it is quite obvious that the saturated hydraulic conductivity and the soil matric
potential at a location x in a soil domain are two different random variables with different
marginal probability spaces, it must be emphasized here that without further assumptions the
saturated hydraulic conductivity at one location is NOT the same random variable as the
saturated hydraulic conductivity at another location and does not a priori possess the same
marginal probability space! Similarly, the random variable "soil moisture" © at a time t, is not
considered to be the same as the random variable © at a time t,. Also note that there generally
is an infinite number of either discrete or continuous physical locations x or times t, while the
different physical properties are always a finite number of discrete variables. To distinguish
between random vectors of different physical variables and random vectors of random variables
in space and/or time, the terms ’random process’ or ’random field’ are used for the latter

interpretation.

2.5 Random Processes and Random Fields
2.5.1 Definition

Random processes are an infinite collection of random variables where the random
variables are indexed on a discrete or continuous "index set" I. In our applications this index
set always corresponds to time t or spatial location x. The spatial location x is always denoted
as a (lower case, bold print) vector of spatial coordinates and must not be confused with the
probability Py(x) that the random variable X takes on a value x or the joint probability Py(x)

that the random vector X takes on a vector value x!
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The term "random process" or "stochastic process" is mostly used if the index set is the
time variable, while the term "random field" is commonly applied for index sets of spatial
locations. Formally, a random process is an indexed family of random variables {X(w,t); mEQ,
t€I} = X, = X(t) defined on a common probability space (Q,F,P). Equivalently a random field
is denoted as an indexed family of random variabies {X(w,x); WERQ, x€I} = X, = X(x) on a
common probability space (2,F,P), where I= R" or a discrete subset of R®, ns3, indicates the
spatial dimensionality. Since the only difference in the definitions of random fields (random
processes) and random vectors is the number of components (infinite vs. finite family of
random variables) equivalent probability measures are defined for random fields and random
processes: process cumulative distribution functions, process density functions, marginal
cumulative distribution functions and marginal probability density functions.

Realizations (samples) of random fields are a basic element of the numerical stochastic
analysis as will be shown in subsequent chapters. Often, the realizations themselves are referred
to as random fields. To avoid confusion and to distinguish the random fields from random
realizations of random fields subsequent chapters will use the the term "random field variable"
(RFV) to denote random fields that are families of random variables as defined above.

In numerical applications, random fields are always discretized in a finite domain. How
do these finite discrete subsets relate to the infinite continuous random field? The "Kolmogorov
extension theorem" shows that given a consistent family of finite-dimensional (joint)

distributions
P(X(x)),X(x)),....X(x)); %, € Li=1,...n} (2-32)

there exists a random process or random field {X(x), x € I} described by these distributions.
The term "consistent” distribution refers simply to fact that the joint distribution and the
marginal distributions must be consistent in that one can be derived from the other through (2-

26). This also includes the condition that "boxes" in n-space have positive probability.
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Probability distributions are consistent, if they are described, for example, by the
multidimensional Gaussian pdf. From the above theorem it then follows that a random field
{X(x), x €I} is a "Gaussian random field" if ALL finite collections of samples of the random
field (X(x,), X(x,),...,X(x,))" are Gaussian random vectors i.c., satisfy (2-28) and the conditions
stated for m and C.

To further distinguish between the covariances of the same physical property at different
times or locations (covariance of a random field or random process) and the covariance between
two different physical properties at the same or at different locations, the latter is from now on
referred to as a "cross-covariance”.

Random fields and processes - like random vectors - may consist of independent
random variables. If each independent random variable possesses the same pdf or pmf, the
random field (process) is called an i.i.d. random field (process). Note that for independent
random variables <X; X;> = <X;><X;>. The the covariance of two uncorrelated random

variables is 0.

25.2 Stationarity and Ergodicity of Random Processes

All basic probabilistic concepts encountered in the study of heterogeneous porous media
via stochastic analysis are now defined. Before continuing with the introduction of two rather
intriguing properties of random fields, two important questions are raised: What is the
justification for treating porous medium properties as random variables? And how does the
heterogeneous environment of a porous medium i.e., a soil cross-section, a field-lysimeter, the
unsaturated zone underneath a particular field site, or the aquifer underneath a certain region,
relate to the properties of random variables and random fields?

While the first question is often posed, it fails to address the central problem of

environmental modeling, which is not the heterogeneity of natural systems, but the measurement
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and/or estimation of the heterogeneous properties. Indeed the porous medium as it exists can
be interpreted as being completely deterministic i.e., there is nothing random about the
properties of the porous medium at any of its locations. The genesis of the pore morphology
follows physical laws. All derived porous properties such as the permeability and the water
content are also determined by physical principles. Hence, the heterogeneity of the soil does
not in itself is completely deterministic.

The randomness lies in the lack of knowledge, and inability to acquire it fully, about
what these porous medium properties exactly are. Soil physical or chemical properties are
commonly determined by either an actual measurement of soil properties or by the intuitive,
graphical, or mathematical estimation of soil properties from related data (inverse distance
interpolation, kriging, etc.). Both measurement and estimation are associated with errors. The
(physically deterministic) errors occurring during the measurement and/or estimation process
have the properties of random variables and thus allow a rigorous analysis with statistical tools.
This is the key to stochastic analysis and the bridge between reality and conceptual model.
Stochastic analysis in subsurface hydrology is about modeling the limitations of our knowledge!
How limited our knowledge is will in turn depend on the porous medium heterogeneity. The
focus of this study are the estimation errors (and NOT the measurement errors) occurring in
predictions of soil water tension, soil water flux, and solute transport. Without loss of
generality measurement errors are neglected.

The beauty of the stochastic analysis is that it provides both a best estimate of the
properties of interest (hydraulic conductivity, soil moisture, solute transport, etc.) and a
quantitative measure describing the uncertainty of the best estimate. The probability
distributions encountered in stochastic modeling are essentially a reflection of the fuzziness or
uncertainty of our knowledge about the soil properties. Hence, the justification for treating
porous media as random fields lies NOT in the physical nature of the porous medium (which

is deterministic) but in the limitation of our knowledge ABOUT the porous medium. This is
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not to say however that heterogeneity is unrelated to the statistical analysis. Indeed, the
estimation error is a direct function of the soil heterogeneity: If the porous medium is relatively
homogeneous, the properties of the soil at unmeasured locations are estimated with great
certainty given a few sample data. On the other hand, if the porous medium is very
heterogeneous and soil properties are correlated over only short distances, an estimation of the
exact soil properties at unmeasured locations is associated with large errors. Hence, the
heterogeneity of the soil is a measure of the estimation error or prediction uncertainty.

The second question addresses the practical problem of translating field measurements
(a "sample") into statistical parameters defining random variables i.e., into a probability space
that is representative of the spatial variability and hence the estimation error with regard to the
physical property of interest. This leads to the general problem of deriving "ensemble”
statistical parameters of random fields (which consist of an infinite number of random variables,
each of which has an infinite number of possible outcomes) from a small sample that gives
ONE measurement of each of an INFINITE number of random variables. At the most, using
the definitions of the mean, the variance, the (cross-)covariance, and the higher order moments
(2-22) "sample" statistical parameters and a "sample probability distribution” or histogram of
the measured random field parameters can be computed. The sample statistics give a
quantitative estimate of the degree of heterogeneity in the porous medium, which also is an
estimate of the expected estimation error. Then two problems need to be addressed:
1. The sample taken from measuring MANY random variables ONCE must be
related to the MANY possible outcomes of any particular ONE random variable
X(x) at location x.
2. The sample statistics must be related to the ensemble statistics of the random
field.
These two points are crucial to the stochastic analysis and in particular the first one must not

be underestimated. Recall that a random field consists of an infinite number of random
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variables, each of which has its own marginal pdf. The random variables in a random field
need not have identical probability distributions. As will be seen in chapter 10, estimates of
soil properties that are conditioned on field data are indeed always random fields with random
variables whose pdf is a function of the location in space, since the uncertainty about field
properties may vary from location to location (depending on whether the estimation is close to
a measurement point or not)!

First, the question is addressed of how the measurement sample of different random
variables (same physical property at different locations in the same single realization of a
random field, namely the actual field site) can be taken to be equivalent to many measurements
of the same random variable (same physical property at one location in many different
hypothetical realizations of the site including the actual one). The definition of a random field
as a collection of random variables in space says a priori nothing about the spatial relationship
of the marginal probability distributions of the random variables that make up the random field,
except for the condition that they must form a proper joint probability distribution. But an
entire probability distribution for each and every random variable in the random field must be
found. This poses a severe dilemma for the statistical treatment of many earth science
problems: Only a single realization of the random field is available since all regional and
subregional geologic, pedologic, and other environmental phenomena are unique and do not
repeat themselves elsewhere. This is a very different problem from flipping a coin, an
experiment that can easily be repeated (and measured) as many times as necessary to determine
its sample probability distribution. To circumvent the dilemma it is assumed that the marginal
probability distribution function of each random variable is identical at every location in the
random field. In other words, one must assume that the likelihood that a physical property
takes on a particular value B, is exactly the same everywhere in the field. This implies that the
mean, the variance, and the other moments of the probability distribution are identical for every

location in the random field. This property is called "stationarity” or "strict stationarity”. A
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formal definition is given:

P(X(x)eB; xel) = P(X(x +Ax)eB; xel) (2-33)
where B is an event of the Borel field B(R). In all the applications of this study, a weaker form
of stationarity is assumed: "second order stationarity" or "weak stationarity" or "wide-sense

stationarity”, which requires that the mean and covariance (but not any higher order moment)

are identical everywhere in the random field:

<X(x)>=<X> , all xel (2-34)

Cov,(X(x),X(x +AE)) = Cov,(AE) , all X,AE: x, x+AE €l (2-35)

Two important examples of strictly stationary processes are the i.i.d. random field, which by
definition has identical distributions for each of the random variables in the random field. A
Gaussian random field is called weakly stationary if the mean uy(x)=u for all x, and the
covariance Cov(x,,x,)=Cov(E), £ = x, - X, for all x,, X, on the index set I. Since the Gaussian
random field is completely defined by its first two moments, all higher order moments of the
Gaussian random field must be stationary if the first two moments are stationary. Hence
weakly stationary Gaussian fields are also strictly stationary.

The existence of stationarity in porous medium properties cannot be proven rigorously
at any single field site. Data are often sparsely distributed. In the best of cases a linear or
higher order trend can reasonably be removed from the data. For all practical purposes, it is
therefore convenient to hypothesize that the field site is a realization of a weakly stationary
random field (after removing an obvious trend). This is a reasonable assumption in many field
applications. Once this working hypothesis is postulated, the sample of measurements at
different locations is treated as if it were a sample of several realizations of the same random
variable (i.e. at the same location).

Next, the sample moments must be related to the ensemble moments of the random
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variable. This problem is treated by stochastic theorems related to convergence and to the law
of large numbers (cf. Gray and Davisson, 1986). The definition of "convergence in the mean
square” is: A sequence of random variables X;, i=1,2,... (¢.g. a random field) converges in the

mean square to a random variable X if
lim <(X.-X)> =0 (2-36)

Convergence in the mean square sense is mathematically also written as

Lim. X, =X 2-37)

a—e

where L.i.m. stands for "limit in the mean". To solve the problem of relating sample statistics
to ensemble parameters it is necessary that the sample statistics taken from a single realization
indeed converge to the ensemble statistics of the random variables as the number of samples

is increased:

n
Lim{ L x] = 4, 2-38)

n—e 0 4oy

A random field or random process that satisfies this theorem is called "mean ergodic". A
sufficient condition for weakly stationary random fields to be mean ergodic with a limiting
sample average uy is that Cy(0) < « and that lim__ Cy(nAx) = 0. In other words a weakly
stationary random field is mean ergodic, if the variance is finite and if random variables are
uncorrelated at large separation distances (Papoulis, 1984).

Like stationarity, mean ergodicity cannot be measured in a single field site i.e., a single
realization of the hypothetical random field. Rather mean ergodicity is taken as a working
hypothesis i.e., it is assumed a priori that the measured sample statistics converge in the mean
square to the true ensemble parameters as the number of samples increases.

Note that the above definition of a mean-ergodic random field is only a special case of
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a more general ergodic theorem that states that the sample expectations converge to a constant
(not necessarily the mean of any random variable in the random field) as the number of samples
increases. Ergodic processes need not be stationary (e.g. a random field with underlying
periodic trend) and similarly stationary random fields need not be ergodic (the sample
expectations may not converge as the sample size increases such as in the flipping a coin
experiment). For all applications in this study, however, both weak stationarity and mean-
ergodicity are postulated as working hypotheses. Thus limited knowledge of a deterministic
reality can be related to an abstract probability space. Once the step has been made from the
sample to the probability space (via the working hypotheses stationarity and ergodicity) the
tools available from the definitions of probability theory as stated in the previous sections are
used to make probabilistic predictions about the current status of the porous medium at
locations other than those from where measurements are available and to make probabilistic
predictions about the future status at both unmeasured and measured locations. It should now
be clear that a "probabilistic prediction" will not determine an actual value of a physical
property. Rather it will give the moments (or probability distribution) of the random variable
defined on the error of estimating a physical property.

Finally it is emphasized that the assumption of mean ergodicity (2-38) does not imply
identity of the sample mean my based on n samples of a random variable X and the ensemble
mean uy. For the same reason, the sample variance vary or sample covariance covy are not
identical to their respective ergodic limit oy’ and Cy. The difference between the sample
statistical parameters of X and its ensemble moments is generally referred to as parameter
estimation error and will subsequently be neglected. Such parameter estimation errors, however,
are recognized to be an important source of uncertainty in field applications of the stochastic

approach.
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253 Conditional Random Fields and Kriging

In section 2.3 the conditional probability space of random variables was introduced.
The Bayesian theorems stated there are readily extended to random fields. Conditional
probabilities in random fields are defined for separately for each random variable, given the
exact outcome of other random variables. In this study, the conditional first and second
moment (conditional mean and covariance) of a random variable are of- particular interest.
These two moments are sufficient to describe the conditional pdf if the underlying unconditional
joint probability distribution is Gaussian.

Recall the (multivariate) joint cumulative probability distribution function

Fx(X1,X3,X3,...,X,) is defined as:

P (XX XppeeiX,) = J J' f f £ (XX Xpun0rX ) olxldlxzdxs...dxll (2-39)

with the unconditional expectation (first moment)

[> <]

<X> = f x, £(x.) dx, (2-41)

-0

and the unconditional covariance (second moment):

3]

0
G, = <X/X/> = f f X x| f(x,x)dxdx, (2-41)
~c0-0

where x;” = X; - <X,> is the perturbation around the mean. The variance o, is defined by (2-
41) for i = j. The joint pdf is the derivative of the joint cumulative distribution function.
Assume that m datapoints of the n datapoints of interest were already measured. Then the
marginal probability density function fy(x,,,1,X,2.-,X,) Of the unknown data (RVs) X_,,,....X,

in the unknown ensemble of data X,,..., X, is defined by (see 2-27):
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0w o

(X a1 X agpeerXy) = f f ffx(xl,xz,...,xn)dxldxz...dxm (2-42)
~®=0 -0

With the help of these two distribution functions the conditional probability density function

(Rt 15K e 2K s 3955 X K15X 0 X350+0X ) Of the unknown data is defined given the actual values for

the data at points x,,...,X,:

E( X X X, p3eeeX,) (2-43)
fx(xl,xz,...,xm)

1}

fx(xm.pxm,z: ,XI 27 7x )

The conditional expectation <X,>° of X, is defined as:

[= <]

<X>° = <X|[X,,X,,00X _)> = f X £(X,| X XX ) dX, (2-44)

—o0

and the conditional covariance (second moment) by

E, = <XX|x1,x2, WK > = j f XX, xi,xjfxl,xz,..,xm) dxdx, ij = 1,.,n (2-45)
To make complicated matters simple, it is assumed that the unconditional joint pdf is
multivariate normal and hence fully characterized by its first and second moments, the mean
and the covariance. For practical reasons it is also assumed that the unconditional random
process is stationary i.e., the first and second moment are not functions of the spatial location
Xx. It is important to understand, however, that the conditional random process is NOT
stationary, even if the unconditional probability field is stationary. In other words, even if the
unconditional mean <X> and variance o% are independent of location x, the conditional mean
<X;>", the conditional variance E;, and the conditional covariance E; are functions of location
X;.

Matheron (1971) contributed extensively to the theory of random variables in space, and

developed a "best, linear, unbiased estimator" to estimate random variables in space from a few
P P
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known data, which has become widely known as "kriging" (c.f. Journel and Huijbregts, 1978).
Essentially his analysis includes a derivation of the conditional moments of the random
variables based on the concept of "regionalized variables” (Matheron’s term for random
variables in space). If the random field is Gaussian, then the algorithm for determining the
conditional expectations in a random field is identical to kriging. Kriging is one of the main
tools in geostatistics (Dagan, 1982). Kriging techniques have been developed for second order
stationary fields with known constant mean (simple kriging), for intrinsic stationary fields i.e.,
random fields with constant but unknown mean and weakly stationary increments (X; - X)
(ordinary kriging), for intrinsic stationary random fields with an underlying trend of known
order (universal kriging), and for some non-Gaussian random fields (log-kriging, probability
kriging, disjunctive kriging, and indicator kriging) (Matheron, 1971; Journel, 1983; Armstrong
and Matheron, 1986; Journel, 1988; Kim, 1988). For the purpose of this study, it will be
convenient to restrict ourselves to the case of a weakly stationary random process (random
field) with a constant unconditional mean <X> and finite unconditional variance o?, (simple
kriging). The conditional expectation <X;>° (2-44) can then be computed by a linear estimate
<X>* (i.e. <X;>" is a linear function of the given data) such that the mean square of the
estimation error <¢?, e = (X - X*) is minimized (c.f. Papoulis, 1984, p.167ff.). The estimation

of the conditional expectation is given by (Dagan, 1982):

<Xp>* = <X |[X,X,..x > = <X> + 2 A (x, - <X>)
alternatively: (2-46)

<x>* = <X[x> = <X> + A, (x, - <X>)

where x, is the vector of known data of the RVs X, = (X,,....X,,)" (at locations x,...,x.)) and X,
is the vector of unknown RVs (X,.j,...X,)" (at locations X,,...,X,). In the geostatistics
literature, <X;>* is referred to as the (simple) kriging estimator (Journel, 1988). The weights

A; in the weight matrix A, are obtained by minimizing <e2>, which leads to a linear system

- e eomre e



55

of equations called the (simple) kriging system of equations:

p G A =C, i=12..m Kk =m+l,.n
j=1
(2-47)
alternatively:

CaAp=C,

where C,; is the covariance matrix between the known datapoints of X, and C,, is the
covariance matrix between known datapoints of X, and points of unknown data X,. The
kriging system has a solution only if C,, is a positive definite matrix (Journel and Huijbregts,
1978). To assure positive definiteness, the sample covariance data obtained from analysis of
X, are fitted to an optimal (i.e. best-fitting), valid (i.e. assuring positive definiteness) functional
form of the covariance, such as the exponential, spherical, or gaussian models (Isaaks and
Srivastava, 1989). The minimized "estimation error covariance” or "mean square error”

corresponds exactly to the conditional covariance or simple kriging covariance and is given by:

E; = <X/X/|XXX,> =C =3 Cu A, ij =m+ln
k=l
(2-48)
alternatively:

E,=Ch-A,C,
Note, that the individual entries in the conditional covariance or error covariance matrix E,, are
equal to or smaller than the entries in the unconditional covariance matrix C,!

2.6 Spectral Representation of Random Variables

In the analysis of random processes (time series), "spectral analysis” has been an
important tool for many different tasks and is a well-established field of probability theory (c.f.

Priestley, 1981). Recently, spectral analysis has also become important for the study of
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spatially variable processes (random fields). Introduced into the field of subsurface hydrology
by Gelhar et al., (1974) to study groundwater systems, it has since been applied to a great
variety of subsurface hydrologic problems (e.g. Bakr et al., 1978; Gutjahr et al., 1978; Gelhar
and Axness, 1983; Yeh et al., 1985a,b; Li et al, 1992).

In principle, spectral analysis is founded on the concept that a single realization of a
random process (RVs defined on a 1-dimensional time index) or of a random field (RVs defined
on a n-dimensional location index, n=3) is nothing but a superposition of many (even infinitely)
different (n-dimensional) sine-cosine waves, each of which has different amplitude and
frequency. Then any particular realization of a random field can be expressed either in terms
of a spatial function or in terms of the frequencies and amplitudes of the sine-cosine waves and
their amplitudes (called *Fourier series’ of a discrete process and ’Fourier transform’ of a
continuous process). The latter are collectively called the "spectral representation" of the
random field. The spectral representation of a single random field realization can intuitively
be understood as a field of amplitudes, where the coordinates are the frequencies of the sine-
cosine waves. In other words, instead of an actual value for each location in space, the spectral
representation gives an amplitude for each possible frequency (wave-length). Note that in n-
dimensional space, ns3, sine-cosine waves are defined by n-dimensional frequencies (with one
component for each spatial direction) and therefore the spectral representation of a n-
dimensional random field is also n-dimensional.

The spectral representation is defined deterministically i.e., it is not defined in a
probability space and has by itself little to do with a stochastic solution: Each realization of
a random field has its own spectral representation, since the amplitudes of the underlying sine-
cosine waves are different for each realization. But obviously and following the rules already
established in the previous sections the amplitudes of the sine-cosine waves can be defined as
random variables with the frequency domain as the index field. In other words, a function of

a spatial random field (which is defined on a probability space) is established rather than a
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function of a realization of a random field (which is a deterministic function). One then deals
with the probability space of the spectral representation, which in turn also is a random field,
but defined in the frequency domain. Statistically speaking, the probability space of the spatial
random field is mapped onto the probability space of the spectral random field.

The advantages of representing a random field in terms of its underlying spectral
properties i.e., in terms of the probabilities of amplitudes and frequencies of the "waves"
composing a random field, are many. But within the framework of this study two properties
are particularly important:

1. The spectral representation of a spatially correlated random field i.e., of random
variables with a joint probability distribution is - under certain conditions - a random
field with random variables (amplitudes) that are uncorrelated i.e., they are completely
defined by their univariate marginal distribution, the analysis of which is much easier
than that of random variables with a multivariate joint distribution function.

2 Under certain conditions, the spectral transformation of a partial differential equation
is a polynomial whose solution is found much easier than the solution to the partial
differential equation in the spatial domain.

In this study, the tools of spectral analysis are used for three different but related tasks:

1. in a probabilistic sense to analytically derive the joint probability distributions of
functions of random fields,

2. in a deterministic sense to numerically generate realizations of random fields of
spatially variable parameters,

3. in a deterministic sense to obtain explicit solutions to partial differential equations
defined by a particular (deterministic) realization of random fields.

In this section, the basic theorems of spectral analysis are introduced. In the following chapters

they are applied to generate random fields (chapter 3), and to derive the joint probability

distribution functions of parameters of interest in unsaturated flow and transport by applying
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spectral analysis to the governing unsaturated flow equation (chapter 4). Finally, in chapter 7
a method is introduced that combines spectral and numerical analysis to efficiently obtain
solutions of the unsaturated flow equation given a particular random field realization of the
constitutive parameters.

For reasons discussed earlier, this study is solely concerned with stationary random
fields. The spectral analysis of stationary random fields has been well-established in the
literature and many fine texts can be found on the general subject (e.g. Priestley, 1981). Here
only the basic theorems are introduced, which are necessary to understand the techniques
applied to the stochastic analysis of flow and transport processes. For complete proofs and a
broad introduction to the topic the reader is referred to the established literature (c.f. Priestley,
1981).

The spectral representation of a single realization X(x) of a random field with mean 0

is formally defined in terms of the Fourier-Stieltjes integral (Wiener, 1930):

X(x) = J e dZ(k) (2-49)

where the integral is n-dimensional, n=3, and Z(Kk) is a (complex valued) function, called the
Fourier-Stieltjes transform of X(x). The Fourier-Stieltjes integral must be chosen over the more

common Fourier-Riemann integral

f(x) = f e™ g(k)dk (2-51)

=
where g(K) is the Fourier transform of f(x) since the Fourier-Stieltjes transform Z(k) of the
random field X(x) is generally not differentiable such that dZ(k) = z(k) dk. Z(K) can be
understood as an integrated measure of the amplitudes of the frequencies between (-, k]
contributing to the realization X(x).

As already mentioned above, Z can also be interpreted as a random field consisting of
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random variables Z(k) defined in the frequency domain, where the random field Z is a
stochastic function of the random field X i.e., each realization X; is mapped into a realization
of the spectral representation Z. In this probabilistic sense (2-49) essentially expresses the fact
that "(virtually) any stationary [random] process [random field] can be represented as (the
limit) of the sum of sine and cosine functions with random coefficients dZ(k), or more precisely,
with random amplitudes |dZ(k)| and random phases arg{dZ(k)}" (Priestley, 1981, p.245). The
new probability space (S2;, F, P,) of the random variables Z(k) in (2-49) has several very
important properties:

co

1. <dZ(k)> = _l_f e = <X(x)> dx
2n e

(2-51)
2. <[dZ®)P> = S(k)dk

3. <dZ(k)dZ'k,)> =0 all k; = k,

The first property states that the mean <dZ(k)> of the random variables dZ(K) is equal to the
Fourier transform of the mean of the random variables X(x). In subsequent applications, only
zero-mean random processes are considered, hence the spectral representations are also of zero
mean. The second property defines the variance (S(k) dk) of the random variable dZ(Kk). The
term S(K) dk is a measure of the average "energy per unit area" or "power" contribution of the
amplitude of a frequency k to the random field X(x). S(K) is called the "spectral density" or
"spectrum” of the random field X. S(k) depends purely on the probabilistic properties of the
random field X(x) and it can be shown that it is simply the Fourier transform of the covariance
C(§) of X. The third property states that the increments dZ(k,) and dZ(k,) at two different
frequencies k, and Kk, are uncorrelated. Such a random field is also called an "orthogonal"
random field.

Through (2-51) the first two moments of the random field dZ(k) are defined solely in
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terms of the first two moments of the stationary random field X(x). Hence, if the first two
moments of the random field X(x) are known, then the first two moments of its spectral
representation dZ(k) are known. Note that the spectral representation dZ(k) of a weakly
stationary random field X(x) is only stationary to first order: The mean <dZ(k)> is constant
(first property), but the variance S(K) of the random field dZ(K) is a function of the location k
in the frequency domain (second property).

In summary of this last section, a new probability space, called the spectral
representation of a random field, was defined on the known probability space of a random field.
The mapping of a stationary, correlated random field X into its spectral representation dZ
provides the important. advantage of creating an equivalent dZ to the random field X that

consists of orthogonal or uncorrelated random variables!
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3. RANDOM FIELD GENERATORS

3.1 Introduction

The generation of spatially correlated samples of random fields plays a fundamental role
in the numerical analysis of stochastic functions - whether these are 1-, 2-, or 3-dimensional.
The purpose of random field simulation is to create numerical samples or "realizations" of
stochastic processes with well-defined properties. The term "random field generator" is actually
improper, because random fields are by definition probability spaces (see chapter 2) and can
therefore not be discretely generated. For ease of reading and in reference to many other
publications that deal with the generation of random realizations of a random field, the term
"random field" is in this and all subsequent chapter used interchangeably with the term
“realization”. The random fields as defined in section 2.5.1 are henceforth referred to as
random field variables (RFVs).

The simplest and most commonly available form of simulation is the random number
generator on a calculator or computer. These readily accessible simulators generate
independent, uniformly distributed randorln numbers i.e., samples of a single random variable
X with a uniform, univariate distribution (e.g. Press et al, 1992). If X is not uniformly
distributed it is a relatively easy task to transform these random numbers such that they follow
any other desired univariate distribution.

The simplest case of a random field variable (random process) is an orthogonal RFV,
which consists of random univariate samples at each location. This can be implemented easily
with any good random number generator. A particular challenge arises, however, when the
random variables X;=X(x;), X;=X(x;) (i=j) are dependent i.e., when they are (spatially) correlated
and defined through a joint or multivariate distribution. Not only do the generated random

fields have to converge in the mean square to the desired ensemble mean and variance (and any
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higher order moments if appropriate), they also have to converge in the mean square to the
desired correlation structure as the number of samples increases. In this chapter, algorithms are
introduced that generate such random fields.

In practice the joint probability distribution function is often inferred from field data
obtained at the site of interest. The joint probability distribution is commonly described by
invoking the ergodicity and stationarity hypotheses discussed in the previous chapter and by
taking the sample mean and sample variance-covariance functions as the moments of the
underlying multivariate pdf. To take full advantage of the field data the simulations must be
conditioned on the information known about the particular points in space, where measurements
were taken. This amounts to the generation of random variables with a conditional joint
probability distribution function. The ensemble of conditional realizations is a subset of the
ensemble of unconditional realizations. The conditional subset consists of all those samples in
the unconditional set, that preserve the known data at the measured locations. As show;l in the
previous chapter the conditional joint distribution of the random variables is different from the
unconditional multivariate pdf. The generation of conditional random fields therefore needs to
go beyond the capabilities of an unconditional random field generator.

In this chapter several popular random field generators (RFGs) are described and
compared. Random number generators (RNGs) are also tested. First an unconditional two-
dimensional random field generator based on spectral representation and a fast Fourier transform
is introduced. A conditioning method based on kriging estimation is presented next. The
statistical performance of the spectral random field generator (SRFFT) is compared with the
turning band method (TB), the matrix decomposition method (LU) and the sequential Gaussian
simulation method (S). The numerical efficiency of these RFGs has been assessed elsewhere

(Tompson et al., 1989).
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32  (Unconditional) Two-Dimensional Random Field Generation by the Spectral
Method

The purpose of a random field generator is to transform an orthogonal realization
consisting of independently generated random numbers with a prescribed univariate distribution
into a correlated random field with the desired joint probability distribution. If the distribution
is Gaussian, the joint pdf is expressed by its first two moments, the mean and the covariance.
In the previous chapter a transformation was introduced that is ideally suited for building a
random field generator: the spectral representation dZ of a correlated RFV X is itself an RFV
of independent random variables with a variance defined by the spectral density function of X,
S(K) dk. Recall that the spectral density S(k) of X is the Fourier transform of the covariance
function C(§) of X where & is the separation distance. Hence, if random, zero-mean dZ(k) are
generated with a variance S(k) dk then their inverse Fourier transform yields a correlated
random field with X(x) that have zero-mean and the desired covariance function by virtue of
(2-51). Random field generators based on Fourier transforms have first been introduced by
Shinozuka (1972, 1991). Gutjahr (1989) describes a two-dimensional random field generator
based on a fast Fourier transform algorithm, which has been adopted for our study.

In the previous chapter the spectral representation of a continuous, infinitely large
random field was defined. In the numerical generation of random fields, however, one is
limited both in the extent of the random field and in the number of points generated. Hence,
(2-51) must be restated to accommodate finite random fields defined on a countable number of
discrete grid-points. The following derivations are specifically for two-dimensional random
fields. But the extension to higher dimensional random fields should be obvious and is straight
forward.

For the purpose of this study realizations are generated on a rectangular domain defined

over a regular grid centered around the origin with gridpoints being Ax = (Ax,, Ax,)” apart. The
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size of the domain is defined by M Ax such that the rectangle spans the area between -MAx
and (M-1)Ax and the number of gridpoints in the random field is 2M by 2M. Since the spectral
representation of a stationary random field is only defined for an infinite domain, it is further
assumed that the random field is periodic with period 2M in both dimensions. This has no
direct impact on the generated random field. But it is a necessary assumption for the formal
derivation of its spectral representation, because the analysis of an infinite process can be used
for the generation of a finite random field. There is another reason for choosing the assumption
of periodicity (after all, any other values for the random field outside [-MAx, (M-1)Ax]) could
have been assumed): Periodic functions are known to have a discrete rather than a continuous
spectrum i.e., only a discrete set of frequencies contributes to the spectral representation of the
periodic stationary random field. Hence, dZ(k) exists only for discrete k, for which it can be
generated such that <dZ(k)> = 0 and <|dZ(k)|> = S(k) dk.

The discretization of X(x) limits the wavelengths "seen” by the discrete random field
to all those that are at least of length 2Ax i.., to all (angular) frequencies k s 27/(2Ax).
Higher frequencies cannot be distinguished from frequencies within this limit, an effect referred
to as "aliasing". In other words, heterogeneities on a scale smaller than the discretization Ax
are not resolved by the random field. Similarly, the longest possible wavelength "seen" by a
finite random field is less than or equal to 2MAX i.e., the lowest (angular) frequency is Ak =
2r/(2MAXx), and all other frequencies k must be multiples of Ak. Hence, the spectral
representation dZ(K) of a finite, discrete random field X(x) with (2M)? gridpoints in 2-D space
is also a finite, discrete random field defined on a (2M)? grid in the 2-D frequency domain.
Note that the discretization in X(x) determines the size of the field of dZ(K), while the finite
size of X(x) determines the discretization of dZ(K). For discrete dZ(k) the Fourier-Stieltjes

integral (2-49) becomes a Fourier series such that

R
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M-1
X(x) = Z_EM e % z(k ) @-1)

where z(Kk) are (complex valued) random Fourier coefficients with the same properties as dZ(k)
in (2-49), namely zero-mean, a variance o2,;) = S(k) Ak, and all (k) independent for k,=k,.
To ensure that X(x) is a real valued random field, the z(k) field must be constructed

such that

2(-K)=z (k) ¢-2)
i.e., random numbers (k) need only be generated for one half the size of the rectangle. The
* stands for complex conjugate. Complex valued, Gaussian distributed z(k) for discrete k,
j=1,(2M)?%2 are obtained by generating two independent Gaussian random numbers @; and B;

+ for each k;, each with zero-mean and variance %, and construct

20k) = (SQ) akye &) ) (33

for one half of the random field. The other half of the random field is obtained through the
symmetry relation (3-2). It can be shown by inspection that the above construction of z(k)
satisfies the required properties (Gutjahr et al., 1989). After constructing a field z(k) by the
above method, which merely requires the generation of independent Gaussian distributed
random numbers, the correlated random field X(x) is obtained by performing the Fourier
summation (3-1).

The double summation in (3-1) is most efficiently done by a numerical Fourier
transform technique called the "Fast Fourier transform" or simply FFT (Brigham, 1988). FFT
algorithms can be found in many computer libraries (e.g. IBM, 1993) and are described in
books on numerical mathematics (e.g. Press et al., 1992). It suffices to say that FFT algorithms

essentially perform a transformation as (3-1), but in a computationally very efficient manner.
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Most available FFT algorithms are written using the frequency u as argument instead of the

angular frequency k, where k = 2mu. Recall the following definitions of Fourier transform

pairs from chapter 2:

w oo I

cw = [ [ e s®dk

i . @ @ "
SM = ! L ¢ C(g)dg

X(x) = j f eMdZ(k)

o0

dZ(K) = (_2':1:')7 -L-L % X(x) dx

0 o

CE) = (2n)? J’ f 2% S(2u) du
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S(2nu) = (23102 [e cog

X(x) = OJ? Of e*r dZ(2nu)
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Changing the variables of integration from k to u, where dk = 2rdu, the above transform pairs
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dZ(2nu) = Tz':lz_)z [ [e= % ox (3-11)

Typical FFT algorithms also require that the summation in (3-1) is over the interval [0,2M-1]
rather than over the interval [-M,M-1]. Using the periodicity assumption z(m AK), m > M-1,

are obtained from:

zZ(mAK) = z(m-2M)AK), all m > M-1 (3-12)

Recalling that Ak = (2m)/(2MAX) this leads to the following construction of the correlated

random field X(x) with entries X(n; Ax,, n, AX,), 0 < n, n, s 2M-1:

2M-1 2M-1 2mm
X@Axna0) = ¥ Y expliottt) expli 2202 ym,my (-13)a
m,=0 m,=0 M
where
z(m,m)) = | 2n 2% S( 2t m, ZJtmz) I (@, * i8,,m;) (-13)b

2MAx, 2MAx, ZMAxl 2MAx,
with o and B being zero-mean, independent, Gaussian distributed random numbers of variance
%. For this study, random fields are generated using (3-13) with the SCFT2 subroutine in the
ESSL Fortran library to perform the FFT (IBM, 1993), and with the GAUSDEV and RAN2
subroutines from Press et al. (1992) to generate the random numbers o and 8. The original

implementation of this random field generator was generously provided by Allan Gutjahr

(1989).

33 Conditional Two-Dimensional Random Fields

Assume an array of measurements X, = {x,,...,X_} is available and a two-dimensional

conditional random field must be generated such that at locations {x,,...,xm}' the measured value
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of the random variables X, are reproduceci with probability 1, and such that at all other
locations {x,,,-...X,} the generated random numbers X, = {x,,,,...,X,} have a sample mean and
sample covariance that converge in the mean to the conditional mean <X,>° and conditional

covariance E,, (see section 2.5.3), respectively, in the limit as the number of random fields

. generated becomes infinite.

To implement the conditional random field generation, Delhomme (1979) used the
following approach based on work by Matheron (1973) and Journel (1974, 1978): Initially, the
measured data X, are used to infer the moments .(mean and covariance) of the unconditional
joint pdf of the random field. Then an estimate of the conditional mean <X,>* is obtained by
simple kriging (best linear unbiased estimate of the conditional mean, see section 2.5.3). The
kriging weights A and the estimated conditional mean <X,;> are retained for the subsequent
generation of conditional random fields X%, which are constructed through the following

relationship:

X, = <XF + (X - <X = <Xk e, (3-14)
where <X>* is the kriged random field given the simulated data X,, from the unconditionally
generated random field X,. X, has a joint probability distribution defined by the measured
moments. <X,>* is the simulated equivalent to <X>%: It preserves the data X,, in the
unconditionally generated random fields at and only at the locations {x,,...,x,}, where
measurements are available in the real field site as well, and of the kriged estimates <X,,>* at
all other locations {X,,...,X,} given the unconditionaily simulated data X,,. The difference (X,
- <X>") is a realization e, of a possible estimation error incurred by estimating the data X,
through the kriged values <X>*. The simulated error is added to the originaily estimated
conditional mean <X>* to obtain a possible conditional random field X°.

The simulated estimation error e, has the same conditional moments as the real

estimation error e = (X - <X>°) because the unconditional pdfs of the real and the simulated

ey
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fields are identical (neglecting the possibility of measurement and moment estimation errors),
and because the conditioning occurs at the exact same locations both at the field site and in the
simulations (Journel, 1974; Delhomme, 1979). Recall from (2-48) that the conditional
covariance or error covariance E,, depends only on the location of the conditioning points x,
and on the unconditional covariance C, but not on the actual value of the conditioning data X!

The unconditional random field generation and the kriging of the generated random
field from the simulated measurement data are repeated for each realization. Each simulation
will yield a random field of estimation errors e,, which can be added to the kriging estimate of
the real data to obtain a conditional random field. For a large number of samples thus obtained,
the sample variance of X,,(x,) will converge in the mean square to the true conditional variance
or kriging variance of X,(x,) as shown by Delhomme (1979). It is obvious that this .
conditioning technique is independent of the method used to generate the unconditional random
field and is as such unrelated to the spectral random field generator. The advantages of using
this method together with the spectral random field generator will be discussed in chapters 7

and 10.

34 Alternative Methods of Random Field Generation

34.1 Turning Bands Method

The turning bands method was first proposed by Matheron (1973) to simulate
unconditional random fields. Detailed descriptions of the turning bands method can be found
elsewhere (e.g. Mantoglou and Wilson, 1982; Brooker, 1985; Mantoglou, 1987; Tompson et
al.,, 1989). For completeness, a brief outline of the structure of the turning band method is
given.

The principal advantage of the method is that it reduces the generation of a two- or

three-dimensional, random, spatially correlated process to the generation of one-dimensional,
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correlated line processes. The reduction in dimensionality is made possible by the fact that the
transformation from a 3- or 2-dimensional covariance function into an equivalent one-
dimensional covariance function can be uniquely defined (Matheron, 1973; Mantoglou and
Wilson, 1982). After determining the equivalent 1-dimensional covariance, a one-dimensional,
multivariate process Y(x) can be generated along a finite line by using an appropriate
autoregressive or moving average algorithm (Bras and Rodriguez-Iturbe, 1985) or 1-dimensional
spectral methods similar to the one described above (Mantoglou, 1987). To obtain the 2-
dimensional random field, the one-dimensional simulation is repeated on a total of 16 (or more)
equally spaced lines intersecting at their midpoints. Each of these lines is divided into small,
discrete intervals of equal size. One random number is generated for each interval. The
random value X(x) of a realization at any point x is computed by averaging the 16

corresponding line values:

1 9 .
X(X) = —— X Y(X,,j) (3-15)
Ji6 =

where j is the line number and x; is located on line j such that x is orthogonal to x; with respect
to line j.

Conditional simulations with the turning bands method were among the first in
hydrologic applications (Delhomme, 1979) and the method used is identical to the one described
in section 3.3. for the spectral random field generator, since the actual conditioning is

independent of the method used for unconditional random field generation.

3.4.2 Matrix Decomposition

3421 Unconditional Simulation by Matrix Decomposition

An elegant approach to simulating unconditional as well as conditional random fields
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is the matrix decomposition method (Clifton and Neuman, 1982; Davis, 1987; Alabert, 1987).
Again, it is assumed that a valid unconditional covariance model is given (satisfying the
conditions stated for (2-28)). The covariance between each two points in the random fieid
domain is computed prior to the random field generation and stored in an unconditional
symmetric covariance matrix C. For a random field consisting of n points, C has a dimension
of n’. Furthermore, it is assumed that the unconditional expected value <X(x)> is zero. Using,
for example, the Cholesky algorithm for symmetric, positive definite matrices, the covariance
matrix can be decomposed into a lower triangular matrix L and an upper triangular matrix U:
C=LU L = U” (" indicates the transpose operator) (3-16)
The product of the lower matrix L and a vector a of random, uncorrelated, univariate normally
distributed random numbers a, i=1,...,n with zero mean and unit variance will then give a
simulated random field X, with the desired mean and covariance:
La=X (3-17)
Proof :
<X>=<La>=L<a>=0 (3-18)
C,=<X,X>=<La@ o=
<Laa"L>=LIU=LU=C (3-19)
(I is the identity matrix)
After generating and decomposing the covariance matrix C once, any new realization of X is
simply obtained by generating a new sample of the random vector o, which can easily be done
with any good random number generator. Note that the method is independent of the
dimensionality of the random field and that the covariance need not be stationary. Only 1st

order (mean) stationarity is required for this method.
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3422 Conditional Simulation by Matrix Decomposition

The procedure can readily be extended to implement conditional simulations (Clifton
and Neuman, 1982; Davis, 1987). Again X, is a vector of known data-values and X,, are the
unknown random values that are conditionally simulated. The covariance matrix and its

decomposition (3-16) is expanded in the following form:

Cll CIZ] - [ I“ll 0 [ Ull UIZ]

C = C21 sz LZI Lzz 0 Uu (3‘20)
that is, the following four equations:
Cau=Ly Uy=Ly Lu: (3-21)a
Cp=L, U,=L,; Lle (3-21)
Cu=Ly Uy=L; Ly (3-21)c
Cp=L, U, +L, Uy, (3-21)d

and as shown for the unconditional simulation (3-17):

B AR o

However, X is known and o, need not be generated! Instead, the values a, are computed by
solving the first of the two equations in the matrix (3-22):

a, =L,1X, (3-23)
where L;; and X, are given. a, is generated in the same way as a in the unconditional
simulation. Then the conditional values X,,° are computed by solving the second of the the two
equations in (3-22):

Lya, + Lya; = X,.° (3-24)
The procedure is further simplified by expressing all terms in (3-24) as functions of L,,, the

covariance submatrices of C, and the known data array X:

Lu = Cn Un.l = (Uu'l)T szT = Lu'l Clz (3‘25)
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LpUp=Cyn-LyU,=C,y,- [-'u'1 Cu (L;l'l CIZ)T (3-26)

Collecting (3-23), (3-25), and (3-26) in (3-24), the conditional simulation becomes:
Xa=Ly'CuLy' X+ Ly, (3-27)

Thus, the initial steps to conditional simulation are:

1. decompose C,,,
2. invert the resulting matrix L,,, and
3. decompose (3-26) in order to obtain L,,.

Once all these matrices are determined, new realizations of conditional X,,° are obtained by
simply generating new a, with a Gaussian random number generator and solving (3-27). It can
be shown that the moments of X, ° are exactly the conditional moments defined in (2-46) and
(2-48) (Alabert, 1987; Harter, 1992).

As an alternative to the above approach, Clifton and Neuman (1982) suggested to obtain
the kriging estimate X;* of the points to be simulated. Then an error e, with covariance E,, =
(L Up) is generated taking advantage of the matrix decomposition method introduced in (3-
17):

L), a,=e, (3-28)
Although based on the same theoretical foundation as the suggestion by Alabert (1987), just one
matrix (E;) needs to be decomposed instead of 2 as outlined in (3-27). However, C,; must be
inverted to obtain the kriging weight matrix A,, and the kriging estimates X,* (2-46). (3-28)
is very general in that its application is not limited to simple kriging. Ordinary or universal
kriging estimates with the ordinary or universal kriging covariances can be applied as well as
others e.g., Bayesian estimates for inverse modeling (the latter was implemented by Clifton and

Neuman, 1982).
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343 Gaussian Sequential Simulation

Sequential simulation was first implemented by Journel and Gomez-Hernandez (1989).
Their version of the sequential simulator was specifically designed to generate stationary
random fields with a non-parametric probability distribution ("indicator simulation"). Gomez-
Hernandez (1991) presented a sequential simulator for the generation of multivariate normal
random fields. The Gaussian simulation technique goes back to the definition of unconditional
and conditional probabilities (2-42) and (2-43): Rearranging equation (2-43), the joint
probability fy(x,,X,,...,x,) is expressed as a function of the marginal distribution of the known

data x,,....X,, and the conditional distribution of the unknown RVs X_,,...., X,:

F (XX X oKy appeeenXy) = B X420 X [X, X000 0X ) Fl(X XX ) (3-29)

The equation is expanded into a sequence of lower order conditional probability terms:

(XK gpeee X X p3eeerXy) =
E (X [ XX ppeeeenX ) B (X [ X XgpennnsX, ) B(X_ L [X1,X2,0x ) (3-30)

........ £ (X ot | X XgpenensX ) (s XperesX )

It is this form of the joint probability density function, which gives rise to the sequential
simulator: The conditional probability function of each fu(X_.i|X1se-sXmoXee15--sXiy) M < M+ =
n, can be expressed as a product of (i-1) univariate conditional density functions and the
unconditional density function of the known data x,,...,x,. Hence the simulation algorithm for
a realization is the following:

1. select a datapoint x_,,,° to be generated,

2. find the conditional density for that datapoint given the measured data x,,...,X, and draw
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from it x5
3. select a second datapoint x,,,° to be generated,
4. find the conditional density for that datapoint given the measured data Xi5ees Xy and

given the already generated datapoint x_,,,° and draw from it x_,,",

5. repeat the procedure until a conditional sample has been drawn for all points.

For each realization, steps 1.-5. are implemented independently. The procedure as such is
entirely general and can be applied to any random process.

The procedure is again illustrated for the muitivariate normal, stationary, zero-mean
random process. Specifically it is shown how ’to draw [a random number X,.i] from [a
univariate conditional] density function’ (Gomez-Hernandez, 1991, p.42). First, the moments
of the univariate conditional density function fx(XmsilX1seeesXmsXme 19°-sXmaiot)y M'< M+i < 1, must
be specified. By definitions (2-46) and (2-48), the conditional mean and covariance are given
by the kriging estimate x,,.* and the kriging covariance E;. The kriging estimate x_,* is

computed from both measured x;,,...,x,, and already generated data b SR SR

Xoi =2 AX +2 AKX j o= Leom; | = mel,.omei- (3-31)

[ ]

As the conditional density is univariate, only the kriging variance E; (2-48) is relevant:

E, =0% -2 C A k = 1,..,m,.,m+i-1 (3-32)

i
The important difference between this and all previously described methods is that a univariate
conditional random variable is generated, which by definition renders the consideration of the
error covariance i.e., the spatial correlation structure of the error, superfluous. Ximsiys. 1S
simulated by first obtaining the kriging estimate X_,* and then adding a random error e,,y,,

which is drawn from a zero-mean, univariate normal distribution with variance E; (3-32):
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X ain = Xas * Clay (3-33)
No covariance matrices are involved in the generation of the error e,,;, thus reducing the task
of random field generation to generating independent, univariate random numbers.

Note that the procedure can be equally applied to unconditional simulation and
conditional simulation. In unconditional simulations, the first point is generated as an
independent random variable with the desired unconditional mean and variance. A second
datapoint is generated conditioned on the first one in the manner described by (3-33), and so
on. In a conditional simulation the generation of random fields begins with the already
measured data. Subsequent datapoints are generated as in an unconditional simulation through
the conditional relationship (3-33). For further details of the method, see Gomez-Hernandez

(1991).

35 Performance Analysis of the SRFFT, LU, TB, and S Random Field Generators

3.5.1 Design of the Performance Analysis

Random field generators must generate truly independent realizations X(x) of an RFV
such that the sample joint probability distribution of the random field realizations converges in
mean square to the desired ensemble probability distribution (the pdf of the assumed probability
space) in the limit as the number of realizations becomes infinite. Generally, two conditions
must be fulfilled for a random field generator to give statistical results that converge in the
mean to the desired ensemble moments of the RFV:

1. the random number generator (RNG) must be able to generate independent normaily

distributed random numbers with given mean x and variance o2 in the limit as the
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sample size becomes large.

2. the numerical implementation of the random field generator (RFG) must be free of

deterministic artificial patterns caused by the generating algorithm.

The first condition can be tested separately and should be tested prior to a performance
analysis of a random field generator. Random number generators are common in many
scientific programming libraries. Two random number generators are tested both of which
produce independent random samples distributed uniformly between O and 1: the random
number generator SURAND in the Engineering and Scientific Subroutine Library (ESSL)
available with the Fortran compilers for IBM workstations (IBM, 1993) and the random number
generator program RAN2 described by Press et al. (1992). The normally distributed random
numbers are obtained after a transformation achieved through the subroutines SNRAND (IBM,
1993) and GAUSDEYV (Press et al., 1992) both of which use the Box-Muller method to obtain
a nermal deviate from a uniform deviate (Knuth, 1981).

Random number generators are not truly random. They rely on a deterministic formula
to generate a new random number. Both random number generators tested are based on a
congruential algorithm which algebraically alters a given number. Initially this number is
directly or indirectly supplied by the user. In subsequent generations within the same program
execution the number is taken from the preceding generation of a random number (Knuth,
1981). Sparing the details of the algorithms, note that one of the most important properties of
good random number generators is the independence of subsequently generated random numbers
and the time to recurrence i.e., the number of random numbers generated before any previously
generated random number is generated a second time. Once the seed to a random number is

regenerated the second time, the following sequence of random numbers will be exactly the
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same as the sequence of random numbers generated after the first occurrence and hence will
repeat itself ad infinitum. Since all computers have finite accuracy, they can only generate a
finite number of different discrete numbers. Thus, every random number generator will
eventually generate a random number that has already occurred before. The length of the
random number sequence to the first recurrence is des.ired to be large, much larger than the
number of samples actually generated in an application to assure the independence of the
samples. Theoretimlly, infinite sequences can be achieved by appropriately shuffling small
parts of the sequence (Press et al., 1992). For SURAND and RAN2 no recurrence of the initial
seed was found within the following 10" numbers, after which the test was interrupted.

A number of methods exist to test random number generators (Knuth, 1981). Sharp and
Bays (1992) test the independence of consecutive random numbers by plotting the two-
dimensional coordinates given by any two consecutive random numbers as dots into a map (see
Orr, 1993). Biasedness can then often be discovered (although not always) if certain patterns
develop. Unbiased uniform random number generators should fill such a map evenly. Figure
3.1 shows a sample of 20000 pairs generated with SURAND and RAN2. There is no obvious
artificial pattern in the samples and - at least qualitatively - they are indeed from a uniform
distribution. The CPU-times of both random number generators are comparable. In cooperation
with Orr (see Orr, 1993) three other congruential random number generators were tested with
similar results: DPRAND by Maclaren (1992), which is a portable random number generator
like RAN2, and the random number generators in the IMSL library (1991) and NAG library
(1990).

All five random number generators are tested by the author within the spectral random

field generator (original FORTRAN code provided by Gutjahr, 1989) and within the LU-
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decomposition based random field generator (FORTRAN code developed by the author) and

as shown below, no specific bias was detectable due to the random number generator.

In this study the spectral random field generator is used for reasons that will become
obvious in chapter 7. To assure its proper performance a large Monte Carlo simulation with
1000 samples was performed on a square grid with 64> gridpoints. The mean x4 and variance
o are 0 and 1, respectively. The covariance is isotropic and exponential (Isaacs and Srivastava,

1990):

C®) = o exp(-L2) (334

where A is a parameter called the "integral scale" of the covariance function and is here
specified to be five gridpoint increments, a commonly chosen discretization of the random field.
Commonly, the integral scale is referred to as the "correlation length" or "correlation scale" of
C. For comparison, an equivalent Monte Carlo simulation is performed with a LU-
decompositi;)n based random field generator. Both the SRFFT and the LU Monte Carlo
simulation are performed once with each of the five random number generators. Orr (1993)
provided test-results from identically implemented TB and S Monte Carlo simulations using the
DPRAND random number generator. The turning bands method is based on FORTRAN code
by Zimmermann and Wilson, 1990. The sequential simulator in C code has been provided by
Gomez-Hemandez (1991).

For the evaluation of the Monte Carlo simulations, a postprocessor was developed that
is designed to collect the following sample moments:
* (spatial) mean and variance of each realization by summing over all values in a

realization.
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* (spatial) sample covariance of each realization by inverting the procedure of the spectral
random field generator: take a Fourier transform of the realization X(x) to obtain the
spectral representation dZ(K), take the expected value of the spectral representation with
its conjugate to obtain the spectral density function, and compute the spatial sample
covariance from the inverse Fourier transform of the sample spectral density function
(Gutjahr, 1989).

(local) mean and variance at location 1 as a function of the number of realizations (10,
20, 50, 100, 200, 500, and 1000 samples).

* (local) sample covariance at point 1 by performing the following summation over all N

realizations for N=10, 20, 50, 100, 200, 500, and 1000 samples:

N N N
1 ay 8 1 a 1 >

Cov, (k) =.§E XX, - FE X" * ﬁz X, (3-35)
n=1 =1 n=1

where here n is an index to X and not a power of X. The points k surrounding the
point 1 consist of all the points in a squared window of side-length 32 (33 points)
centered on point 1. This summation was implemented only for the 31 by 31 points in
the center of the 64 grid. This sampling pattern avoids problems with boundaries and
allows the evaluation of the local sample covariance on a complete squared window.
The sample moments are further evaluated statistically to give several summary moments:
* the average of the spatial means of each realization (which is exactly equal to the
spatial average of the local means) gives the total mean of all numbers generated in the
Monte Carlo simulation and must converge in the mean square to zero as the number

of realizations (samples) increases.

* the average of the spatial variances is expected to be smaller or equal to the local
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variances (due to spatial correlation), and the spatial average of the sample local
variances must converge in the mean square to the desired local ensemble variance as
the number of runs in the Monte Carlo simulation increases.

the average of the local sample covariances (over all locations) must converge in the
mean square to the desired exponential covariance function. Like the average spatial
variance, the average of the spatial sample covariances is expected to be smaller or
equal to the specified covariance. The average spatial covariance normalized by the
average spatial variance, however, must be equal to the specified (normalized)
exponential covariance function. The deviation of the average local covariance function
from the specified exponential covariance function is computed. The local deviations
are integrated over the entire domain of the two-dimensional covariance to obtain a
mean deviation from theoretical covariance. Given the set of 312 local covariances,
each of which is a 33? point two-dimensional field, the variance of the sample local
covariance is calculated as a function of the separation point k and integrated over all
k to obtain the average variance of the local covariance.

the minimum and maximum of all local or spatial moments give a range of possible
sample moments. The range is expected to decrease as the number of samples in the

Monte Carlo simulation increases.

Summary Performance of the RNGs and RFGs

First, the summary moments are evaluated from the Monte Carlo simulations with the

spectral (SRFFT) and the LU-decomposition (LU) random field generators (RFGs) using the
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five different random number generators (RNGs) mentioned above.

Figure (3.2a) shows the total sample mean as a function of the number of SRFTT
Monte Carlo realizations (NMC) for each of the five random number generators. The
differences in sample means shown for the different RNGs reflects the sample moment
variability, since each RNG generates a different sequence of random realizations. Initially, the
differences are large due to the limited number of samples. Note that although there are 64
= 4096 samples of random numbers within each realization, these 4096 samples are not
independent of each other and the spatial sample mean does not converge to the ensemble mean
as fast as that of NMC * 4096 uncorrelated random samples. With all five random number
generators the total sample mean (spatial mean of the local sample means) converges to zero
as the number of realizations increases. A very similar behavior is seen in the total mean of
the LU generator (Figure 3.3a). The convergence rate of the different RNG-based Monte Carlo
simulations is the same for both random field generators: after 10 realizations the total sample
mean varies within the range [-0.1, 0.1]; after 100 realizations the range decreases to [-0.025,
0.025}; and after 1000 realizations it reaches the limits [-0.01, 0.01]. No particular bias (i.e.
numerical artifact) is found in any of the five RNGs with any of the two RFGs regarding the
total sample mean. The decrease in the range of the sample mean is consistent with the
theoretical decrease of the variance of the sample mean as a function of the sample size (Haan,
1977, see chapter 8).

Both the average of local sample variances and the average of the spatial sample
variances converge (in the mean square sense) to the ensemble variance specified as the
number of realizations becomes large (Figures 3.2c, 3.3c). Due to the spatial correlation the

mean spatial variance is approximately 5% lower than the mean local variance with both the
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SRFFT and LU generators. Unexpectedly, however, it is found that the mean local variance
for all five RNGs in the SRFFT generator converges to values between 0.94 and 0.95, which
is approximately 5% below the specified unit variance. The mean local variance of the LU
generator converges to 1 for all five RNGs. Hence the erroneous sample variance in the SRFFT
simulations are solely due to the procedure in the SRFFT random field generation and not due
to the random number generators used. This is an important drawback of the SRFFT generator,
which is addressed in more detail below.

The range of local variances for the SRFFT and the LU random field generators are
comparable (Figures 3.2b, 3.3b and independent of the RNG used: After 10 realizations, local
variances vary approximately between [0.1, 4], after 100 realizations the range is limited to [0.5,
1.8], and after 1000 realizations the range is approximately [0.7, 1.3]. The decrease in
variability is due to the greater number of samples from which each local variance is computed.
On the other hand the number of samples from which the spatial variance is computed is always
4096, and with each realization a sample of the statistics "spatial variance" is added. The range
of these samples therefore slightly increases as more realizations are added (Figures 3.2d and
3.3d). At 1000 realizations the spatial variances vary approximately between [0.6, 1.7] for both
the SRFFT and the LU generator. Again, the minimum and maximum spatial variance of the
SRFFT random fields are approximately 5% lower than those of the LU simulations. For all
variance computations none of the RNGs produces results significantly different from others.

The total average deviation of the sample local covariance from the specified
exponential covariance (averaged over all points k in the covariance field ] AND averaged over
all covariance realizations 1) varies around O and converges to near O as the number of

realizations increases. Resuits for the SRFFT and the LU simulations are very similar,
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independent of the RNG generator chosen (Figures 3.2¢ and 3.3¢). This shows that the
deviation of the variance in the SRFFT simulations from the specified variance does not occur
for the entire sample covariance. Indeed, a comparison of the mean local sample covariance
obtained from a SRFFT simulation with the exponential covariance specified shows that the
erroneous deviation of the SRFFT sample covariance function is limited to the center (origin)
of the covariance function i.e., to the variance itself (see below).

The average variance, and the maximum, and minimum variance of the sample
covariance function, averaged over ail points in the sample covariance, decrease such that their
logarithms (the logarithm of the mean, the minimum, and the maximum) decrease linearly with
the logarithm of the number of Monte Carlo realizations (Figures 3.2f and 3.3f), which is in
good agreement with the statistical analysis: the standard deviation of the sample moments of
independent random variables theoretically decreases proportional to 1/n* (c.f. Haan, 1977).
The results for the SRFFT and the LU simulations are again nearly identical and independent
of the random number generators used.

Using the postprocessing program developed by this author, Orr (1993) also computed
summary statistics for the turning bands (TB) and the sequential simulator (S), with which he
had implemented Monte Carlo simulations under the same conditions as the above described
SRFFT and LU simulations. Only the DPRAND subroutine was used as random number
generator (Maclaren 1992). A comparison of the summary statistics of the four Monte Carlo
simulations with the DPRAND random number generator and the SRFFT, the LU, the TB, and
S random field generators are shown in Figures 3.4a through 3.4f. In general both the TB and
S simulations give results that are - for all practical purposes - identical to the SRFFT and LU

simulations. Neither the TB nor the S simulations show any bias regarding the mean local
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variance, which is generally too low for the SRFFT simulations (Figure 3.4c). The only notable
exception is a relatively high average deviation of the sample covariance from the specified
covariance in the S simulations (Figure 3e): After 1000 realizations the mean deviation in the
S simulation is approximately five times higher than in any of the other RFG simulations, and
approximately 2.5 times larger than in any of the simulations with the other four RNGs in the
SRFFT and LU RFGs (compare Figure 3.4¢ with Figures 3.2¢ and 3.3¢). This may indicate
that the Sequential Simulator produces a slightly higher sample covariance than specified, either
overall, or in a small region within the covariance field.

In conclusion, the summary statistics indicate that any of the five random number
generators tested will produce reliable results. With respect to the summary statistics, all four
random field generators produce results that converge in the mean square sense to the desired
ensemble distribution when the number of realizations is large. The two exceptions are: First,
the covariance of the SRFFT simulations is significantly lower (about 5%) at and only at the
origin of the covariance field. In other words, the variance is too low while all covariances
between two different points are statistically accurate. Second, the S simulations may produce
a seemingly significant overall deviation in the covariance field such that the sample
covariances are on average larger than the specified covariance. The summary statistics have
also shown that unless the number of Monte Carlo realizations exceed several hundred or even
a thousand runs, local statistics (such as the local mean, variance, and the local covariance field)

have a very wide spread and their local statistical significance is questionable.
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3,53 Local Performance Ana]ysis of the RFGs

The purpose of an analysis of the local moments s to investigate possible spatial bias
in the realizations due to the particular random field generator. With the experiences from the
above summary analysis it is sufficient to limit the analysis of the two-dimensional datasets to
Monte Carlo simulations with N = 1000 realizations. First a single sample realization of each
RFG simulation is presented together with its spatial covariance field. Then the local mean,
the local variance, the local covariance, and finally the average of the local covariances, and
the average of the spatial covariances are analyzed. The author gratefully acknowledges the
work by Orr (1993), who implemented the TB and S simulations.

Figure 3.5 shows a representative single realization of each RFG simulation. No
particularly disconcerting features are observed. Similar observations were made for other
realizations, and generally found no particular notable bias within any one realization. Their
spatial covariances (obtained by spectral analysis as described above) are generally more or less
symmetrical and exponential near the very center (the origin of the covariance field) but also
characterize some of the strong spatial features in the particular random realization e.g., the
east-west trending valleys in the particular TB realization (Figure 3.6). It must be emphasized
that any realization generated with any one of the RFGs may produce more or less dominant
features that are then reflected in the sample covariance function (due to the limited field size).
The summary statistical analysis has shown, however, that overall these features are well within
the theoretically possible sample space. The following analysis will investigate, whether any
local artifacts exists that are due to the numerical algorithms.

The local mean of 1000 realizations with each RFG are shown in Figure 3.7. The
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standard deviation of the local sample means e.g., in the LU simulation, is 0.0329. This
compares well with the theoretical standard deviation of the sample mean taken from a
Gaussian distribution, which is 0.0316 for a sample-size of 1000 (c.f. Haan, 1977). In
accordance with stochastic theory the sample means are a random field variable themselves.
The correlation structure of the sample mean field is not quite unlike that of the underlying
random fields, something that is observed throughout the remainder of this study. The sample
mean field (actually a realization of the sample mean RFV) shows no particularly strong trend
or non-stationarity or other artificial patterns.

Similarly, the local variances of 1000 realizations are themselves a random field
realization with a familiar looking random pattern that reflects the fact that the correlation
structure of the variance field is - like that of the mean field - similar to the correlation structure
of the underlying random fields (Figure 3.8). Again no particular trend, non-stationarity, or
pattern is observed that may be an artifact of the particular fandom field generator. The only
exception is a very notable streak-line structure in the variance field of the TB simulation.
From the left lower origin four lines extend radially throughout the variance field, dividing it
into five equally sized pieces (with the exception of the leftmost and the lowest piece, which
are only about half the size of the three others). The lines reflect four of the 16 turning bands
used for the generation of the random field and are characterized by higher than normal
variance on the counterclockwise side and a lower than normal variance on the clockwise side
along the imaginary line. These patterns have been reported elsewhere and can be partly
eliminated by increasing the number of turning bands. Orr (1993) implemented an alternative
TB algorithm provided by Zimmerman (personal communication) and indeed found no artificial

patterns in the sample variance (random) field (Figure 3.15) when using 32 lines.
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A sample local covariance field (actually aiso a realization of the sample local
covariance RFV) centered around the (48,48) coordinate of the random field is shown in Figure
3.9 for each of the four RFGs. Despite the relatively large number of realizations (many
hydrogeologic and soil physical applications of the Monte Carlo method are limited to a few
tens or a few hundred simulations), the local covariance functions exhibit a significant amount
of randomness. More importantly perhaps they show anisotropy and other irregular structures
with all of the four RFGs. This is expected since the statistical significance of 1000
independent samples of the covariance product sum (2-29) is relatively weak. Recall that a
similar variability is observed for the local sample variance, which has a sample range of £ 0.2
(or £ 20% of the specified standard deviation).

To obtain a larger sample base, all 312 local covariance fields such as those in Figure
3.9 are averaged to obtain a mean local covariance field. The 312 local covariance fields are
not statistically independent due to the correlation structure of the random field. Nevertheless
the mean local covariance field has a very regular structure (Figure 3.10) since the sample error
is now much smaller than the range [0,1] of the underlying covariance function. The shapes
of three of the four mean local covariance fields is very similar to the specified isotropic
exponential covariance function. The TB simulator generates anisotropic random fields with
the correct variance, but longer correlation than specified in the horizontal direction and shorter
correlation than specified in the vertical direction. Furthermore, a strong lineation is visible,
when the difference is plotted between the mean sample local covariance of the TB simulation
and the exponential covariance (Figure 3.11). As discussed above for the local variance, this
artificial TB pattern is believed to be due to the small number of turning bands chosen for the

simulation. Orr (1993) reports that these patterns vanish when a much larger number of turning
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bands is used with an improved version of the TB generator program. Careful visualization
reveals that the mean covariance field of the improved program is indeed very accurate, but the
lineations in the deviation from the exponential covariance still exist, albeit at a much smaller
amplitude than before (Figure 3.15). The SRFFT simulator has a significant deviation only at
the origin of the covariance field i.e., the variance is biased, while all covariances of non-zero
lag seem to converge to the specified structure (Figure 3.11). After correspondence with the
author of the original SRFFT generator, Allan Gutjahr, it is not entirely clear what causes this
particular bias. A larger size of the random field domain reduces the error. Similarly, the mean
covariance field of the sequential simulator is somewhat more stretched out than expected,
which possibly explains the positive bias in the total deviation from the specified covariance
(see summary statistics discussion). Overall, the LU generator gives the most unbiased mean
local sample covariance field.

Figure 3.12 depicts the local variance qf the sample covariances corresponding to the
local mean of the 312 superpositioned local covariance fields in Figure 3.10. All generators
have the largest variance near the origin due to the large absolute value of the mean covariance
field near and at the origin. Overall the LU generator exhibits the smallest variance. The S
simulator exhibits relatively large variances throughout a large central part of the covariance
field. Both the S and TB generators also exhibit areas of large variance near the edges of the
covariance field, where the absolute value of the covariance is near 0. Again not too much
significance should be given to these patterns without sampling from much larger populations
i.e., without analyzing a Monte Carlo simulation based on a sample size several orders of
magnitude larger.

Finally, the average of the first 50 spatial covariance field samples are analyzed, each
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of which was obtained from a spectral analysis of a single random field realization (Figure
3.13). The SRFFT, S, and LU generators have average spatial covariance fields very similar
to the average local covariance fields in Figure 3.10. The TB generator, however, exhibits both
strong anisotropy and the familiar starlike pattern in its mean spatial covariance. The deviation
of the mean spatial covariance from the specified exponential covariance (Figure 3.14) clearly
shows the location of the 16 turning bands in the TB generator. Again, the same bias can

qualitatively be observed in the improved version of the TB generator (Figure 3.15).

3.6 Conclusion

In summary of the moment analysis it is found that all random number generators tested
perform equally well. Of the four ragldom field generators tested, the LU-decomposition based
simulation showed the least artificial bias. The local moment analysis confirmed that the
SRFFT generator produces sample covariances that are very close to the specified covariance
with the exception of the variance (covariance of zero-lag), which is on average about 5% too
low. The error is probably due to the limited domain size. The sequential simulator produces
sample covariances that are on average slightly larger than the specified covariance throughout
most of the sample covariance field. Otherwise both the SRFFT and the S simulator produce
random fields that are consistent with the probability space specified. The second order
moments of the turning band simulator exhibited significant artificial patterns due to the starlike
distribution of the 16 turning bands used. An improved code-and the choice of a larger number
of turning bands gave results comparable to those found for the other three RFGs (see Orr,

1993, for details).
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The CPU-efficiency of the four RFGs varies greatly, while the choice of the RNG has

no significant effect on the computation time. The CPU time for 1000 realizations of the
SRFFT and the LU simulators were 1112 sec. and 1920 sec., respectively, on an IBM
RS6000/320 system. The computation time of the SRFFT is proportional to the number of
random fields that are g.enerated. In contrast, the LU simulator initially requires large amounts
of computation time just for the decomposition of the covariance matrix. The CPU time for
10 realizations of the LU simulator is 360 sec. compared to only 29 sec. for 10 realizations of
the SRFFT simulator. Unfortunately, no CPU-times are available for the simulations with the
TB and S simulators by Orr (1993). Tompson et al. (1989) evaluated the computing efficiency
of the TB method as compared to the SRFFT method and concluded that the SRFFT will be
at least as efficient as the TB method for random fields on the order of less than 10° points.
For very large random fields, the TB simulator is more efficient, and Gomez-Hernandez (1989)
claims similar efficiency for the sequential simulator. The comparative efficiency of the four
different RFGs will mainly depend on the number of points generated in each field and on the
number of realizations.

While the LU generator gives very good results, its disadvantage is that it requires the
decomposition of a covariance matrix of size N2, where N is the total number of points in the
random field (4096 in the above examples). For smaller random fields (<5000 points) with
many realizations this is indeed a very effective way of random field generation, since the
covariance matrix must only be decomposed once for an entire simulation. Each realization
then simply requires the generation of random numbers and the muitiplication with the L matrix
(3-17). For large random fields, the LU-decomposition becomes too cumbersome, if not

impossible.
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The largest drawback of the SRFFT generator is the overhead in the FFT, since the

actual random field is only (1/2)? (in two dimensions) or (1/2)* (in three dimensions) of the size
of the spectral field due to the symmetry (3-2) required to obtain real random fields. Gutjahr
(1989) points out that the imaginary part of the inverse Fourier transform of the spectral
representation is also an independent realization with the required properties i.e., one transform
generates two independent realizations of the same random field. For our purposes the SRFFT
is sufficiently accurate (in the statistical sense) and CPU-efficient to justify its use for the

simulation of heterogeneous soils.
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Figure 3.1: Dot diagfams of the RAN2 (top) and ESSL (bottom) random number
generators. Each of the 100,000 points represents two consecutive, uniformly

distributed random numbers.



94

—0— fr

otof  totalmean e fe 4} local variances:
(a) —— 1{d

—o— 1 . (b) mean ——

0.05f 00— fn 3%:‘:.-,.‘ maximums-------.-
e Aag . .
""" B, minimum ..........
0.00x
-0.05 _ )
10' 10 10° NMC
.10} .
mean local variance Pomnnnen gart

mean spatial variance.-.-......

maximum--------
ppetitet 2 1111 TIVIToTTLEYo PEREERSN , SERSY, )

0.75%. minimum-— - -«

mean local covariance field:
mean deviation from
theoretical covariance

10' 10? 10° NMC 10'

Figure 3.2: Summary moments of the sample mean, variance, and covariance as a function
of the number of Monte Carlo realizations, NMC. Local sample moments are taken at the
same point over all realizations. Spatial samples are taken from a single realization by
sampling over all points. All simulations are implemented with the SRFFT simulator.
Different symbols refer to different random number generators: fr - RAN2,
fe - ESSL library, fd - DPRAND, fi - IMSL library, fn - NAG library. The fin.
the labeling refers to SRFFT.
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Figure 3.3: Summary moments of the sample mean, variance, and covariance as a function
of the number of Monte Carlo realizations, NMC. The simulation results shown here are
from simulations with the LU random field generator. The 1 in the labeling stands for

"LU random field generator", otherwise the labeling is identical to Figure 3.2.
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Figure 3.5: Sample Gaussian random field realizations with one realization of
each tested RFG. The mean is specified to be 0; the variance is specified
to be 1; the correlation function is exponential with A = 5.
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Figure 3.6: Spatial covariance of the sample random field
realizations in Figure 3.5 (also see section 3.4.1).
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Figure 3.7: Local sample mean of each RFG after 1000 runs.
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Figure 3.8: Local sample variance of each RFG after 1000 realizations.
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Figure 3.9: Sample local covariance field showing the covariance between
point (48,48) and the surrounding 33°-1 points. The results are based on

1000 realizations.
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Figure 3.10: Mean of all 31° sample local covariance fields (such as those
shown in Figure 3.9). Each sample local covariance field is based on 1000

realizations.
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Figure 3.11: Deviation of the mean sample covariance fields (Figure 3.10) from the
exponential covariance function. The color flooding is omitted from the plot

for the TB simulator. For the TB plot the total number of contour levels has been
increased to 61 (instead of 17) to visualize the lineation in the sample covariance.

The range of the contours in the TB plot is [-0.13,0.18]. In the TB plot the deviation
is negative near the top and bottom of the plot and positive towards the left
and right side (see Figure 3.10).
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Figure 3.12: Variance of the sample covariance fields. The variance is obtained by superposing all

sample covariance fields. Then the variance is computed for each point in the covariance field

similar to the local variance of the random fields. The Turning Band Plot has a different gray-
scale than the other three plots (Jabel inserted). It has a larger range and is based on an exponential

scale.
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Figure 3.13: Mean of 50 spatial covariance fields such as the ones
shown in Figure 3.6.
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Figure 3.14: Deviation of the mean spatial covariance in Figure 3.13
from the exponential covariance function.
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Figure 3.15: Selected results for the improved version of the TB simulator. The plotting variable and
the flooding and contour ranges are identical to those of the LU simulator in Figure 3.8 (a),
Figure 3.10 (b), Figure 3.11 (c), and Figure 3.14 (d). In the latter two plots, the overall
range of the deviations is similar to that of the LU simulations. But small lineations remain
as shown by the contour lines.
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4. STOCHASTIC TI-iEORY OF UNSATURATED FLOW IN TWO DIMENSIONS

4.1 Mathematical Problem Formulation

Flow in two-dimensional porous media under variably saturated conditions is generally

modeled by Richards equation (Hillel, 1980):

9
0%,

+h
Ky 22D

- C(h)aTt: i=1,2 (4-1)a

where x, and x, are the horizontal and vertical coordinates, respectively. Note that the denoting
of the vertical direction as x, (rather than x,) is unusual (see Yeh, 1985a,b), but is chosen here
for consistency with the notation for the numerical model (chapter 5). For the clarity in
subsequent chapters, the subscripts x and z are used interchangeably with the subscripts 1 and
2, where appropriate. X, is positive upward, h is the matric potential (negative for unsaturated
condition). K(h), the principal unsaturated hydraulic conductivity, and the moisture capacity
term, C(h)=d6/dh, are functions of h. For simplicity of notation and without loss of generality,
it is assumed that the principal axes of anisotropy in the hydraulic conductivity coincide with
the principal coordinate axes.

Under steady-state conditions the right-hand side of (2) vanishes and the solution

becomes independent of the water retention function 6(h):

a(x, +h) _
ox

e

0 i=1,2 4-1)b
9%, l (“-1)

Like the groundwater flow equation, Richards equation is based on the principles of Darcy’s

law (conservation of momentum):
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q = -Kp 0% i=1,2 @-2)
0%,

and mass continuity (conservation of mass) :

om dh
-Vq = —* = Ccm)22 4-3
a=— ()at (4-3)

q; is the flux per cross-sectional area A; L x;, and dm,/dt is the change of the total mass of
water per unit time. Unlike the parameters in the saturated flow equation, the parameters in
Richards equation are functions of the matric potential h and hence equations (3-1a) and (3-1b)
are nonlinear equations. Parametric relationships must be constructed to relate the unsaturated
hydraulic conductivity K, the moisture content 6, and the moisture capacity function C to the
matric potential (head) h. Since the moisture capacity function C(h) is defined in terms of 0
and h, two functions K;(h) and 8(h) are sufficient to complete the transient equation (3-1a).
A single function K(h) suffices to complete the steady-state equation (3-1b).

Water retention 8(h) and saturated hydraulic conductivity K, are commonly measured
from soil samples. The measured 6(h) are used to find the parameters of a theoretical function
such that the function will best fit the empirical data. The following class of functions has

become particularly useful in describing actual field data (VanGenuchten, 1980):

1
O = [— ] m=1-1/n (4-4)
1+(|ah])”
where
6-8
O = ' 4-
T (4-5)

8, is the moisture content at saturation and 8, is the residual moisture content. m is a fitting
parameter related to the tortuosity of the flow path and the correlation between pores. « is a

parameter mainly associated with the pore size distribution.
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Unlike the water retention relationship or the saturated hydraulic conductivity, the
unsaturated hydraulic conductivity K(h) is much more difficult to measure both in the field and
in the laboratory. Since K(h) depends on similar porous medium properties as 8(h), several
models have been developed to determine K(h) as a function of the known water retention

relationship. Mualem (1976) suggested the relationship:

2
- e 1 ., 1 4-6
KO, /e [J; h(x)d / .[’ h(x)d ] (@9)

From this and (4-4) VanGenuchten (1980) derived the following K(h) model:

K(h) = K, [1-(Jah > [1"'("111!)“]-“’]2 (m=1-1/n)
[1+(|ab[)]®

47

Equations (4-4) an (4-7) are commonly known as the VanGenuchten model and have been used
to describe a number of scientific field sites related to the study of soil heterogeneity (Anderson
and Cassel, 1986; Field et al., 1984; Hopmans and Stricker, 1989; Wierenga et al:, 1989,
1991). While the VanGenuchten model has provided the flexibility needed to describe many
field soils, its functional form does not lend itself to the analytical study of soil moisture
movement. Analytical solutions to Richards equation (4-1) can be derived only with simpler
models. The exponential model first suggested by Gardner (1958) provides a powerful class
of K(h) functions:

K(h) =K, exp( @ h) (4-8)

Again, a is related to the pore-size distribution and will in the remainder of the text be referred
to as the pore-size distribution parameter. In the Gardner meodel K is related to, but need not
be taken as, the saturated hydraulic conductivity. This should be kept in mind, as K, is simply
referred to as "saturated hydraulic conductivity" throughout this text.

Russo (1988) developed the following 6(h) model that is consistent with Gardner’s
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exponential model for K(h) (4-8) and with Mualem’s pore-size distribution model (4-8):

8 =86, + (8, -6, )e M1 + 0.5x]h))=2 (4-9)

Equations (4-8) and (4-9) are sometimes referred to as the Gardner-Russo model (Russo, 1988).

In the stochastic analysis of unsaturated flow and transport in heterogeneous soils, K (x),
a(x), m(x), 6,(x), and 6,(x) become random field variables (RFVs, see chapter 2.5.1). The
RFVs are defined by their probability distribution functions. Field studies have shown that the
saturated hydraulic conductivity K,, the pore-size distribution parameter o, and the tortuosity
factor m are lognormally distributed (White and Sully, 1992). Little is known about the
variability of 8, and 8, and the sensitivity of the head and flux solutions to the variability of
the parameters defining the water retention functions (4-4) and (4-9). Analytical models
commonly neglect the spatial variability in 8 or state their results in terms of the flux rather
than in terms of pore-velocity (Mantoglou et al., 1987a,b.c; Russo, 1993a; Yeh et al.,
1985a,b). For the sake of clarity and since it is not the purpose of this study to investigate the
impact of spatially variable 8 on the transport behavior of solutes in unsaturated soils, the
variability in 6,, 8, m, @, and h in (4-4) and (4-9) will henceforth be ignored. A constant
water content 8 is assumed throughout the domain. Furthermore, K, and therefore K(h) are
assumed to be locally isotropic i.e., Ky(x,h) = K,(x,h). In the remainder of this work, K, and
a are the only independent parameters that are assumed spatially variable in the governing
equations (4-1) and (4-2) with (4-8) and (4-9) being the constitutive equations.

The numerical steady-state analysis of flow and transport in this study is based on the
use of Gardner’s exponential K(h) function (4-8), since this K(h) model also allows the
derivation of approximate (1st order) analytical solutions. The practicality of using Gardner’s
K(h) model may be questioned (White and Suily, 1992). But this study is geared towards
investigating rather fundamental problems in the numerical stochastic treatment of unsaturated

flow and transport. It is justified to confine the numerical modeling to some of the constraints
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of analytical tools since the theoretical analysis of steady-state unsaturated flow and transport

is an important part of this study:

approximate analytical solutions allow a preliminary evaluation of tne physical
importance of various parameters to the stochastic head and flux solutions (this
chapter);

approximate analytical solutions are used as initial solutions to the numerical
solver to improve the CPU-efficiency of the Monte Carlo analysis by up to two
orders of magnitude (see chapter 7);

analytical solutions serve to validate the numerical models within a range of
variability for which analytical solutions are known to be rather accurate (see
chapter 6, 8, and 9);

the range of validity of the approximate analytical solutions is investigated
empirically by comparison to numerif:al solutions for highly heterogeneous soils

(see chapter 6, 8, and 9);

Yeh et al. (1985a,b,c) presented a thorough analysis of one- and three-dimensional steady-state

unsaturated flow in heterogeneous soils based on Gardner’s K(h) model with constant o and

with normally distributed a.. The following will, for the first time, give a thorough analysis of

two-dimensional flow in heterogeneous soils under the more justifiable assumption that a is a

lognormally distributed field parameter. In addition spectral analysis will be applied to

determine the first and second moments of the unsaturated hydraulic conductivity and of the

velocity components. The analytical extension of these results to three dimensions as in Yeh

et al. (1985a,b) is straightforward.
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4.2 First-Order Perturbation Analysis of the Governing Stochastic Equation

This analysis is based on a first-order perturbation approach similar to the work by Bakr
et al. (1978), Gelhar and Axness (1983), and Yeh et al. (1985a,b). Equation (4-1b) can be
rewritten as

2
a_h .. OlogK(h) 2 , dlogK(h) -0 (4-10)

X, ox; ox, ax,
where i=1, 2. Throughout the dissertation, the notation ’log’ refers to the natural logarithm
(unless otherwise noted). The following perturbation notation is used for the random variables

logK, loga, and h:

logK (x) = f = F(x) + f/(x)
loga(x) = a = A(x) + a’(x) (4-11)
h(x) = H(x) + h'(x)

where F(x), A(x), and H(x) are the expected values of logK,(x), loga(x), and h(x), respectively,
and f’(x), 2’(x), and h’(x) are zero-mean, second order stationary perturbations at location x.
For the sake of brevity, the explicit dependency of the RFVs, their mean, and their perturbation
on th;: location x will be omitted from now on.

In general H is not uniform in space, but the gradient of H, J;=0H/dx,, is assumed to
be independent of location. The unsaturated hydraulic conductivity is then given by

logK(h) = logk, + ah (4-12)

=F + f/+ (H + h') exp(A + a’)

Writing exp(A+a’) = exp(A) exp(a’) and expanding the exponential perturbation term in a

Taylor series gives:
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exp@a’) =1 + (a’) + (aTI!)z + .. (4-13)

Writing the geometric mean of a as I'=exp(A) and truncating the Taylor series to first order,
the unsaturated hydraulic conductivity can also be approximated by a lognormally distributed

random variable:

logK, =Y +y’ =F + f/ + (1+a’) T (H+h') (4-14)
where Y is the mean of logK(h) and y’ is a zero-mean, second order stationary random
perturbation. Expanding the product terms and again neglecting second-order terms the first-
order perturbation approximation of the unsaturated hydraulic conductivity is obtained:

Y+y/=F+f +Hl +Th/ + HIla' (4-15)

Using (4-15) in (4-10) the stochastic form of Richards equation becomes:

2 / /
TED) + Dot amrarn mra ) 28R, o 0 (gopimrarnBral) = 0
0%; ax; 9%, ox, (4-16)
Expanding the product terms, neglecting second and higher order terms, and noticing that the
derivatives of the mean of stationary random field variables are zero, the first order stochastic

Richards equation is:

0*h/ af’ oh’ da’

—_— T T2 20 s T3 +THE R 4
ox, " ox, ' ox, ' ox,

@17

/ / /

LIS VS LIS YIRS ST
0x, ax, ox,
Taking the expected values, the mean Richards equation is:

12 +T5, =0 (4-18)

Subtracting the mean equation from the stochastic equation, the governing perturbation equation
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becomes:

a*h’ of/ oh’ da’

+] + 217 +TJ%’ +THISS +
X, ' ox, ' ox, ' ox,
(4-19)
/ 7 /
o ,roh +I"a’12+I'Ha_a.=0
ax, 0x, ax,

This study is particularly concerned with cases involving gravity drainage conditions i.e., the
average gradient of the total potential @=(h+x,) is unity and the average gradient of h is zero
in all directions: J; = 0. Although the entire following analysis can be carried out for any
constant mean gradients J;, only the solutions for zero mean head gradient will be given. In that
case H is uniform in space i.e., independent of location. The governing perturbation equation
then simplifies to:

2 /
Fh/ | off Lo’

ox, X, 0x, 0x,

=0 (4-20)

Note that this is a linear equation. The linearization has been achieved by dropping the higher
order.perturbation products.

The head covariance function, the cross-covariance function between f* and h’, and the
covariance and cross-covariance functions of flux related RFVs are obtained from a spectral
analysis of the respective second order stationary random processes. Continuous parameter
stationary processes in infinite domains can be represented by Fourier-Stieltjes integrals (see

chapter 2):
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w®=?7&wL®

o

oo = [ [ e dz® (g2
b/ = [ [ & az.m)

dZ (k) are orthogonal complex stochastic processes, p = f*, a’, or h’, where:

<dZ (k)> = 0
<dZ(k,) dZ (k)> = 0 m=n (4-22)
<dZ;(k,) dZ (k)> = S_(k)Jdk m=n
where ° indicates complex conjugate. In other words, the process dZ(Kk) is a zero-mean
univariate Gaussian random variable. Any dZ (k) is statistically independent of dZ,(k,) for
m = n and has a variance S (k) dk. S_,(K) is the Fourier transform of the covariance functions
for the spatial random processes X (x) = f’(x), a’(x), or h’(x). Similarly the cross-spectral
density S (k) = <dZ* (k) dZ (K)> is the Fourier transform of the cross-covariance function

between the processes p and q (p, q = f°, a’, or h’). The general relationship between the

(cross-) covariance and the (cross-) spectral density is defined by (3-4):

C (&) = ﬁei*ﬁ S, (k) dk (4-23)

Note that C,(E) = Co(X, x+5). This can be shown by using the definition for S_(k) =
<dZ* (k) dZ,(K)> and expanding the complex exponential in (4-23) to exp(ik(x-x+E), which

leads to
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C,GE) =< }}e ik dZ Y(k) ]‘}e"“"@ dZ (k) >

(4-24)
= < X, (%) X (x+8) >

= < X (x) X (x+8) >

Using (4-22) and (4-23), (cross-) covariance functions of dependent variables are obtained from
their spectral representations dZ,(k), which in turn are functions of the independent random
fields dZ.(k) and dZ (k).

Using the spectral representation of the random variables £(x), a’(x), and h’(x) (4-21)
to expand the governing first order perturbation equation (4-20), and taking the derivatives with

respect to the spatial coordinates, the partial differential equation becomes an integral equation:

[ [ + keikz, + ez, « ikHTaz, =0 (@29

[As with the spatial RFVs and for the sake of clarity, the dependency of dZ, on k is implicitly
assumed and not denoted explicitly.] Because of the uniqueness of the spectral representation
theorem, the integral (4-25) is only zero, if the expression in square brackets becomes zero.
The solution to (4-25) is an explicit closed form expression for the relationship between the

Fourier amplitudes of the independent RFVs a’, f*, and the dependent RFV h’:

_ ik(dZ, + HTdZ,)

d
- (k' + k' - iTk, )

(4-26)

The reader is reminded that this is an exact solution to the first order perturbation equation
governing steady-state unsaturated flow in an infinite, vertically two-dimensional domain under
gravity drainage. It is also an exact, but trivial solution to the fully perturbed Richards equation
with arbitrary boundary conditions at an infinite distance in the limit as 0%->0 and ©?,.->0.

For o%<<1 and &?,<<1 the above solution may be taken as a valid approximation of the
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solution to the nonlinear Richards equation, since higher order perturbation products that were

disregarded during the derivation of (4-26) are indeed negligibly small.

43 Moment Analysis of Unsaturated Flow
43.1 Head

The previous section derives an explicit spectral head solution for the first order
perturbation flow equation. The mean head H is assumed to be a known constant parameter
(gravity drainage). The variance and covariance of the head are obtained from an inverse
Fourier transform of the spectral density, which can be computed numerically (see section 4.4).
The spectral density is related to the spectral representation through (4-22c). Hence the
remaining step in the derivation of the head variance-covariance function is to take the expected

value of the products of dZ,. and its conjugate complex dZ,.*:

k; (Sg + 2HTS, + HT'S)

@-27)
(k12+k22)2 + szzz

S, = <dZ dZ, > =

Although not explicitly stated (for reasons of brevity) S,, and all following spectral density
functions S, are functions of k. Also for simplicity of notation, the * are dropped from the
subscripts to the spectral density S and the covariance function C. S; and S, are the Fourier
transforms of the covariance functions C;and C,, respectively, and can be obtained analytically
for some covariance functions (Bakr, 1978; Mizell, 1981). The cross-spectral density S,
depends on the desired cross-correlation between (x) and a’(x+E). A more general treatise
on generating cross-correlated random fields can be found in Robin et al. (1993).

When C,/0?, = Cz/0% i.e., the correlation functions of a’ and f are identical, a’ and

{* are related through the following relationship:
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a’ =T (pt +y1p? w') (4-28)
where § = 0/g;, p is the local correlation between f°(x) and a’(x), and w’(x) is a random

process uncorrelated to £°(x) but with the same covariance function. Then it is easily seen by

inspection that

dZ,, = ¢ ( pdZ, + {1-p%dZ ) (4-29)

From this it follows immediately that

S =C%S
= & (4-30)
S: = CpSg
and the head spectral density function simplifies to:
k2
2
Si = ———a——y (1 + 2pLHT + GHIP) S, (4-31)
ki + k)" + Tk,
The cross-spectral densities between f and h’ and between a’ and h’ are:
S; + HI'S
Sp =< dZ; dZ, > = (-Tky +ik, (k' + k) Ga o) _ (4-32)
(k' + k) + Tk;)
S, + HI'S
Sy = <dZ)dZ, > = (k] + ik, (F + kD) ok TS (g gy

(k12 + ky)? + r%k;)

If the correlation functions of a’ and f* are identical, definition (4-29) is used to replace S,, and

S, = Sy, in (4-32) and (4-33), and to write S,,:

2
s = 5P *GHL ¢

(4-34)
® 71 +CpHr ©

Note that Sp,* = Sy, and S, * = S,, which can be seen by inspection of (4-24). Since the cross-
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spectral densities Sy, and S, are even in the real parts, but odd in the quadrature spectra with
respect to k;, the resulting cross-covariances are symmetric in the direction normal to the mean
flow x,, but asymmetric in the direction parallel to mean flow x, i.e., Cy, #» C;and C, = C,!

All the necessary moments to determine the parameters of the multivariate Gaussian
probability density function of the matric potential h are now defined. These analytical

relationships are strictly valid only for small perturbations with 02, << 1 and &2, <<1.

43.2 Unsaturated Hydraulic Conductivity

Recall the first order perturbation approximation of the logarithms of unsaturated
hydraulic conductivity given in (4-15). Taking the expectation of (4-15) the equation for the
1st order mean unsaturated hydraulic conductivity Y is:

Y =F+Hl (4-35)
Subtracting (4-35) from (4-15), the perturbation y’ of the unsaturated hydraulic conductivity
becomes:
y/ =f +Th’ + HTa’ (4-36)
Again the spectral representations of f’, a’, and h’ (4-21) are used to obtain a spectral
representation of y’:
dZ, = dZ, + T'dZ, + H['dZ,, 4-37)

Then the spectral density of y’, S,, is the expectation of the product of dZ,. with its complex

conjugate:
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S, =Sg + %S, + (HT)’S, + 2HTS,
vy & h £ (@-38)
+T(Sy +Sg) +THT(S, + S.)

where * indicates complex conjugate. When C, = £ C; relationships (4-29) and (4-30) are

applied to obtain the spectral density S, in terms of Sg:

2
-k, I?
S, =1+ ks (1 + 2pTHT + THI)) S, (4-39)
ki + k) + T%,
Similarly, the cross-spectral density S; is
Sy = Sg + TS, + HTS, (4-40)

As with the cross-spectral densities S, and S,, , S; and hence C; are nonsymmetric functions
and care must be taken to apply the correct definition of the lag (4-24), when using these cross-

covariance functions.

43.3 Pore Velocity

Pore velocity is defined by dividing the Darcy flux (4-2) with the soil water content 8:

_ -K(h) ah +x))

(4-41)
2 2] ox,

Using the first order approximation of K(h) given in (4-15), assuming that the mean head is the
same everywhere (gravity drainage), and expanding esp(y’) into a first order Taylor series

similar to that of esp(a’) in (4-13), the velocity components are approximated by:
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m

K, Nt
i 5 Q+yYi

(4-42)

- Km ! o/
v, = 5 Q+y)Q@A+ij)

where K, = esp(Y) and j,” = 6h’/3x,’. The expected value of (4-42) gives the stationary first

order mean velocity components:

Vl =<V> =
X (4-43)
V,=<v>=__2
2 2 )

Subtracting the expressions in (4-43) from the stochastic representation of the velocity v in (4-

42), first order, zero mean velocity perturbations are obtained:

X_ .
v, = 5 it

(4-44)

_K .
vy ==’ )

By simple inspection, and noting that dZ;, = ik, dZ, it is seen that the corresponding spectral

representations of the velocity components are

K
4z, = 2= (ikdz,)

(4-45)

4z, = —= 4z, + HTdZ,, + € + i)iZ,)

V2

Recall that S, ,, = <dZ,,* dZ,,> and S, ,, = <dZ,* dZ,>. Then the Fourier transforms of the

velocity covariance functions are:
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Ka . s
vy = ? kl Sbh
K. (4-46)
Sv:v: = —92— [SE + (HF)Z Sn + (]'."2 + kzz) Shh + ZHFS&

+ (T + ik) (S, + HTS,) + (T - ik, (S, + HTS,)]

In the special case C,, = §? Cg, (4-29) and (4-30) are used to obtain the spectral densities of

the velocity components in terms of S:

K> 'k}
Vvt T =3 > > - (1 + 2pTHT+ +THI)?) Se
6 &k + k) + Ik,
(4-47)
K 2 k2 I—q k‘,z k2 2
S = — |1 - v k) v ik (1 + 2pTHT+ +GHTY) S,

Other cross-spectral density functions involving the velocity are computed equivalently.

44 Obtaining 2-D (Cross-)Covariance Functions from (Cross-) Spectral Density

Functions by Inverse Fast Fourier Transforms

The (cross-) covariance function C,(E) = <X,(x) X (x+E)> and the (cross-) spectral density
function S_(K) as used in this and previous chapters are defined by the Fourier transform pair

(3-4) and (3-5) in chapter 3:

C, () = ]’} ¢t S_(K) dk (3-4)
S, ) = 2%” ¢S C_(K) d& (3-5)

The inverse Fourier transforms (3-4) of the (cross-) spectral density functions derived in the
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previous sections are implemented numerically since a rigorous analytical evaluation of the
double Fourier integrals is very difficult if not impossible. In the past, spectral density
functions derived for saturated flow and for unsaturated flow with constant a or normally
distributed o have either been evaluated for £=0 only (Yeh et al., 1985a,b), by numerical
integration (Yeh et al., 1985a,b; Russo, 1993a), or analytically for a specific class of S (Bakr
et al,, 1978; Mizell, 1981). Russo (1993a) used the spectral densities of the head h’ and its
gradient j,’ and the cross-spectral densities involving f°, a’, b’, and j,” given by Yeh et al.
(1985b). The respective (cross-)covariances are evaluated numerically, and the covariance
functions of y’, v\’, and v,’ are derived as functions (superpositions) of these numerically
evaluated covariance and cross-covariances. The superposition of several numerically evaluated
covariance and cross-covariance functions to obtain the unsaturated hydraulic conductivity and
velocity covariances is very error prone, particularly for C,,,, the covariance of the velocity
component parallei to mean flow. If the numerical evaluation of the inverse Fourier transforms
of the expressions in Yeh et al. (1985b) is not implemented with great accuracy, the additive
errors resulting in the numerically obtained (cross-) covariances from which C,, , is computed
may become considerable. In contrast, the spectral density S,,, derived here (4-46) is exact
in the first order sense, and only one Fourier integral needs to be evaluated.

Unlike in the above mentioned studies, advantage is taken of a numerical technique
called (inverse) "fast Fourier transform” (FFT), which has already been encountered in the
previous chapter on random field generators. FFT algorithms were introduced five decades ago
(Press et al., 1992). The development of their fundamental theoretical framework and various
techniques for their implementation have since evolved into a field of science itself (Brigham,
1988). FFT algorithms are readily available for many computer platforms and programming
languages (also see chapter 3.5). The FFT algorithm is SCFT2 provided by the Engineering
and Scientific Solutions Library (ESSL) (IBM, 1993) that is part of the Fortran compiler for
the IBM RS/6000 workstations.
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As with all FFT algorithms, the SCFT2 algorithm is defined in terms of the spatial

frequency u instead of the spectral wave-number k, where

k = 2ru (4-48)

Introducing a new variable §Pq(u) = (2)? S, (2wu), substituting k with u, and noting that in two
dimensions dk = (2)? du, the Fourier transform pair (3-4) and (3-5) becomes (compare to (3-8)

and (3-9):

o @

Su®) = [ [P C @)t (4-49)

w0

C.®) =~ f J—eiz’"ﬁ §m(u) du (4-50)

In the numerical Fourier transform the continuous function under the integral is evaluated at a
finite number of discrete arguments i.e., the integral is discretized into a sum, and truncated at
sufficiently large positive and negative limits of the summation variable. The discretization and
the truncation involve numerical errors, as will be seen later. The covariance function is
discretized into a regular two-dimensional grid with an equal number of gridpoints in each

direction:

E_=nAg n=-M,M-1 (4-51)

Similarly, the spectral density function is discretized on a regular two-dimensional grid with an

equal number of grid-points in each direction:

u_ = mAu = —M,M-l (4-52)

m

The spacing of the frequencies Au is a function of the total length of the spatial grid 2MAXx,
since the lowest possible frequency (the frequency with the longest possible wavelength) in the

discretized domain has a length equal to the side-length of the spatial domain (see chapter 3.2):
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= 1 -
Au T (4-53)

Similarly the highest possible frequency or Nyquist frequency is the reciprocal of twice the
spatial discretization:

_ 1
uM-—Z-KE—

(4-54)
To obtain the covariance function, a spatial discretization AE must be defined a priori. The
gridpoints are then specified by

- m -
“a = ShAT (4-53)

and since the spectral density functions in section (3.3) are defined in terms of k:
- _Zm (4-56)
" 2MAE
Most numerical FFTs pack the arrays for C,, and S not from -M to M-1, but from 0 to 2M-1
such that the values from -M to -1 are packed into the area M to 2M-1. In other words, for the
purpose of the FFT §Pq is packed as follows:
§N(ZM-m,,2M-mz) = §m(-ml,-m2) 1<m,m,<M
§N(ml,2M-m2) = §Pq(ml,-m2) l1<mym, <M
§pq(2M-ml,mz) = §Pq(-m1,mz) 1<m,m, <M (4-57)
and equivalently C,:
Co(@M-ny,2M-n)) = C(-ny,-n,) 1 < np,n, <M
Cu(n,2M-ny) = C (/) 1< npn, <M
C(CM-n;,ny)) = C (-nny) 1<, <M (4-58)
The reasons for the packing order are explained, for example, in Brigham (1988).

Now the approximate inverse Fourier transform of S(K) can be obtained by replacing
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the integrals in (4-49) by a double summation, expanding §Pq(u) in terms of S_(K) and replacing

du by Au:
C,(n,Ax;,;n,Ax) =
2M-1 2M-1 ;5 i2n (4-39)
E}:w’”*“‘m‘”’“= ZJtm 27;m22n.2n
12
m,=0 m,=0 Ml 2MAx, 2MAx, 2MAx;, 2MAx,
which is the definition of the Fourier transform SCFT2 in ESSL:
y(apn,) =
-1 12-1 L (4-60)
scale ), Y x(mom)e T e 7T o
m,=0 m,=0
where
y(a,n;) = Coo(ny,ny)
x(my,my) = S, (2nm,/(2MAX, ),21tm,/(2MAX,))
scale = (2r)%/(4M?Ax,Ax,) 11 =12 =2M isign = -1

From (4-51) and (4-52) it is seen that the discretization in the spatial domain determines the
truncation in the frequency domain, while the truncation in the spatial domain determines the
discretization in the frequency domain. Truncation and discretization error are therefore
inseparable since both need to be avoided in both domains if the FFT is to be an accurate
estimate of the Fourier integral (4-49) (see e.g. Robin et al., 1993). A discretization in the
spatial domain such that A, = 10€ and M=100 A, gives a sufficiently accurate estimate of (4-49).
Discretizing § such that A; = 20§ and M=100 A; or A; = 10E and M=200 A, does not
significantly change the results. Pseudo-analytical solutions of the covariance and cross-
covariance functions obtained after a numerical FFT of the analytical spectral density functions

given in this chapter are shown in subsequent chapters 6 and 8.
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5. MMOC2 - A NUMERICAL MODEL
FOR WATER FLOW AND TRANSPORT
IN VARIABLY SATURATED POROUS MEDIA

For the numerical simulation of flow and transport through a vertical cross-section of
a heterogeneous soil, the combined flow and transport model described by Yeh et al. (1993)
(henceforth referred to as "MMOC?2") is used and modified for the purposes of this study. This
chapter summarizes the main features of MMOC2 and the conceptual changes from the
description in Yeh et al. (1993). For the details of MMOC2 the reader is referred to the
original publication.

The numerical flow model solves the governing equation for two-dimensional flow in
porous media, and handles saturated as well as unsaturated or partially saturated flow (Neuman,

1973):

5
23

Kij(h,x)%(h +x2)] = (C(h,x)+ﬁsS,(x))%1:- -q, (5-1)

where i,j = 1,2. X, and x, are the horizontal and vertical spatial coordinates, respectively, with
X, pointing upward (see notation in previous chapters). K;(h) is the hydraulic conductivity
tensor, which reduces to an isotropic, spatially variable, single parameter K(h,x) for all purposes
of this study i.e., only locally isotropic phenomena are investigated. K(h,x) is a function of the
soil matric potential only under unsaturated conditions (see chapter 4) and it equals the saturated
hydraulic conductivity K (x) under saturated conditions. B, is an index for saturation and is 0
under unsaturated conditions (h < 0) and 1 for saturated conditions h = 0. C(h,x) is the soil
water capacity function and S,(x) is the specific storage capacity of the saturated soil. The
numerical solution of the flow equation - transient or steady-state (3h/6t=0) - is achieved

through the Galerkin finite-element technique (FE) using triangular or rectangular elements.
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For this study, only rectangular elements are used, over which bilinear shape-functions are
defined. The nonlinear equations can be solved either by the Picard or by the Newton-Raphson
technique. For the purpose of this study the Newton-Raphson method is chosen since it gives
satisfactory results at high computational efficiency. The Picard scheme is not used in any
applications of this study. The resulting linear matrix equation is solved through an incomplete
LU-decomposition of the coefficient matrix as a preconditioner to the conjugate gradient
method. Automatic time stepping is implemented for a more efficient handling of transient
infiltration processes.

After the matric potential is found by solving (5-1), MMOC2 also solves Darcy’s
equation (4-2) by a Galerkin finite element method using the same bilinear shape functions as
for the solution of the flow equation (5-1). The FE solution of Darcy’s equation guarantees a
continuous flux field q(x) throughout the domain, which is advantageous when solving the
transport equation.

Transport of solutes through porous media is governed by the advection-dispersion

equation:

d dc dc dc
—_{D..—) - q.— - ARc = R - 5-2
ax.( 4 axj) % X, at -2

for i,j=1,2. D; is the local dispersion tensor computed as a function of the local flux q(x) =

(ai(x) q;(x))*:

D; = (o - a.r)% +a.qd; + D, (5-3)

a is the longitudinal dispersivity and o is the transverse dispersivity. §;=1 for i=j, §;=0
otherwise, is the Kronecker delta. D, is the apparent molecular diffusion. A is a non-selective,
first-order decay rate constant. R is the retardation coefficient and is related to the equilibrium

sorption coefficient K, by:
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R =(1 +p,K) (54)

The modified version of MMOC?2 used for this study solves equation (5-2) by applying a one-
step reverse particle tracking method to solve the advective part of (5-2) and a Galerkin finite
element method to solve the dispersive transport (Neuman, 1984). The transport model
described by Yeh et al. (1993) includes terms for kinetic adsorption and desorption processes,
which have been omitted frorp this model version, since such processes have not been
investigated in this study. Notice that in (5-4) a non-selective decay term has been added to
the transport equation, not originally contained in the model by Yeh et. al (1993). The decay
and the sorption partitioning terms are part of the advective transport formulation solved
numerically by the particle tracking method described in Yeh et al. (1993).

This version of MMOC2 also changes an option affecting the particle tracking near
boundaries: Unlike described by Yeh et al. (1993) the backward particle tracking algorithm
assumes that particles at no-flow boundaries are not reflected back into the domain, since the
applications in this study never use a no-flow boundary specifically to simulate a symmetry
boundary. Only under the symmetry-assumption is a reflection of particles at no-flow
boundaries justified. Finally, for reasons of both accuracy and efficiency, the time-step in the
transport simulation is selected such that the displacement AX =| vAt| of each particle per time-
step is at the most the distance between two nodes Ax, i.e. the Courant number AX/Ax is always
smaller than 1. |

The model has been tested for a wide range of boundary and initial conditions by Yeh
et al. (1993). Local dispersion in all applications of this study is presumed to be on the order
of 1/10 to 1/100 of the element-length. Such a small dispersion is sufficiently well reproduced
by simply relying on numerical dispersion and setting the inbut dispersion coefficient to zero.
Calculation of the dispersive terms in equation (5-2) is computationally very expensive.

Solving the advective transport equation only, and using numerical dispersion in lieu of solving
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the dispersion equation in (5-2), saves a considerable amount of computation time in Monte
Carlo simulations. However, the exact amount of numerical dispersion varies both with velocity
and from location to location and cannot be exactly quantified. While local dispersion plays

‘an important role in spreading an initially small contamination plume, the macrodispersion or
overall spreading of the contamination plume in most of this study’s applications is several
orders of magnitudes larger than the spreading due to numerical dispersion or otherwise
specified local dispersion. The spreading of a plume in heterogeneous media is predominantly
controlled by the heterogeneities in the soil. Hence, while the existence of local dispersion is
important, its exact amount is relatively insignificant if it has an upper bound that is comparable
to the actual local dispersion desired. Figure 5.1 shows an application of MMOC2 to a
hypothetical contamination problem in a heterogeneous soil. The finite elements are squares
with a side-length of 10 cm. The first simulation omitted the computation of the dispersive
portion in equation (5-2). In the other simulations shown, the local dispersivities were assumed
to be isotropic. Simulations with dispersivities of 0.001 cm, 0.01 cm, 0.1 cm, and 1 cm were
implemented, and it is obvious that only local dispersivities of 0.1 cm or 1/100 of the element-
length and larger disperse the plume stronger than numerical dispersion alone. From several
such experiments it is found that the empirical, numerical dispersivity in simulations of
transport through heterogeneous soils is on the order of 1/10 to 1/100 of the element size. In
most applications in this study the element size varies between 10 cm and 30 cm. Hence, the
numerical dispersion is equivalent to a local dispersivity on the order of 1 mm to 1 cm, which

is realistic for many soils. This justifies the use of particle tracking alone to solve (5-2).
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6. GRID DESIGN AND ACCURACY IN NUMERICAL SIMULATIONS
OF VARIABLY SATURATED FLOW IN RANDOM MEDIA:
REVIEW AND NUMERICAL ANALYSIS

6.1 Introduction

Most numerical stochastic models are based either on the Monte Carlo technique or on

single large realizations. The numerical stochastic models technically consists of three major

parts or modules:

1)

2))

3)

Random fields are generated to represent realizations of the stochastic input variables
(random field variables, RFV, see section 2.5.1 and chapter 3) such as the saturated
hydraulic conductivity.

Using the random field(s) as input, a standard finite difference or finite element model
(or any other numerical technique) is applied to solve the flow equation
deterministically ie., to compute the dependent variables (head and flux) at each
location in space and time - the latter only for transient simulations (see chapter 5).
Step 1 and 2 may be repeated several times to obtain a sample of realizations that will
be large enough to represent the ensemble with only a small statistical error (Monte
Carlo simulation). By invoking the ergodicity assumption (chapter 2) a single large
simulation is sometimes used by itself to represent the ensemble (Ababou, 1988; Russo,
1991).

The last step of a stochastic simulation will be to employ statisti.ml analysis on the
deterministic results i.e., to find, for example, the histogram, mean, variance, and

covariance of the resulting random fields of output variables (see e.g. chapter 3.4).

A number of design criteria have to be considered to assure that the Monte Carlo analysis will

be accurate when analyzing unsaturated flow in heterogeneous media (numerical stochastic

SR AR WYt

4 K2 TV e B T 0% - et vl
E R LA Sy Mk ot eyl o L M B P L UM .0 e S DN A O ) SISO 0 4 S SR QAR i MR Yy-£ S S LN S s Oy M



133
approach). Discretization of the numerical grid and the time stepping have long been
recognized as an important input parameter to assure the accuracy of numerical models for
unsaturated flow in homogeneous media (Fletcher, 1988). The grid design of Monte Carlo
simulations must in addition assure results that are also accurate in the stochastic sense. The
working hypothesis that will be tested in this chapter is that the grid design for Monte Carlo
simulations (which are evaluated for their statistical information content) is different from that
required for deterministic simulations (which are evaluated for their absolute information
content). In this chapter, grid design.criteria for the stochastic simulation of unsaturated flow
are developed based on the empirical statistical analysis of single large simulations for which
the ergodicity assumption can be invoked.

From the perspective of the numerical modeler the deterministic approach is merely a
special case of the stochastic approach. As shown above, the deterministic method is embedded
in the stochastic approach as one of three major modules. Hence, the list of important design
parameters includes several critical elements that are unique to the stochastic approach:

module 1: The simulated random fields have to converge in mean square to the desired
moment and statistical distribution specifications. This restricts the choice of the minimum
relative correlation length A’ = A/b ( A: vector of directional correlation lengths; vectors are
indicated by lower boldface letters; b: vector of the length of a block in each dimension; a
block is a discrete, homogeneous unit within the heterogeneous domain). When using SRFFT
or TB type random field generators the convergence requirement will in general impose certain
limits on the minimum relative size of the random field d’ = d/A (d: length vector of the
domain size e.g., depth and width of a vertical 2-D simulation domain). The generated random
field should be free of any artificially introduced patterns such as the line-patterns resulting
from some versions of the turning bands random field generator (see chapter 3.4)(Gutjahr, 1989;
Tompson et al., 1989).

module 2: The general formulation of the finite difference or finite element solution
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algorithm, the element size Ax, and the time-stepping At must be chosen to assure stability,
consistency, and convergence of the solution. Since the unsaturated flow problem is nonlinear,
special demands are placed on the element size Ax and the dimensionless size of the random
blocks b/Ax in the simulated domain. These criteria are distinctly different from criteria used
to model saturated flow, as discussed below. In transient simulations of unsaturated flow, the
time-step At must also be chosen with care.

module 3: For the stochastic analysis, effects from deterministic boundary conditions,
the stationarity and ergodicity of the simulation, and the degree of resolution of the
heterogenous field have to be taken into account. The limits imposed by these requirements
are often mutually dependent because computing resources are limited. The relative correlation
length M’ = A/b, for example, is a measure of the resolution of the heterogeneous field: the
larger A\’, the finer the structure of the random field i.e., more of the true variance of the
continuous random field variable will be captured by the simulation. However, the total size
of the random field domain must also be large with respect to the correlation length to assure
that the spectrally generated random fields accurately represent the desired moments (SRFFT
method, chapter 3), to minimize boundary effects, and to meet the requirements of the
ergodicity assumption in a single large realization (see chapters 2 and 3). Given a maximum
domain size d/Ax (dictated by the limits of the computer), an optimal compromise choice for
the two parameters d/A, A/b, and b/Ax has to be found.

While stochastic numerical models are increasingly applied to analyze the effects of
heterogeneities in the unsaturated zone, there is little guidance in the literature regarding the
design of the numerical grid used for such simulations. Commonly, vertical discretization is
chosen on the order of a few centimeter, while horizontal discretization maybe on the order
of several tens of centimeters. Also, few analytical or empirical results are available for
determining a meaningful relative correlation length A’. The smallest perturbation resolved by

any numerical grid has a wavelength twice the element-size (see chapter 3). Thus, the statistical
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resolution requirement that b << A. The resolution A’ is commonly chosen to be between two
and five (e.g. Ababou, 1988; Hopmans, 1989; Russo, 1991).

While such design criteria have been applied to stochastic simulations of unsaturated
flow, most have originally been developed for solving the saturated flow equation. The
immediate application of these criteria to also solve Richards equation (4-1) seems not
warranted without a closer examination of the difficulties that may arise from the nonlinear
character of Richards equation. The purpose of this chapter is to closely examine some of the
most important numerical design criteria mentioned. Two-dimensional, heterogeneous,
unsaturated steady state flow in a single, large vertical flow domain is simulated i.e., the
stationarity and ergodicity assumptions are invoked (see also Ababou, 1988; Russo, 1991).
The difficulties encountered in deriving analytical solutions limit closed form stochastic analyses
to first or second order approximations (Yeh et al., 1985a,b; Ababou, 1988; this work, chapter
4). This limitation renders most analytical solutions unsuitable for comparison with numerical
simulations in highly disordered media. For the same reasons, it is also difficult to develop
exact modeling criteria based on a rigorous truncation and error analysis of the nonlinear
numerical model.

A common way to empirically establish certain grid design criteria, is to vary the grid
parameters and to compare the results among themselves (Hopmans et al., 1988) and possibly
with analytical solutions, if these are available. The obvious drawback of the method is that
the criteria may only apply to a particular situation. My hope, however, is that the following
examples will establish some general guidelines regarding the design of stochastic computer
simulations. Numerical experiments are implemented to analyze the sensitivity of stochastic
solutions with respect to:

* the absolute length of the grid-elements Ax

* the number b’ = b/Ax of elements within each homogeneous block

the size A’ = Nb of each block relative to the correlation length of the
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stochastic input variables
the size &’ = d/A of the simulation domain relative to the correlation length of
the stochastic input variables
Known limitations on grid-design are summarized in section 6.2. The details of the simulations
are given in section 6.3. Results are discussed in section 6.4. Analytical solutions developed
in chapter 4 will be used to verify the numerical solutions. A comparison with simulations by

other authors is made in section 6.5. A summary is given in section 6.6.

6.2 Review of Some Theoretical Considerations Regarding Numerical Accuracy

6.2.1 Grid Size

Well known criteria to assure accurate and stable solutions are only available for
determining the maximum element-size and the time-step in some deterministic FD or FE
methods (Fletcher, 1988). Ababou (1988) derived a grid discretization or Peclet number based
on an error and truncation analysis of the particular finite difference model he developed for
the simulation of unsaturated, transient flow. For vertical flow in a soil described by Gardner’s
model for K(h), the grid Peclet number was found to be:

adx, < 2 (6-1)
If this or other similar criteria are strictly applied to the simulation of flow in heterogeneous
soils, the largest possible value of a in the random field dictates the discretization in space.
Similar arguments can be made for the discretization in time. Since a is commonly on the
order of 10? to 10* cm™, vertical discretization in an unsaturated heterogeneous flow model is
often chosen to be between 2 cm and 10 cm (Ababou, 1988; Hopmans et al., 1988; Unlii et al.,
1990; Russo, 1991). For horizontal grid lengths Ax,, Hopmans et al. (1988) found little
difference in the stochastic results of two sets' of Monte Carlo simulations with Ax, = 12.5 cm

and Ax, = 25 cm, respectively. Other authors chose similar horizontal grid-lengths without
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further specifying the reasons for their choice. The vertical grid discretization in Hopmans et
al. (1988) is determined by reducing Ax, systematically until no change is observed in the
results.

However, the numerical errors resuiting from any particular choice of finite difference
or finite element method are only one of a number of possible error sources in the stochastic
simulation. An important limitation arises from the discrete, finite representation of continuous
RFVs. The finite number of nodes or elements from which the statistical output moments are
computed in a numerical simulation (single realization or Monte Carlo) introduce significant
error in the sample statistics (see chapter 8). Therefore, if only a small number of elements will
violate the discretization constraints imposed for purely numerical reasons, the statistical results
should not be altered significantly. This would allow to weaken the Peclet constraint (6-1)
imposed on the grid-design, which is otherwise determined by the largest o value in the random
field. Depending on the input parameters, the weakened constraint may allow a considerably
larger grid-size than a strict application of (6-1), particularly if « or - for that matter - any pore-
size distribution parameter is distributed log-normal, as found in field applications (e.g.

Wierenga et al., 1991; White and Sully, 1992).

6.2.2 Block Subdiscretization

Block subdiscretization is a technique applied specifically to nonlinear problems. For
the purpose of this study, blocks are defined as the largest homogeneous, discrete units in a
random field to distinguish them from the elements in a finite element or finite difference grid.
A block is either equivalent to an element or it is subdivided into several elements. The
technique of subdividing a (homogeneous) block into several elements is often used for the one-
dimensional simulation of infiltration into vertical soil columns consisting of several (random

or deterministic) layers of material with different physical properties (e.g. Hern and Melancon,
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1986; Yeh and Harvey, 1990). Each layer is modeied by a small stack of cells or elements
to accurately capture the non-linear behavior of the matric potential within each layer (Figure
6.1). Examples of using block subdiscretization in a two-dimensional, layered problem are
found in Hopmans et al. (1988). Subdiscretization has not been applied to multidimensional
heterogeneous fields, where the physical parameters vary in both the horizontal and vertical
directions. There, the common modeling rule is not to subdiscretize - in other words: each
block is associated with one element (e.g.: Ababou, 1988; Unlii et al., 1990; Russo, 1991).
Figure 6.1 shows a typical matric potential distribution in layered media. Layers of
coarse material exhibit a small fringe at the bottom, within which the matric potential changes
drastically, while the head in layers of fine material changes only gradually. The thickness of
the fringe is mainly determined by the slope of the unsaturated hydraulic conductivity function.
Assuming Gardner’s hydraulic conductivity model (4-8), the slope of the hydraulic conductivity
curve is characterized by o (Yeh and Harvey, 1990). The thickness of the fringe Ar is
approximately of the order 1/a. (White and Sully, 1992). Hence, for large a, which is
characteristic for coarse textured soils, the fringe is much thinner than for small a, which is
characteristic for fine textured soils.
If n elements are chosen to be required within the hypothetical thickness of a fully
developed fringe Ar =~ 1/a, then:
Ar=n Ax=1/a thus: «aAx = 1/n (6-2)
This simple heuristic criterion is slightly more stringent than the one inferred from the stability
analysis by Ababou (1988, p.423; also see (6-1)) and depends on the number n chosen. In
applications with correlation lengths much larger than 1/a it may be appropriate to discretize
heterogeneity on a scale larger than that required for Ax. In those cases a discretization of
blocks (which represent the scale of heterogeneity) into several elements may seem justified.
However, in the same case random fields can also be generated with a discretization equal to

the required element size and several tens of elements per correlation length. No
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subdiscretization is needed if the typical block-length b (usually 15%-20% of the correlation
length) satisfies the condition ab =~ 1/n. Numerical examples are used to analyze the effect of

subdiscretization.

6.23 Correlation Length

Each block in the simulation domain represents a finite, homogeneous portion of the
total domain, within which smaller scale variability is neglected. In geostatistics, these blocks
are referred to as "support”. Although the term *support’ is closely related to the measurement
of certain data (%timati_on problem), it is here also used as term for the homogeneous blocks
in a simulated random field (simulation problem).

In geostatistics it is well-known that the choice of the (measurement) support is crucial
to the evaluation of the statistical properties of a RFV e.g., the mean and covariance, because
statistical properties are strongly related to the size and shape of the support. Similarly, the size
and shape of the simulation support (blocks) has significant impact on the statistical results of
the simulation e.g., the mean and covariance of the matric potential h. The simulation should
be designed such that the numerical model captures both the spatial variability of K| and «
(input) and the spatial variability of h and q (output) with sufficient accuracy. A compromise
must be found between representing the natural spatial variability with sufficient accuracy and
keeping the computing cost at a minimum.

Geostatistical methods provide simple analytical tools to determine how close the spatial
variability of the block values is to the total spatial variability of all the points in a real soil
profile. Block values are assumed to be the arithmetic average of all point values within a
block. D.G. Krige derived a fundamental relationship that relates the variability of such block
values e.g., within a soil profile (the domain of interest), with the variability of all the points

within the same soil profile (Journel and Huijbregts, 1978):
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o (p/d) = & (p/b) + o (b/d) (6-3)
where o (p/d) is the total variance (of the point values) within the domain, o® (p/b) is the
variance of the point values within the block, and o® (b/d) is the variance of the block values
within the domain. In applications to subsurface flow problems the arithmetic average, used
to derive (6-3), rarely gives an accurate estimate of "effective” values of conductivity on the
block scale (Yeh et al.,, 19853,b; Gomez-Hermandez, 1991; Desbarats, 1992). The linear
geostatistical approach is used here only as an approximation to illustrate the importance of
sufficiently resolving heterogeneities. Journel and Huijbregts (1979) applied the variogram to
derive the relationship between 2nd order moments of the point random variable X and the
block-averaged random variable X,. In a second order stationary random field, the variogram
y is related to the covariance by:
1(E) = (0 - C(E) - . (6-4)
A random function that is regularized on thé support Q centered around the point x is defined
as:
%o = 12 [ o x() ay 65)
The variogram yq(b) of X, (x) is derived from the variogram y(p) of the point-values by
(Journel and Huijbregts (1979, p. 89)):
Ya(®) = Y(P) - ¥(P,$2) (6-6)
Note the similarity of this equation with equation (6-3). y(p,S2) is the mean variogram of all
points within each block (support) Q. It is equivalent to the difference between a point
variogram (the spatial variability of the point values) and a variogram based on block values
(spatial variability of the blocks). y(p,S?) is defined by auxiliary functions (see e.g. Journel and
Huijbregts, 1979). For rectangular blocks with sides 1 and L, the auxiliary function is of the

following form:
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F(L,1) can be evaluated using charts, numerical solutions, or analytical solutions (Zhang et al.,
1990). «, is a shape function. Equation (6-7) is used to determine how many blocks per
correlation lengths are needed to represent the point variability within a specified error. For
example, if the error should not be more than 10%, and assuming an exponential variogram,
then A/b = 15. A maximum difference between point and block variance of 5% is obtained
with a resolution of 30 blocks per correlation length, A/b = 30. On the other hand, a resolution
of A/b = 4 captures only about 70% of the total variance. In such situations considerable error
is expected in the estimation of the true variances of the output variables.

Applied to soil water flow, the problem is far more complex than illustrated here, since
the above approach (6-7) is based on Bayesian estimation theory, without direct involvement
of the physical problem. Also note that point variability is neither a measurable quantity nor
a quantity of much interest. It is the upscaling from the field scales.of interest to the scales of
a simulation that is of importance. The problem of upscaling data based on measurement
support to “"effective” parameters for the simulation support (blocks) has been discussed
elsewhere in the literature (e.g. Rubin and Gomez-Hernandez, 1990). But the simplified

analysis given here is helpful to illustrate the principle concern.

6.3 Numerical Simulation

63.1 Model Parameters, Initial and Boundary Conditions

Objectives for the numerical simulations here are: (1) model verification: to
investigate whether single large field numerical solutions that use a conservative grid-design are

comparable to analytical stochastic solutions. (2) grid-design study: to implement a sensitivity
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analysis by varying several design-related parameters and using field-site related values.

The simulations are based on Gardner’s exponential conductivity function (4-8) and the
assumption that a is lognormally distributed. In this chapter it is assumed that the RFVs logK|
and loga in Gardner’s model are perfectly correlated. Then, K, and a can be derived from
a single random field Z by:

X = exp(ux + Oy Z) (6-8)
Z is a N(0,1) normally distributed random process with zero mean, unit variance, and with an
exponential covariance structure (2-28) defined by the integral scale A. The correlation structure
is preserved by the transformation such that logX (log: natural logarithm) satisfies the same
correlation function as Z. X is the lognormal random process to be derived (X = K, o). pux
is the specified mean of the logarithm of the RFV X and oy the square root of the variance of
the logarithm of X. The mean of logK, (where K is in [cm/d]) and loga (a in [1/cm]) are
chosen to be 5.5 and -4, respectively. For the model verification the variances for logK, and
logo are 0.09 and 0.0009, respectively. For the grid desién analysis the variances of logK, and
loga are 4 and 0.25, respectively, which is representative of field conditions.

The random fields are generated using the spectral random field generator described in
chapter 3. For the purpose of the grid-design sensitivity analysis, which is based on single large
‘random field realizations, differences in the sample input moments from simulation to
simulation must be avoided. To achieve a better preservation of the specified moments, the
sample mean m, and the sample standard deviation s, are computed from the generated random
field Z,. Then the following transformation is applied to obtain Z in (6-8) from Z;

Z=(Z, -m,)/ s, (6-9)

The numerical solution of Richards equation, given the random field input of logK, and
loga, is obtained using MMOC?2 (chapter 5). All non-variable input parameters to the model
are listed in Table 6.1. The parameters are similar to those found for the field conditions at the

Las Cruces trench site (Wierenga et al., 1989, 1991). The finite element net in all simulations
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consists of 200 by 200 quadrilateral elements (rectangles or squares). The boundary conditions

are:
a. q; = - 10 [cm/d] at X, = max, i.e. constant flux at the top boundary
b. Ah/Ax, =0atx, =0and X, = max, ie. no flow across the vertical
boundaries
c. Ah / Ax, = 0 at x, = 0, i.e. unit hydraulic gradient across the bottom boundary.

X, and x, are the horizontal and vertical coordinates, respectively, x, increasing in upward
direction. The steady-state solutions to (4-1 b) are computed by solving the transient solution
of an initial value problem (4-1 a) at sufficiently large time. A direct numerical solution of the
steady-state Richards equation is not possible due to the heterogeneity of the parameters (see
also chapter 7). In addition, near static conditions may develop far from the true steady state

(Neuman, 1972).

63.2 Model Verification

The model verification consists of a single Monte Carlo realization with a small
rectangular element size Ax, = 5 [cm] and Ax, = 2 [cm], a correlation length A; = 50 [cm], A=
20 [cm], and block-size = 1 element. This problem configuration is in conservative agreement
with simulations presented by other authors (e.g. Ababou, 1988; Hopmans et al., 1988; Unli
etal,, 1990). To ensure that the perturbations of all RFVs are small, the variances of logK, and

loga are 0.09 and 0.0009, respectively.

633 Grid-Design Analysis

A number of parameters are varied in order to investigate the limits of numerical

stochastic models: The element-length Ax, the element shape Ax,/Ax,, the block-size b, the
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relative correlation length A/b, and consequently the relative domain size d/A. For the grid-
design study the variance of loga was chosen such that the maximum a does not exceed 0.2
[1/cm]. Strictly applying the grid-Peclet number (6-2) limits the grid-size to less than 10 cm.
In the experiments here the criterion is tested by varying the grid-size from 0.5 cm to 256 cm.
The block sizes chosen were 1 element, 2 by 2 elements, and 4 by 4 elements. The (relative)
correlation length A/b varied from the standard 4 and 5 block-lengths to 40 block-lengths.
Because the total size of the finite element grid was kept constant (200 by 200 elements), the
corresponding domain length varied from S0 A to only 5 A. A complete overview of the
various simulations is given in Figure 2. Note that up to three simulations are implemented
with different grid-size Ax at approximately equal correlation length A.

Most simulations are implemented with square blocks of 1 and 2 by 2 elements. The
simulations with 4 by 4 elements per block are limited to A = 5 and 10 block-lengths.
Rectangular elements are tested for A, = {2 [cm], 4[cm]} with A, = {2Ax,, 4AX,, 8Ax,} and
Ax; = 10 Ax;, Ax, = 10 Ax,,.

| All simulations use the same seed for the random field simulator. Simulations based
on the same number of blocks but different block-lengths b (i.e. different element-size Ax) have
an identical random structure. The length-scale of the random structure, however, is different.
Simulations based on the same number of blocks but different (relative) correlation length A/b
have similar pattern structures but each with the prescribed correlation length A. In addition,
a Monte Carlo simulation with 30 realizations is implemented with Ax, = Ax, = 4 [cm], A = 40

[cm], and block-size = 1 element.
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6.4 Results and Discussion

6.4.1 Random Field Generator

The random field generator is known to generate random fields free of numerical
artifacts if sufficient discretization of the spectral domain is chosen (see chapter 3). The
normalization of the generated random fields (6-9) further decreases the sampling error. The
realizations do not contain any obvious artificial structures. None of the random fields exhibit
any significant trends and all satisfy the stationarity and normality assumption. The directional
sample autocorrelation functions (Yevjevich, 1972) show in more detail the quality of the
random fields given various domain sizes for the grid design study (Figure 6.3). The sample
correlation functions compare very well with the exponential correlation function, if D/A = 20
(Figure 6.3c,d). For D/A < 10 the sample autocorrelation function deviates from the exponential
function and shows significantly shorter correlation lengths (Figure 6.3a,b). In this particular
realization the horizontal autocorrelation function is less affected by sampling bias than the
vertical sample autocorrelation function thus inducing a slight anisotropy. For D/A = 5 a
significant gap exists between the two curves (Figure 3a). The limitation of the SRFFT based
random field generator to large dimensionless domain-sizes (A’ = 10) was discussed in chapter

3.
64.2 Comparison with Analytical Solutions (Model Verification)

The simulation runs for the model \.'erification are evaluated with respect to the mean,
variance, and covariance, which are compared to analytically derived moments. In chapter 4,
the spectral density functions of the head, of the unsaturated hydraulic conductivity, and of the
flux components are derived. The mean of the unsaturated hydraulic conductivity and of the

flux components are also computed for given constant mean head. In the numerical simulation
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no head boundaries are specified, only the mean flux is known. An analytical first order
approximation of the mean head is obtained from the relationship for the mean unsaturated
hydraulic conductivity (4-35):

H=(-F)/T (6-10)
F is the mean of logK| and I the geometric mean of a. Y is the mean of the unsaturated log
conductivity, which can be written in terms of the mean vertical flux (4-43):
_ exp(Y) = K, = <q,> (6-11)

For mass continuity the mean vertical flux must be equal to the specified boundary flux (10
[cm/d]) across the top boundary since no flux occurs across the vertical boundaries. With F =
5.5 and I’ = 0.018 [1/cm], the analytical mean pressure head is -174.6 cm, which compares
excellently to the mean pressure head of -174.3 cm in the numerical simulation (Table 6.2).
The mean values of the other output RFVs are also essentially identical with the first order
analytical solution.

The analytical variances are computed from their respective spectral densities by a fast
Fourier transform. For the numerical evaluation of the Fourier transforms, spectral density
functions are calculated on a 10247 grid such that its transform, the covariance function has a
resolution of 11 points per correlation length A; and a size of 102.4 A; in each direction (see
chapter 4). The exponential input covariance function is also computed as a FFT of its
analytical spectral density function to assess the accuracy of the numerical Fourier transform.
The variance obtained for logK, through the FFT is 3% below the fully analytical equivalent,
which was specified to be 0.09. The accuracy does not improve significantly by increasing the
number of points per correlation length or by increasing the size of the FFT domain. Other
FFT-analytical solutions from the 1st order perturbation analysis for this verification case are
assumed to have a similar margin of accuracy.

Table 6.3 shows that the sample variance of logK| (from the random field generator)

is within 1% of the specified variance due to the normalization (6-9). The sample variances
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of logK and the vertical flux are 6% and 14% larger than their analytical variances,
respectively. In contrast the head and horizontal flux variances are by 4% and 9% lower,
respectively, than the analytically determined variances. Given the small error of the numerical
Fourier transform the remaining 5% to 10% variability in the sample variance must be
attributed to sample error. Recall that the 200 samples are not mutually independent and the
sample size must therefore be considered limited.

The horizontal and vertical sample autocorrelation functions are shown in Figure 6.4
together with the analytically derived autocorrelation functions. The autocorrelation function
is obtained from the covariance function by dividing the covariance with its variance. For short
separation distances (§” < 2, where &’ = &/Mogks) the sample correlation of logK, is in excellent
agreement with the analytical exponential correlation function. At larger &’ the sample
correlation in this realization is weaker than expected from the ensemble (analytical) correlation
function. This is due to the proportionally smaller sample size from which the correlation is
computed as the separation distance increases (Yevjevich, 1972). The smaller sample sizes are
associated with larger sampling errors.

A similarly good agreement at shorter separation distances is seen for the correlation
functions of the unsaturated hydraulic conductivity logK and the horizontal flux Qs In contrast,
the correlation functions of the head and the vertical flux are significantly different from the
ensemble correlation functions even at short lag distances. Since the size and discretization of
the FFT domain in the evaluation of the spectral density function is sufficiently accurate, the
difference between the ensemble and sample correlation functions must be attributed to sample
errors in the simulation. The error of the numerical results is likely due to the limited size of
the simulation domain. Both the horizontal and vertical head ensemble correlation functions
and the vertical ensemble correlation of v, have very long correlation lengths relative to the
total domain length. The total domain length both vertically and horizontally is 20 A,. The

vertical and horizontal correlation lengths of the head and the horizontal correlation length of
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g, are three to five times larger than for logK,. The domain length is therefore only about six
times the correlation length of the head. Since the deterministic flux boundaries increase the
variance of the head near the boundary (Rubin and Dagan, 1989) it is not surprising to see a
generally shorter correlation length in the sample correlation functions of the head and the
vertical velocity.

Apart from the effects of the limited domain size, the simulations are in excellent
agreement with the analytical solutions. The results confirm that the numerical model gives
sufficiently accurate solutions under a conservative grid-design. Inaccuracies stem from the
limited size of the sample domain given the relatively strong and far-reaching correlation of the

head and the vertical velocity.

6.4.3. Grid-Design Sensitivity Analysis
6.4.3.1 Effects on the 1st Moment (Mean)

The analysis focuses on the sensitivity of the head, flux, and unsaturated hydraulic
conductivity moments with respect to the various design parameters. Figure 6.5 depicts the
sample means of both the input and the output random fields as a function of a, A, o is given
as input parameter. A is directly obtained from the random field sample. This is done in an
attempt to minimize the impact of varying sample error (6.4.1) occurring due to different
relative domain lengths. The correlation length A of all stochastic variables is computed from
the sample covariance functions (Yevjevich, 1972) by iteratively solving the equation:

Cov(A) = o2 ¢ (6-12)
This definition of the correlation length A coincides with the definition of the integral scale if
the sample correlation satisfies an exponential correlation function.

The mean values for the input parameters are fairly constant. They show some sample

variation due to the different sizes of the random fields generated. Of the output parameters the
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horizontal mean flux <q,>, the vertical mean flux <q,>, and the mean of the unsaturated
hydraulic conductivity <logK> are constant and independent of the grid-size chosen if Ax <16
cm. The mean head varies significantly depending on the grid-design but also between Monte
Carlo runs of the same grid-design. For elements larger than 167 [cm?), all sample mean values
are decreasing. The only exception is <logK,>, the independent parameter, and <q,>, which
always is close to 0. In particular the mean vertical flux <q,> decreases significantly at large
element lengths although it shows very little sample variation at all for smaller elements. Since
the flux at the top boundary is specified as 10 [em/d] and no flux occurs across the vertical
boundaries, the decrease in the mean vertical flux rate is an indication of significant numerical
mass balance problems. For elements with Ax = 256 [cm] the decrease in mean vertical flux
is more than 20% of the specified flux rate at the top boundary. For the same element size, the
mean head decreases by 15 cm or 30% of the observed standard deviation.

The first order approximations of the head disagree even for small element sizes. The
first order mean head is 174.6 [cm] (see section 6.4.2), while the numerically obtained mean
heads range between 150 and 165 [cm] (based on computations with element lengths of 16 [cm]
and less). While the variance of the output RFVs (unsaturated hydraulic conductivity and head)
is relatively small, the large variance of the input parameters logK, and loga introduce
significant analytical error into the first order approximations of the mean head. This
demonstrates the limitations of the first order solutions derived in chapter 4 (see also chapter

8).

6.4.3.2 Variance and Covariance

HEAD: The normalized head variance o*2, as a function of a, and A; is computed in

a form similar to the one suggested by Yeh (1985b, eqn. 26a):
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o=t (6-13)

The normalized head variance for block-size b’ = 1 (b=Ax) is shown in Figure 6.6 together with
the analytical function obtained from an evaluation of the first order spectral density of the
head. The first order analytical approximation of the 2nd moments of the head and other output
parameters are computed assuming a mean head of 155 [cm], which is representative for the
mean heads of the numerical computations.

It is assumed that the numerical results for smail element size and large A/b are as
accurate in the high input variance case (grid-design analysis) as in the low input variance
simulation (model verification, Figure 6.4)). Although there are quantitative differences, the
empirical head sample variance follows a stochastic function similar to the analytical variance
function. Figure 6.6 shows that for small values of A the first order approximation
overestimates the normalized sample variance of the head, while it largely underestimates 0%,
for large A;. For block-size b’=1, the choice of the relative correlation length A’ = A/b has a
consistent influence on 0';: The larger A’ , the lower the normalized head variance. Doubling
A’ decreases the normalized variance of the head by approximately 10% with the only exception
being the case A/b=40. In other words, the higher resolution of the spatial variability in logK_
and loga leads to a slightly lower head variance relative to the variance of the independent
RFV logK,. It is interesting to note that unlike the mean head values the normalized head
variance does not seem to be significantly altered by large element sizes.

The simulations with block size 2*2el. (b’=2Ax) and 4*4el. (b'=4AX) give results very
similar to the single element block simulations (Figure 6.7) regarding the general shape of the
empirical variance function. However, here the relative com;.lation length A’ has the opposite
effect: The larger the resolution of perturbations (higher A’ ) the larger the normalized head

variance. For 2*2el. blocks the normalized head variance increases by 5% to 10% when
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doubling the relative correlation length. For 4*4el. blocks, the same increase in relative
correlation length causes a 30% to 40% increase in the normalized head variance. Since a
change in relative correlation length changes the number of random points generated (and hence
the sample size), it is not clear from these results whether the differences are statistically
significant and due to the change in A’ or due to the change in the relative block-size b’.

To assess the statistical significance of the results, a small Monte Carlo simulation is
implemented with b’=Ax , A’ = (10, 10) to investigate the variability of the sample statistics.
Figure 6.7 indicates the range of values in the normalized head variance for 90% of the 30
Monte Carlo samples. The large range of values for the mormalized head variance is the
combined effect of the variability in sample head, in sample correlation length A, and in sample
logkK, variance (see (6-13)). The smailest and largest non-normalized sample head variances
differ by a factor of 2. In the Monte Carlo simulation the input A is 40 [cm]. The sample A,
varies from 34 to 57 [cm]. The sample variance of logK,, o%, ranges from 3.6 to 4.5. The
range of sample mean head values obtained from each of the Monte Carlo runs is equivalent
to approximately 1/2 the head standard deviation. This shows that a single large field
simulation can only give rough estimates of the head variance. The range of the sample
moments is much larger even than the total range covered by the simulations with different
element-, block-, and correlation length. Hence, the differences for the various choices of
element size, relative correlation length A, and block size b’ observed for element-lengths not
exceeding 32 cm are statistically of limited significance. For a high level of accuracy, the
choice of the relative input correlation length will certainly have to be considered, but then a
single large field realization even with 40,000 elements is inadequate. A greater statistical
significance can only be achieved by evaluating a large number of Monte Carlo runs and by
comparing the results of entire Monte Carlo simulations rather than those of single large
realizations. This is beyond the scope of this chapter. However, the results for different

element size Ax but identical resolution A, and block-size b’ are directly comparable, since they



152
are based on the same set of random numbers.
For the (output) correlation length A, of the matric suction head the results are similar:
In general, log), is linearly proportional to log), (Figure 6.8). For large element sizes (large
Ao only insignificant deviations from a log-linear relationship are observed. Like ;% A, shows
a dependence on the choice of the relative (input) correlation length A’: As A’ increases from
5 to 40, A, decreases, independent of the block-size chosen. Comparing the correlation structure
for various block-sizes, it seems that the results are not sensitive to the block-discretization e.g.,
forb = Ax and A = 10b = 10Ax the head correlation is the same as for b = 2Ax and A = 5b
= 10Ax. The exact match is mere coincidence, given that the first simulation was based on a
random field of 40,000 numbers, while the latter simulation was based on a random sub-field
of only 10,000 numbers.

FLUX: The simulated normalized empirical flux variances o %

(6-14)

K, =exp(F)

are approximately 30% to 50% above the theoretical 1st order analytical results if ae< 1. The
differences between the numerical and the analytical results increase as aA; increases. The
normalized vertical flux variance deviates even qualitatively from the stochastic analytical
results at correlation lengths corresponding to element sizes Ax > 16 cm indicating large
numerical errors with discretizations in excess of much more than 16 cm. The increase in
vertical flux variance for the larger element sizes coincides with the decrease in the mean
vertical flux, further indicating that the vertical flux moments of all output moments are the
most sensitive to the element size. The actual (non-normalized) vertical flux variance (like the
vertical flux mean) is approximately constant for Ax < 16 cm (Figure 6.9).

The horizontal flux variance follows a similar stochastic form as the analytical solution
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over the range of all correlation lengths/element sizes. The sensitivity of the flux variances to
element-length Ax, block-size b’, and relative correlation length A’ is in general slightly smaller
than the sensitivity of the head variance to these parameters. Although not explicitly shown
in Figure 6.8, the normalized flux variance of both the vertical and the horizontal flux decreases
as the relative correlation length A’ increases. However, the range of variances obtained from
different random fields in the Monte Carlo simulation again indicates the weak statistical
significance of those results due to the sample error associated with one single large realization
when assessing uncertainty of unsaturated flow.

A plot of the vertical and horizontal correlation length Agq Vs. Ay reveals a very strong
correlation to the input correlation length over most of the range tested. Strong deviations from
a log-linear type correlation between Aq and As occur for Ax = 64 cm (Figure 6.10). Figure
6.11 shows the same results for the horizontal flux q,. Unlike Ag, the numerically determined
correlation léngth of the horizontal flux A slows rather than accelerates its growth relative to
A¢for A;> 100 cm. The analytically derived Aq and A, show a similar nonlinear dependence.

These results for the correlation length of the two flux components as an integrated
measure of the covariance function are rather independent of the block-size chosen. The block-
size itself has a small influence on the results. Given the range of possible outcomes of the
normalized flux variance from a small Monte Carlo simulation, both the influence of the block-
size and of the relative correlation length are almost negligible.

UNSATURATED K: A plot of the variance of logK against a A and a plot of the
correlation length of the unsaturated hydraulic conductivity against the input correlation length
of logKs reveals that the unsaturated hydraulic conductivity are little sensitive to the tested grid-
design options for Ax s 32 cm (Figure 6.12a-c). As for other statistical output parameters, the
variation of sample moments within a single Monte Carlo simulation exceeds the variations
observed due to different grid-design. Since the dependence of the logK moments on block size

and relative correlation length is much less than the uncertainty arising from the small sample
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size and hence from the variability in the sample moments there is little further insight these
simulations can shed.

As expected, a strong linear dependence exists between A, and A The shape of the
unsaturated variance function is similar to the vertical flux variance function. Note that the
vertical flux has a correlation length approximately equal to the input correlation length, while
the correlation length of the unsaturated hydraulic conductivity is only about half of A (Figure
6.12b,c). The analytically determined correlation lengths (1st order) are generally larger than
the numerical ones. Only at large A; > 32 cm both the horizontal and the vertical correlation

length of logK are above the analytical results and also deviate from the linear correlation with

Ap

6.4.3.3 Rectangular vs. Square Elements

To investigate the numerical effect of the ratio between the horizontal and vertical
length of an element, an anisotropic'field is simulated once with rectangular blocks consisting
of several square elements and once with rectangular blocks consisting of a single rectangular
element. Each block consists of only one row of elements in the vertical direction. The block-
side ratios b,/b, in the five cases examined are 2, 4, and 8. The relative correlation length A’
is 10 in both the vertical and horizontal directions. Table 6.3 compares several selected results
obtained with the square element solutions vs. the rectangular element solutions. For the block-
size ratios in these examples there is a remarkable agreement between both types of element
shape. The difference in output parameter variance is generally less than 5% of the respective
total variance. While the variance of the unsaturated log hydraulic cbnductivity is slightly
smaller for square elements than for rectangular elements, all other variances are slightly larger
for square elements than for rectangular elements. The differences in the correlation length are

on the order of 1%. The correlation length of the square elements is always slightly smaller
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than for rectangular elements. Overall no particularly strong bias.is found associated with

different element shapes.
6.5 Comparison with Other Heterogeneous Flow Simulation Studies

The general framework of the numerical experiments is similar to simulations reported
by Hopmans et al. (1989), Unlii et al.(1990), and Russo (1991). The grid-design analysis not
only allows the assessment of the effect of various design parameters but also sheds some
valuable insight into the stochastic analysis of flow in heterogeneous porous media. In the
following paragraphs the results from section 6.4 are compared with the Monte Carlo
simulation results obtained by the above authors.

Russo (1991) and Russo and Dagan (1991) (referred to here as R&D) simulate and
evaluate an infiltration event in heterogeneous, unsaturated media in two dimensions with a
single large domain simulation. Their computer simulation solves Richards equation with 6,
the water content, instead of the matric potential h as dependent variable. The input RFVs are
generated based on the similar media theory (Warrick et al., 1977), which requires one random
field from which all random input variables are derived (compare to (6-8)). Unlike the
simulations here, their simulation was based on VanGenuchten’s constitutive equations for K(6)
and y(6). Their grid-discretization was within the framework tested here (Ax=20 cm, Az=2
cm). The simulation was based on a grid with just over 30,000 nodes with a relative domain
size d’ =(15, 80) in the horizontal and vertical direction, respectively. Since the resulting
correlation length of the water content is similar to the input correlation of the scaling factor,
the simulation results of the water content moments have less sampling error than the head
moments in the simulations implemented here. But no attémpt is made to characterize the
sample variance of either the input or the output stochastic sample parameters.

In their analysis R&D suggest that
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(@), = (* M) (6-15)
reasoning that under unsaturated conditions the correlation length of the conductivity decreases
and the variance increases. Clearly, the simulations here demonstrate that the relationship does
not necessarily hold. R&D concluded that the unsaturated hydraulic conductivity variance
increases reciprocal to the decrease in correlation length as the soil dries out. However, the
behavior of 0%, among others depends primarily on the set of unsaturated hydraulic conductivity
functions generated and on the mean hydraulic head in the sin_mlation. This is true for both
Gardner’s and VanGenuchten’s expression of K(h) and will be determined by the mean and
variance chosen for the parameters in the K(h) expression. Field evidence qualitatively supports
these findings (White and Sully, 1992). In the simulations described above o2, is smaller than
the variance for the saturated hydraulic conductivity o%: The correlation of f and loga causes
a continuous decrease of the unsaturated conductivity variance as the mean head decreases until
it reaches a minimum near h,;, = -1/(o,C) (see Figure 6.13). At heads drier than h,;, the
unsaturated conductivity variance increases with decreasing head. While the reduction of o2,
is an artifact of the selected model, it should be understood that parameters are generally chosen
to fit measured data with the K(h) function. In particular, if Gardner’s exponential expression
is chosen, the parameter logK, should not be mistaken for the actual saturated hydraulic
conductivity. Gardner’s function is known to work well only for a limited range of suction
values. If a wide range of h is expected to occur during the simulations, VanGenuchten’s or
other K(h) relations may be more satisfying. In general, however, a statement like (6-15) is
not warranted given the strong dependence of 0%, on the K(h) function.

As a consequence of the hypothesis (6-15), R&D also discuss the possibility that
unsaturated transport variability may be governed by similar laws as saturated transport due to
the fact that the "Lagrangian analysis [...] is of general nature and applies to saturated and
unsaturated flow as well." In particular they find for their simulation, that

0, /<q>2 Ay, = 0% A (6-16)
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The results in section 6.4 partially supports their conclusion. Indeed remarkably close
agreement with (6-16) is found if the variance and correlation length of f=logK, is replaced with
the variance and correlation length of y=logK (Figure 6.14). However, (6-16) does not hold
for logK, as suggested by R&D. This precludes an a priori determination of the longitudinal
dispersivity from o% and A; alone. A linear regression curve through the experimental values
also exhibits a slope slightly larger than 1, which does not seem to be caused by the larger Ax
alone (see the case, where b = 1Ax).

A further hypothesis tested by R&D suggests that according to theoretical results
suggested originally for saturated flow, the unsaturated flux moments are characterized
approximately by:

CV.2 = 0,%<q,>? = 0.375 0% (6-17)
In neither Russo’s nor the simulations in 6.4 does this particular relationship hold. But if 0%,
is again replaced with o?_« the agreement between the numerical results and (6-21) is quite
good: In the simulations of section 6.4 CV_%/0? varies from 0.24 to 0.31 for the simulations
with single element blocks, from 0.25 to 0.40 for 2*2 element-blocks, and from 0.28 to 0.34
for the 4*4 element blocks. This supports the hypothesis that the stochastic theory developed
for the saturated velocity field may hold for the unsaturated field, with logK replacing logKs
(Figure 6.15) (see also chapter 9).

The results presented here are also in agreement with some of the findings of Hopmans
et al. (1988) (referred to here as Hopmans), who simulated 2-D infiltration into one- and two-
layered soils. In their simulations of the one-layered case, the simulated soil consists of a set
of random soil property block-columns, each of which is subdivided into homogeneous (finite
difference) elements. They find that the head values converged quickly to the ensemble
moments. Only 10 Monte Carlo simulations with 50 random soil columns (approximately
corresponding to a single realization with 500 random soil columns) were needed to achieve

convergence, a result that is in clear contrast with the findings of section 6.4. As shown
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previously even a single realization of 40,000 random blocks may not be considered to give
results of the accuracy reported by Hopmans. The reason for the apparent discrepancy between
Hopmans results and those reported here are the following: (1.) The bottom boundary condition
in Hopmans simulation is fixed with respect to the head, thereby greatly reducing the head
variance in most of the simulation domain. (2.) Hopmans’ random fields are random only in
the horizontal direction. The variance in Hopmans simulation varies between 80 and 400 cm?
compared to a range from less than 5 cm? to more than 1000 cm? in the simulations presented
here. In contrast to the strong horizontal head correlation of the simulations in this study, the
correlation length in Hopmans’ simulation was only slightly larger than the input correlation
length and did not exceed 3 Ax or 1/15 of the domain size in the horizontal direction (Hopmans
et al, 1988, Figure 5).

Hopmans used correlation lengths (in the definition of (6-12)) of 2 blocks and 4 blocks.
Like in the simulations of this study, a small but discernable difference was found in the head
correlation length that might be attributed to the better resolution of the heterogeneous
properties: Their table 5 also indicates a slight decrease in the correlation length of the head
as the relative input correlation length increases.

The resuits in 6.4 regarding the stability of the mean head and flux confirm similar
findings of Unlii et al. (1990) (here referred to as Unlii). Their one-dimensional, vertical,
transient flow simulations showed a similar behavior of the head and flux variance as a function
of the input variance as Hopmans simulations and the simulations ins section 6.4. Furthermore,
the simulations in this study confirm the conclusion of Unlii, that the flux variance in mean
flow directi.on increases, if the correlation length in mean flow direction increases, while the
vertical flux variance decreases, if the correlation length in the horizontal direction increases:
In the simulations with varying element-width Ax, but element-"thickness" Ax, (and
consequently a change of A, but not of A,;) the simulations with larger A, have a significantly

smaller variance in q,, while the variance of q,, increases. In all other simulations, the
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simultaneous change in width and thickness of the element (to keep the square form) and hence
in A caused a decrease in 0%, but an increase in ?,, for any constant A/b and b/Ax,. Although
discernable, the increase in the vertical flux variance is by far not as drastic as observed in the
1-dimensional simulations of Unlii. This is expected due to the higher degree of freedom in
the flow-path for the 2-D simulations (see also Yeh, 1985a).

6.6 Conclusion and Summary

The previous analysis of several dozen flow simulations with varying element-size,
block-size, and correlation-length allows valuable insight into the accuracy of numerical
stochastic solutions and its dependence on grid-design. The simulation further sheds some light
on previous analyses by various authors.

As part of the model verification the numerical solutions for the stochastic moments of
the head and flux (mean, variance, and covariance) are found to compare well with the
analytical results for 2-D flow that were derived in chapter 4. The only disagreement found
between analytical and numerical results are the covariance functions of the head and the
vertical flux. Both the head and the vertical flux have very long correlation lengths, several
times longer than the input correlation length A.. The size of the domain (200 by 200 elements
or 20 by 20 correlation lengths) is found to be inadequate to unbiasedly sample the head and
vertical flux. As a result the numerical covariance functions are of significantly shorter
correlation length than the analytical covariances for the head and the vertical velocity.

The grid design sensitivity analysis was implemented with parameters chosen to be
representative of field conditions. The conservative grid-design simulation results served as
comparative basis for the sensitivity analysis. Since the input parameters have a large variance,
the analytical solutions derived in chapter 4 cannot serve as a direct verification tool for the grid

design sensitivity analysis. Instead it may serve as a guideline only. Indeed, the moments of
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the numerical simulation significantly differ from the analytically determined moments, even
for the same conservatively chosen grid-design. But the general qualitative dependency between
stochastic input and output parameters was found to be similar.

The element-size was found to have little influence on the head solution accuracy as
long as 32 cm thickness and width was not exceeded. Numerical oscillations significantly
distort the head and unsaturated hydraulic conductivity moments only if simulations are based
on element-sizes of 64 cm and larger. The vertical flux moments are more sensitive to the grid-
design than the head moments and require an element size of 16 cm or less in the vertical
direction. A grid-Peclet number aAx < 2, derived for the quasi-linear form of Richards
equation, gives a very safe margin if it is strictly applied such that the condition is met for all
elements. Based on the findings of section 6.4 a weaker grid-Peclet number restriction can be
formulated:

aAx < 0.5 (6-18)
where a, is the geometric mean of a. This criterion is simple to implement, gives larger
freedom in the choice of the element-size and still provides accurate solutions. For most
practical purposes, this allows grid-sizes of up to 20 cm and more in the vertical direction. The
element size in the horizontal direction is by far not as critical, and horizontal element lengths
of e.g. 4 cm and 32 cm give identical results.

The subdiscretization into multi-element blocks for better resolution of the nonlinear
head variations gave little improvement in the accuracy of the solutions. The differences to the
simulations with single-element blocks were subtle and statistically of little significance. If
b=Ax is sufficiently small to give a good resolution of the heterogeneities (i.e. b/A < 0.1), and
if Ax satisfies the grid-Peclet criterion to avoid oscillations, the error introduced by linear head
interpolation between element nodes is reduced sufficiently to be neglected.

The simulations have shown that the choice of a larger relative correlation length has

a discernable albeit small effect on the head and flux variance and covariance: With large A/b




161
the stronger coherence of random input parameters reduces the discrete jumps in hydraulic
properties between neighboring blocks. Hence, the nonlinearity in the matric potential field
decreases, while its numerical approximation improves. As a result the output variance of the
head tends to increase due to a higher resolution of the perturbations and the output head
correlation length decreases. In contrast, the flux variance decreases as the perturbation
resolution increases. The differences have a weak statistical significance but are in accordance
with findings by Hopmans et al. (1988).

By comparing several single large realizations it was found that simulations, which are
based on a singe large realization, give stochastic results that are associated with considerable
sampling error. Although only results for a limited number of Monte Carlo realizations are
available, the variations of the sample correlation lengths and sample variances of head and flux
indicate that a single realization with 10* - 10° elements and a side-length of 20 A; does give
results with a sampling error of up to a factor 2.

With respect to previously implemented research, the simulations confirm the hypothesis
by Russo and Dagan (1991), that the unsaturated velocity field may be subject to the same
stochastic processes formulated for the saturated case. By consistently replacing the moments
of logKs with the moments of logK, it was shown that the Lagrangian unsaturated flux
moments presented in Russo and Dagan (1991) are related to the unsaturated hydraulic
conductivity moments in a manner very similar to that found under saturated condition. The
simulations in this chapter are not considered a complete proof of their hypothesis because other
factors, like the infiltration rate and the geometric mean of a, may strongly influence the results
as well. Here these parameters were kept constant. It would be particularly interesting to
investigate the proposed relationships for water movement in dry soils. Most importantly,
however, it is also shown that their assumption (6-15) does not generally hold. In contrast to
the suggestion by Russo and Dagan (1991), it is therefore not possible to derive the moments

of the flux field directly from the moments of the input random field of logKs.
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Further research is certainly necessary to obtain a better understanding of numerical
grid-design in stochastic simulations of unsaturated flow. This research has not addressed the
impact of the infiltration rate on grid-design or the effect of different constitutive functions and
constitutive parameters. The soil flow simulations only addressed accuracy for steady-state
conditions in a relatively moist soil. The results underline the necessity of a careful grid-design
evaluation to avoid numerical errors but also indicate that much more rigorous Monte Carlo
simulations are necessary to accurately assess the impact of grid-design. At computation times
exceeding 6 to 10 hours even on a dedicated workstation such Monte Carlo simulations are very
limited in the number of realizations. The next chapter will introduce a numerical technique
that accelerates the numerical computation time by up to two orders of magnitude. With such
improvements in the computational techniques, Monte Carlo simulations can easily be
implemented with hundreds of realizations. Chapter 8 will present the analysis of unsaturated

flow with multiple realization Monte Carlo simulations.
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Table 6.1: Non-variable input parameters common to all simulations of the model verification

and grid design analysis.

input parameter

e

model verification

grid design analysis

mean logK, 5.5 55
variance logK, 0.09 4.0
mean loga -4.0 -4.0
variance loga 0.0009 0.25
saturated water content 03 0.3
residual water content 0.3 0.3
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Table 6.2: Comparison of the sample mean; obtained from a single large scale simulation with

the analytical moments obtained from the 1st order perturbation analysis (chapter 4).

MEAN analytical-1st order simulation_
logKs 5.500 5.513
logk 2.303 2.313
head [cm] -174.6 -174.3
hor. flux [cm] 0.000 -0.02264
ver. flux [cm] -10.00 -9.999
VARIANCE

logKs 0.08742 (0.09) 0.09148
logk 0.03488 0.03694
head [cm?] 16.59 15.92
hor. flux [(cm/d)?] 0.3828 0.3471
vert. flux [(cm/d)?) 0.5907 0.6708
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Table 6.3: Comparison of the sample variance and correlation length for rectangular elements

(1st row) and square elements (2nd row). Each column represents a different block-size

indicated in the top row. All units are based on [cm] and [days].

rectang./square 4x2em? 8x2cm? 16 x 2 cm? 8x4cem? 16 x 4 em? 32x 4 em’
FlogK 0.440 0.410 0.388 0.387 0.353 0.339
0.439 0.406 0.385 0.385 0.350 0.338
o head 3.9 61.1 103 78.1 134 22
364 54.6 104 785 128 223.1
o qh 5.20 485 4.07 4.61 395 3.08
5.38 5.12 446 478 4.19 339
Fqv 8.85 6.2 3.74 8.16 5.28 272
8.85 6.73 412 8.17 5.74 3.07
A logKs 31.8 63.6 127.2 63.6 127.2 254
31.8 63.6 127.2 63.6 127.2 254
A logK 147 28.6 57.1 27.2 532.6 110
147 285 57.3 272 523.9 11
A head 68.0 75.8 106 83.1 114.4 183
68.7 66.3 105 83.3 111.3 181
Agh 14.3 231 379 26.7 427 73.0
141 3.+ 37.2 264 425 7.5
Agqv 10.0 17.4 271 19.0 313 48.8
10.2 17.8 26.1 19.3 31.9 454
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Figure 6.1: Matric potential distribution in a 3-layered soil column. Layer 1 is a very low

permeable soil with small a. Permeability and o increase with each of the
subsequent two-layers. Inversely, the nonlinear portion of the capillary fringe
decreases. Layer 3 requires smaller discretization than layer 2 or layer 1 to
accurately capture the nonlinear portion of the matric potential curve.
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Figure 6.2: Overview of the simulation concept
for the grid design sensitivity analysis
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Figure 6.6: Normalized head variance as a function of a_ A,

where A, is the sample correlation length of f=logK_.
Only simulations with block-size b=Ax are shown.
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Figure 6.13:  Envelope of all possible unsaturated hydraulic conductivity
curves in run 1 of the loga-case Monte Carlo simulation.
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7. AN EFFICIENT METHOD FOR SIMULATING
STEADY UNSATURATED FLOW IN RANDOM POROUS MEDIA:
USING AN ANALYTICAL PERTURBATION SOLUTION AS
INITIAL GUESS TO A NUMERICAL MODEL

7.1 Introduction

Effects of soil heterogeneity have been the focus of both field and theoretical research
for the past decade (e.g., Hills et al., 1991; Hopmans et al., 1988; Mantoglou and Gelhar,
1987; McCord et al., 1991, Russo, 1991; Unlii et al., 1990; Wierenga et al., 1991; Yeh et
al., 1985a,b; Yeh etal., 1986). Analytical models are essential tools for investigating the effect
of heterogeneity on flow and transport in the unsaturated zone. However, the nonlinearity of
the governing flow equation, the degree of nonlinearity, and the spatial variability in the
unsaturated hydraulic properties make the development of analytical solutions difficult.
Analytical solutions are only available for some special cases, such as one-dimensional steady-
state and transient infiltration in layered soil with Gardner type unsaturated properties (Yeh,
1989; Warrick and Yeh, 1990; Srivastava and Yeh, 1991). For more general problems one
often relies on numerical techniques such as finite difference and finite element methods (c.f.
Fletcher, 1988; Anderson and Woessner, 1992).

The finite element or finite difference equations for unsaturated media are commonly

written in form of a linearized matrix equation such as:

A(x =)x=*! = b(x™) (7-1)

where m indicates the outer, nonlinear iteration level, A is the linear coefficient matrix, x the

vector of unknown values, and b the vector of known terms. Direct (non-iterative) or indirect



182
(iterative) methods are used to solve the inner, linear part of (1) numerically. In general, direct
algorithms require a large amount of computer storage. Hence, most numerical techniques
employ so-called indirect or iterative methods for solving the linear part of eqn. (7-1) to
improve CPU-efficiency and to reduce the memory-requirements for the computer.

The non-linear solution is essentially found by repeating the linear solution to (7-1) at
increasing iteration levels m until the convergence criteria Ix*! - x=| < & (a prescribed
tolerance) is met. Several techniques have been developed based on (7-1) such as the Picard
r;lethod and the Newton-Raphson method (Ortega and Rheinboit, 1970).

If (7-1) were to represent a transient problem, both the inner and outer iteration
procedure would start from the initial conditions of the boundary value problem and march
through time. For a steady-state problem, the iterative procedure initially requires an
apﬁmximate solution x* (initial guess or initial solution). The initial guess has little bearing on
the final solution. But it can reduce the number of iterations if the guess solution is close to
the actual solution. In the case of nonlinear equations no guarantee exists, even under the
absence of round-off errors, that the outer or nonlinear iteration methods will converge under
some predefined conditions. In general, the initial guess must be close to the solution to avoid
divergence of the outer iteration scheme. The degree of similarity between initial and actual
solution that is required for convergence depends on the degree of heterogeneity and
nonlinearity in the boundary value probiem.

The solution of the perturbation flow problem (4-1b) for heterogeneous media with
either the Picard or the Newton-Raphson method is mostly impossible, since it is difficult to
prescribe an initial guess that consistently leads to convergence in the solution of (7-1). One
may circumvent this difficulty by using either a transient time-marching approach (i.e., solving
the steady-state flow problem by the transient approach) or a pseudo-transient approach
(Fletcher, 1988) together with simple uniform or linearly varying initial solutions. Both

techniques diagonalize the matrix and expand the radius of convergence but they require

o s ey e e ey
REYR "y




183
numerous time steps to obtain an approximate steady-state solution. In the solution of Richards
equation (4-1a), a trade-off between the choice of C(h) and the size of the time-step At limits
options for CPU-time improvements, when the pseudo-transient method is used. As a result,
such approaches often require large amounts of CPU time (chapter 6 in this work; Ababou,
1988, p.649, p.684, pp.681ff.). In the past, convergence problems and CPU time requirements
often limited the investigation of the effect of heterogeneity in unsaturated soils. While
numerical methods have enjoyed relatively widespread use for saturated problems, numerical
stochastic analysis of unsaturated flow and transport has been an exercise with very limited
applications (chapter 6). It is desirable to obtain the steady-state solution to (4-1b) without
resorting to time-marching methods to improve CPU efficiency.

To alleviate the convergence and CPU time problems, it is suggested that a very
powerful initial guess can be provided by solving an approximate problem to which the
analytical solution is known (to ASIGN: to use an Analytical [or Approximate] Solution as
Initial Guess to the Numerical solver). In this chapter, it is demonstrated how the first order
spectral solution can be used to provide such an initial guess to solve the 2-D steady-state
Richards equation (4-1)b with Gardner’s K(h) model (4-8) numerically in a very efficient
manner. The advantage of the approach over the pseudo-transient approach utilized in chapter

6 is demonstrated through several examples.

7.2 Formulation of the Initial Guess Solution

In chapter 4, a first order perturbation solution to the steady-state Richards equation (4-
1b) is developed based on spectral analysis. (4-26) gives the spectral solution of the steady-
state head given the spectral representation of lognormally distributed input random fields of
logK, (log: natural logarithm) and a. The necessary random fields can be generated with any

of the random field generators described in chapter 3. This requires a Fourier transform of the
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random fields of f and a’ to obtain dZ, and dZ, in (4-26). By generating the random fields
with the SRFFT method, dZ,. and dZ,. are obtained directly by virtue of (3-3) and dZ, is easily
obtained by the explicit relationship provided in (4-26). Inverse FFTs are applied to each of
the three discrete z-fields representing f*, a’, and h’ just like in the SRFFT random field
generator (3-13). Not only has a set of input random fields £ and a’ been generated; the
approximate solution h’ is also available. The f’ and a’ random fields are the input random
fields for the numerical model, and h’ is used as initial guess solution to the numerical solver.
Only the use of the first order head solution as initial guess has allowed for obtaining steady-
state solutions of (4-1b) without using pseudo-transient or transient methods. I call the process
of solving the governing nonlinear partial differential equation by a combination of analytical
and numerical techniques ASIGNing (using an Analytical Solution as Initial Guess to a
Numerical solver). Figure 7.1 gives a schematic overview of the ASIGNing process.

The versatility of the approach is demonstrated for two different solutions of (4-1b) and
(4-8): the case of lognormally distributed a (loga-case), and the case equivalent to Yeh et al.
(1985a,b), where a is normally distributed (a-case). The former is given in (4-26). The latter

is derived here: With a = A + a’, the unsaturated hydraulic conductivity is given by:

InK(h ) =InK, + ah
(7-2)

=F + '+ (A +a’)(H + h’)

and the governing first order perturbation equation under mean unit gradient conditions is

(compare to (4-20)):

24, / / / /
d‘h +Aah +H6a L of

=0 =12 7-3
ax’ ax, ax,  ox, (73)

The corresponding spectral solution for the head perturbation is derived equivalently to (4-26):
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_ ik, (dZ, + HdZ,)

dz,, =
(k; +k; - iAk, )

(7-4)

The perturbation of the normally distributed a is denoted by a’ and the perturbation of the

lognormal a by y’ to distinguish between the two cases.
73 Example Problems

To investigate the capability of ASIGNing at various degrees of soil variability and to
compare the efficiency of the ASIGNed steady-state solution with the hitherto standard (pseudo-
) transient numerical solution method a principal parameter set is chosen that allowed variations
in the moments of logK,, o, and loga over several orders of magnitude. The values of both
the deterministic and the stochastic parameters are summarized in Table 7.1. The examples are
for two-dimensional cross-sections of 64 elements width and 64 elements depth. The size of
the elements is 10 cm by 10 cm resulting in a total domain size of 6.4 m by 6.4 m. In all
simulations an exponential isotropic covariance function is specified to characterize the random

field variables (RFVs) f°, a’°, and y’:

Cov(b) = ozexp(.i:l) (7-5)

where o2 is the variance of the RFV, b is the two-dimensional vector of the separation distance,
and A = 50 cm is the isotropic correlation length.

The mean of a, (arithmetic mean A for normal a, geometric mean I for lognormally
distributed o), determines the degree of nonlinearity in (4-1b). Initially, two values are chosen
for A: 0.01 cm™, which is typical for fine sandy to loamy soils (a-case(1)); and 0.001 cm’,
which is typical for fine-grained silty and clay rich loamy soils (a-case(2)). With a-case(1) the

effect of different boundary conditions is investigated. The a-case(2) and the loga case are
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used to demonstrate the efficiency and flexibility of the method with respect to various possible
applications.

Alternative boundary conditions are:

(a) of the Dirichlet type (prescribed head) on all boundaries;

(b) of the Dirichlet type at the top and bottom of the domain, but with zero-flux on the vertical
boundaries;

(c) of the Dirichlet type at the bottom boundary, zero-flux at the vertical boundaries, and a
prescribed flux of q = 7.4 cnv/h at the top boundary (then H =~ -150 cm);

(d) unit-gradient conditions at the bottom boundary, zero-flux at the vertical boundaries and
prescribed flux q = 7.4 cm/h at the top boundary;

(e) water-table boundary at the bottom (uniform Dirichlet, hge = 0), all other boundaries are
Dirichlet boundaries;

() water-table boundary at the bottom (uniform Dirichlet, hge = 0), zero-flux at the vertical ‘
boundaries, and Dirichlet boundary at the top;

(8) The loga-case is tested with boundary condition (a) and parameters similar to the a-case(1)
(see Table 7.1).

For the combined ASIGNing method each Dirichlet boundary (except the water table
condition) is equal to the perturbed random head boundary produced by the quasi-analytical
solution for an infinite domain. In the transient solutions all head boundaries are uniformly set
to H = -150 cm, which is the mean head used in all example problems. All of the above
boundary value cases are run at variances 0% = 0.1, 1.5, and 6. Some cases are also repeated
at 0% = 0.01, 0.5, 1.0, and 3.0. The geometric mean of K, is 33.1 cm/h in a-case(1) and 4.5
cm/h in o-case(2). a’ and y’ are assumed to be correlated to logK, with proportionality
constants § = 0.001 and 0.1, respectively. It is chosen such that none or only minor portions
of the domain become saturated, even at large matric potential variances. Partial saturation

poses no computational problem to the numerical code MMOC2, but unsaturated conditions are
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the focus of this work. The a-case(1) is also implemented with 0% = 1.5 for domain sizes
ranging from 322 to 2562 elements to demonstrate the applicability of ASIGNing to small as
well as large numerical grids. All simulations are performed twice: One simulation with the
transient approach using the transient option of MMOC2 and one simulation with the ASIGNing
method, which combines the quasi-analytical solver with the steady-state version of MMOC2.
Except for the boundary conditions, ail deterministic/stochastic parameters and the constitutive
equations for K(h) and 6(h) are identical for the initial analytical, the steady-state, and the
transient solutions of each example problem. The random fields of f* and a’ or ¥’ produced
to obtain the initial guess via (7-4) or (4-26), respectively, are used as random field input to the

steady-state and transient numerical solutions (Figure 7.1).

7.4 Results and Discussion

7.4.1 The Quasi-Analytical, the ASIGNed, and the Transient Numerical Solution in

Comparison

It is generally known that the first-order perturbation equations (4-20) and (7-3) are a
valid approximation to the nonlinear Richards equation (4-1b) for variances of {* << 1.0 (Yeh
et al. 1985a). Hence, for problems involving only small perturbations, the quasi-analytical
spectral solution technique itself is expected to be satisfactory. Figure 7.2 shows that the head
field from the quasi-analytical spectral solution to (7-4) is indeed in very good agreement with
the ASIGNed solution to (4-1b) at 0% = 0.1. At higher variances, the approximate solution
deviates significantly from the "true" (numerical) solution of Richards equation, in particular
with respect to the head gradients. Harter et al. (1992) showed that the velocity fields derived
from the quasi-analytical head solution to (7-4) have artificial sources and sinks for o%.> 0.25.
In contrast, the numerical solution implicitly guarantees a mass-balanced head distribution

which will result in a divergence-free velocity field. It is the inaccuracy in the head gradient
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field, which prevents the spectral solution to (7-3) to be a useful tool for transport simulations
in highly variable media. Nevertheless the overall spatial head distribution pattern is well
preserved by the quasi-analytical spectral solution (7-4), even at large variances (Figure 7.3).
This may explain, why the quasi-analytical solution provides an initial guess that allows a direct
numerical steady-state solution of (4-1b) much beyond the usual limits of the first order
perturbation approach.

With regard to solution uniqueness, all ASIGNed solutions are in excellent agreement
with the those obtained by the time-marching approach. As an example, Figure 7.4 compares
the ASIGNed with the late transient solution for a-case(1) under boundary conditions (c) at o2
= 6.0. The only differences in the two solutions are near the bottom of the domain due to
different constant head boundary conditions: The ASIGNed solution has a random head
boundary given by the initial guess. The transient approach is based on a uniform head

boundary condition with H = -150 cm.

74.2 Efficiency of the ASIGNed Solutions

The experiments show that the quasi-analytical spectral solution method to obtain (4-26)
and (7-4) is an extremely CPU-efficient algorithm to obtain approximate solutions to (4-1b)
(Figure 7.5). Due to its spectral nature the number of computational steps is finite and
independent of o?. The savings in CPU-time over the transient time-marching numerical
solution of (4-1a) is on the order of three magnitudes and more: The quasi-analytical solution
of (7-3) on a discretized grid of 64*64 points takes less than 1 second on an IBM RS6000/560
workstation, while the CPU-time of the transient finite element solution with 64*64 elements
is on the order of tens of minutes for o%.= 0.1 (for a comparison of the performance of the IBM
RS6000/560, see Tripathi and Yeh, 1993)

At higher variances numerical solutions must be sought to correctly solve Richards
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equation (4-1) and the main purpose of ASIGNing is to reduce the CPU-time requirements of
the numerical solution. Indeed, the CPU-time savings of the combined approach (ASIGNing)
over the transient simulation technique are of a factor 20 to 30 at any input variance (Figure
7.5). ‘The computation time of the initial guess (1.5 sec of which almost 1 second is
input/output) is almost negligible compared to the ASIGNed numerical solution time.

While the first example in Figure 7.5 contrasts two technically identical problems since
both the ASIGNed steady-state and the transient solutions are subject to Dirichlet boundary
conditions, the physical problems solved are different: The transient solution assumes a
uniform head of -150 cm all around its domain. The assumption of such uniform head
boundaries is questionable, since in most unsaturated flow and transport applications little is
actually known about the head boundaries of the domain. The ASIGNed steady-state solution,
however, takes advantage of the random head boundaries provided by the initial guess, thus
solviné for a quasi-infinite domain. In practice, the use of random head boundaries provided
by (7-4) or (4-26) is much more realistic than uniform head boundaries. The random type head
boundaries are consistent in first order with the random input parameter fields logK, and a,
With the random boundary head approach one can simulate a soil domain that has no definite
boundaries. Many authors have circumvented uniform Dirichlet boundaries by specifying flux
boundaries (Neumann conditions) around the domain, which are generally more CPU-expensive
to solve. The CPU-savings of the combined approach with random Dirichlet conditions over
the transient approach with at least three Neumann conditions are approximately two orders of
magnitude (Figures 7.5 vs. 7.6).

In the examples tested, both the ASIGNed steady state and the time-marching (transient)
solutions cost increasing CPU-time as more and more Neumann conditions are introduced. But
throughout the range of variability ASIGNing remains a much more efficient technique (Figure
7.6). Surprisingly perhaps, the most significant time-savings (two orders of magnitude) under

otherwise identical boundary conditions are obtained for the water-table scenario with no-flow
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conditions on the vertical boundaries (Figure 7.7). The head-field in this case is not only
heterogeneous, but also deviates from the uniform mean-head assumption implicit in the initial
solution (7-4). This shows the broad applicability of ASIGNing,

The only boundary conditions, for which no ASIGNed steady-state solution is obtained
are those which involve a unit-gradient boundary condition at the bottom of the cross-section.
The unit-gradient boundary is a Cauchy or mixed type condition. Unlii et al. (1990) have
shown for the one-dimensional case that unit gradient boundary conditions are associated with
head variances that are higher than those associated with other types of boundary conditions,
which may explain the convergence problems of ASIGNing in this case.

Figure 7.8 shows that the efficiency of the proposed method decreases only slightly as
the size of the domain increases from 1,000 to over 65,000 elements. For any domain-size, the
proposed method is particularly powerful at high variances when compared to the traditional
transient solution CPU-time. The method also applies successfully to the loga-case. Table 7.2
provides some example CPU-times for both the loga-mse and for the a-case(2) with much
smaller mean a. The efficiency of the method is comparable to the cases shown in Figure 7.5.

With regard to the overall efficiency of ASIGNing over the common transient method
it should be noted that the convergence-criteria of the transient method is not coded into the
model (such as a stopping rule of the type Max]h,,, - h| < 8), since transient solutions may
change very little per time-step without having necessarily reached steady state. Rather, the
transient heads are continuously evaluated at seven points uniformly distributed over the
domain. From this head record, the actual CPU-time for the transient approach is determined
retroactively. In practice, the pseudo-transient approach may require significantly more CPU-
time than indicated in Figures 7.5 to 7.8 and in Table 7.2, since the number of time-steps

required to approach steady-state are generally not a priori known.
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7.43 Limitations of ASIGNing

The above examples have shown that ASIGNed solutions can be obtained over a wide
range of variances. But it must be emphasized that the success of the method is not unlimited
due to the first order character of the analytical solution. As indicated before, terms of second
and higher order that were neglected in deriving the perturbation equation (7-3) and (4-20)
become significant at higher variances of f and/or a’. Hence the (initial guess) solutions (7-4)
and (4-26) deviate more strongly from the steady-state solution to (4-1b) as the perturbations
increase (compare Figures 7.2 and 7.3). Once the difference between the two solutions is larger
than the convergence radius of the Newton-Raphson method, a direct steady-state solution is
impossible to obtain even with the quasi-analytical initial guess. The experiences with the
above examples have shown that ASIGNing is successful up to variances of 5 in the (natural)
logarithm of the unsaturated hydraulic conductivity, 0%, with A s 0.01 [cm™] and 02, s 0.006.
Since o determines the degree of nonlinearity, the mean and variance of o or loga, and its
correlation to f” are expected to be critical to the success of ASIGNing.

To explore the iimits of the method, additional ASIGNed simulations are implemented
with independent random parameters f, a’, and y* and a wider range of means and variances
in a as before. First, the loga-case described above is repeated with independent parameters
f and y’. The variances of the independent y’ in these cases are 1/100 of the variance o%
specified, just as in the first loga case with dependent random fields. The CPU times required
for the two cases with low 0% are 50% larger than those for the dependent case. Convergence
is achieved except for the case of 0%.=6.0. In this independent loga case, convergence is.
obtained with o2 = 4.5, which results in an unsaturated logK variance o2, < 5.

To separate the effects of {” and y” at a given geometric mean o, = 0.01 [cm], the
largest o2, for which convergence is achieved is determined at each of three different 0%. At

% = 0.1 and 1.5 solutions are obtained if 0%, s 0.5, although the range in head variance in



192
the two cases spans from 1470 cm? to 2300 cm? respectively, and the range of unsaturated
hydraulic conductivity variances spans from 1.9 to 3.5, respectively. For 02, = 4, solutions are
obtained with o, s 0.2. At 0% = 4.7, the maximum usable o?, reduces to 2*10%,
Increasing the geometric mean of a from 0.01 to 0.1 [cm™], which is typical of a coarse sand,
shows' that convergence in ASIGNing is limited to slightly smaller variances of Y. At
variances 0% = 1, 5.3, and 7.4, the maximum usable &%, are 0.024, 0.01, and 0.0001,
respectively, resulting in unsaturated hydraulic conductivity variances @2, = 3.0, 4.0, and 4.2.

In the case of independent, normally distributed o the first order perturbation solution
is not based on an approximation similar to (4-13). Here, ASIGNing is also successful for a
large range of A = <a> without loss of CPU-efficiency. At 0% = 1.0and A = 0.1 [cm™], the
largest possible o2, is 0.01 (P = 2.0, 0%, = 235 cm?), and at A = 0.5 [cm] it is 0.007
(F%ogx = 0.77, 0% = 9 cm?). At smaller variances of a’ and A = 0.1 [cm™] ASIGNed solutions
are generally possible if 0%, < 4.3. These limits are obtained for the particular seed used to
generate the random numbers o; and f; in (3-3). For other seeds the limits vary slightly and
should therefore be taken as guidelines only.

The experiments show that three parameters seem to be most important to define the
range of solutions for which ASIGNing is possible: The variance of the unsaturated hydraulic
conductivity, the mean of « and the variance of o, where the latter two parameters mainly
identify the degree of nonlinearity in (4-1). For the mean of a < 0.01 or the mean of loga < -
4.6, cases resulting in 02, = 4 (or even 5) are solvable with ASIGNing as long as e.g., in the
loga case the variance of y* < 0.5. At a, =0.1 and for a given 0. ASIGNing is successful for
any o?, such that 02, does not exceed 4. The a-case remains solvable for 0%, = 0.01 at A
= 0.1 [cm™]. These findings seem to be independent of the correlation between f” and a’ or v,
independent of 0% (if 2. does not exceed 3 to 4), and independent of the resulting head
variance. At higher A the restrictions on the maximum conductivity variance are tighter, but

overall the method has been shown to be successful for a broad range of parameters
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encountered under realistic field conditions.

7.4.4 Extensions of ASIGNing

It has already been emphasized that the boundary value problem for the initial guess,
which is given by the analytical solutions (7-4) or (4-26), is different from the boundary value
problems stated above for the numerical solver of (4-1b). For all the above boundary value
problems the analytical solution provides an initial guess based on the assumption of an
unbounded domain, while the numerical solutions are all subject to bounded domain conditions.
It is important to understand that the quasi-analytical solutions for all of the cases tested serve
only as first approximations and are not a defining part of the numerical solution. The set of
boundary conditions is intended to show the variety of boundary conditions for which the
analytical solutions may successfully be used as initial guess such that the steady-state finite
element simulation of (4-1b) converges directly.

Theoretically, it is possible to generate quasi-analytical solutions not only with different
boundary conditions than the numerical solutions, but also with a different input set { F*, 0?*,
A*, o%*,., H* } to better approximate the solution of (4-1b) subject to the input parameter set
{F, 0%, A, 0%, H}. This approach may be taken because the spectrally generated random
fields of {f,a’} and {f**,a’*} are identical in structure not only when different mean values are
specified but also for different variances, if the same seed is used for the spectral random field
generator: Recall from (2-49) that dZ (K), p = f*, a’ are independent random numbers with a
variance equal to the spectral density S, (K)dk. Since the spectral density function S_(K) is the
Fourier transform & of the covariance function (7-5), where o2, is independent of location x or
spectral wave number K, it can easily be shown that the spectral density is a linear function of

the variance o?,:

S,(K) = 0, F (Cor.(b) (7-6)
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where Cor,(b) = Cov,,(b)/0? is the normalized correlation function. Then both dZ (k) and
their inverse fast Fourier transforms £°(x) and a’(x) are linearly dependent on o2, The quasi-
analytical head solution h’ will also produce identical structures for different 02, They merely
differ in the amount of excitation in their perturbed structure as shown by the quasi-analytical
solutions in Figures 7.2 and 7.3. The same is not true for the head solution to (4-1b) due to
its nonlinear character. Yet the structures are similar as shown by the ASIGNed head solution
in Figure 7.2 produced from random fields of correlated £ and a’ with o?. = 0.1 and the
ASIGNed head solution shown in Figure 7.3 which is based on random fields with o2. = 6.0.

It is therefore conceivable to generate the initial guess solution with a meaningful, but
arbitrary set of parameters { F*, o?*;, A* , 0?*,, H* }, to produce a certain structure in the
initial head h’, which is closer to the solution of (4-1b) subject to { F, 0%, A, 2., H} than
an initial head that is also based on { F, 0%, A, 0%, H }. The practical procedure is then as
follows: After obtaining the initial head h’ with an arbitrary set { F*, 02*., A*, 02*,, H* },
one regenerates f’ and a’ with the same seed, but the input set { F, 0%, A, 0., H }, and then
proceeds to solve the steady-state numerical solution with the latter random fields of f* and a’
but the former h’ as initial guess. The water-table problem a-case(1l) with the boundary
condition (f) is a simple example of such an application: The initial head solution is based on
a uniform mean head H*, the numerical simulation solves a problem of vertically varying H(z).
The number of variations in this method is potentially endless and depends directly on the
problem type. Further research is warranted, but it is beyond the scope of this paper to further
investigate those possibilities.

"In principal, ASIGNing can also be applied for cases where a solution to (4-1b) is
sought with an unsaturated conductivity function K(h) different from (4-8). In this case the
moments of the parameters K and a in (4-8) have to be determined such that the head field
from (7-4) is similar to that solving (4-1b) with the desired K(h) function. A prominent

example is the use of Van Genuchten’s constitutive relationships for K(h) and 6(h) (Van
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Genuchten, 1980) in the numerical solution of (4-1b). While Gardner’s equation for K(h) (4-8)
is necessary for the derivation of (7-4), it is in many practical circumstances of rather limited
use while Van Genuchten’s K(h) model has generally been more applicable to field soils.
ASIGNing a Van Genuchten based solution to (4-1b) may be possible by defining equivalent
parameters f* and a’ for (4-8) analytically (Russo et al., 1991). This is cumbersome, however,
since an equivalent f* and a’ need to be determined for each random replicate of VanGenuchten
parameters. Alternatively, the equivalent moments { F*, 0%*;, A* , 0?*, } of the K(h)
parameters in (4-8) can be graphically matched by trial and error with those desired for the
VanGenuchten K(h): The parameter set { F*, 0**,, A* , 0?*, } is manually adjusted such that
a random sample of Gardner’s K(h) curves best matches against a random sample plot of Van
Genuchten’s K(h) curves (e.g. Ababou, 1988, p.652). The latter approach may be time-
consuming for a single simulation, and a transient solution is probably obtained faster. In most
cases, however, ASIGNing will be used as part of a Monte Carlo simulation and a single trial
and error definition of a suitable parameter set for obtaining the initial guess may solve

hundreds of Monte Carlo runs.

75 Conclusions

In many instances and particularly in the case of heterogeneous, steady, non-linear
problems, numerical solutions take prohibitive amounts of CPU-time or lead to divergence in
the iterative solution process. Typically, a uniform initial guess is provided by the user, even
if the steady solution is noni-uniform. For problems involving heterogeneous parameter-fields
e.g., flow through variably permeable porous media, such an initial guess is commonly so
different from the solution that steady solution techniques fail and transient time-marching or
pseudo-transient methods must be employed, which are associated with high computation time.

A quasi-analytical spectral solution technique was developed, which is a first-order
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linearized perturbation approximation to the governing non-linear stochastic equation. This
quasi-analytical solution is used as an initial guess solution in a finite element model which
solves the nonlinear governing flow equation (4-1b) (ASIGNing: Analytical Solution as Initial
Guess to Numerical solver). ASIGNing renders up to two orders of magnitude of CPU-time
savings. To my knowledge this is the first time stochastic analytical solutions have been
combined with their respective numerical solutions. It was shown that the method can
successfully be applied to a wide range of field conditions with average a ranging from 0.001
[ecm?] to 0.1 [cm™] and the variance of the log unsaturated hydraulic conductivity being as large
as 5. An even wider range of applications is conceivable, if the parameters for the initial guess
solutions are determined separately. In this chapter examples are shown, where the set of
parameters for both the initial guess and the numerical solution are identical (with the exception
of the mean head). ASIGNing works for correlated and uncorrelated f” and a’ fields alike, and
can be adopted to solve problems involving normal or lognormally distributed . The success
of this particular combination of a quasi-analytical with a numerical method is very encouraging
since the nature of the technique is very general and many related problems in fluid dynamics
may be solved similarly.

Another advantage of this particular approach is that random fields are generated
intrinsically instead of separately. Furthermore, the first order perturbation solution used here
as initial guess allows to model vertical soil domains with random head boundaries thus
eliminating boundary effects to the degree to which the first order solution is accurate.
Alternatively, partial boundary conditions can be introduced through conditional simulation
techniques, a possibility that is investigated in chapter 10. CPU-time enhancements of one and
a half to two orders of magnitude allow for the first time the implementation of Monte Carlo
techniques to solve unconditional and conditional stochastic unsaturated flow and transport

problems. Subsequent chapters will explore several different such applications of ASIGNing.

s {asinal Aresr ool S ss uabt i o A A VAL A 2N A A A I YL IR AL RS Op S il Al TS 2N . Pl o2 TR A" G i STk Sl S



Table 7.1: Parameters for the numerical experiments
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a-case(1) and loga-case a-case(2)
mean logK, [cm/d] 3.5 1.5
variance 0% 01 - 15 - 6.0 1.5
mean a: A [1/cm] 0.01 0.001
Cor=0, /0, 0.001 0.0002
mean loga: ' [1/cm] -4.6 -
Cye=0,/0p 0.1 -
mean head: H [cm] -150 -150
Table 7.2: Resuits of the a-case(2) and the loga-case experiments
o% O ogky CPU-time[sec] CPU-
(saturated (unsatur. (pseudo-transient) | time [sec]
hydraulic hydraulic (steady state
cond.) cond.) with
ASIGNing)
a-case(l) 0.1 0.062 559 16.6
a-case(1) 1.5 0.97 758 34.8
a-case(1) 6.0 4.05 N/A 211
o-case(2) 1.5 1.36 695 24.6
loga-case 0.1 0.062 563 16.6
loga-case 1.5 0.96 743 394
loga-case 6.0 3.99 N/A’ 63.9

" N/A: transient solution did not converge
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8. STOCHASTIC ANALYSIS OF STEADY-STATE
FLOW IN HETEROGENEOUS UNSATURATED SOILS
VIA INTENSIVE MONTE CARLO SIMULATION

8.1 Introduction

Spatial heterogeneity of soil textural properties causes a potentially high degree of
variability in the soil moisture flux. In general, the amount of field information that is available
to understand or predict moisture flux in the heterogeneous unsaturated zone is limited.
Consequently, the modeling of infiltration events and of soil moisture transport to the water
table is associated with uncertainty. In many applications quantification of the uncertainty by
stochastic analysis is necessary to assess certain hazards or risks. Statistical models enable us
to quantify the average soil textural properties, their variability, and their spatial correlation
(chapter 2). They are utilized as input for the stochastic analysis of the physical principles
governing soil moisture movement. Stochastic analysis provides a statistical description of the
variability of soil moisture movement.

Over the past two decades field studies at numerous sites have been used to determine
statistical models for describing the variability of soil texture, saturated and unsaturated
hydraulic conductivity, soil moisture content, and soil water tension (Ahuja et al., 1984;
Anderson and Cassel, 1986; Burden and Selim, 1989; Byers and Stephens, 1983; Cameron,
1978; Ciollaro and Comegna, 1988; Field et al., 1984; Greenhotlz et al., 1988; Greminger
et al., 1985; Hopmans et al., 1988; Lauren et al., 1988; Mulla, 1988; Naney et al., 1988;
Nielsen et al., 1973; Russo et al., 1981; Russo, 1984; Saddiq et al., 1985; Smettem, 1987,
Vieira et al., 1981; Wagenet and Addiscott, 1987; Wierenga et al., 1989). The basic tenet of
these field studies has been that the soil hydraulic parameters, which relate unsaturated

hydraulic conductivity to soil moisture content and soil water tension, may vary by orders of
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magnitude over very short distances (decameters to meters). They are best characterized by a
lognormal probability density function (White and Sully, 1992). The variability in soil moisture
content and in soil water tension (here generally referred to as suction head or simply “head’)
has been found to be very significant with coefficients of variation that often exceed 70%.

This chapter is concerned with the stochastic analysis of these spatially variable field
properties. In the stochastic context, the spatially variable physical properties are referred to
as random field variables (RFVs, see section 2.5.1) to emphasize that they are not deterministic
but described by a probability density function (pdf) (see chapter 2). The stochastic analysis
here focuses on characterizing the mean, variance, and covariance of the dependent RFVs K
(unsaturated hydraulic conductivity), head h, and moisture flux v as a function of the two RFVs
K, (saturated hydraulic conductivity) and a (soil pore size distribution parameter). The physical
equations relating K, and a to K, h, and v are the exponential unsaturated hydraulic
conductivity model by Gardner (1958) (eqn. 4-8), the governing unsaturated flow equation
(Richards equation, eqn. 4-1), and Darcy’s law (eqn. 4-2) (see chapter 4).

In the past, several approaches have been suggested for the stochastic analysis of
unsaturated flow problems. These approaches are either based on purely analytical methods or
on numerical computer models. Analytical methods (Yeh et al., 1985a,b; Mantoglou et al.,
1987a,b,c; Yeh, 1989; also see chapter 4) offer the advantage of providing general
mathematical solutions (in form of equations) and an explicit insight into the interdependencies
of the statistical parameters for the RFVs K, a, K, h, and v. Analytical solutions are limited,
however, to quasi-infinite soils of mild to moderate variability (0y2<1, y=logK; log refers to
the natural logarithm). In contrast, the numerical stochastic analysis of unsaturated flow
provides almost unlimited flexibility in designing the model to match with the particular
conditions at a field site or to address particular problems of fundamental interest that are
difficult to address analytically (Ababou, 1988; Hopmans et al., 1988; Unlii et al., 1990;

Polmann et al., 1991; Russo, 1991). The Monte Carlo technique is particularly attractive, since
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no stationarity assumptions are needed (Hopmans et al., 1988). Monte Carlo simulations are
common in the stochastic analysis of groundwater flow and transport problems (e.g. Freeze,
1975; Delhomme, 1979; Smith and Freeze, 1979; Smith and Schwartz, 1980, 1981a,b; Clifton
and Neuman, 1982; Rubin, 1990; Rubin, 1991a,b). The flexibility, however, comes at the
expense of rigor and - more importantly - at the expense of potentially enormous computational
costs. Single numerical solutions of the nonlinear, heterogeneous flow problem and in
particular the steady-state solution are expensive to obtain, let alone multiple solutions in a
Monte Carlo simulation (chapter 6). It is therefore not surprising that the numerical analysis
of unsaturated flow in heterogeneous soils has been limited both in the number of studies
published and in the number of random realizations implemented for each study.

Recently, Harter and Yeh (1993) have developed an efficient combined analytical-
numerical method (called ASIGNing) that reduces the cost of computing the solution to
Richards equation (K, h) and Darcy’s law (v) by two orders of magnitude, even for highly
heterogeneous input random fields K, and a (chapter 7). In this chapter, ASIGNing is applied
as the cornerstone to Monte Carlo simulations with a large number of realizations (N=1000).
The objective is to obtain highly accurate stochastic solutions of the dependent RFVs K, h, and
v in two-dimensional, vertical, steady-state unsaturated flow-fields of moderately to strongly
heterogeneous soils in order to implement a stochastic analysis with respect to the statistical
input parameters describing the lognormally distributed RFVs K and a. Accuracy here refers
not only to the numerical accuracy, but also to the statistical accuracy of the sample moments
obtained from the Monte Carlo simulation (compare to chapter 6). The study is intended to
provide new insight to the problem of variably saturated flow in highly heterogeneous porous
media and to critically assess the assumptions and the range of validity of the analytical
stochastic steady-state flow model by Yeh (1985a,b), which has here been adopted for 2-D flow
and the particular case of a having.a lognormal pdf (chapter 4). All past studies of unsaturated

flow in heterogeneous porous media have been limited to soils with a variance of y no larger
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than one (0,’s1). Field studies have shown that the variance of the logarithms of the saturated
and unsaturated hydraulic conductivity often exceed 1 and may be as large as 3, sometimes
even higher (Nielsen et al., 1973; Vieira et al., 1981; Anderson and Cassel, 1986; Ciollaro
and Comegna, 1988; Lauren, 1988; Wierenga et al., 1989). In this study hypothetical
isotropic and anisotropic soils are investigated with 0,2 ranging from 0.01 to 3.2. The
variability in y may be due to the dryness of the soil (large mean soil water tension), or due
to a high variability in K and a, or due to a combination of these.

It is expected that the results will be useful for the assessment of soil moisture
movement in variably saturated soils, and also for the assessment of unsaturated transport since
the second-order moments characterizing unsaturated flow are also used to estimate solute
transport in heterogeneous porous medium (Russo, 1993a,b; Dagan, 1982, 1984; Rubin, 1990,
1991a, 1992) (see chapter 9). Among others, the proposed model allows accurate estimates of
the head covariance function and of the cross-covariance function between head, K,, and «a for
arbitrary boundary conditions. These (cross-) covariances are necessary to implement
conditional simulations of unsaturated flow and transport (chapter 10).

Polmann et al. (1991) have pointed out the importance of model-generated data both
to validate analytical models and to improve our understanding of unsaturated flow processes:
Large amounts of data are difficult to obtain in the field and problems of sampling accuracy
and soil heterogeneity become intertwined. In contrast, "a simulation experiment based on
model-generated data enables us to focus on individual sources of heterogeneity while holding
others fixed. If carried out systematically, this approach can identify the critical factors which
control moisture movement through heterogeneous soils" (ibid., p.1448). The following analysis
is presented in this spirit.

First a rigorous definition is given for the term Monte Carlo and some simple measures
are introduced to determine the sample accuracy of numerical stochastic results as a function

of the number of realizations. Then an outline is given of the actual implementation of the
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Monte Carlo simulations. The results are ‘presented separately for each of the dependent RFVs
logK, h, and v. The general statistical properties of each of these RFVs are discussed, the
sample error associated with the Monte Carlo simulation is determined, boundary effects are
investigated, the dependency of the RFVs on the independent parameters is analyzed and

compared with the analytical stochastic model introduced in chapter 4.

8.2 Monte Carlo Simulation

8.2.1 Definition and Theoretical Sampling Accuracy

The Monte Carlo method is defined as a random sampling procedure used to

numerically evaluate the integral:

G = igmpmdx @-1)

where G is the expected value of the random variable g(X) defined in the sample space Q. g(X)
is an analytiml. function of a vector X of random variables or random field variables with a
joint-pdf p(X). The numerical integration by Monte Carlo is performed as a game of chance
(Kalos and Whitlock, 1986), where N sets of random (field) variables X are sampled from the
joint-pdf f(X). In Monte Carlo sampling is equivalent to generating a random number or

random field (chapter 3). The integral above is approximated by the sum:

6. = L85 o

Gy is the sample mean. Through the fundamental theorem of large numbers it is guaranteed
that <Gy> converges in the mean square to G (< > indicates expected value)

If X, is independent of X, i=j, and if it is known a priori that g(X) has a Gaussian pdf
or if N is very large, the sampling error (variance) &g of the normally distributed sample

mean Gy is (Haan, 1977; Kalos and Whitlock, 1986):
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2
=2 8-3)
N

where 032 is the variance of g(X). Note that the sample moments are assumed to have a
Gaussian distribution rather than the commonly applied t-distribution, which is justified since
samples of at least 40 independent measurements are subsequently evaluated. Since 082 is not

known, it must be estimated by:

var, = X 8%, - (3 X)) 8-4)

The sample variance var, itself has an associated sampling error. For the square-root s, of var,,
the sampling error (variance) ewz of the sample standard deviation S, is approximately

(Yevjevich, 1972):

82_ - O, (8-5)

For the sample variance var, itself, simple heuristic considerations lead to the following

expression of the expected sampling error (standard deviation) €, given ¢, :

2 _ _ 2
Sl 8-6)
V., 2 .

which simplifies with the help of (8-5) to:

2
e w25 87

v.g W

(8-3) and (8-7) can be used to estimate the sampling errors of past Monte Carlo studies of
unsaturated moisture movement. Unlii et al. (1990) implemented Monte Carlo simulations with
50 realizations of the moisture redistribution process in a one-dimensional soil column. The

column consisted of 100 random soil layers of varying soil properties. The study addressed
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the sensitivity of the head and vertical flux moments to the statistical input parameters and to
the boundary conditions. Using (8-3) with N=50 and the sample head variances reported by
the authors, the 95% confidence interval (+2¢;) for sample mean head ranges from +0.2 cm
to £10 cm (£28% of the sample standard deviation). This is a small range given that the mean
suction head varies over several hundred centimeters along the vertical column, but relative to
the standard deviation it is rather significant.

The same accuracy of sample mean heads is found for Hopmans et al.-(1988) who used
10 realizations of a two-dimensional, hypothetical soil cross-section consisting of 50 vertically
homogeneous columns i.e., with vertically constant K, and soil pore size distribution, but
variable mean head. The analysis was used to derive the nonstationary head and flux
distribution moments as a function of the distance above water-table by averaging over all 10
samples in all 50 columns in the same horizontal layer. For a conservative estimate of the
associated sampling error it can be assumed that after a horizontal distance of roughly 10 soil
columns the local head and flux moments are completely independent of each other. Then, N
= 10 * 50/10 = 50 (the number of realizations times the number of independent soil columns
per realization), the same as in Unlii et al. (1990).

The 95% confidence interval of the sample variance (+2¢, ) in these two studies ranges
from 60% to 140% of the ensemble standard deviation (as represented by the square-root of the
sample variance). The same confidence interval applies to the sample covariance functions
computed in Hopmans et al. (1988). While the results from both studies may be considered
accurate for practical purposes, the sampling error of the mean and variance in head and flux
is large enough to question the use of these results for comparison with analytical results.

From (8-7) it is straightforward to determine that the number of realizations necessary
to reduce the 95% confidence interval of the sample variance (or covariance) to within +10%
and +5% of the ensemble variance is N = 800 and N = 3200, respectively. In other words,

roughly 1000 realizations are necessary to estimate the local sample variance (covariance) such
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that in 19 of 20 Monte Carlo simulations the sample error is less than 10% of the ensemble
variance. If the variance is obtained not only by averaging over the N samples at x, but also
by averaging spatially, less realizations are needed and the confidence interval will depend on
the spatial correlation of the RFVs. Spatial averaging, however, assumes that the field is
weakly stationary i.e., that the ensemble mean G and ensemble variance 032 are identical for
all x in the simulation domain. In this study, the primary interest is to obtain the sample mean,
variance, and covariance separately for each x so that stationarity of the dependent RFVs does

not have to be assumed a priori.
8.2.2 General Computational Procedures

Applied to the unsaturated flow problem, g(X) is any of the random field variables
logK, h, and v. X is a vector of the two RFVs K, and loga. Note that the mean and variance
of the RFV g(X) and the sampling errors g and €, are functions of location x unless
stationarity is assumed. To obtain the sums (8-2) and’(8-4) individual realizations X; of the
Gaussian distributed RFVs f=logK, and a=loga must be generated. For each realization of f
and g, the corresponding random field solutions of y, h, v, (horizontal flux), and v, (vertical
flux) are computed by using the ASIGNing technique described in chapter 7. The results are
evaluated not only to determine the first and second moment of the pdfs, (8-2) and (8-4), but
also the histograms of both the independent RFVs f and a (for control) and the dependent RFVs
Y, b, v, and v,. The local sample covariance field of a RFV g centered around point x,

cov(x,E), is computed by:

cov,(58) = T3 (88 Lx+E) - GG x+8)] -8)

And similarly the local cross-covariance field for two RFVs g and g’ is defined as:
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cov,, (58) = Y 828! (%5) - GH)Gi(x+E) &9

Here, g and g’ denote any of the RFVs f, g, y, h, v, and v,. Note that unlike in any previous
numerical studies of unsaturated flow, the sample covariance and cross-covariance is evaluated
over the sample space N and does not involve any spatial averaging. During the Monte Carlo
simulation, the sums in (8-2), (8-4), and (8-8), (8-9) are updated after each realization i.e., the
outcomes g;(x), g(x), g(X)&(x+E), and g,(x)g;’(x+E) are added to the sum of their outcomes
from previous realizations j<i, respectively. For efficient data management, the actual results
of each realization are discarded once all sums and histograms (see below) have been updated.
After the Monte Carlo simulation is completed, the sample means, variances, and (cross-
)covariances (8-2), (8-4), (8-8), and (8-9) are obtained explicitly from the respective sums.
The sample mean Gy and sample variance var, are themselves two-dimensional
realizations of RFVs and summary statistics can be obtained by spatially averaging over the
sample mean field and the sample variance field. For N=1000, the spatial average of the local
moments (average sample mean and average sample variance) has a very narrow confidence
interval i.e., it is a very accurate estimate of the true mean and variance of the dependent RFV’s
provided that the mean and variance fields are found to be weakly stationary. Since the
statistical input parameters F, A, H, o?, and o,? in this study are all independent of location,
the statistical moments of y, h, and v must also be weakly stationary. In the weakly stationary
Gaussian case, the spatial variance of the sample mean field, var(Gy), and the standard deviation
of the sample variance field, std(var,), also provide an estimate of the sampling error and should
be similar to (8-3) and (8-7) if the sample moments indeed converge in the mean square sense
(see chapter 2). For better comparison, the spatial variance of the local sample means is
normalized by the expected sampling error g, where the latter is obtained by using the

average sample variance <var,> rather than the (unknown) ensemble variance ‘332 in (8-3).
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Then the dimensionless actual sample error of the sample mean is defined as:

var(G
E(/;2 =N I‘( N) (8-10)
<var8>

where N is the number of realizations in the Monte Carlo simulation. Similarly, the

dimensionless actual sample error of the sample variance is defined by using (8-7):

¢ / _ V 2N var(varx) ‘ (8-1 1

verg 2 <var >

As in (8-10) and (8-11) an apostrophe ’ with a statistical moment subsequently indicates that
the moment has been normalized and that it is dimensionless.

The sample covariance and cross-covariance fields are computed in a window of half
the side-length of the simulation domain centered around each of nine sample locations x
(Figure 8.1). In other words, (cross-)covariance values around x are computed only for
separation distances [E| not exceeding one-fourth of the domain-length in each principal
direction. The choice of the locations x; and the size of the windows surrounding them is
dictated by several objectives: to provide local sample (cross-)covariance fields that can be
checked for spatial trend; to spread the locations X; as far apart as possible to minimize
correlation between the sample (cross-)covariance fields; and finally to provide equally sized
sample fields. The latter is necessary to obtain average (cross-)covariance fields Cy:(E) for

each lag distance &:

9
Cpi(8) = 1/9) cov, (x,8) (8-12)

iw]
The window for the covariance and cross-covariance fields around the center point x__,., of the
simulation domain is chosen to be as large as the simulation domain itself to provide additional
information on Cov(X.mest) at lag distances up to one-half of the domain size in each

dimension.
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Finally, two classes of histograms are computed: The local histogram of the RFVs at

X and the total histogram of all outcomes of each RFV regardless of location. The
histograms are updated after each realization. Figure 8.2 shows a simple flow-chart of the

Monte Carlo simulation procedure.

8.3 Simulation Parameters and Implementation

This study is geared towards the equivalent of a formal stochastic analysis and not
towards a particular field application. Nevertheless, it is imperative to implement the numerical
analysis such that the demands of actual model applications are addressed. An intensive study
of field heterogeneity in an arid soil was implemented by Wierenga et al. (1989, 1991) near Las
Cruces, New Mexico. Measurements of the in situ and laboratory saturated hydraulic
conductivity, soil water content, and soil water retention function provide valuable information
about the magnitude of field soil variability. The saturated hydraulic conductivity was found
to be on the order of 10° - 10° cm/d and to have a lognormal distribution. Variances in logK,
(natural based logarithms) range from as small as 0.1 to as large as 3 depending on the
measurement method and the soil layer. The overall variability of logK, at the Las Cruces site
is approximately 1.5. A geostatistical analysis of these logK| data reveals that the correlation
structure can be modeled by an exponential covariance function with an integral scale of a few
meters in the horizontal direction and an integral scale of a few decimeters in the vertical
direction. To describe the spatial variability of pore-size distribution related parameters,
Wierenga et al. (1989) fitted the VanGenuchten model (4-4) to the empirical retention curves
obtained from soil cores. A statistical analysis of their data shows that the VanGenuchten o
is lognormally distributed with a geometric mean I' = 0.04 and variance o> = 0.3. The
VanGenuchten n is also best fitted by a lognormal distribution with a geometric mean n of 1.6

and a variance in log(n) of 0.02. Covariance functions similar to that of logK, were found for
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the parameters characterizing the pore-size distribution (unpublished study report, Harter, 1991).
This information of spatial variability of unsaturated hydraulic properties in the field provided
the basis for the design of the Monte Carlo simulations.

The input parameters for all Monte Carlo simulations (MCSs) in this study are (Table
8.1): the variances of f and a, o, 0%, the correlation between a and f, p,, the geometric mean
[ of the soil parameter a (eqn. 4-8), the horizontal and vertical grid discretization, Ax, Az, and
the horizontal and vertical correlation scales of f (and a), Ay, A,. Only steady-state gravity flow
is considered. Each Monte Carlo simulation is designed to simulate one particular, hypothetical
soil site. The different sites (simulations) are arbitrarily labeled as #M, where M€E({2,3,...,31}.
To keep matters simple and transparent, a base soil site is defined (#3). From site to site, one
or a few of the input parameters are systematically varied. Only the differences to the base site
are listed in Table 8.1.

Recall from chapter 7, that the ASIGNing technique allows the use of random Dirichlet
type boundaries by setting the head on the boundaries equal to the spectrally derived solution.
The solution for a particular sample of random fields f and a is obtained quasi-analytically in
the spectral domain (Harter and Yeh, 1993; see also chapter 7) The underlying assumption is
that the RFV h is weakly stationary, normally distributed, and that boundaries are at infinity.
The spectral solution for the head is defined through the spectral representations of f and a, and
through the ensemble means I' and H. The mean vertical flux is controlled through T, H, and
the covariance function of f and a.. This type of boundary condition allows the simulation of
a finite portion of a quasi-infinite domain, which is consistent with many field applications.
Boundary conditions are mrely.known with certainty.

Within the steady-state unsaturated flow profile the spatial variability of the soil water
content 8 is neglected. For simplicity a constant =1 is used in the numerical simulations.
Then the pore velocity is equal to the Darcian flux q and is automatically normalized with

respect to the (constant) soil water content. This greatly simplifies the flux analysis and - in
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subsequent chapters - will prove advantageous in the analysis of solute transport through
unsaturated media, since the results are very general and independent of the relationship
between 6 and h. Note that this assumption does not neglect the change in water content from
a very wet to a very dry soil. It only postulates that the water content spatial variability at a
given H is negligible. The velocity distribution can also be normalized with respect to the
mean saturated hydraulic conductivity, the only other RFV depending on units of time, since
the choice of the time-units is arbitrary. Setting the mean saturated hydraulic conductivity to
1[cm/day}, the actual steady-state results for the velocity distribution given a mean saturated
hydraulic conductivity of x [cm/day] are obtained by multiplying the velocity with x.

The mean pressure head in the base soil is -150 cm and varies in other simulations from
-100 cm to -3000 cm. The mean pressure head is chosen to avoid partial saturation of
significant parts of the soil domain if the soil is very heterogeneous. Partial saturation poses
no problem to the Monte Carlo simulation, but cannot be taken into account by the first order
stochastic analysis to which the numerical results are compared. The base site has a unit
variance of f, o=1. In other soils, o is as small as 0.01 and as large as 4. The geometric
mean I of a is 0.01 cm™ with a variance o,? = 0.01 such that § = 5,/0; = 0.1. All simulations
are implemented using the exponential covariance function (7-5) for f and a. The RFV a is
either perfectly correlated with f (p,=1) or - as in the base soil site - independent of f (p,=0).
It has a correlation scale that is always identical to that of f. In the sensitivity analysis the
geometric mean of a is increased to values as large as 0.1 cm™ and the variance of a varies
between 107 and 0.6. The correlation scale is systematically varied from as little as 12.5 cm
in both the horizontal and vertical direction to as much as 300 cm in the horizontal and 50 cm
in the vertical. The base soil is isotropic with a correlation scale A; = 50 cm. The discretization
of the base soil site yields squared finite elements of (10)> cm® or 1/5® of the correlation scale
in each dimension. The vertical discretization (Az=10 cm) is chosen according to the resuits

of the grid design analysis in chapter 6. Different finite element discretizations are also selected
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to test the grid-design with the Monte Carlo approach (as opposed to the single simulation
technique used in chapter 6). An isotropic case is simulated with Ax =Az=2.5 cm and a
correlation scale [A] = 12.5 cm in each direction (#19). The effect of horizontal discretization
on the stochastic results is tested by comparing an anisotropic case (A =300 cm, X; , = 50 cm)
with Ax =30 cm and Az=10 cm (#12) with the same case, but different horizontal discretization

Ax =10 cm (#11).

84 Random Field Generator: Evaluation

The performance of the random field generator used to generate the two-dimensional
input random fields of K, and o has been discussed in chapters 3 and 6. The spectral generator
produces numerically undistorted random fields with sample moments that are in excellent
agreement with the specified ensemble moments. The only significant weakness of the
technique described in chapter 3 is a small reduction in the variance of the random fields: The
sample variance is generally 5% lower than specified, while the sample covariance reproduces
the desired covariance structure at non-zero lags with very good accuracy. No consistent error
is observed for the sample mean. These results from chapter 3 are confirmed by the sample
moments obtained for f and a in the unsaturated flow simulations. The histograms of f and a
show a smooth Gaussian-like distribution, and no consistent artificial spatial pattern is observed
in the two-dimensional map of the input sample moments (Figure 8.3d,h). In the base soil #3,
the local sample mean Fy(x) of f varies from -0.1 to 0.1 with a (spatial) standard deviation
of the sample mean of 0.033. The expected standard deviation (8-3) of the sample mean is ¢,
= 0.032 (N=1000) (Figure 8.3a). The local sample variance of f varies from 0.8 to 1.1 with
a spatial average of 0.94, which is 6% below the specified ensemble variance (Figure 8.3b).
The spatial standard deviation of the local sample variance is 0.043 which is very close to the

expected €, = 0.042 (8-7). Similar results are found for the sample moments of a. The
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average sample covariance function (8-8) for f and a are isotropic (Figure 8.3c,g) and a cross-
section shows that they are in excellent agreement with the specified exponential covariance

function (Figure 8.6).

8.5 Stochastic Analysis of the Unsaturated Hydraulic Conductivity

The stochastic analysis of the dependent variables y, h, v,, and v, is organized in the
following manner: Using primarily the results from the base soil site #3, general observations
are summarized regarding the structure of the random fields, the structure, stationarity, and
sampling error of the sample mean and sample variance fields, and the structure of the
covariance fields. The covariance fields are qualitatively compared with analytically obtained
covariance functions (chapter 4). The histograms are described to draw conclusions about the
empirical pdf of the dependent parameters. Then a quantitative analysis is implemented
regarding the stochastic dependence of the mean, the variance, and the covariance of the
dependent RFVs on the variances o/, 0% the correlation p, between a and f, the mean head
H, the geometric mean I of a, the horizontal and vertical correlation scales A, and A, of f, the
anisotropy aspect ratio v = A, /A, and the grid discretization Ax and Az. The numerical results

are directly compared with the first order analytical solutions.

8.5.1 General Observations

Sample mean and sample variance field. At site #3, the sample mean and variance
fields of y have the random character of individual realizations (Figure 8.3i,k). The
dimensionless errors (8-10) and (8-11) of the sample mean and sample variance are 1.21 and
0.99, respectively. Almost identical sampling errors are observed for other soils with the same

or less variability in y. At the anisotropic soil sites, the dimensionless error of the sample mean
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reduces to 0.82 due to the smaller size of the simulation domain relative to the correlation scale
of f (see Table 8.1). No significant trend or other artificial spatial features indicates a deviation
from second order stationarity. Second order stationarity for y and other dependent RFVs is
expected since the random head boundary conditions are weakly stationary and the mean
vertical flow therefore uniform. Notice that the sample mean and variance of y on the
boundary are not notably different from the interior of the simulation domain. However, for
soils with larger aspect ratio v than the base soil site #3 or larger variability 0,2 or both, the
variance within 0.5, from the bottom boundary and within 2);, from the top boundary tends
to be lower than in the rest of the domain by up to approximately 30%. A similar variance
reduction is observed within 0.2), of the horizontal boundaries. These boundary effects on the
sample variance of y increase €’,5 10 1.26 in the highest variance soil (#21) while reducing ¢’;’
to 0.67. No significant boundary effects are observed for the sample mean Y of y at any soil
site.

The average reduction of oyz at and near the boundary is due to setting the head values
on the boundary equal to the first order approximation of the head, given the random fields of
f and a. The statistical moments of the head on the boundary are therefore not entirely
consistent with those in the interior of the domain. As will be discussed below, the head and
velocity variances near the boundary increase significantly for soils with high variability in
moisture flux due to the approximate nature of the first order quasi-analytical head boundary
conditions. It is not clear, however, why there is a reduction and not an increase in oyz near
the boundary (relative to the interior).

Sample covariance. For all soils the sample covariance field C,, of y is very similar
to the input covariance field C; reflecting the physical observation that the random fields of y
have a very similar random structure as the random fields of f and a (compare e.g., Figure
8.3i,k vs. Figure 8.3a,b). At the isotropic soil sites (isotropic with respect to f), C,, has a very

small, but notable anisotropy with larger vertical than horizontal correlation scale (Figure 8.6).
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The correlation lengths in both directions are approximately 10% smaller than A, The
horizontal covariance is of the "hole-covariance” type i.e., it becomes negative at some lag
distance and then tends asymptotically to zero. The vertical covariance of y remains positive
for all lag-distances. In the anisotropic soils with v > 1, the situation reverses to a hole-type
covariance function in the vertical direction and an exponential type covariance function in the
horizontal direction. Again, the correlation lengths are approximately 10% smaller than those
for f (Figure 8.7). These findings are in excellent agreement with the theoretical covariance
function derived in chapter 4. In Figure 8.5d a single sample covariance C, is plotted for an
anisotropic wet soil with v=3 and 0;°=0.95 (#31) to illustrate the qualitative agreement between
the analytical solution and the numerical results. Similar qualitative agreement of the sample
C,, with the analytical C,, is found at all sites. The correlation function p, is also in good
quantitative agreement for all soil sites, even those with strong variability (compare Figure 8.6,
a mildly heterogeneous, isotropic soil, with Figure 8.7, a strongly heterogeneous, anisotl:opic
soil).
Histogram. The histograms of y at ail soil sites indicate that y is Gaussian-like
distributed i.e., the unsaturated hydraulic conductivity seems lognormally distributed (Figure
8.3m). Only at the driest soil site (#21), which is also the soil with the highest variability in

y, the histogram has a slight tail towards lower y. No distribution tests were implemented.
8.5.2 Moment Analysis of the Unsaturated Hydraulic Conductivity

For the stochastic analysis, only the spatially averaged sample moments are considered.
To eliminate the non-stationary effects near the boundary, the average sample mean and
variance of each dependent RFV are obtained by averaging over the center 33 by 33 nodes
(h,v,, v,) or the center 32 by 32 elements (y). y is computed for each element from Gardner’s

equation (4-8) by arithmetically averaging the head values on the four nodes surrounding the
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element.
Since the correlation functions of f and a are identical within each soil site, inspection
of 4-31, 4-39, and 4-47 in chapter 4 suggests that the variances of all dependent parameters of

interest - h, y, v,, and v, - can be normalized by the variance factor o%

o’ =} (1 + pCLTH + CTHY) (8-13)
Note that o® is not identical with either the saturated conductivity variance o nor with the

unsaturated conductivity variance oyz. The dimensionless unsaturated hydraulic conductivity

variance o’, %

8-14)

Q
1]
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as well as the dimensionless variances of the other dependent RFVs are in first order
independent of the mean soil water tension H, the correlation P, and the variances of f and a.
The analytical, dimensionless variances and covariance functions of all RFVs including y are
therefore only functions of the correlation scales of f and the geometric mean " of a. The
numerical analysis shows, however, that the actual stochastic relationship between the dependent
RFV second moments and the independent RFV pdfs is more complex than suggested by the
analysis in chapter 4. The following results will illustrate this for the unsaturated hydraulic
conductivity variance. The stochastic analysis of other RFVs is given in subsequent sections.

Dependence on input variance. The average sample mean Y of the log unsaturated
hydraulic conductivity changes proportional to H such that for all sites the first order
approximation of Y (4-35), Y=F+HT, holds very accurately (deviations of less than 1%). Fae
8.8b shows the normalized soil variances ory2 as a function of the input variance o, aspect ratio
v, and vertical correlation scale A,. All soils have the same mean tension head H = -150 cm.
The random fields of f and a are independent. The variance ratio C=0,/0; is 0.1. It is obvious

from Figure 8.8b that the results are not quite independent of the actual magnitude of the
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variances in f and 4. For the three least variable soil sites (07=0.01, 0.11, 0.95), the actual o}
is approximately 4% smaller than the first order results indicating (as expected) a very good
agreement between the numerical and the analytical results (Table 8.2) considering that the
variance of the input random fields is also approximately 4%-5% smaller than specified.

With increasing of, the dimensionless o’,? increases more or less linearly. In the
anisotropic soils the increase relative to the analytical solution is larger. At o?=3.6, the
numerical o’,? is 4% larger than the analytical o’, in the isotropic soil and 10% and 16%
larger in the anisotropic soils with A;=50 cm and 30 cm, respectively. A careful analysis of
these results reveals that the differences partly stem from an increasing difference in the sample
mean head (used for the normalization (8-14)) at higher variances. The difference between the
actual (dimensional) and analytical 0,2 does not exceed 11%, even for the most variable soils
(c,2=3.2) including the dry sites that are not shown here.

The dependence on o,> alone is demonstrated by comparing the isotropic base site
(0,2=0.01, #3) with a soil having 0,’=0.64 (#26). In the latter soil the difference between the
actual and analytical o, (dimensional) is 16%.

Overall, the MCSs indicate that the first order analytical estimate of the mean Y of the
unsaturated hydraulic conductivity is very accurate even for strongly heterogeneous soils. The
analytical solutions underestimate cyz at large variances of f and a. For practical purposes, the
10%-16% error of the analytical solution in very heterogeneous flow fields (large 0,2) is
negligible.

Dependence on soil water tension and the correlation between f and a. Again, the first
order approximation of Y gives very accurate predictions (to within 1%) of the observed Y.
Apart from the differences between analytical and numerical solutions for cy2 discussed in the
previous paragraph, neither the mean head, nor the correlation coefficient p, have a remarkable
effect on o’f. Due to the particular form of the variance factor o, the variance of all RFVs

goes to 0 for p,=1 as H—>-1/CI". At soil water tensions that are more negative than this limit,
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the variances of all RFVs increase again (see also chapter 9). It is found that these results
indeed hold for the numerical simulation. In correlated soils, the first order solution for the
moments of y is accurate over a larger range of soil tensions than in uncorrelated soils. Only
at a very dry head (H=-3000) with a large o,%, the dimensionless o’,? increases relative to the
analytical solution (Figure 8.9b).

Dependence on " and the correlation scale of the soil. The second moments of the
dependent RFVs depend nonlinearly on I and A as shown in Figure 8.10b and are also found
to be in good agreement with the first order analytical solution, even for large T = 0.1 cm™.

Dependence on aspect ratio and grid discretization. The difference between the
numerical and analytical oy2 increases for larger aspect ratio v and longer vertical correlation
scale A,. Figure 8.11b and shows that overall the variance of y decreases as the aspect ratio
increases, as expected from the first order analysis. Different horizontal element discretization

(#11 vs. #12) does not influence the results for y.

8.6 Stochastic Analysis of the Soil Water Tension

8.6.1 General Observations

Sample mean and sample variance field. The sample mean and variance fields of the
soil water tension have a very different random character compared to y, f, or a (compare
Figure 8.3i,k with Figure 8.4a,b): The visual patterns are much less erratic and significantly
broader with only a few relatively large areas of randomly high and low sample values. This
pattern is a reflection of the much less erratic nature of the underlying realizations of h, which
exhibit a similarly smooth pattern (see Figures 7-2 through 7-4 in chapter 7).

The dimensionless error of sample mean and sample variance, £’;* and €’, g are 0.66
and 1.09, respectively at the isotropic base soil site (#3). Recall that the dimensionless error

reflects the spatial variability of the sample mean and sample variance within the simulation
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domain relative to the expected variability in an infinite domain. The low error of the sample
mean is caused by the strong correlation of the head sample mean values within the simulated
domain; the sample domain is small relative to A, (approximately 3 A, and 5 A,;). In the
anisotropic soils (anisotropy in f), e’s> becomes even smaller ranging from 0.22 in the less
variable soils (e.g. #12) to 0.46 in the most variable soils (e.g. #22). This significant reduction
in the sample error comes despite the fact that e.g., for the anisotropic soils with v=6, the
correlation scales are A, =2 and A’ =3, which means that the relative domain size (measured
in A,) remains approximately the same as in the isotropic soils. The low ¢’;? indicates that the
sample error associated with the average sample mean approaches that of the local sample
mean. The variance sample error ¢’,; is approximately 1. In the anisotropic soils of moderate
variability it generally is within 5% of 1, and increases to 1.1 in the isotropic soils. In the
strongly variable soils ¢’, increases up to 1.4.

Boundary effects are insignificant at the base soil site (Figure 8.4a,b). But in more
heterogeneous soils and particularly in soils of stronger horizontal anisotropy, the variance
increases by up to 30% in a boundary region that is A,=2 thick near the horizontal boundaries,
but only A,=0.2 wide near the vertical boundaries. In other words, the boundary effect is
particularly dominant into the direction of mean flow. The variance increase is due to the larger
variance in the first order head perturbation solution on the boundary (see discussion below).
The artificial impact of the first order random head boundary in the anisotropic and strongly
heterogeneous soils is - spatially - much less dominant than constant head or flux boundary
conditions, which have traditionally been used in Monte Carlo simulations. For the saturated
case, Rubin and Dagan (1988, 1989) estimate that the boundary effects of such non-random
boundaries vanishes only at a distance of at least 1A, to 2A; from the boundary.

Covariance sample field. The "smoothness" of the realizations of h and of the pattern
in the sample mean and variance fields is quantitatively captured by the covariance function,

which has a much larger correlation scale than f in both the horizontal and vertical direction
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(Figure 8.4c). Even for the isotropic base soil #3, the head covariance G, is anisotropic with
Ny = My/Ae~4.5 and A’y = A /A ~2.5. The anisotropy is reflected in the horizontally
elongated pattern structure of the sample mean and variance fields in Figure 8.4a,b. The
numerically obtained covariance function is well predicted by the analytical covariance function
for the head C,, (Figure 8.5a,b). The covariance function is similar to an anisotropic Gaussian
function, particularly near the origin, which explains the smoothness of the random head fields
(Figure 8.6). For larger lag distances both the analytical and numerical covariance fields
deviate from the oval shape of the Gaussian covariance. In the vertical direction, the head
covariance is a "hole"-type function (see discussion of C,,) regardless of the type of soil
investigated here. The limitation of the domain size does not allow an assessment of the type
of covariance function in the horizontal direction. The differences between numerical and
analytical covariance functions are primarily due to sampling variability and due to the different
variances. The normalized head correlation functions Py from the first order analysis and the
Monte Carlo hnalysis are in good agreement not only for mildly heterogeneous soils (oy2=0.1,
#8, see Figure 8.6), but also for highly heterogeneous soils (0y2=3.2, #22, Figure 8.7). For
strongly heterogeneous soils of any anisotropy ratio, the analytical correlation function tends
to underestimate the vertical correlation of the Monte Carlo results. In anisotropic soils this is
also true for the head horizontal correlation.

Histograms. The histogram for the total of sample head values is not significantly
different from the histogram for the head values sampled at the center of the simulation domain.
Figure 8.4d shows the total sample histogram for the base soil site. At this and most other soil
sites, the histogram follows the symmetric Gaussian pdf, which confirms a basic assurr;ption
of previous analytical studies of flow in heterogeneous soils (_Yeh et al., 1985a,b,c; Mantoglou
etal., 1987a,b,c). Only in the most heterogeneous soils (those with the highest ¢,%) and in soils
with a large ' (=0.1 in #30) an almost negligible but consistently notable tail towards more

negative head values develops.



8.6.2 Moment Analysis of the Soil Water Tension

Dependence on input variance of f and a. In the least variable soil (isotropic soil site
#2 with 0=0.01) the average mean head deviates less than 0.1% from the mean head (-150
cm) prescribed for the first order perturbation solution on the boundary. As the variance of f
and a increase, the mean head drops slightly to -150.9 cm in the isotropic base soil site with
o?=1 (#3) and to -156.3 cm in one of the most variable, wet anisotropic soil sites with o’=4
(#22). In drier soils the difference between prescribed and average measured mean head does
not exceed 1%, even if the head variance is very large (e.g. #21). The actual sample mean head
is not sensitive to any of the other input parameters. The rest of this section will therefore only
discuss the dependence of the sample head variance on the various input statistics.

For the least variable three isotropic soil sites, the results of the head variance are
shown in Table 8.2 together with the analytical head variance solution. For those three soils
the largest difference between numerical and analytical head variance is observed for the least
variable soil. There, the variance in the Monte Carlo is 4% higher than the analytical variance
o2 At o=1 (#3) the difference is reduced to 2%. For practical purposes, the first order
analytical solution is considered accurate for isotropic soils of o’s1.

The normalized head variance o’,2 is:

ot (8-15)

where the variance factor o2 is defined in (8-13). Figure 8.8a shows that the numerical head
variance in the isotropic soils is well modeled by the analytical head variance even at 02=3.6.
In the anisotropic soils, the head variance is also very accurately predicted from theory for
o/=1, but decreases linearly (relative to the first order solution) at higher variances. The

decrease is the strongest for those soils with the highest aspect ratio, such that for a wet soil
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with v=6 and 6.7, and with 0/=3.6 the head variance in the Monte Carlo simulation is only
75% of the analytically obtained variance. This is consistent with the boundary effects
observed particularly in the anisotropic soils.

The robustness of the first order head perturbation solution at variances up to o=1 has
previously been discussed in the literature, but with respect to saturated groundwater flow.
Dagan (1985) computed second order corrections for the head moments in an infinite aquifer
and found that for o’=1 first order head moments are within 10% of the second order head
moments. Gutjahr and Gelhar (1981) concluded from their analysis that the spectral first order
approximation of the head moments in saturated porous media is valid even for variances of
much larger than unity. As Gelhar (1986) noticed, no such evaluation has been made for the
spectral analysis of unsaturated flow. While this study does not address the issue analytically,
the simulations clearly indicate the general trend: First order analysis will significantly
overestimate o, at large o and 0,2 It may be argued that the difference is due to the small
simulation domain. However, the average sample variance as well as the sample variance in
the center of the simulation domain change insignificantly, when the vertical and horizontal
domain size is increased to 150 nodes and 100 nodes, respectively.

Dependency on mean soil water tension. In anisotropic soils the numerically obtained
o’ decreases as the soil becomes drier and as o,” increases (Figure 8.9a). For the driest soil
(#21: H=-3000 cm, v=6, 0y2=3.2) the decrease is approximately 25% i.e., almost the same as
for the highly heterogeneous wet soils (#22: H=-250 cm, v=6, 0,’=3.2). The overall effect of
mean soil water tension on the actual variance of the head depends on P, as discussed in the
analysis of y. For mean head much more negative than the critical head H=-1/CT, the head
variance will increase in any soil but not as strong as suggested by the form of the variance
factor o? (8-13).

Dependency on T and vertical correlation scale. A similar deviation from the first

order results is not observed for varying vertical correlation scale or increased coarseness of the



230
soil texture (larger average pore size distribution parameter I'), if o does not significantly
exceed unity. As Figure 8.10a shows, there is excellent agreement between first order analysis
and Monte Carlo analysis.

Dependency on aspect ratio and grid discretization. The effects of aspect ratio are also
well modelled by the first order approximation (Figure 8.11a) if o=1. As the aspect ratio v
increases, 0,” decreases slightly relative to the analytical solution. A threefold increase in the

horizontal element size (#12 vs. #11) increases the head variance slightly (about 2%).

8.7 Stochastic Analysis of the Velocity

8.7.1 General Observations

Sample mean and variance fields. The random structure of the horizontal and vertical
velocity fields are very peculiar and distinctly different from those of other RFVs. In Figure
8.12, a single realization of corresponding v, and v, fields in the base soil site (#3) are shown.
The horizontal velocity map has a distinctly symmetric pattern of diagonally trending narrow
stripes with strong negative velocities (dark NE-SW trending "canyons") and counter-diagonally
trending narrow stripes with strong positive velocities (white NW-SE trending "cloud
streamers”) in an otherwise relatively homogeneous velocity field with very small horizontal
velocities. The vertical velocity map, in contrast, is not quite unlike the map of a braided
channel network in a river valley or of the preferential flow paths that have been reported to
occur in soils: While most portions of the soil domain have relatively small vertical velocities
.(lightly colored areas), high velocities (dark areas) form a braided network of narrow channels
with a predominantly vertical direction. The diagonal streaks of v, and the vertical braided
channels of v, reappear in the sample mean and sample variance maps (Figure 8.4e,f,i k), but
in a much more vivid, livelier, more interwoven, and more erratic manner. Graphically

speaking, the laziness of the landscape in the individual realizations is replaced by a vivid
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pattern in the sample mean and variance fields. This is in contrast to the observations for the
sample mean and variance fields of f, a, y, and h, which are all very similar in character to
individual realizations.

Individual realizations are relatively homogeneous over large areas (the laziness) with
extreme values (the canyons and clouds and river channels) interrupting them at a spatial
interval that is on average significantly longer than the transverse size of the channels and
streaks. In the sample mean and variance fields the diagonal and cross-diagonal streakline
pattern and the vertical braided channel pattern are preserved, but the transverse extent of the
channels and streaks is narrower, the frequency of streaks and channels has increased, and they
are much less continuous.

What is the explanation for the particular pattern of the individual realizations and the
character of the sample mean and variance fields? And what is its significance? Before
analyzing the statistical description of the velocity RFV, it is important to pursue these
questions to better understand the physical nature of moisture movement in heterogeneous soils.

The horizontal and vertical velocity realizations depicted in Figure 8.12 must be seen
as a unity since they are two components of a single vector v. The areas of very large positive
and negative horizontal velocity occur in those parts where the vertical velocity is also large
(indicated by the channels) but where the channels are inclined relative to the vertical axis. In
the isotropic soil of Figure 8.12, the horizontal component of the velocity is rarely much larger
than the vertical component, therefore the diagonal orientation of the streaks (instead of a
horizontal or near horizontal orientation). Since most of the flow is vertical, the vertical
velocity map can be seen as almost representative of v. The velocity map in Figure 8.12b
indicates that soil moisture movement in spatially variable but statistically homogeneous
(chapter 2) soils tends to be along preferential flow paths i.e., the majority of soil moisture
moves through only a small portion of the entire soil domain. In a large part of the soil

domain, moisture flux is relatively small. The simulations show that the concentration of
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moisture flux into small channels increases as the heterogeneity of the soil increases or as the
soil becomes drier. Similar patterns of flow channeling are shown by Moreno et al. (1989) who
modeled Darcian flow in a two-dimensional, single fracture with varying aperture and high
variability of fracture resistance (which is inversely related to the conductivity). Channeling
has also been observed in field soils, where channeling due to soil heterogeneity and channeling
due to wetting front instability (fingering) together may greatly enhance the variability of the
flux field (Glass et al., 1988).

From these physical observations it is expected that both the vertical and horizontal
velocity distribution have a non-Gaussian, highly skewed distribution. As discussed in more
detail below, the velocity components are indeed non-Gaussian, lognormal-like distributed
(Figure 8.13). Hence the usefulness of the first and second moments as measures of the pdf
of v is limited. Since the sample mean and variance are obtained through arithmetic averaging,
the large velocity areas of individual realizations carry much weight in the sample mean and
variance. The maps of the two sample moments become like a collection of the many streaks
and channels of the individual realizations.

Boundary effects. The sample mean and sample variance fields of the velocity have
boundary effects that quantitatively are very strong, even at the base soil site, where no
significant boundary effects are observed for other RFVs (Figure 8.4e,f,ik). Directly on the
boundary, extremely low and high values occur in the sample mean of both velocity
components. The sample variance of the velocity is much higher at the boundary than in the
interior of the domain: at the base site (#3) by up to an order of magnitude for o,,? and a factor
5 for 0,,>. The spatial extension of the boundary effects are particularly strong for o,? into
the mean flow direction: along the horizontal boundaries they are significant within 1A,
(Figure 8.14a,b). Along the vertical boundaries and for all boundaries around the o,,> map the
effect is limited to 0.5A, and less. The boundary effect has a spatially larger extent in the

anisotropic soils of equivalent heterogeneity, which increases with the variability of y. If 0,2
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~ 3, the boundary effect significantly increases o,,2 and o,,% within almost 3., from the bottom
boundary and within almost 2, from the top boundary (Figure 8.14e,f). For this soil the
velocity variance on the boundaries is three orders of magnitude larger than in the interior of
the domain. The spatial extent of the boundary effect on the velocity moments is slightly
smaller than the spatial extent of constant flux boundary conditions in saturated flow (compare
Figure 8.14 to Bellin et al., 1992, Figure 3).

The very strong though spatially limited boundary effects on o,” are again caused by
the approximate nature of the first order head perturbation solution used as Dirichlet boundary
conditions in the numerical model. But while the statistical moments of the first order head
approximation are in excellent agreement with those of the Monte Carlo simulation for ot =1,
the velocities derived from the first order perturbation head distribution along the boundary are
extremely erratic. A simple method to circumvent the erroneous boundary effects in transport
simulations is described in chapter 9.

Covariance fields. The covariance fields for v, and v, are a reflection of the diagonal
and counter-diagonal patterns, and of the braided vertical patterns, respectively, of the high
velocity areas (Figure 8.4g,1). For increasing aspect ratios, the two diagonal main axes of the
horizontal covariance function become flatter (Figure 8.5€,f) indicating that the diagonal flow
patterns observed in the isotropic soil (Figure 8.4g) tend to become more horizontal as the
aspect ratio increases. For mildly to moderately heterogeneous soils such as the base soil (#3),
the analytical covariance functions obtained from the first order spectral density functions for
the two velocity components are in very good qualitative, if not quantitative agreement with the
numerically derived velocity covariance functions (Figures 8.5 and 8.6).

In soils (wet or dry) with cr),2 > 1, the vertical and horizontal cross-sections of the
analytical velocity correlation functions deviate significantly from the numerically determined
solutions. The numerically obtained horizontal velocity correlation function is almost identical

in the transverse (horizontal) and the longitudinal (vertical) direction, while first order analysis
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predicts a much shorter transverse correlation scale and a much larger longitudinal correlation
scale. The numerical vertical velocity correlation function has also a much shorter longitudinal
correlation scale than the anmalytical correlation function. Only the transverse hole-type
correlation of v, is very accurately predicted for all soils (compare Figures 8.6 and 8.7).

Histograms. The histogram for v, is - as expected - skewed (see, for example, Figure
8.4m). The velocity statistics are obtained on the untransformed RFVs. Logarithms were not
taken during the simulation due to the fact that neither the vertical nor the horizontal velocity
component is restricted to either positive or negative values only. A graphical method to
investigate whether the vertical velocity is indeed lognormal-like distributed consists of a plot
of the histogram on a lognormal axis (Figure 8.13). For very small input variances of f (o
=0.01) the histogram of v, can either be interpreted as normal or as lognormal (Figure 8.15),
but at higher variances, the histogram is always skewed on the arithmetic scale, even for mildly
heterogeneous soils (e.g. of = 0.11, #8, see Figure 8.15). This result is in accordance with the
histograms obtained from Monte Carlo simulations of saturated flow in two- and three-
dimensional heterogeneous media by Bellin et al. (1992) and Levin (1994). Figure 8.16 shows
the total histogram as well as the histogram of the center point of the simulation domain for v,
and v,. The t-wo types of histograms are generally identical. The histogram for the center point
is of course based on only N=1000 values, while the total histogram is based on 4 million data
(64* N). Even the histogram plotted on the logarithmic axis has a significant skewness if the
soils are dry or very heterogeneous (Figure 8.16h,i). In the soils with very high variability, a
significant amount of vertical velocities is positive (upward) (Figure 8.16h,i,k).

The horizontal velocity histogram plotted on an arithmetic scale (Figure 8.4h) seems
to be Laplacian (symmetric exponential decay, chapter 2), but plotting the histograms of |v,| on
the logarithmic scale reveals that the pdf for v, must be differentiable for |v,]—0 (Figure 8.16a-
€). The histogram of v, resembles a Gaussian function only if the unsaturated hydraulic

conductivity variance is very small (0,°<0.2). This is in contrast to the findings of Bellin et
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al. (1992) and Levin (1994) who argue that the horizontal velocity component in their
simulations has a normal pdf even in very heterogeneous saturated porous media. However,
visual inspection of the numerical velocity cdf and the Gaussian cdf in Figure 7d of Bellin et
al. (1992) indicates that their transverse velocity pdf qualitatively tends away from the Gaussian

pdf towards a similar shape shown for the unsaturated velocity pdf e.g. in Figure 8.4h!

8.7.2 Moment Analysis of the Velocity

Dependence on input variance of f and a. Due to the mean vertical, uniform flux, the
mean horizontal velocity must be 0. In all simulated soils, the average sample mean horizontal
velocity V, is at least three orders of magnitude smaller than the mean vertical V, and can
therefore indeed be considered as being negligible. The first order analytical mean V, is equal
to: -

V, = ﬁ (8-16)
0

z

where K, =exp(Y) is the geometric mean of the unsaturated hydraulic conductivity. The first
order analysis, of course, assumes that both the vertical and horizontal velocities have a normal
distribution. Nevertheless, the difference between analytical and average sample V, in the
isotropic soils with o s 1 is 2% at the most (Table 8.2). For the most heterogeneous soils
(#9) the Monte Carlo V, is 10% larger than (8-16). In contrast, the average sample V, in the
anisotropic, wet soils with v=6.0 and v=6.7, of2=1, is more than 20% smaller than the
analytical V, and decreases to less than 50% of (8-16). The decrease in the average arithmetic
sample mean velocity relative to the analytical mean velocity must be explained with the
neglect of higher order moments in (8-16) and with the lognormal distribution of v,, which
yields a preferential flow pattern as the variance increases, particularly in anisotropic soils. The

numerical results show that the average steady state flux in highly heterogeneous soils depends
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strongly on the aspect ratio.

For a better physical explanation, v, must be analytically evaluated to higher order than
in chapter 4. Yeh et al. (1985b) used a mixed first and second order approach to determine the
effective hydraulic conductivity K in a vertically uniform flow field. The effective conductivity
is defined as K =<q,>/J,, where <q,> is the mean vertical flux and J, is the mean vertical total
potential gradient. All of the simulations here preserve the mean unit gradient condition. Since
the soil water content in all simulations is constant and identical to 1, the average sample mean
V, from the MCS becomes the effective hydraulic conductivity. As Figure 2 in Yeh et al.
(1985) indicates, K /K, is expected to be slightly larger than 1 in isotropic soils, but only about
0.5 for v=10 (T'A, = 0.5). Qualitatively and quantitatively, their findings are therefore
confirmed by the numerical simulations.

The average sample velocity variances o,2and o, differ by 0% and -3% from the
analytical solutions for the least variable soil (#2, o’=0.01). In isotropic, wet soils with
o7=0.1 and 1 (#8, #3), the differences of the numerical to the analytical solutions are of similar
magnitude (Table 8.2). Again a more rigorous analysis can be performed by using the

dimensionless variances of v, and v,, which are defined by:

2

orv/,,2 = O

oK}
8-17)

2 C’zw

O, = e

oK’

where the variance factor is defined in (8-13). The numerical o’,,> and o’ are plotted in
Figure 8.8c,d for wet soils with three different anisotropy ratios. The Monte Carlo o’
increases significantly in all soils as o increases. In the most heterogeneous soils, the
average sample o’,% exceeds the analytically predicted by a factor of 5 in the two anisotropic
soils and by a factor of 2.5 in the isotropic soil. The Monte Carlo o’,% in the isotropic strongly

variable soil is also larger than predicted (factor of 1.5), while it decreases with the variance
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of f in the anisotropic soil. The results are difficult to interpret, since the RFVs are not
normally distributed. But they clearly show the limitations of the perturbation approach with
respect to the velocities.

Dependence on mean soil water tension. The stochastic dependence on the mean head
found in the MCS deviates from the analytical resuits in a similar way, if both the previous and
these results are stated not in terms of o and H, but in terms of 0,2 The deviations become
stronger as 0,2 increases, which may be due to either a larger soil textural variability or a drier
soil. The magnitude and direction of the deviations are independent of whether the higher oyz
is due to large negative H or due to high o (Figure 8.9c,d). Recall that for p=1, the variance
of the RFVs theoretically decreases to 0 at H=-1000 cm.

Dependenceé on T" and the vertical correlation scale. The average sample velocity
variance follows a similar stochastic function as the theoretical curve but decreases not as
quickly with increasing I'A;, as predicted by 1st order analysis (Figure 8.10c,d).

Dependence on aspect ratio and grid discretization. The velocity variance decreases
with increasing aspect ratio, just as the mean vertical velocity decreases. At of=1, the
influence of the horizontal correlation scale on the accuracy of the analytical solution is

negligible. Grid discretization has no significant impact on the solution (Figure 8.11c,d).

8.8 Stochastic Analysis of the Cross-Covariance Functions

Cross-covariances are of interest for various reasons. First, many analytical stochastic
models of unsaturated or general porous media flow and transport rely on first-order analytical
formulations of the cross-covariances (e.g- Dagan, 1984, 1987; Yeh et al., 1985a,b; Mantogiou
et al., 1987a,b; Rubin, 1990; Cvetkovic et al., 1992; Russo, 1993a,b). Second, the cross-
covariance is necessary for the implementation of conditional simulation, which will be

described in chapter 10. The cross-covariances of common interest are G Ciuo and Ci,.
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Figure 8.17 shows an anisotropic example (#31) of single sample fields (not the average
covariance field!) of each of those cross-covariances. The cross-covariances have features,
which are only partially reflected in their respective horizontal and vertical cross-sections. By
inspection of Figure 8.17 it can be seen that the horizontal and vertical cross-sections of C,,
and G, ,,, for example, would have little information content if taken horizontally or vertically
through the origin. Unlike the covariance fields, the cross-covariances are neither symmetric
with respect to the origin, nor symmetric with respect to the major coordinate axes. The
complex structure of the cross-covariance functions will make it difficult to define such cross-
covariances from field measurements, unless a large number of samples are taken throughout
the area of interest.

Of practical interest is the fact that all cross-covariances except C;,, and C, ,, are much
stronger in the vertical direction than in the horizontal direction. Hence the information content
of one variable with respect to another variable is predominant within the same vertical region
but bears less predictive capacity with respect to other variables in the same horizontal region.
Another important feature to be noticed is the non-zero lag-distance at which the highest
absolute cross-correlation is reached. Also, the correlation can be either negative or positive.
For example, head values have a positive correlation to f values that are approximately 3A;
further upward and a strong negative correlation to f values that are approximately 1A,
downward from the location of the head measurement. There is comparatively small cross-
correlation into the horizontal direction. The cross-correlation between f and h at the same
location is only about half of the strongest cross-correlation between f and h at the optimal
distance. The knowledge of the particular structure of the cross-covariance function is helpful
in the design of monitoring networks, in particular if conclusions on the state of one RFV are
drawn from the state of another RFV (see chapter 10).

The relatively large differences between numerical and analytical solutions for the cross-

covariances of the two least variable isotropic soils (approximately 10% to 20%, see Figure 8.6)
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are due to a simplification in the computation of the numerical sample cross-covariance. The
RFVs f and a are element properties while the RFVs h,v,, and v, are node properties. Since
Yy depends on both nodal and elemental properties (b,f, and a), nodal properties must be
extrapolated to the element or vice versa. For the sampling procedure here, the head values ht
of the four nodes i, i=1...4, around an element k are averaged, and y is obtained as elemental
property of f, a, and the average head h* in a particular element. Averaging the head values
introduces a small reduction in the variance of the unsaturated hydraulic conductivity.
However, since the head values have a strong spatial correlation, the variance reduction can be
neglected. In the sampling process for the sample cross-covariance (8-9) it is assumed - for
simplicity - that the location of an element is identical to the location of the lower left node of
that element. The error in the cross-covariance fields relating nodal with elemental properties
stems from the discrepancy between the assumed identity of element and node location.

Note that the correlation p,, has a significant impact on the cross-covariances of f, h,
and v,: In the correlated soils the vertical cross-covariance structure of Cq and G, inverts
itself at H,;,=-1/CT", such that in dry soils Cy, has a minimum at negative lag distances and a
maximum at positive (upward) lag distances. The cross-correlation between f and the (negative,
downward) vertical velocity becomes positive at lower head pressure, because under dry
conditions soils with high saturated hydraulic conductivity and coarse texture (large a) are
assumed much less permeable than soils with low saturated hydraulic conductivity and fine
texture (low a). In the uncorrelated soils the correlation between f and h and f and v, weakens
as the soil dries out, which can be seen by comparing, for example, the cross-covariance C,, for
the correlated soil at -2000 cm (#24) and the uncorrelated, anisotropic soil at -1000 cm (#15).
Both have approximately the same absolute maximum of 30 cm, although the head variance in

the uncorrelated soil is almost twice as large as in the correlated soil (Figure 8.18).
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8.9 Summary and Conclusions

For the first time, intensive Monte Carlo simulations of unsaturated, steady-state gravity
flow have been implemented for a large range of different soils. The Monte Carlo simulations
take advantage of the ASIGNing technique introduced in chapter 7, which combines the
efficiency of spectral perturbation analysis with the flexibility and accuracy of finite element
modeling. It allows for the fast simulation of steady-state head and flux in two-dimensional
vertical soils. It is applicable to a great variety of different soils and is therefore well-suited
for the stochastic simulation of unsaturated flow at actual field sites. The approach is here used
for a stochastic analysis of the unsaturated hydraulic conductivity, the soil water tension, and
the soil water flux. The simulations are all implemented with 1000 realizations on a finite
element domain of 64*64 rectangular elements. To avoid aliasing effects in the fast Fourier
transform of the random field and initial guess generator, the size of the initial random field is
at least 10 by 10 correlation scales A; and in most cases exceeds 20 by 20 A; as recommended
by Gutjahr et al. (1989). The large amount of realizations for each Monte Carlo simulation
results in a very small variability of the sample moments, which allows for both a numerical
model validation and an evaluation of first order analytical solutions that were introduced
almost a decade ago (Yeh et al., 1985a,b, chapter 4), but have never be:en rigorously tested for
their validity in mildly and strongly heterogeneous soils. By comparing the spatial variability
of the local sample mean and variance with the expected variability of the sample moments it
was shown that the Monte Carlo simulations indeed converge and that the theoretical variability
(8-3) and (8-7) of the sample mean and sample variance provide good estimates of the actual
sample error. While the analysis here is limited to the case of exponential input covariance
functions, the numerical and analytical methods introduced in this work are both applicable to
arbitrary input covariance functions and arbitrary correlation structures between logK, and loga.

In many field situations, these covariance and cross-covariance functions are obtained from
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geostatistical analysis (Isaaks and Srivastava, 1990). Both the analytical and numerical
approach can in principle also be used to analyze flow in unsaturated soils of multidirectional
flow with arbitrary, spatially constant mean head gradients (see also Yeh et al., 1985b).

Beyond the analytical solutions of chapter 4, the Monte Carlo model introduced in this
chapter provides not only more accuracy, but mainly the flexibility offered by the finite element
model with respect to boundary conditions and the particular probability distributions of the
input parameters. Moreover, the combination of spectral analysis and numerical model
(ASIGNing) makes it possible to simulate quasi-infinite domains or semi-infinite domains (e.g.
with random head vertical boundaries, flux boundary at the top and water table at the bottom).
The analysis has shown that even for very heterogeneous flow fields (large cy2=3.2) the use of
the initial first order perturbation solution as random head boundary adversely affects the results
within no more than one or two correlation scales from the boundaries, which is similar to the
effect of using constant head or constant flux boundaries. In mildly to moderately
heterogeneous flux fields (cyzsl), the use of random head boundaries obtained by first order
analysis is less biased than the use of constant head or flux boundary conditions, if deterministic
boundary conditions are not truly justified. Mixed deterministic/random boundaries can also
be introduced by conditioning as demonstrated in chapter 10. Arbitrary boundaries could also
be specified including non-stationary boundary conditions (e.g. above a water table).

The analytical solutions derived in chapter 4 for the mean and variances of the
dependent RFVs y, h, and v are found to be - for all practical purposes - very similar to the
numerical solutions if the resulting variance of y is less than 1.0. (mildly variable flow). The
two-dimensional covariance and cross-covariance functions are also in good agreement with
numerically sampled models. For oyzzl (moderately to strongly variable flow) the analysis of
chapter 4 provides some general insights, but the actual, fully nonlinear (numerical Monte
Carlo) solutions differ in parts very significantly. The most important findings of the stochastic

analysis of the dependent RFVs and the comparison with the analytical solutions of chapter 4
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are summarized here:

The first and second moments of y are very robust with respect to first order
perturbation analysis. Even for very heterogeneous flow, the differences between Monte Carlo
and perturbation analysis were less than 16%. The moments of the unsaturated head are
generally also well estimated by the first order analysis. If 0,2>1 i.e., if a soil is either strongly
variable in the saturated hydraulic conductivity and in the soil pore parameter a or if it is a dry
soil, the variance of the head is significantly overestimated by the perturbation analysis (up to
30 %). The head correlation function is in very good agreement with the numerically obtained
correlation field throughout the simulations. At large lag-distances, the sample p,; in the Monte
Carlo simulation is slightly higher than predicted, possibly because of boundary effects in the
numerical simulation. The sample pdfs of h and y are always found to be Gaussian, except for
very high g%, where y showed a small but notable skewness.

The probability distributions of the two velocity components are skewed. The vertical
velocity is best described by a lognormal pdf. At very high 0,2, however, the sample pdf
(histogram) of v, extends beyond zero velocity and shows that a significant number of nodes
with upward velocities exists. Such a pdf cannot be modeled with the lognormal function. The
pdf of v, is symmetric and has an exponential decay as |v,| increases. However, it is
differentiable for v,—»0 as shown by piotting the pdf of log|v,|. Since the first order perturbation
analysis assumes normal RFVs, it is generally much less accurate in predicting the flux
(velocity) than in predicting the head and the unsaturated hydraulic conductivity at equal
variability of y. Only the decrease in mean vertical velocity is well predicted by using the
mixed order effective hydraulic conductivity analysis of Yeh et al. (1985b).

The Monte Carlo sample correlation fields and the analytically determined correlation
functions for the velocity are in good qualitative agreement for all the tested soils. The
covariance function of the horizontal velocity is symmetric with respect to the origin, but has

its major axes diagonal to the major axes of anisotropy. The vertical velocity covariance is
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strongly anisotropic with a larger vertical than horizontal correlation scale, even if the
underlying hydraulic soil properties are isotropic. The covariance functions of the two velocity
components reflect the peculiar flow structure in heterogeneous soils, which was shown to take
place in a preferential or channel type flow pattern. Even though the underlying random
structure of the soil is statistically homogeneous, most of the moisture mass is transported
through only a small fraction of the soil. This is in good agreement with field findings (Glass
et al., 1988) and the numerical analyses of flow in single fractures with high variability in their
conductivity (Moreno et al., 1989).

Similar second order moments for h, y, v,, and v, are found for wet, texturally
heterogeneous soils and dry, texturally rather homogeneous soils with an equal degree of
unsaturated logK heterogeneity. The similarity does not extend to the cross-covariances, which
depend not only on the mean head, but also on the correlation between f and a. For p.=0 the
cross-correlation between f and h, and between f and v, weakens with increasing soil-water
tension. If p=1, the unsaturated hydrauiic conductivity parameters are completely determined
by hand f. Consequently a strong correlation not only between f and h, but also between f and
v, exists even in dry soils. The use of tension measurements for the conditional simulation of
f and a random fields is discussed in chapter 10.

The grid-discretization criteria developed in chapter 6 have been proven to provide
accurate solutions not only in the context of single large simulations, but also for Monte Carlo
simulations with a large number of realizations. A fairly coarse vertical discretization of 10 cm
has been shown to provide results of accuracy equal to that of a fine discretization (2.5 cm).

In conclusion this study has shown both the applicability and limitations of the first
order perturbation solutions developed in chapter 4 for two-dimensional heterogeneous soils
with lognormally distributed a. ASIGNing provides a flexible tool to implement Monte Carlo

simulations efficiently on today’s available workstations.



Table 8.1

Input parameters for the various hypothetical soil sites: o variance of f=logK, o,
variance of a = loga, p,: correlation coefficient between f and a, I': geometric mean
of o, Ax: horizontal discretization of finite elements, Az: vertical discretization of finite
elements, A, : horizontal correlation length of f, A,: vertical correlation length of f.

name of o2 Pu r H Ax Az Ay As
3 L0 0.01 0 0.01 -150 10 10 50 50
#2 0.01 10*

#4 1

#6 -1000

#3 0.12

#9 4.0 0.04

#10 1 -3000

#11 1 300

#12 1 30 300

#13 20 200 30
#15 -1000 30 300

#19 25 25 125 12.5
#20 2.5 12.5
1 1 -3000 30 300

#22 4.0 0.04 30 300

#23 1 -3000 20 200 30
#24 1 -2000 30 300

#25 4.0 0.04 20 200 30
#26 0.64

#27 20 0.09 1 10* -1.8E5 30 300

#28 225 0.04 30 300

#29 30 300

#30 0.1 -100

#31 15 150
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Table 8.2

Comparison of the numerical and first order analytical stochastic solutions for the mean
and variance of the dependent RFVs head h, unsaturated hydraulic conductivity y,
horizontal velocity v,, and vertical velocity v,. #2, #8, and #3 are three different
Monte Carlo simulations with o2 = 0.01, 0.1, and 1.0, respectively. All other
parameters are identical to base case #3 (Table 8.1).

#2 #8 #3
numerical - numerical - numerical -
analytical analytical analytical
h:
mean -150.1 -150.0 -150.4 -150.0 -150.9 -150.0
variance 11.2 10.6 157 150 1079 1060
y: )
mean -1.499  -1.500 -1.503  -1.500 -1.498 -1.500
variance | 8.53E-2 8.90E-2 121 126 .858 .887
v
mean -3.18E-5  0.00000 | -1.03E-4  0.00000 | -4.35E-4  0.00000
variance 5.49E-5 549E-5 8.03E-4  7.78E-4 7.23E-3  5.49E-3
\A
mean -2232  -2231 -2230  -2231 -2293  -.2231
variance 1.71E-4 1.76E-4 2.44E-3  2.50E-3 1.93E-2 1.76E-2
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Figure 8.1: Location of the sampling points for which local covariance and
cross-covariance fields are obtained. The local (cross-)covariance fields
are computed in a 31 by 31 window around each sample point. The center

point has the entire field as window.
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command-level

start / restart
Monte Carlo program

e!ecute

UNIX-shell

wmnge-Monte Carlo control (shell-script)

postprocessing program =memgmestatistics evaluation (shell-script)

J

end

graphics generation (shell-script)

|

FORTRAN programs

read input file and seed
generate random numbers
compute dZ, dZ,

solve for dZ,

FFTof dZ, dZ, dZ,

write output: £°, a°, h’", new seed

read input control files
generate mesh

read [°,a°, h’

set boundary conditions with h’
call MMOC2

append current results
to statistics files

g read statistics files

process statistics

write statistics files

Figure 8.2: Flow chart of the Monte Carlo simulation
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Figure 8.17: Anisotropic variation (#31: A, =150 cm) of base soil site. First order analytical en-
semble cross-covariance fields (left) and numerical sample cross-covariance fields (right)
for cross-covariances between f at the center-point and h, v,, and v, in the entire domain.
Axes labels are lag-distances in [cm].
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9. MONTE CARLO SIMULATION OF SOLUTE TRANSPORT
FROM SMALL SOURCES
IN DEEP, VARIABLY SATURATED SOILS

9.1 Introduction

Contamination of groundwater resources has been one the largest environmental
concerns of the last decade. Most pollution sources, whether they are agricultural, domestic,
or industrial, non-point or point pollution sources, are at or near the surface. Much of the
pollutants must therefore travel through the unsaturated zone between the surface and the
groundwater before reaching the water table. A thorough understanding of the transport
processes in the unsaturated zone is essential to assess the contamination risk of groundwater
resources and to predict the travel time from a pollution source to a drinking water well.

The advection-diffusion equation (ADE, eqn. 5-1) is generally used to describe the
movement of solutes in the unsaturated zone. Like the study of groundwater pollution the
assessment of solute and contaminant transport through the unsaturated zone is hampered by
the uncertainty caused by the heterogeneous structure of the geologic material. However, the
list of soil properties that determines solute displacement and plume spreading includes more
than just the saturated hydraulic conductivity, since the unsaturated hydraulic conductivity
depends directly on the soil water tension or the soil water content. In the previous chapter
some of the effects of soil spatial variability on the soil water tension and velocity distribution
in the soil were studied. Field studies have shown that the heterogeneity of the soil moisture
flux leads to variable, time- and scale-dependent parameters in the ADE.

Stochastic transport models have been developed to describe average solute
displacement and plume spreading in variable flux fields (e.g. Gelhar and Axness, 1983;

Dagan, 1982, 1984; Neuman et al., 1987). The objective of these stochastic models is to cast
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solute transport in heterogeneous geologic media into an equivalent quasi-homogeneous ADE
i.e., to define the mean transport velocity and the average plume-spreading in terms of the
statistical parameters that describe the spatially random velocity field. Stochastic analysis of
transport in porous media such as Dagan (1984, 1988), Neuman and Zhang (1990), Rubin
(19990), Zhang and Neuman (1994c) suggests that the effective dispersion or "macrodispersion”
varies with time. These models have primarily been developed and applied to transport in
groundwater, although they are in principle valid also for unsaturated flow.

Past efforts of modeling unsaturated solute transport have concentrated on the analysis
of one-dimensional transport in steady state flow fields. A basic tenet of such models is the
assumption that the soil consists of an ensemble of independent, homogeneous vertical stream
tubes. For each stream-tube, the vertical flow and transport parameters are defined randomly.
(Dagan and Bresler, 1979; Bresler and Dagan, 1981; Amoozegar—Fard et al., 1982; - Jury,
1982; Simmons, 1982; Jury et al., 1986; Butters and Jury, 1989; Destouni and Cvetkovic,
1989, 1991). Horizontal solute displacement and lateral dispersion is neglected, an assumption
that has been found valid mainly in applications to field-scale solute transport from non-point
pollution sources through shallow soils. Destouni (1992) incorporated the effect of vertically
variable saturated conductivity into the stream-tube model.

Field studies of multi-dimensional unsaturated transport have been documented by
Ellsworth and Jury (1991) and by Wierenga et al. (1991). These studies have demonstrated the
limitations of one-dimensional unsaturated transport models if the lateral extension of the plume
is small relative to the depth of groundwater. Lateral solute spreading and plume contraction
and expansion were found to be important mechanisms affecting the movement of the solute
plume. The dispersion of solutes in a more general two-dimensional heterogeneous soil has
been studied numerically by Russo (1991) and by Russo and Dagan (1991) who suggested that
macrodispersion of unsaturated transport is amenable to the same stochastic transport analysis

as those known for aquifer contamination. More recently, Russo (1993a) combined the three-
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dimensional stochastic formulation of unsaturated flow in heterogeneous media by Yeh et al.
(1985a,b) with the Lagrangian transport analysis by Dagan (1982, 1984) to derive analytical
expressions for the displacement of the center of a plume and the average plume spreading.
In a complementary study, Russo (1993b) derived the temporal moments of solute arrival time
in a three-dimensionally heterogeneous soil based on the work by Cvetkovic et al. (1992).

Both spectral analysis of unsaturated flow and Lagrangian analysis of solute transport
are limited to mildly heterogeneous media with a normally distributed velocity. The findings
in the previous chapter suggest that the velocity pdf is neither normally distributed nor well
described by the first order spectral perturbation analysis. It was found that spectral analysis
may be much more limited with respect to predicting velocity moments than with respect to
predicting the soil water tension distribution. While Russo’s (1993a,b) analysis is a useful tool
for the validation of numerical models and to obtain approximate estimates, it may be
inappropriate for many field applications with highly heterogeneous soils.

In this study, transport through unsaturated soils is re-examined without assuming that
the spatial variability is small, without limiting the study to one-dimensional transport of non-
point pollution, and without depending on the assumption that transport is ergodic, which is
invoked in the numerical study by Russo (1991) and which is necessary for analytical results
such as those of Dagan (1984) to hold. Going beyond these restrictions allows one to analyze
the behavior of plumes from sources of relatively small lateral extent occurring for example
under leaky storage tanks and damaged liner systems. These sources can generally be viewed
as point-sources. In contrast to solute plumes from non-point sources, the lateral solute
movement plays an important role for point source plumes and is a significant source of
uncertainty for transport models of heterogenous soils. Solute transport from small sources in
heterogeneous porous media is not ergodic i.e., the mean concentration derived stochastically
is not identical to the actual concentration. Plumes from small sources (lateral extent on the

order of or smaller than the correlation scale of the soil hydraulic conductivity) require several
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tens if not hundreds of correlation scales in mean travel distance before the ergodic condition
is met and the concentration variance vanishes.

Therefore the Monte Carlo technique is applied to study the spatial and temporal
variability of non-ergodic solute plumes in variably saturated porous media. A variety of
different hypothetical soil sites is investigated to establish a stochastic analysis of the solute
concentration, the solute flux, and the solute plume spreading as a function of the various
independent parameters characterizing a spatially variable soil. For efficiency, the two-
dimensional steady-state head and velocity distribution in a vertical soil profile is computed
using the ASIGN approach (Harter and Yeh, 1993; see chapter 7). For each realization of a
velocity field the movement of a small plume through the soil is predicted as a function of time.
From a set of 300 realizations within each Monte Carlo simulation the local concentration
moments (mean and variance) are computed over time, the first and second moments of each
individual plume are monitored over time, and solute flux is recorded and statistically analyzed
asa function of location and time. The technical implementation z;nd design of the Monte Carlo
simulations is described in section 9.2. In section 9.3, the results for the concentration moments
and the solute plume spreading are reported and compared to the linear macrodispersion model
by Dagan (1988). In section 9.4 solute flux and travel time in various soils are investigated and
compared to the Lagrangian particle travel time model by Cvetkovic et al. (1992). Both the
linear macrodispersion model and the Lagrangian travel time analysis are coupled with the
linearized first order perturbation analysis of unsaturated flow described in chapterd. The

chapter ends with summary and conclusions in section 9.5.
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9.2 Implementation of the Monte Carlo Simulation and Statistical Methods
92.1 Transport Model

The same Monte Carlo procedure as described in chapter 8.2 is used for the stochastic
analysis of transient transport. The procedure described in 8.2 computes steady-state,
unsaturated velocity fields v(x) given spatially correlated random realizations of f and a with
means F, A, variance of, 0,2, and an exponential spatial correlation characterized by the
horizontal and vertical correlation scales Ay, and A, respectively. For each realization of v(x),
transient transport is simulated with an algorithm based on the modified method of
characteristics (MMOC) and described in Yeh et al. (1993). Chapter 5 gives an overview of
the numerical procedure and describes the particular implementation used for this study. In this
chapter, only transport of non-reactive solutes is analyzed. Recall from chapter S that only
advective transport is computed (for efficiency), while local or "pore-scale” dispersion is
introduced through numerical dispersion. The effective equation solved by MMOC given a

random realization v(x) of the velocity field is:
aLg.ﬂ + WX)Ve(xf) = VD (%) Ve(x,)) ©-1)

Although the numerical dispersion D, (x) cannot be rigorously quantified, preliminary
numerical experiments showed that the resulting effective local dispersivity d,,.= (D,.. / V,)
is on the order of 1/10 to 1/100 of the element size and therefore much smaller than the
correlation scale of the velocity variations (see chapter 8). V, is the mean vertical velocity.
It will be shown later that the effective local dispersivity is only of minor importance for the
overall plume movement. The main contribution of the effective local dispersivity is limited
to the first few time steps i.e., very early time (t€),/V,). At early time an initially small plume
with uniform concentration ¢, is numerically dispersed over a larger area due to the sharp

concentration gradient at the boundary of the plume. Numerical dispersion is caused by the
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bilinear interpolation scheme employed in the modified method of characteristics to compute
the concentration at locations not identical to those of finite element nodes. At later times, the
concentration gradients are much smaller, and the plume movement is dictated predominantly
by advective processes. While numerical dispersion is artificial, its net effect is consistent with
many field findings and with the stochastic transport theories of Gelhar and Axness (1983), and
Neuman et al. (1987), which explicitly account for pore-scale dispersion. Implicit (numerical)
or explicit (parametric) local dispersion is expected to affect primarily the local concentration
variance (Dagan, 1982) and the asymptotic (i.e. late time) magnitude of the lateral

macrodispersion (Gelhar and Axness, 1983; Neuman et al., 1987).
9.22 Moment Analysis

In this analysis, the statistical description of three phenomena associated with solute
transport is addressed: the statistical analysis of the spatial moments of the actual concentration
plumes, ‘the statistical moments of the local concentration, and the statistical moments of the
solute flux at a given distance from the plume source. The first two phenomena are closely
associated with the mn&pt of macrodispersion (Dagan, 1982, 1984, 1988; Gelhar and Axness,
1983; Neuman et al., 1987) and are grouped together in the spatial analysis of solute transport.
The latter analysis is often treated separately and deals primarily with the statistical analysis of
particle travel times to a given distance from the source of the contamination (Cvetkovic et al.,
1992; Russo, 1993b). Only recently, the spatial and temporal analysis of solute transport has
been treated in a unified manner both numerically and analytically (Bellin et al., 1992; Zhang

and Neuman, 1994a-d)
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9.2.2.1 Spatial Concentration Distribution

Concentration is a non-stationary random field variable (RFV, see section 2.5.1) in
space and time. Spatial plume moments and local statistical moments of the concentration
distribution are therefore RFV functions of time. In this analysis the computation of the local
concentration sample mean <c(x,t)> and of the local sample variance o.(x,t) is limited to four
discrete points in time (see below). The computation of local concentration moments is
equivalent to the computation of local head sample moments (see chapter 8). No covariances
and cross-covariances are computed. The spatial moments of the mass distribution in each
solute plume are computed at each time-step of each realization. The zero order, first order,

and second order spatial moments of an actual concentration plume are given as:

M) = %N:c(x iNB(xHAx ' Az'

i}

M) = 1M, %N: c(x ' )B(xHAx  Azi x!
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M_() = 1/MO‘ZN: c(x\HB(x YAx’ Az (x )
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M_(t) = 1/M0§’: c(x 0B YAx i Azl (z7)?

i=]
M,(t) is the total mass in the finite element domain, where the finite element domain consists
of NN nodes connecting rectangular elements of sidelength Ax and Az. 6(x) is the arithmetic
average of the water content in the four elements surrounding node i. In this study 9 is
assumed constant throughout the domain (chapter 8). M,(t) and M,(t) are the horizontal and
vertical position, respectively, of the center of mass of the plume c(x,t). M_(t) and M, (t) are

the horizontal and vertical moment of inertia, respectively. The moment of inertia is a measure
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of the average plume spreading around the center of mass. The five spatial moments in (9-2)
are computed for each time-step of each realization in the Monte Carlo simulation. Similar to
the concentration moments, the spatial plume moments are a random process indexed on the
real line representing time (see section 2.5). From the realizations of the random, time-
dependent moment functions, sample means and sample variances are computed at S00 equal-
distanced time intervals distributed over the total amount of simulation time (see below).
Due to the principle of mass conservation the sample mean <M,(t)> must be constant
with time duri‘ng the early part of the simulation when the solute plume is entirely confined
within the boundaries of the finite element domain. Any variance in My(t) > 0 would indicate
mass balance errors due to the numerical transport solving method. Computing the variance
of M(t) is therefore an important opportunity to assess potential mass balance errors in MMOC.
The expected values of the first spatial moments, <M,(t)> and <M,(t)>, are a measure of the
average plume displacement and must coincide with the center of mass of the mean plume
concentration <c(x)>. The mean of the second spatiall moment <M;(t)> (i=x,z) is a
representative measure of the average spreading of the plume around its centroid. <M;()> is
not identical to the second moment X(t) of the mean concentration plume (c.f. Dagan, 1990).
The first and second spatial moment X; and X; of the mean concentration plume <c(x,t)> are
computed as in (9-2) with c(x,t) replaced by <c(x,t)> and M replaced by X. From statistical
principles for turbulent mixing (Fischer et al., 1979), illustrated by Kitanidis (1988) and Dagan

(1990) for porous media transport, it follows that X;; and <M;> are related through:

<M (t)> + var(M(1)) = X,(t) i=x,z 9-3)

where var(M)) is the sample variance of the first spatial moment M. var(M;) is a measure of
the uncertainty regarding the actual center of a solute plume. Hence, the spatial spreading of
the mean concentration plume X; is the sum of the expected moment of inertia of the actual

plume plus the uncertainty about the center of mass of the plume (Figure 9.1). A general result
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of stochastic transport analysis is the fact that only for plumes of large initial lateral spreading
or at very late times the uncertainty regarding the center of the plume vanishes relative to the
size of <M;;>. Then <M; > and X; become interchangeable. Such a plume is called ergodic

(chapter 2).
9.2.2.2 Seolute Flux Characteristics

While much research has been devoted to define the spatial concentration distribution
in terms of <c(x,t)> and 5.2(x,t), the stochastic analysis of the solute mass flux s(x,t) has only
recently been investigated (Dagan et al., 1992; Cvetkovic et al., 1992, Russo, 1993; Neuman,
1993; Zhang and Neuman, 1994c). Solute mass flux is an important variable in many
regulatory applications, where interest is not so much focused on the spatial distribution of a
contamination plume, but on the temporal distribution of solute mass flux across a compliance
boundary. It is of particular interest in the study of unsaturated transport, since a common
remediation and site assessment question is: When, where, and how much solute mass will
arrive at the water table? What is the uncertainty of the prediction due to variable travel times
that are caused by the spatial heterogeneity of the soil?

Solute flux s(x,t) is defined as the mass of solute per unit area and unit time passing
through a surface element of unit normal . Neglecting pore-scale dispersion, it can be related

to the resident concentration c(x,t):

s@0) = s(xHm = c(x,f) 8, v(x)m 9-4)

(9-4) is adopted specifically for use in the numerical model, such that s(x,t) can easily be
computed from the resident concentration c(x,t). The definition of (9-4) yields a flux-averaged
concentration ¢, = f (smdA)/ f (8, v m dA) equal to the resident concentration. Setting the

flux averaged concentration equal to the resident concentration is justified since the advective
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mass flux is much larger than the dispersive mass flux (Parker and VanGenuchten, 1983). No
diffusion is included in these simulations and since the effective dispersion is related to the
seepage velocity, the effective dispersive mass flux is always smaller than the advective mass
flux.

In this study, a number of statistical tools are employed to analyze solute flux at a given
compliance surface CS (CS reduces to a line CL in two dimensional transport). The total solute

mass flux S(t) is the integrated mass flux across the compliance surface:

S() = :Vss(x‘,t)Axi -5

ne=l
where NC is the number of finite element nodes along the horizontal CS and Ax; is the average
element width to the left and right of node i, in other words, the concentration is linearly
weighted between nodes. The mean <S(t)> and variance og%(t) of S(t) are computed from the
individual realizations of the integrated mass breakthrough curves S(t). For this study, four CLs
are defined at dimensionless vertical distances Z’ = Z/hy, = 5.4, 11.6, 17.8, and 23.8 from the
solute source area.

In addition to the stochastic analysis of total mass breakthrough S(t), a stochastic
analysis of solute mass flux arrival time t,(x,s,), and solute peak flux time t(X) is undertaken.
The solute mass flux arrival t,(x,s,) is the time at which the solute mass flux s(x,t) first exceeds
some compliance mass flux s, at the location x on the CL. Nineteen different Sy are defined
(see below) for each of which, the mean <t,(x,5))>, <ty(X,s))> and the variance var,(X,s,),
var,(X,s,) are computed. The peak flux time t,(x) is equal to the time of highest concentration
or peak solute flux, since the velocity field is at steady-state. The moments of the arrival and
peak time are investigated only at one horizontal compliance surface in the center of the
simulation domain. The results are normalized with respect to the constant water content 6 and
the mean vertical velocity V,. A more detailed discussion of the physical importance of these

temporal moments is given in the analysis of the results.
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9.23 Parameters and Meodel Design

The numerical simulations are implemented for a soil cross-section that is 12.8 m deep
and between 7.6 m and 30 m wide depending on the expected horizontal solute spreading. The
model simulates the instantaneous injection of a small source solute slug into the soil by
specifying an initial concentration ¢, = 1 for a horizontal rectangle of 3 by 2 nodes
(concentration is specified as a nodal property in the MMOC algorithm). The total applied
mass therefore depends on the chosen grid-discretization. Since all results are normalized with
respect to the total mass or the initial concentration, the results are only dependent on the ratio
between the initial plume size and the correlation scale of the soil texture.

For the transport simulations a subset of the different soil-types investigated in the
previous chapter is selected. All soils investigated here have a hypothetical vertical correlation
length A,=50 cm. The horizontal correlation length A, varies from 50 cm to 300 cm. The
discretization of the domain is 10 cm in the vertical. The horizontal discretization is 10 cm for
Ag=50 cm, 15 cm for Ag=150 cm, and 30 cm for Ay,=300 cm. Thus the size of the initial solute
slug relative to the correlation scale of the saturated hydraulic conductivity is 40% in the
vertical; 60% in the horizontal for the isotropic soils, and 30% in the horizontal for the
anisotropic soils. The total size of the finite element domain is 128 elements vertically and
between 76 and 100 elements horizontally. The horizontal domain size was chosen such that
the solute plume would not spread beyond the vertical boundaries of the finite element domain.
An overview of the different hypothetical soils is given in Table 9.1 together with the actual
size and discretization of the respective flow and transport models. The same soil mc3 is used
as base soil site as in the flow analysis (isotropic, unit variance in f). The variance of f varies
from 0.01 to 4, the variance of a from 0.0001 to 0.04. The correlation p, between f and a is
either 1 or 0. The geometric mean of a (=) is always 0.01 cm™. The average water tension

varies from -150 cm to -3000 cm.
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As for the flow analysis in chapter 8, the boundary conditions imposed on the solution
of the steady state head field are of the random Dirichlet type. The random head boundaries
are obtained from the first order spectral solution for the head given the particular realization
of f and a. From the previous chapter it is known that the first order head boundaries
significantly alter the velocity distribution in the vicinity of the boundary. These boundary
effects would adversely affect transport across or near the boundary. To avoid the erroneous
impact of the first order boundary, the solution of the flux is separated from the transport
simulation. Steady-state flux is obtained for a finite element domain that is five to ten elements
larger around each side than the finite element domain for the transport simulation. In other
words, the boundaries of the transport model are located in the interior of the flow model. The
size of the peripheral "cut-out” within the flow-model is determined from the results of the
previous flow analysis (chapter 8, Figure 8.14). The number of rows or columns cut off of
each side of the flow field is indicated in the right column of Table 9.1. For the transport
model itself, no boundary conditions are necessary, since only advective transport is solved.
The Monte Carlo simulations are based on 300 realizations of each soil site.

The previous chapter elucidated the dependence of the velocity field and its spatial
variability upon the various parameters governing unsaturated flow. The spatial variability of
the velocity field controls the uncertainty (or spatial variability) of solute flux and the solute
concentration distribution through the physical dependence of concentration upon velocity
expressed in the transport equation (eqn. 5-1). The velocity field is controlled by Darcy’s law,
and hence by the spatial variability of the unsaturated hydraulic conductivity y. The latter is
the single most important parameter used to describe or predict the uncertainty in solute
transport. Its spatial variability, as described in chapter 8, depends on the variance of the
independent input parameters f and a, on their correlation scale and anisotropy ratio, and on the
mean soil water tension H. For the evaluation of the transport simulation, the soils are therefore

grouped into four categories, each of which addresses the sensitivity of stochastic transport to
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one specific parameter:

1. category: isotropic, wet soil: #2, #8, #3, and #9. Only the variance of f and a change. The
actual average sample variance of f is 0.01, 0.11, 0.95, and 3.62, respectively (see
chapter 8). The variance of a is 10*, 102, 102, and 4*107?, respectively.

2. category: anisotropic, wet soil: #12, #29, #28, #22. Again, only the variance of f and a
change. For #29, #28, and #22, the variances of f and g are 0.95, 2.15, 3.67, and 102,
4*107? 4*107 respectively. #12and #29 have identical parameter variances, but unlike
all other example soils #12 has perfectly correlated f and a random fields, which
slightly reduces the unsaturated hydraulic conductivity variance relative to #29 (see
chapter 8).

3. category: of=1, wet soil: #3, #31, #29. Only the horizontal correlation scale of f (and a)
change: For the three soils they are 50 cm, 150 cm, and 300 cm which results in
aspect ratios v = Ag/A;, = 1, 3, and 6, respectively.

4. category: anisotropic dry soil: #15 and #21. These are both dry soils with mean soil water
tensions H of -1000 cm and -3000 cm, respectively. The first soil is otherwise the
same soil as #29, while the second soil is otherwise identical to #12, which has
perfectly correlated f and a random fields. The two dry soils are contrasted with two
wet soils of similar unsaturated hydraulic conductivity variance to investigate whether
unsaturated transport can be characterized by 0,2 and C alone: #15 is contrasted with

#28 (0,’=1.5 and 1.8, respectively), #21 is contrasted with #22 (0,’=3.2 for both).

93 Spatial Analysis of Solute Transport under Uncertainty

93.1 General Characteristics of Solute Movement and of its Statistical Representation

The dynamics of the spatial distribution of solute concentration in unsaturated porous

media and its direct dependence on the variability in velocity is illustrated in Figure 9.2 for
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three anisotropic soils with distinctly different 0,2. In mildly heterogeneous soil the streamlines
are more or less vertical (Figure 9.2a). Deviation from a parallel vertical flow pattern becomes
stronger as the variability of y increases (Figure 9.2b,c). In more heterogeneous soils
streamlines tend to cluster in preferential flow areas, and show a large variability over short
distances. If the soil is very heterogeneous, the streamlines may exhibit a horizontal
displacement of several meters (a few correlation scales, Figure 9.2c). Relative to its entry
position, the maximum observed total horizontal displacement of a streamline at the bottom
of the 12 m deep vertical section is 1 to 2 m for 0,%=0.74 (soil #29), on the order of 5 m for
oy2=1.48, and on the order of 10 m for oy2=3.20. While the single realizations of streamlines
depicted in Figure 9.2 bear limited statistical significance, they clearly illustrate the degree of
uncertainty associated with making predictions about the travel path of a small solute plume and
help to understand the results of the stochastic transport analysis. These examples also illustrate
that parallel streamtube models are limited in their applications when modeling solute transport
from point sources, because they neglect the horizontal displacement of solutes.

The individual solute plumes (Figure 9.2d-f) show the combined effects of travel path
variability, local dispersion and travel velocity variability. Since the plume center of mass is
an integrated measure of the entire plume displacement, its travel path varies less than the
corresponding streamlines. With increasing variance, the soluté plumes assume increasingly
erratic shapes, and for the same travel time, the travel distance of the plume center of mass
becomes more variable. The peak concentration of the plume strongly depends on the total
travel distance of the individual plume. If the solute is initially placed into an area of low
unsaturated permeability, the plume will travel only slowly for an extended period of time and
disperse very little i.e., the peak plume concentration will remain high. In contrast, a solute
plume that is initially placed into a relatively high permeability area will travel quickly,
disperse, and the peak concentrations will drop rapidly.

The mean concentration from the Monte Carlo simulation (Figure 9.2g-i) indicates the
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stochastically predicted location and spreading of the solute plumes at t’=10 (t’=A,/V,), the
same time at which the snapshot of the actual plumes (Figure 9.2d-f) are taken. As expected,
the mean plumes exhibit more spreading and lower peak concentrations than the actual plumes
due to the variability var(M,) (i=x,z) in the travel path of the plume center (9-3). For strongly
variable soil flux (c,2> 1), Figure 9.2i qualitatively illustrates how var(M;) contributes
significantly to the total spreading X; of the mean concentration plume. In that case X; is a
poor measure of the "typical" solute distribution M;; (Kitanidis, 1994).

Small irregularities can be seen in the contours due to the random nature of the sample
mean (Figure 9.2g-i). The irregularities in the mean plume shape and the skewness of the mean
concentration along the vertical axis are more notable at higher 0,2, since the potential error of
the sample mean concentration increases with increasing velocity and concentration variance.
For o,> > 1, the Monte Carlo simulations (which are based on 300 realizations) become
potentially very sens-itive to outliers. Those realizations with very small unsaturated hydraulic
conductivities at and/or immediately around the source produce solute plumes which move
extremely slow and therefore have peak concentrations close to the initial concentration
throughout the entire simulation time (Figure 9.3). Even one realization with a very slow
moving plume may significantly bias the arithmetically averaged concentration at later times,
since otherwise the concentration at the source quickly drops by several orders of magnitude.
In the example problems all simulations with oyz > 1.5 show significant ’residual’ mean
concentrations at the source or within 1 correlation scale distance of the source. In this context,
’significant’ is defined as any concentration larger than approximately 1/100th of the observed
peak concentration. In these cases the concentration contours in the immediate vicinity of the
source are also erratic and must therefore be attributed to outliers (see e.g. Figure 9.2h).

To investigate the accuracy of the sample mean concentrations calculated from 300
realizations, the rate of convergence in the Monte Carlo simulation is demonstrated for the most

variable soil in this study (#21, cy2=3.2) i.e., the soil for which the sample error is the largest.
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Figure 9.3 shows the mean concentration at four different times computed from 300 realizations
(Figure 9.3a-d) and from 100 realizations (Figure 9.3e-h). The contour map for 300 realizations
is significantly smoother than the contour map for 100 realizations. Near the source and at the
outermost contour level (<1% of peak mean concentration) the sample accuracy appears to be
the least. Otherwise the dominant features of the mean plume are well-defined when based on
300 realizations. With only 100 realizations, the general pattern of the mean concentration
distribution can already be seen, but there is also a large degree of erratic spatial variability.
It is obvious that hundreds (if not thousands) of additional realizations would be necessary to
completely remove the secondary peak near the source caused by an outlier within the first 100
realizations. However, 300 realizations are considered adequate to give relatively accurate
results for the spatial moments of the mean plume and the mean breakthrough curve and its
variance, because they are integrated measures. They are also adequate to give an approximate
description of the spatial mean concentration distribution (Figure 9.3a-d,i).

Therefore it appears that the skewness in the vertical distribution of the mean
concentration, which increases with cryz, cannot be explained as an outlier problem. Another
explanation for the skewed mean concentration distribution must be sought. Recall that the
longitudinal velocities have approximately a lognormal pdf (chapter 8). The theory by Neuman
(1993) and the results of Zhang and Neumnan (1994d) show that a lognormal velocity pdf indeed
causes a skewed shape of the concentration plume at early travel time. Zhang and Neuman
(19944, Figures 1 and 2) indicate that the skewness of the mean concentration plume vanishes
after only one correlation scale in travel distance. However, their examples are for mildly
heterogeneous media, in which case the Monte Carlo simulations here also produce a Gaussian
mean concentration distribution (Figure 9.2g,h). For highly heterogeneous soils (0,’=3.2), the
skewness of the concentration plume along the longitudinal direction is very strong even at
’=10. Only at t’=20 the skewness appears to converge towards a more Gaussian distribution

(Figure 9.3c). For soil site #15 (0y2=1.5), the skewness is very strong at t’=5 (not shown), but
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has almost disappeared at t’=10 (Figure 9.2h).
These observations have a significant practical aspect. The relatively high ’residual’
mean concentrations at ¢’=10 for the large variance soils #9, #21, and #22 (oy2>3) (see e.g.
Figure 9.3) suggest that several hundred correlation scales of travel distance may be required
before a solute plume achieves ergodicity. The use of stochastic transport models that are based
on the ergodicity assumption is therefore not justified for small plume sources and highly
variable soils, since the unsaturated zone is either not that thick or it is unlikely to be
characterized by a stochastically homogeneous random medium throughout its vertical extent.
The variability of the concentration from realization to realization is illustrated by the
variance maps (Figure 9.2k-m). The concentration variance, however, is not a good measure
of uncertainty since the mean concentration is nonstationary. The concentration variance is
largest near the center of the mean concentration plume simply because the concentrations are
largest at the center of the plume. Also note that the largest variances are found in the second
of the three example soils, which exhibits a oy2 of less than half the largest oy2 in the three
examples of Figure 9.2. Intuitively it would expected that the uncertainty increases with 0,2.
The discrepancy in the behavior of the peak variance is due to the fact that at higher cy2 the
peak mean concentration decreases thus countering the overall increase in concentration
variability. Another problematic aspect of the concentration variance is that it is even more
sensitive to outliers than the concentration mean due to its second order nature (e.g. Figure
9.21). A considerably better measure of uncertainty is the concentration coefficient of variation

CV (x,t):

cv = 2 9-6)
<C>

where < > refers to sample averages and the evaluation is at x and t. The CV_ measures the
variability of the concentration at location x and time t not in absolute terms but relative to the

mean concentration at the same location and time. Unlike the concentration variance, the CV,
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has a minimum at or near the location of the peak mean concentration and increases with
distance from the plume center. This is consistent with the analysis of concentration variability
in saturated transport (Dagan, 1984; Rubin, 1991b). In terms of CV_ the uncertainty about the
high concentrations in the center of the plume is the lowest while uncertainty about the very
low mean concentrations at the edges of the plume is highest. The added advantage of using
CV, instead of o.? as a measure of uncertainty is its inherent ability to neutralize outliers of the
type discussed above. Outliers not only increase the concentration mean but also the
concentration variance near the plume source. The resulting CV, remains very high (as
expected) relative to the CV,_ at the plume center. Overall the lower CV, is much less sensitive
to sampling error than either the variance or the mean.

The general shape of the CV_ plume shows a similar sensitivity to soil heterogeneity
and soil moisture as the mean concentration plume. At the plume center the CV,_ increases
with o,,2 while it decreases at the periphery of the mean plume location (see chapter 10). With
increasing aspect ratio vertical spreading decreases and horizontal spreading increases. The
large CV, (>1) in all areas except the plume center is yet another indication that the
concentration RFV ¢(x,t) is not Gaussian distributed. Cushey et al. (1993) have also shown that
the concentration in porous media has a non-Gaussian pdf. These findings must be taken into
consideration when it comes to the practical meaning of both mean concentration and

concentration coefficient of variation (or the concentration variance).

93.2 The Minimum CV, - an Empirical Stochastic Analysis

As expected, the minimum CV, (used as an indicator of the overall uncertainty)
increases with the textural variability of the soil expressed by of (Figure 9.4a,b). Surprisingly,
the minimum CV,_ in the g=0.01 soil is still significant throughout the simulated time-span

(=0.2). On the other end of the scale, the largest observed minimum CV, are for anisotropic

.
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soils of high variability in y and do not exceed 1.6 (#21, Figure 9.4c). The location of the
minimum CV_ coincides with the location of the maximum mean concentration only for the two
plumes with 0<0.15. For all other soils, the minimum CV, location is lower than the point
of maximum mean concentration (Table 9.2). Generally the distance between the two is less
than 1A, But for t’=20 the distance may be from 2A, to 10A., depending on the soil
variability. Non-Gaussian vertical velocity pdfs and higher variability of the soil flux causes
stronger skewness of the vertical mean concentration plume and larger distances between the
two locations of maximum concentration and minimum CV..

The results are consistent with the theoretical findings of Rubin (1991b), who estimated
the concentration mean and concentration coefficient of variation in a mildly heterogeneous
saturated porous medium (cy2 = 0.21). Under the assumption that the velocity pdf is Gaussian,
it was concluded that the highest concentration variance and lowest CV, coincide with the
center of the mean concentration plume. The results here illustrate that Rubin’s conclusion does
not extend to porous media of higher variability and lognormally distributed velocities, where
the minimum CV_location has travelled further than the peak mean concentration location. The
results are in contrast with those of Zhang and Neuman (1994d, Figure 1). In their analysis of
solute transport with lognormally distributed longitudinal velocity, they came to the same
conclusion as Rubin (1991b) i.e., the lowest CV, occurs at the location of the largest <c>.
Again it should be noted that their resuit is obtained for a mildly heterogeneous porous medium.

Unfortunately, no information on the CV_ is available for t’<5 or at any other times
besides those at which the concentration distribution is recorded (t’=5,10,20,40; in case #28:
t'=4, 8, 16, 31; t’ = A,/V,). For illustration purposes the three data points of each soil site
shown in Figure 9.4 are interpolated with a 3rd order polynomial on the interval t’={4,20]. The
CV,_ decreases with time or remains almost constant in the isotropic soils (category 1, Figure
9.4a), but initially increases and later remains constant or decreases again in the anisotropic

soils (category 2, Figure 9.4b). The minimum CV,_ at t’=S$ is higher in the isotropic soils than
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in the anisotropic soils (category 3, Figure 9.4c). At later times (t’=10, 20) the observed
difference in CV. for different aspect ratios decreases, and in some instances the anisotropic soil
will have a higher CV, than the isotropic soil of comparable textural variability (compare
0f=3.6, isotropic/anisotropic soils, Figure 9.4a,b). At the last output time (t’=40) all or most
of the plume has passed through the domain, and the actual minimum CV_ of the plume cannot
be observed. For soils of comparable 0',2, but different mean head (4th category), the temporal
dynamic and magnitude of the minimum CV, is very similar but not identical (Figure 9.4d).

In contrast to these findings, other analytical studies (Rubin, 1991b) and field analyses
(Barry and Sposito, 1990), both for transport in the saturated zone, report a steady increase in
the CV,_ with time (maximum analyzed travel distance approximately 40A). The argument was
made that the deterministic effect of the source shape and location of the plume wears out over
time. Thus one would observe increasing prediction uncertainty. Observations here suggest
that the minimum CV_ in the tested soils may reach a maximum around or before t’=20, then
decrease at a slow rate. However, the record is too short to be conclusive. In addition, the
time span of the initial increase in minimum CV._ seems to be strongly influenced by the aspect

ratio of the anisotropy and by the variance of the unsaturated conductivity.

93.3 Spatial Spreading of the Mean Plume, Mean Spatial Spreading of Plumes, and

Variability of the Plume Center of Mass

In this section the stochastic dependence of the three moments X, var(M), and <M;>
(i=x,z) on the heterbgeneity and moisture content of the unsaturated zone is examined under
fully nonlinear conditions (numerical Monte Carlo simulations). The results are used to assess
the validity of what is called the linear macrodispersion theory.

Until recently, the thrust of stochastic analyses regarding transport in heterogeneous

porous media has not so much dealt with the mean concentration and concentration variance
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itself, as it has focused on the second spatial moment or moment of inertia X of the ensemble
mean concentration plume (9-2). Under the assumption of normally distributed velocities, the
spatial distribution of the mean concentration is Gaussian, and X, is then intrinsically related
to the apparent Fickian macrodispersion D, through:

1 deI:(t )

&= 6-7n
2 dt

Dy(t) =

With the aid of the time-dependent macrodispersion coefficient, the ensemble mean
concentration can be estimated through a quasi-Fickian analysis i.e., by solving (5-1) or (9-1)
with D(f) = Dy(t) + D, in lieu of D = D, , where Dy is the local (small-scale) dispersion
coefficient. In all linear theories of macrodispersion (Gelhar and Axness, 1983; Dagan, 1984,
1988; Neuman et al., 1987), the second moment (moment of inertia) of the mean concentration
plume is estimated analytically based on the following fundamental result of turbulent diffusion
(Dagan, 1984, eqn. 3.20, 1988, eqn.3, A2; here formulated for two-dimensional, vertical,

uniform flux):
X = 1 ! C,. V.t Vt") dt'dt" (9-8)

where j = X,z and V, is the mean velocity in the vertical direction. C,; is the covariance of
the velocities at two locations x’ and x’’ corresponding to mean displacement at t” and t”’,
respectively. x’ and x’’ are assumed to be located along the travel path of the mean solute
plume. This latter assumption is the most important restriction to the analysis, since it neglects
any deviation of the actual plume from the mean travel path. Neuman and Zhang (1990) and
Neuman (1993) have overcome the assumption by using a quasi-linear analysis and a Eulerian-
Lagrangian approach, respectively. Equation (9-8) also assumes both Eulerian and Lagrangian
stationarity of the velocity field (Dagan, 1988).

The stationarity conditions are met in the numerical transport simulations under
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investigation. Also, in chapter 4 the second moment C,,; of the velocity is derived to first
order for soils of arbitrary covariance functions in f and @. The velocity covariance function
is obtained from a spectral analysis and a numerical fast Fourier transform of the resulting
spectral density function. The mean travel velocity is given to first order in (4-43, 8-16). The
second spatial moments of the mean plume (9-8) can therefore be readily computed. The
validity of the linear macrodispersion theory over a wide range of soil heterogeneity is analyzed

by comparing the analytical with the numerical results.

Since all example soils of the Monte Carlo analysis assume the same correlation

functions for the input RFVs f and & (identical correlation scales), the covariance functions C,,,
Covy and C,, , and by virtue of (9-8) also the spatial moments X (t) and X (t) are directly

proportional to the variance factor o (see chapters 4 and 8):

02=0f(1 + 2pH' + H'® (9-9)

H’ = {I'H is a dimensionless form of the mean soil water tension. The spatial moments can
therefore be normalized with respect to four of the input parameters: the correlation between
a and f, p,, the ratio between the standard deviations of 4 and f, T, the mean head, H, and the
input variance of f, o7, and of a, 5,>. The remaining input parameters are the geometric mean
of a, I, and the vertical and horizontal correlation scales of f, A, and A,. T is constant
throughout all simulations. The dimensionless spatial moments X,,” = X,,/(A,> 0®) and X’ =
Xo/(Ag? O°) for the three different anisotropy ratios in Table 9.1 give the analytical solution (9-
8) to all hypothetical soils investigated here (Figure 9.5a,b). The initial dimensions of the
plume are negligible for all but the least variable soil (o;?>=0.01) and are not taken into account
in Figure 9.5.

As the aspect ratio v increases, the longitudinal, vertical spatial spreading X’
computed from (9-8) decreases considerably. This is consistent with the theoretical resuits for

three-dimensional saturated porous media (Dagan, 1988). At early time, the transverse,
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horizontal spreading X,,’ is smaller in soils with larger v. But the less anisotropic the .soil, the

earlier it reaches its maximum transverse macrodispersivity, which is also higher. Hence, at late
time X,.’ is larger for soils with higher transverse anisotropy. The theoretical impact of
anisotropy on X,,’ and X,,’ is considerably stronger than in three dimensions (compare to
Russo, 1993a, Fig. 7). From the corresponding curves for the apparent longitudinal and
transverse macrodispersivity Dy’ = 0.5 X’ / t* (Figure 9.5c,d) it is obvious that the asymptotic
apparent macrodispersivity will only be reached after 100 to several hundred correlation scales
travel distance. In a three-dimensional medium, the asymptotic value is reached significantly
earlier (Russo, 1993a, Figure 8). The right vertical axis in Figure 9.5c,d is scaled to give the
actual macrodispersivity ay for soils with o=1, A,=50 cm, H=-150cm, '=0.01 1/cm, §=0.1,
and p,=0 (soils #3, #31, #29). The asymptotic longitudinal macrodispersivity for these soils
is 51 cm, and the maximum transverse dispersivity varies from 3 cm in the isotropic soil to 1.7
cm in the most anisotropic of the three soils. None of these theoretical results considers local
dispersion i.e., D, = 0.

From the linear theory, the spatial moments of the mean plume are expected to increase
as the soil dries out, if p,=0 (9-9). For correlated soils (p=1) the variance of y and hence the
solute spreading decreases as the soil begins to dry out, reaches a zero variance at H’ = 1 (9-9),
and then increases for very dry soils (Figure 9.5¢). Note that the variance of the correlated case
reaches O only if the correlation functions for z and f are identical. The effect of decreasing soil
moisture and increasing soil water tension becomes significant for H > 0.01. At high soil
water tensions H* > 100 the correlation between f and a plays an insignificant role and the
scaling factor o® grows with ( H’? o2 ).

Figure 9.6 shows the results for the spatial spreading X,,” and X_’ of the mean
concentration plume in the numerical simulations. The results are shown separately for the four
different simulation categories. For the isotropic soils, the fully non-linear solution deviates

strongly from the linearized analytical solution for all of <« 1 due to the influence of local
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dispersion (whose dimensionless magnitude increases with 1/ as g -> 0). The smaller the
variability of the soil, the larger are both the longitudinal and transverse spreading relative to
the theoretical result. For 0?=0.95, the actual longitudinal spatial spreading of the mean
concentration is very close to, but slightly smaller than the analytical solution. At higher soil
variability the numerical results again increase relative to theory. However, for o=3.6 the
mean concentration plume reaches the outflow boundary very early resulting in an artificial
deviation from the expected behavior in both the transverse and longitudinal spreading. For the
anisotropic soils (second category), the lowest variance is 07=0.95 and as for the isotropic soils,
an increase is observed in both the horizontal and vertical spreading with increasing soil
variability. In contrast to the isotropic soils, the dimensionless vertical (longitudinal) spreading
is much larger relative to the linear macrodispersion theory, even for o?=0.95, since the
decrease in longitudinal spatial spreading with increasing v is not as strong for the numerical
results as for the analytical solutions (category 3). Similarly drier soils with larger (1 + 2pCI’'H
+ (CTH)?) exhibit a stronger deviation from the linear macrodispersion theory (category 4).

In general, the numericaily obtained transverse X’ curves follow the same ups and
downs with varying o” as the longitudinal X,,’. But the actual deviation from the linear theory
is much larger in the transversé direction than in the longitudinal direction. The transverse
spreading for 0/=0.95 in an isotropic soil is approximately twice as large as the analytical
prediction. This confirms similar results by Rubin (1991b) in a stochastic analysis of a
groundwater transport site with oy2=0.29. Based on a nonlinear stochastic transport model,
Rubin found that the transverse spreading is approximately twice the value predicted by linear
macrodispersion theory (Dagan, 1984, 1988). For the anisotropic soils, the transverse,
horizontal spreading of the mean concentration plume from the Monte Carlo analysis is several
times larger than predicted from (9-8). The underestimation of the horizontal mean plume

spreading by (9-8) is significantly greater for the anisotropic soils than for the isotropic soils

(category 3).
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The variance var’(M,) of the plume center of mass in the vertical direction is also larger
than the analytical results for X’,, with the exception of isotropic soils. It exhibits a very
similar sensitivity though not as pronounced, to changes in soil variability, soil moisture, and
anisotropy as the vertical spreading of the mean concentration plume (Figure 9.7a-d); a very
small decrease from the isotropic soil 0;>=0.01 to the soils 5,7=0.95, and an increase in var’(M,)
for both anisotropic and isotropic soils with o > 1. In the wet, anisotropic soils with v=6,
var(M,) is almost identical with the theoretical curve for X’_. As v decreases, the increase in
var’(M,) is not as strong as in the theoretical X’,,. On the other hand, a significant increase is
observed in var’(M,) for the two dry soils relative to wet soils of similar unsaturated
conductivity variance. In the horizontal direction, the variance var’(M,) of the plume center of
mass is almost identical with the theoretical X’ for the isotropic soils, but several times larger
than the theoretical X’ for all anisotropic soils. The disagreement between the two results
increases significantly for higher of and for dry soils (Figure 9.7e-h).

The numerical results for the spatial moments of the mean concentration plume cannot
be strictly compared with the theoretical results for the ensemble mean concentration, because
the theoretical results do not account for the local dispersion D, Unfortunately, no definite
number can be associated with D, ;, = Dy, but initial empirical results have shown that o S
= D,y /V. is on the order of 1/10th or less of the element size in the j-th direction (see section
9.2.1). Since D, is constant with time, a term Xumg = 2tDyym 3 must be subtracted from the
spatial moments of the mean concentration to obtain the actual Xu- Note that the dimensionless
Xumg = (20umz ' Y(Az08 ). For small o the numerical dispersion therefore has a
considerable impact on the spatial moments of the mean concentration. The initial findings on
numerical dispersion are re-evaluated by assessing the observed mean spreading <M;> around
the center of mass of each plume. Taking into account the initial size of the plume M;(0) the

mean apparent dispersivity.of plumes, ay; , is:
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_ (<M>-M (), (9-10)
2t/

M

(<Mj"> - M;’(0))/(2¢’) is plotted in Figure 9.8. For 0/°=0.01 the effect of numerical dispersion
is largest relative to the effect of spatial variability. There, the mean apparent dispersivity is
approximately constant with time and is 1.08 cm in the vertical and 0.12 cm in the horizontal.
Since the element size is square with side-length 10 cm, the initial assumption that local
dispersivity is on the order of 1 cm or less is confirmed. In other soils, ay; is significantly

larger and is attributed mainly to the effect of spatially variable velocity fields.

9.4 Temporal Analysis of Selute Transport under Uncertainty
94.1 Integrated Breakthrough at a Compliance Surface

For many regulatory purposes, the distribution of a contaminant in the unsaturated zone
is not as much of interest as the breakthrough of the contaminant or solute at the groundwater
table, which is at some distance Z from the source area. Cvetkovic et al. (1992) introduced
a theoretical multidimensional model based on the Lagrangian analysis of solute transport
(Dagan et al., 1992) to predict the aerially integrated averaged breakthrough and its variance
at an arbitrary compliance surface located normal to the mean flow direction at distance Z from
a solute source of initial volume V|, [a similar approach based on the theory by Neuman (1993)
was used by Zhang and Neuman (1994c)]. Since the model requires stationarity in the velocity
moments and a mean uniform flow field, it applies directly to the unsaturated transport
experiments performed in this study. The simulations presented here are for two dimensions.
Thus, the initial source is an area A, and the compliance surface CP reduces to a linear
compliance level CL. The theoretical mean total solute flux <S(t,Z)> and the variance of the

total solute flux 0,%(t,Z) across the CL at distance Z, at time t are obtained from the following
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fundamental relationships (Dagan et al., 1992):

<StZ)> =c, jgl(tz -a,a) da
o (9-11)

Gf(t,Z) = ¢, Ijgz(t’z_al’al_all) - gl(t,Z-a’,a’) gl(t,Z—a”,a”) da' da”

where ¢, is the initial, uniform solute concentration in the source area Ay, and a is the vertical
coordinate of the location vector a. g,(t,Z-a,a) is the travel time probability density function
(pdf) of a particle originating at a in Ay and passing through the CL at time t. Correspondingly,
the joint two-particle travel time pdf gt Z-a’,a’-a") is the probability that two particles
originating at a’ and a" in A, traverse the CL at time t. The travel time pdfs depend on the
statistics of the velocity. Cvetkovic et al. (1992) derive a first order approximation of the first
two moments of the joint two-particle travel time pdf under the assumption that the travel path

of a particle does not deviate significantly from the mean flow direction:

<@ = =

9-12)

o Za'a"y = L

zz
14 J’J‘ C,, (' -z" x' -x"y dz’' dz"
V., 5

a‘a

where (a’,x”) and (a",x") are the ;/ertical and horizontal coordinates of a’ and a”. Using these
trave] time moments, Cvetkovic et al. (1992) then hypothesize that g, and g, are lognormal
pdfs, an approximation that is strictly valid only for lognormal velocity pdfs as Z — 0. They
point out, however, that lognormal pdfs for g, and g, are consistent with the first order
approximation (9-12) at all distances from the source, if the velocity field is lognormally
distributed, an assumption that holds for the numerical simulations (chapter 8). The form of
the lognormal pdfs g, and g, can be found e.g., in Bras and Rodriguez-Iturbe (1985). Using
(9-12) with the linearized velocity covariance function C.... derived in chapter 4, the double

integrals in (9-11) can be obtained by numerical evaluation. Since C,... varies smoothly and
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is numerically evaluated with a discretization Ax=0.1A, (chapters 4, 8), a very accurate estimate
of the integrals (9-12) and (9-11) is obtained by applying an extended form of Simpson’s rule
first to (9-12) and subsequently to (9-11) using the same discretization as in C,,,. In the
evaluation, the vertical extent of the source area is taken into full consideration. A conceptually
similar approach is taken by Russo (1993b) but based on a different derivation of C,,, and
different integration procedures. From (9-12a) and (9-11a) he evaluated the mean (but not the
variance) of the unsaturated breakthrough curve from a source of negligible longitudinal
extension for a three-dimensional soil with normallf distributed pore-size parameter a.

As in section 9.3, the travel time variance and covariance (9-12) can be obtained
normalized with respect to A, and the scaled input variance o®. But due to the nonlinear form
of the lognormal pdfs g, and g,, the mean and variance of the solute flux (9-11) would not be
associated with the same normalization. Since solute flux has dimensions of mass per time, the

dimensionless solute flux S’ is defined as:

st Sk ©-13)
M,V.0

For non-reactive, mass-conservative solutes, the area under the breakthrough curve S’(t") must
be unity. The numerical mean breakthrough curves (mean BTCs) can be integrated up to t’=40.
Only at Z’=5.4 breakthrough is completed in all but the most heterogeneous soil before t’=40.
Mass balance errors in the Monte Carlo mean BTCs range from +1% to +5%. The mass-
balance in the numerically evaluated analytical BTC (9-11) is accurate to within less than 0.1%.
For Z’=11.6, the analytical ensemble solute flux moments (9-11) and the numerical sample
solute flux moments are plotted in Figure 9.9 (as solid and dashed lines, respectively).
Numerical simulation results. For both isotropic and anisotropic soils, the mean BTC
increases with soil heterogeneity (Figure 9.9a,b). The increased spreading is associated with
lower and much earlier peak solute flux. In the isotropic soils, peak solute flux decreases from

0.25 to 0.06 as the variance of f increases from 0.11 to 3.62. In the anisotropic soils of
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equivalent heterogeneity solute breakthrough is less disperse with higher peak concentrations.
At 0=0.95, peak solute flux is 0.10 in the isotropic wet soil and 0.15 in the anisotropic (v=6)
wet soil. At 0/%=3.6, peak solute flux has reduced to 0.06 and 0.08, respectively. Very similar
breakthrough is observed for the two pairs of wet and dry soils with similar 0,2 (Figure 9.9d).
The dry soil #15 has a slightly more peaked breakthrough than #28, owing perhaps to its 17%
smaller 0,2. In contrast, dry soil #21 shows a more smearing than wet soil #22, even though
their oy2 are identical. Some of the difference may be attributed to the 7% mass balance
difference between #21 and #22 (#22 is the only soil with a relatively high mass balance error:
+12%).

The skewness and spread of the mean BTC is reflected in the skewness and spread of
the standard deviation of the solute flux (Figure 9.9e-h). The peak standard deviation does not
decrease as rapidly with increasing o as the mean BTC, suggesting an increase in the solute
flux coefficient of variation as the soils become more heterogeneous. The shape of the standard
deviation curve (STDC) is almost bimodal with a small secondary peak after the maximum
standard deviation occurred. The bimodality is more pronounced in the isotropic soils than in
the anisotropic soils. Also in the isotropic soils, both peaks in the STDC occur before the mean
BTC reaches its maximum (except in the soil with 07=0.11). In the anisotropic soils, the peak
of the mean BTC falls between the two maxima of the STDC (Figure 9.9f). As for the mean
BTG, little differences are observed in the STDC between the soils of the two wet/dry soil pairs
(Figure 9.9h).

Comparison to analytical results. Surprisingly, perhaps, there is a good visual
agreement between the sensitivity of the theoretically determined and the numerically obtained
BTCs and STDCs to the variations of the soil hydraulic conductivity variance, change in soil
water tension, and change in anisotropy (Figure 9.9). All theoretical BTCs are less disperse
than the numerical results with a peak solute flux that is generally between 15% and 30%

larger. Larger differences occur in soils with more heterogeneous flow patterns. Only in the
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driest soil (#21) the difference exceeds 30% (approx. 70% more peak solute flux). The
theoretical standard deviation is approximately twice as large as the numerical standard
deviation with a tendency to a greater difference at low o and low v. Both numerical and
analytical STDC are much broader than the respective mean BTCs suggesting a very high
uncertainty about the prediction of the frontal breakthrough and tailing of the mean plume. The
bimodality of the STDC is not observed in the analytical results. The general observations
made for the BTCs and STDCs at Z‘=11.6 (Figure 9.9) are also made at other depths of the CL
(an example is shown in Figure 9.10)

The smaller spreading of the mean theoretical BTC curve (when compared to the
simulation results) is consistent with the observed difference between the longitudinal spatial
moments from the analytical stochastic macrodispersion analysis and the numericaily determined
spreading of the mean concentration plume, the latter of which is generally found larger. As
mentioned above the differences can be attributed to the first order approximations assumed in
the derivation of (9-11). Note that the illustration of the numerical and analytical results of the
least variable soil (wet, isotropic, 0;°=0.01) are omitted. For that soil site the analytical results
show a very sharp peak, which is approximately twice as large as the numerical result.
However, in the latter local dispersion plays a considerable role in the overall plume spreading

since the spatial variability of the velocity field is almost negligible.
94.2 Local Compliance with Maximum Contamination Flux Levels

This section is concerned with the statistics of local solute breakthro.ugh in contrast to
the integrated breakthrough investigated in the previous section. The arrival time t, of the
compliance solute flux s, and the solute flux peak passing time t, are used as parameters to
describe the frontal part of the breakthrough curves at each location x of the CL (recall that x

is defined for a line only). In fact, t, is only a particular aspect of the t, function. The choice
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of these two parameters, instead of the entire local BTCs, has several advantages. The
computational effort of storing and evaluating these data in a Monte Carlo simulation is orders
of magnitudes smailer than the statistical evaluation of the local BTCs(x). In the numerical
simulation, t, is defined simply as a function of location and is therefore a very small array
containing the same number of elements as a single row in the simulation domain. The arrival
time t, is also defined as a function of horizontal location on the CL, but it is parametrized with
respect to the compliance solute flux. t, is compiled for 19 levels of dimensionless solute flux
s/sy, varying logarithmically from 10 t(; 1. Hence, t, is essentially a function defined for the
two-dimensional plane (x,s/s,). Computationally, these are 19 times the amount of data stored
for t,. In contrast, the information of a solute BTC at (x,t), recorded for every time-step, takes
as many data as there are time-steps for each grid-node on the simulated CL. These time-steps
vary from realization to realization depending on the maximum Courant number (automatic
time-stepping, chapter 5). For the assembly of the sum and sum of square arrays of these data
variables (see above), the individual BTCs have to be interpolated onto a regular grid of the
time-axis.

To illustrate the conceptual link between the arrival time function t,(x,s/sy), the peak
time function t(x), and the BTC function s/sy(x,t), recall that all are functions in the same three-
dimensional space defined by the real variables s/s,, X, and t. The BTC function s/sy(%,t) has
a unique solution for each (x,t) and can be visualized as a longitudinal (parallel to the t
coordinate) trending "mountain” bulging above the (x,t) plane. The BTC function can be
uniquely mapped by projecting the mountain onto a contour map in the (x,t) plane. In contrast,
neither the function t(x,s/s,) nor the function x(t,s/s,) have unique solutions. For each x, s/s,
is obtained twice (in the front and in the tail of the BTC(x) i.e. one can look at the mountain
from the front or the back). And at each time, s/s, is obtained twice along the CL (to the left
and to the right of the center of the breakthrough i.e. one can look at the mountain from the left

or the right side). But if the three-dimensional cube spanned by R*(s/s,,x,t) is sliced such that
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1(x,s/so) has only a single solution (in other words by deciding that one is only interested in the
shape of the mountain as it is seen either from the front or the back), either the frontal part of
the solute flux "mountain” or the tail part of the solute flux "mountain" can be projected onto
a contour map in the (x,s/sy) plane of the cube. The t,(x,s/s,) function is the frontal projection
of the solute flux "mountain”. And t(x) is the contour in the (x,t) plane along which the cut
was made.

In the statistical analysis, there is a fundamental difference, however, between the mean
BTC(x,t) function and the mean t,(x,s/s,) function and their associated variances. The former
will average the solute flux at a particular time and location, while the latter will average the
time associated with a particular location and solute flux. From the analysis of the spatial mean
concentration it has become obvious that the concentration not only has a truncated, but also
highly skewed pdf as evidenced by the outlier problems. The meaning of averages and
variances of non-Gaussian pdfs is questionable. In contrast, the pdf of the arrival time is not
truncated (a zero arrival time is impossible) but it has the difficult property that arrival time is
not necessarily defined for every location x and every solute flux s/s,. At distance x certain
solute fluxes s/sy (and any higher flux) never occur. From realization to realization, arrival time
may or may not be defined for the location x and level s/s,. In statistical terms, the empty set
{J} must be assigned a certain probability. While this poses difficulties in approaching the
problem theoreiimlly, an approximate solution for the numerical sampling in a finite sampling
space (number of realizations) can be constructed by simply ignoring those samples at (X,s/sy)
that are not defined. In the Monte Carlo simulation, a zero is added to the sum and sum of
square arrays, if no solute flux ever occurred at a certain level and location during a particular
transient transport realization. In addition a counting file is kept to count the number of
occurrences of t,(x,s/sy), which is equal to or smaller than the total number of realizations. The
resulting sums and sums of squares are eventually divided not by the number of realizations but

by the number of occurrences of t,(x,s/s,).
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Thus not only an average time and time variance is obtained, but also a histogram of
the probability that s/s, is exceeded at location x, which is in essence an inverse cumulative
distribution function ("iCDF" = 1-CDF) for s/s,. Obtaining a iCDF for solute flux is extremely
important for many regulatory purposes, which deal with the likelihood that a certain
contamination level is ever exceeded after the installation of a potential contamination source
or after completion of site remediation. In addition, the physical meaning of "expected time
of solute flux exceedance” and the variability of the arrival time is in many instances more
significant than the "expected solute flux at time t" and its potential variability. The probability
of arrival time of a certain solute flux level is similar to assessing the probability that a solute
particle originating from a contamination source will arrive within a certain time-frame. Many
regulatory statutes require that a certain contamination level may not be exceeded at any given
time after installment of a potential pollution source, or that certain contamination levels are
unlikely to occur for X number of years after instaliment of the potential pollution source
(Neuman, 1991). Such measures can be formulated as conditional probability measures of time
of exceedance given a solute flux (pdf(t,)|s/s,) or as conditional probability measures of solute
flux levels given a time (pdf(s/so)|t,).

The evaluation of the local solute breakthrough is essentially complimentary to the
spatial analysis of the concentration mean and variance. The results are expected to be
analogous to the findings of the previous sections. The numerical evaluation of the arrival time
of peak solute flux is shown in Figure 9.11 for the first, third, and last soil categories. All
times are normalized with respect to the mean residence time Z/V,. The average peak arrival
time occurs earliest for the least heterogeneous soils (isotropic, wet, 2=0.01, 0.1 1), since the
BTC in these soils are least skewed (Figure 9.11a, see also Figure 9.9a). Not much difference
in <t> is seen between these two soils. Notice that the peak arrival time for the highly
heterogeneous soil (isotropic, wet, 0/=3.62) is significantly later than for the other three soils.

The peak solute flux occurs later at location on the CL further away from its center (Where the
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center x=0 is defined as being located vertically underneath the center of the plume source).
The shape of the t, contour is not very sensitive to soil heterogeneity indicating that the delay
in peak arrival time at a location x (with respect to the <t,>( x=0)) is the same no matter how
heterogeneous the soil. With respect to the shape of the <t > line, the anisotropy ratio of the
soil is much more significant (Figure 9.11b). At higher anisotropy, the peak time on the sides
of the CL will occur earlier than in isotropic soils due to the stronger horizontal spreading of
the solute plume. Again the differences between dry and wet soils are insignificant if the flux
field has a similar variability (Figure 9.11c). For all soils the variance of the peak arrival time
does not vary with horizontal location, even though the mean arrival times are larger at larger
x. The variance increases mainly with o and decreases only slightly with higher anisotropy
(Figures 9.11d-f).

The mean arrival <t,> map, a front view or projection into the (x,s/s,) plane of the
solute flux "mountain” generally has the expected behavior that a given solute flux level is
exceeded earlier towards the center of the CL and later as || increases. The higher the solute
flux level, the later it will on average be exceeded (Figure 9.12). Note that the solute flux is
plotted on a logarithmic scale. Except for the very highest solute flux levels (the only ones
distinguishable in the BTCs of Figure 9.9, where solute flux is plotted on an arithmetic scale),
the mean time of first exceedance of a solute flux level is significantly earlier than 1. The
mean arrival time (relative to the average residence time Z/V,) for the lowest solute flux level
(s/s,=10") is between 0.45 and 0.55 for all investigated soils. Only in isotropic soils with
0¢<1.0 the mean arrival time for any solute flux level never drops below 0.5. The mean arrival
times increase in an almost linear fashion radially away from the (x=0,s/s,=10) point. For
higher variances and larger anisotropies the shape of the "mountain” becomes broader (but not
flatter owing to the log scale on the vertical axis). With increasing anisotropy and increasing
of, the earliest arrival time for the low solute flux levels decreases everywhere on the CL,

although <t,> shows very little sensitivity in the anisotropic soils at x=0, once 5;%20.95.
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The highest solute flux levels are reached in the least variable soils, while the maps for
the most highly variable soils (Figure 9.12¢,f) prove that outliers are observed not only on the
slow travel time end (see section 9.3), but also on the fast travel time end of time scales. In
a reversion of the general trend that higher solute fluxes occur later, the highest solute fluxes
in the three soils with o > 0.9 occur on average earlier than some lower flux levels. Since
these high flux levels are associated with low likelihoods (see below), they can only be attained
if the solute source is in a preferential flow area, which displaces the plume relatively fast past
the CL. Due to the varying number of samples underlying the sample mean and sample
variance, the estimation errors of the sample mean and sample variance of t, may vary
significantly and are expected to be high near the margin of the map, where the likelihood of
exceedance is least. The more variable the soil, the more erratic are the contour lines of both
the <t,> and the CV,, maps (Figure 9.12 and 9.13).

The coefficient of variation CV,, of solute flux exceedance time shows that the highest
uncertainties are about the arrival times of the lowest solute flux levels at the center of the CL
(Figure 9.13). The only exception are the two, mildly heterogeneous, isotropic soils (Figure
9.13a-b), where the CV,, increases first and then decreases again, with larger distance form the
center of the CL. Clearly, the CV, rises with soil variability. For the isotropic, wet soil with
0#=0.11, the CV,, varies from 0.3 to 0.5 (Figure 9.13a). In the anisotropic soils with oy2=3.2,
the CV,, varies from 0.5 near the edges to 1.1 in the center of the CL (Figures 9.13e-f).
Anisotropy decreases the uncertainty about the mean arrival time considerably for soils of
comparable variability in o2 The observed decrease of uncertainty towards the edges of the
"mountain” must be seen in connection with the decreasing likelihood of such solute fluxes ever
to be exceeded. Figure 9.14 gives the sample probability that a solute flux level is ever
exceeded. Each curve presents the iCDF of solute flux at a particular location x of the left half
of the CL. Like the mean <t,>, the iCDF is symmetric to the center of the CL. The rightmost

curves represent the highest likelihood for the highest solute flux levels and are associated with
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x=0. Each curve further to the left in the graphs of ngure 9.14 is for an increasing distance
x from the center. The interval between locations x of neighboring iCDF plots is indicated as
Ax. The iCDF is steepest for the soils of lowest variability indicating the least variance in solute
flux. At each soil, the steepest iCDF is observed for the center location, which has the highest
mean (rightmost curve) and the least variance. The further away from the center of the CL, the
lower the mean solute flux and the smaller the slope of the iCDF, hence the larger the variance.
Note that these plots are on a logarithmic scale for s/s,. For a relatively homogeneous soil
(Figure 9.14a), the iCDF is relatively symmetric with respect to the geometric mean s/s,, and
solute flux is lognormally distributed. At higher variances the top part of the slope of the iCDF
decreases with a longer tail towards lower solute flux levels, indicating that on a logarithmic
scale for s/sy, the probability distribution of s/s, (derivative of the iCDF) is significantly skewed.

Skewness also increases with distance from the center.
9.5 Summary and Conclusions

In this chapter solute transport from local sources of small lateral extent in unsaturated
soils with steady-state mean uniform flow conditions is analyzed. A number of numerical
Monte Carlo transport simulations were implemented for a variety of soil conditions. The
sensitivity of solute transport and the uncertainty of its prediction is investigated for soils of
varying variability in o2 and o2 for soils with anisotropy ratios ranging from v=1 to v=6,
for soils of different mean soil water tension H, and for soils with correlated and uncorrelated
f and a parameters. Several different aspects of solute transport have been addressed: The
dynamics of the mean concentration plume and of the concentration variance, the spatial inertia
moments of the mean concentration plume, the mean inertia moments of individual plumes
around their center of mass, and the variability of the center of mass of individual plumes. The

spatial description of solute transport was contrasted with the temporal description of solute
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transport i.e., the solute breakthrough at a compliance surface or compliance level (CL) some
distance away from the solute source. The mean and variance of the total mass flux across the
CL is determined and an alternative interpretation of uncertainty with regard to lhe arrival time
of a solute at a compliance surface is offered. Instead of predicting the uncertainty about the
solute flux level at a given time, the uncertainty about the time of first exceedance of a given
solute flux level is stochastically determined.

In agreement with theoretical predictions by Dagan (1986), the prediction of a solute
plume of small initial extension (relative to the correlation scale of soil heterogeneity) is
associated with large uncertainties. For highly heterogeneous soils (o?>2) the mean
concentration plume is of dimensions that have little to do with the actual size of the plume.
For soils with an unsaturated hydraulic conductivity variance oyz = 3.2, the variability in the
vertical and horizontal displacement of the plume center at t’=10 accounts for 71% and 55%,
respectively, of the spreading observed in the mean concentration. As a consequence, the
predicted average peak concentration is almost an order of magnitude lower. At o =1 and
t’=10, the vertical and horizontal variability of the plume center displacement still accounts for
61% to 68% of the longitudinal and for 47% to 42% of the lateral mean concentration
spreading, with the former limit being for isotropic soils and the latter for anisotropic soils of
aspect ratio 6. Large residual mean concentration at less than 20 correlation scales fron; the
source for t’=40 is an important indication that the variability of the displacement of the plume
center accounts for significant amounts of the prediction uncertainty even at travel distances
larger than 40 correlation scales. This conclusion is confirmed by the significant variability of
the solute mass flux across the bottom boundary (23 correlation scales from the source) at
t’=40.

The numerical results are contrasted with linear theoretical models of stochastic
transport in porous media. To describe the spatial moments of the solute plume, a linear

macrodispersion model is developed for the two-dimensional unsaturated transport under
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investigation based on the analytical flow model developed in chapter 4 (see also Yeh et al.,
1985a,b) and on the linear macrodispersion theory by Dagan (1984, 1988). For the solute
breakthrough at a compliance surface the first order perturbation analysis of unsaturated flow
is applied to the travel time analysis developed by Dagan et al. (1992) and Cvetkovic et al.
(1992). Analytical predictions of the mean solute breakthrough curve and the variance of total
solute flux at the unsaturated CL are obtained as a function of time.

The linear macrodispersion theory predicts that for soils with identical A=A, and T,.the
second spatial moments are directly proportional to the theoretical unsaturated hydraulic
conductivity variance o,%, since the second spatial moment and o,’ both grow with o = o?
(1+2pH’ + H”), where H’> = CT'H is a dimensionless measure of the mean soil water tension.
From these theoretical considerations it is expected that a direct proportionality between the
spatial moments of the concentration and the unsaturated hydraulic conductivity does not exist,
when either the aspect ratio of the correlation ‘scales or the geometric mean of a (=I') changes.
It does also not hold, if the correlation functions for f and a are not identical. Together with
the findings in chapter 8 (A, does not decrease significantly with respect to A, as the soil water
tension increases) both the numerical and analytical results presented here contradict the
hypothesis by Russo and Dagan (1991) that )».y,oyz ~ A,0¢ independent of the mean soil water
tension (see also chapter 6).

The numerical simulations have shown that the longitudinal spatial moments of the
mean concentration in anisotropic soils with moderate to high variability are indeed more or less
proportional to the unsaturated hydraulic conductivity. In isotropic soils, however, no direct
proportionality is found between X,, and oyz. Only the variance of the vertical (longitudinal)
location of the center of piume position is in all soils found to be directly proportional to o and
hence to 0,2. Otherwise the accuracy of the linear macrodispersion theory is limited. The
actual mean concentration spreading is found to be not only larger than predicted by the theory,

particularly in anisotropic soils, but also in contrast with the very concept of
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"macrodispersion”. The latter is based on the pseudo-Fickian advection-dispersion model i.e.,
a Gaussian spatial concentration distribution. The numerical simulations, however, show that
the spatial distribution of the average concentration is non-symmetric and highly skewed along
the longitudinal axis due to the lognormally distributed vertical velocity component. For the
anisotropic soils of moderate to high variability and aspect ratio 6, the actual longitudinal
spreading is 60% to 80% larger than predicted.

Numerically computed transverse mean plume spreading and displacement variance of
the plume centers also varies nonlinearly with oyz. Transverse spreading of the mean plume
far exceeds the predictions of the linear macrodispersion theory. Like for longitudinal
spreading, this study finds that the difference between theory and simulation of transverse
spreading increases as the anisotropy ratio becomes larger. In a dry soil with aspect ratio 6 and
oy2=3.2, the horizontal spreading of the actual (numerical) mean plume is almost one order of
magnitude larger than predicted by the theory, and most of the spreading is due to variability
in the horizontal plume center displacement. Except for the case of the least variable soil
examples, the larger actual mean plume spreading cannot be explained by the effect of local
dispersion, which has been neglected in the macrodispersion model. Rather it is the well-known
limitation of the macrodispersion model itself, which explains the difference. The main
assumption of the linear macrodispersion model is that a particle deviates only insignificantly
from the mean travel path, which is obviously erroneous for highly heterogeneous soils (see
Figure 9.2c).

Although not specifically addressed in this study, the results do not confirm the findings
of Bellin et al. (1992) who concluded from their numerical studies of saturated flow that the
erroncous effects of linearized flow and linearized transport may cancel each other. However,
their study was limited to the isotropic case with 0,%=0 s 1.6. For those conditions the results
in this study also indicate a good match between the theoretical model and the numerical

results. Only under anisotropic conditions large differences between theoretical and numerical
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solutions are found, even in mildly heterogeneous soils.

The findings with respect to the underestimation of horizontal spreading are consistent
with Rubin (1990), Neuman and Zhang (1990), Tompson et al. (1990), and Zhang and Neuman
(1994c). However, the same authors come to the conclusion that the linear macrodispersion
model will overpredict longitudinal spreading of the mean concentration. Again, this is in
contrast to the results here, where the macrodispersion model generally underestimates the
longitudinal macrodispersion. The differences are attributed to the different anisotropy structure
modeled here. The above mentioned papers model groundwater transport in isotropic and
anisotropic porous media, where the mean flow is generally assumed to be parallel to the
direction of strongest correlation. In contrast, mean flow in this study is normal to the direction
of strongest correlation. Together with the results of Bellin et al. (1992) this may be an
indication that the linear macrodispersion model best predicts transport in isotropic porous
media, underpredicts longitudinal spreading for A/A,<1 and overpredicts longitudinal spreading
for A/A, > 1, where A/A, is the ratio of the correlation scales in longitudinal and transverse
direction of mean flow.

Similar differences occur in the estimation of the spreading of the mean breakthrough
curve across the CL. The theoretical model by Cvetkovic et al. (1992) based on lognormal two-
particle joint travel time pdfs with first order parameters, underestimates the spreading of the
mean breakthrough curve observed in the numerical simulation. It is generally very accurate
in predicting the front end of the mean BTC, but overestimates the peak concentration by 15%
to 30% and in highly heterogeneous soils up to 70%. All numerically obtained mean
breakthrough curves exhibit considerably more tailing than predicted by the theory. The theory
overpredicts the variance of the solute flux by a factor 2 resulting in conservative estimates of
the uncertainty (measured in terms of the coefficient of variation) about the solute flux at time
t. Overall I conclude that the linear macrodispersion model as well as the travel time model

adopted here for unsaturated flow conditions will give reasonable estimates of the mean
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concentration in space and mean solute flux across CL, if the purpose is to obtain rough
estimates of the mean concentration plume and the mean BTC. For predicting uncertainties
associated with extreme events (e.g., early arrival) or associated with very small concentrations,
the theoretical models are insufficient.

The statistical analysis of the first time or arrival t, of exceedance of a given solute flux
s/s, at a location x of the CL has yielded additional insights into the stochastic behavior of
solute transport. Not only is it a very attractive and efficient alternative to the numerical Monte
Carlo evaluation of the local BTC(x). It also offers an important practical tool to predict the
mean and uncertainty about the time when a given compliance level will be exceeded, an
approach that has in the past neither been addressed theoretically nor numerically. The analysis
of travel time variability that is suggested here also yields probability distribution functions for
the likelihood that a given solute flux level will ever be exceeded at location x of the CL.
However, it does not indicate for how long the compliance level is exceeded or what the total
mass flux will be at x. The empirical sample probability of exceedance of solute flux levels
has a form best described as a slightly skewed quasi-lognormal Gaussian CDF. The average
<t,(s/so)>, the time of first exceedance of s/s,, shows that the same solute flux levels are reached
later as the distance from the center of the CL increases. The least uncertainty is associated
with predicting the arrival time of the highest solute flux levels at a location X, since high solute
flux levels can only be attained, if the travel path is fairly direct and undistorted and hence, the
travel time is relatively short (physical constriction). This must not be confused with the
likelihood that such high solute flux levels occur. Indeed the high flux levels are the least
likely. A weakness of the numerical approach to arrival time analysis is that the number of
samples decreases with larger x and larger s/s,. The statistical sample moments of t, and t,
have therefore increasing sample error. Note that this type of analysis is different from the
numerical or Lagrangian travel time analysis of particles such as e.g. in Smith and Schwartz

(1981a) and Cvetkovic et al. (1992).
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In light of the high variability of the plume center displacement, the strong skewness

of the mean concentration plume, the non-Gaussian distribution of the concentration RFV c(x,t),
and the very long travel times required for ergodicity to occur, the fundamental problem
highlighted in this chapter is the high uncertainty of predicting solute transport with any
unconditional stochastic model for unsaturated transport, if the soil flux variability becomes
large (o,221). The differences between the stochastically more accurate numerical simulations
and the predictions of the macrodispersion and travel time theories may seem minor compared
to the differences between the mean predictions and actual values of concentrations and solute
fluxes. The conditional simulation approach introduced in the next chapter offers an alternative
to the unconditional stochastic models applied in this chapter. But the detailed information
obtained in this chapter about the variability of solute transport from small sources - under very
idealized conditions - is in agreement with the empirical results reported in numerous field
studies: It is generally difficult to model or predict the actual transport behavior of a solute in

a heterogeneous soil to a high degree of accuracy.
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Table 9.1°

Input parameters for the various hypothetical soil sites used in the unconditional
transport analysis: o, variance of f=logK, (log: natural logarithm), o, variance of a =
loga, p,.: comelation coefficient between f and a, I': geometric mean of o, Ax: horizontal
discretization of finite elements, Az: vertical discretization of finite elements, .
horizontal correlation length of f, A,,;: vertical correlation length of f.

name | o? c,? p r H Ax A cu
t
#3 1.0 0.01 0 0.01 -150 10 50 5
#2 0.01 10 2
#4 1 5
#8 0.12 5
#9 4.0 -0.04 10
#12 1 30 300 5
#15 -1000 30 300 5
#21 1 -3000 30 300 10
#22 4.0 0.04 30 300 10
#28 2.25 0.04 30 300 5
#29 30 300 5
#31 15 150 5
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Table 9.2

Dimensionless distance z/A, between the location of the minimum CV_ and the location
of the maximum <c> as a function of dimensionless time t’=tV,/A,. The minimum
CV, is always located below the maximum <c> i.e., is travelling at a faster rate.
Dimensionless times in parentheses refer to soil site #28.

soil type | 0,2 | v t'=5 ' = 10 (8) ’ = 20 (16)
“
#2 O1] 1 0.0 0.0 0.0
#8 101 1 0.1 0.0 0.0
#3 85| 1 0.8 0.6 04
#9 34| 1 2.6 5.2 14.8
#31 I51 3 0.8 1.0 3.2
#12 531 6 04 04 1.2
#29 791 6 04 0.6 1.8
#15 151 6 0.8 1.6 14
#28 18] 6 0.8 1.8 4.8
#22 321 6 2.6 9.6 52
#21 32 6 4.2 8.6 4.8
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Figure 9.3: Sample mean concentration after 300 realizations (a-d, left column) and
after only 100 realizations (e-h, right column) of transport in a strongly heterogeneous
flow field (soil site #21, o = 3.2).



310

cV, @ OV (@

c

2.0r, . . Or . . .
0; isotropic, wet soil Emlsotroplc, wet soll

. [of = 3.67
1.5k -

1.0 — 1.0@\
: o’ = 0.95 /_/—-
[ , .

0.5:-r o, =011 , O,Sf/(.ﬁ_—g.s

- 0O} =0.01 [ P =1
00 ...... e 00 ................
5 10 ¢ 15 20 5 10 ¥ 15 20
% 0 o G
10’ =0.95,wetsoil " |anisotropic soil
[ | #
1.5 /Ay, =1 1.5;:&';\
i / )\‘fx/)\fz = 3 22 8
1oy 1] #18
| A/ Ay, = 6 | #21: o?=3.2, H=-3000 cm
0.5; 0.5} #22:d7=3.2, H=-150 cm

 #28:0]=1.8, H=-150 cm

0.0' ................ 0.0 ...........
5 10 t 15 20 5 10 ¢ 15 20

Figure 9.4: Minimum concentration coefficient of variation at
or near the center of the mean plume. Except where indicated,
fand a are not correlated (p,, = 0).

T ST



200

150

100

sof

80

100

log,, (|ETHI)

311

2.0r

1.0p

0.5p

o 20 40 . B0 B0 100

a[cm]

Figure 8.5: Analytical dimensionless second spatial
moments of the mean concentration X_,, X_, (a.b)
for three different anisotropy ratios A /A, = 1, 3, 6;
the corresponding apparent macrodispersivities
(c.d: see text); and an evaluation of the term

(1+2pETH+ LT H)Y).



30

isotropic, wet soil X I
3 22 oo

(@

10 15 t

0 5
anisotropic, wet soil

0.952.15

10

 (©)

0 5 10
_anisotropic soil, wet vs. dry

(d)

15 t’

0 5 10 i5 t

312

10.0¢ X ’
got® 7 XX
6.0} oo
4.0} o
2.0 s h_______:;-:.:_:_I_:_:_:_:_:_:_:.:.;:-:—:;——M:::?:.?.".‘. 362
O.Od'W = 5 -
10.0¢
8.0 (f) ....... 3.67
6o T 218
R 095
401 ——":::: ......... Pl * ap,
2.0 i o __::_:..-" YL
..ul".".’v N ;
>0 5 10 5t

10,
© .,,
I
I 28
5t .'_'___.._—_-:_' ------- s
05" 5 70 15 t

Figure 9.6: Vertical (a-d, left column) and horizontal (e-h, right column) mean
concentration second spatial moment. Solid lines are analytical results, while
dashed lines are from the Monte Carlo analysis. Labels are expiained in
Figure 9.4 and Table 9.1 (also see section 9.2.3).




isotropic, wet soil 3
) var(M,)

(b) oo
5 L
05 5 10 15 t

 (€)

15
3
[} S <
---------------- 6
st A
00 5 10 15 ¢
10 ; anisotropic soil: wet vs. dry
() e
5t
00—3 10 15 t

313

20 ’
var'(M,)

15t ©
1.0¢ e
0 5 i ez '_,.'f‘“":::::""'“3.65 ---------
0.04° 5 10 i5 ¢
20 : 367 ;.

18 085 __..-
15t @ i i
1.0} Za
0.5}
0.05 5 10 T5 ¢

0.04 " - v
10[
(h)
[
d P
L S
-:1‘"—:;;;;-.:::::'-:'-'-:::: ..... ¥ 1-;
I 10 5 t

Figure 9.7: Vertical (a-d, left column) and horizontal (e-h, right column) variance
of concentration center of mass. Solid lines are analytical results, while
dashed lines are from the Monte Carlo analysis. Labels are explained in
Figure 9.4 and Table 9.1 (also see section 9.2.3).



314

1Sl

ol

g

0

L=

Fd

T

$6°0

29°C

0
G

101
161

0c

Ot

fwo)

X} 8as *Yo pue “o
jo uoneindwos 104 ‘L'6 djqe]. pue {'6 ainbi4 0} Jayel Buljaqe| Jo4 sisAjeue ope)
SJUOW aY} Jo N pue “ ejdwes ay} woly paauep [wa] uy Aylaisiedsip jeuoisuswiip

juaredde uesw (uwnjoo ybu !p'o) jeluoziioy pue (UWN|OD Ya) !q‘e) jeoiusA 8’6 ainbiy

d Gl 0]} G 0
L="d
S6°0

s1'g 1

L9°€ k

(a)
jlos 1om ‘oidosjosiue”
d Sl 0] S 0
100

Lo

ZZIN, e >

Jlos 19Mm ‘o1dosjosi

0

19

ol
Gl
0c

[wo]

N

R



0.3 fiso’tropic, wet soil < S ’>
@ o
0.2¢}
0.1¢
0.05%
0.3 _anisotropic, wet soil
(b)
0.2} 0.95
0.1¢
3.67 trse..
006—F" 7075 20 25 %0
0.3 , anisotropic, dry soil
P, =0,H=-1000cm
0.2 ! (C) #15
0.1t
#28 X
0.0 : : ;
0 5 10 15 20 25 30t
0.3 [ anisotropic, dry soil
P, =1, H=-3000 cm
0.2 1 (d)
#21 + #22
0.1¢
O.OO SRS

10 15 20 25 30 ¢t

0.4
0.3}
0.2}

0.1}

0.0/

0.4¢
0.3}
0.2}
0.1t

315

(f)

0.95

o oplas N2,

0.05

0.4/
0.3}
0.2}
0.1}

O'OO

0.4¢
0.3}
0.2}
0.1t
0.0

“5 70

(@)

moeene =

1550 25 30t

15 20 25 30t

“5770

0

Figure 9.9: Mean solute flux (a-d; left column) and standard deviation of the solute flux
(e-h; right column) at a distance z'=11.6 from the center of the source. Solid lines are the
analytical model (eqn. 9-11), dashed lines are from the Monte Carlo analysis. For labeling
refer to Figure 9.4.



316

'E=A'GE'0=,0

“tom ‘oidosjosiue :|Lg# |10S '82IN0S 8INjOS BU} JO J81Usd By} WO} ,Z S8ouB)sIp
JUBIBHIP JE XN|} BIN|OS B} JO UOHEIASP plepuels pue Xnjy 8injos Uesiy :0}'6 2inbi4

0

00

00

10

¢O

€0

TR e Y,

- b AT S S b S A



317

peak concentration arrival:
mean standard deviation
2.2 1.0p
isotropic, wet soil !
2,0 o8 [ (d) W
2 8l
A s (a) o%=3.62 ' 3.62
-
V -
o 16 . 06f
£ R [
- ] :
14 0%0.95 osf 0.95
12 0.1 \\./‘ ; RN
0.2f
1.0 \/ 2 ; 011
2
0=0.01 [ 01
0.8 1 1 4 0.0 N ’L/—' ,
-1000 0 1000 -1000 0 1000
horizontal location relative to source [cm] horizontal location relative to source [em)
1.0p
L of= 0.95, wet soil g
o8} (e)
06f
0.4f
o2fF ... .
] 1 1 0.0 [ 1
-1000 ) 1000 -1000
horizontal focation relative to source [cm) horizontal location relative to source [em)
1.8 1.0r
[ anisotropic dry/wet soil t (f)
[ 0.8}
1.6 1
#2436l
1.4t
o4f
12} q
0.2 -
1.0 i 1 A 0.0 L !

1 1
-1000 0 1000
horizontal location relative to source {cm]

-1000 o] 1000

Figure 9.11: Mean (a-c; left column) and standard deviation (d-f; right column)
of the arrival time t.’ of peak concentration at the compliance surface.
All results are from numerical analysis. Labeling identical to previous Figures.



exceedance concentration arrival:

I Y ril? At o S - T A A———r o —, A e sn e ol Famiep anrat ~ b St R T e N T i L A 3" ARy Py D b il

mean <t.p.’>

-1.0 - -1.0
20 et, anisotropic 6, 07=2.15 0.90
0.85
3.0 0.80
4.0 0.75
-5.0 0.70
6.0 0.65
7.0 0.60
0.55
-8.0 0.50
-9.0
"100%2% 200 100500 1000 -500 @ 500 1000 1500
horizontal location relative to source {cm] horizontal location relative to source [em]

1.0
et, anisotropic 6, 67=3.67

N
500 O 500 1000 15

-400
horizontal location relative to source [cm]) horizontal location relative to source [cm]

-1.0
et, anisotropic 6, 67=0.95

.10. BFE A .10' 285 3258 . -
f500 <1000 -500 O 500 1000 1500 1500 500 0 500 1000 1500
horizontal location relative to source [em] horizontal location relative to source [cm])

Figure 9.12: Mean arrival time <t_,'> of first exceedance of the compliance concentration.
The arrival time is contoured as a function of compliance concentration (y-axis) and as
a function of horizontal location (x-axis). The time is normalized with respect to the mean
travel time to the CP surface.

318



exceedance concentration arrivai:
coeffcient of variation ¢y coefficient of variation cvV

—~ -1.0 2 t -~ -1.0 N
& et, lsotropic, g, = 0.11 120 & 1.20
~ -2.0 ~
1.00 g 1.00
g 3.0 (a) 00 2 .
4.0
j: og 3 0.80
e _5 o e
4 060 2 0.60
- 6.0
0.40 0.40
-7.0
8.0 0.20 0.20
-8.0
-10.0 bt : 2, : :
400 -200 0 200 400 500 1000 1500
horizontal location relative to source [cm] horizontal location relative to source [¢m]
-1.0

’\} 120 o et, anisotropic 6, ’=3.67 1.20
g 1.00 § X 1.00
§ 0.80 g 0.80
K K

_:._, 0.60 E 0.60

0.40
0.20

W

10000 500 0 500 1000 1500

horizontal location relative to source [em])
-1.0

1.20
1.00
0.80
0.60
0.40

0.20

1 -10, T a—— :
1000 1500 0_?500 500 0 500 1000 1500
horizontal location relative to source [cm) horizontal location relative to source [cm]

Figure 9.13: Coefficient of variation of arrival time CV,, of first exceedance of the
compliance concentration. The CV of arrival time is contoured as a function of
compliance concentration (y-axis) and as a function of horizontal location (x-axis).

319



1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

sample probability of exceedance

sample probability of exceedance

320

probability of solute flux exceedance

wet, Isotropie o7 = 0.11

-8

-4
log(s/sy)

0 wet, isotropic, 57=0.95

-6

1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.1

sample probability of exceedance

0.2¢

0.0!

) 6 -4 2
log{s/s,)
wet, anisotropic 6, 67=0.95
-8 -6 -4 2

AX =

20cm

(a)

=60cm

(c)

0

sample probability of exceedance sample probability of exceedance

sample probability of exceedance

wet, anisotropic 6, o/=2.15
Ax=60cm

(d)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0

-8 6 4

log(s/s,)
wet, anisotropic 6, 07=3.67

-2 0

= \

0.0

-8 -6 4

log(s/s,)
0 dry, anisotropic 6, 07=0.95

-2 0

0.95
0.8F
0.7
0.6
0.5
0.4
0.3k
0.2k
0.1
0.0

AxX=120cm

()

e = WA
-8 -8 -4 -2 0

Figure 9.14: Probability of exceedance of solute flux s/s, at different horizontal
distances x relative to the location of the source. The curve with the highest
probability is at x=0. Subsequent curves are at distance x that are Ax apart from
the neighboring curve.




321
10. CONDITIONAL SiMULATION OF

UNSATURATED SOLUTE TRANSPORT

10.1 Introduction

The stochastic evaluation of solute transport is of interest where not only the expected
behavior of contaminant movement but also the uncertainty associated with the mean
concentration prediction must be evaluated. To obtain the statistical parameters of the input
random field variables (RFVs, see section 2.5.1) K, and a in (4-8), measurements must be taken
to determine K, and a at the site that needs to be evaluated (unless these data are available
from similar or nearby sites). In many cases, measurements are also available that are related
to those two parameters, although they represent a different physical quantity, for example soil
tensiometer data or concentration measurements. Data of physical variables that are different
from, but related to the constitutive parameters of unsaturated flow are often referred to as
“indirect” information. The unconditional stochastic method presented in the previous two
chapters ignores any available indirect data and considers only the statistical properties of the
"direct” data. The approach is satisfactory in applications where either the lateral extent of the
contamination source or the travel distance of interest is very large with respect to the
correlation scale of the soil and if the soil is of only mild heterogeneity. In such cases, the
actual solute plume is "ergodic" (see chapter 2) i.e., the stochastic mean concentration plume
accurately predicts the actual plume and the concentration variance is zero. But for a point
source or very localized contamination, the travel distance required for the plume to reach
ergodicity may be exceedingly large. Dagan (1986) suggested that the ergodicity assumption
is valid only after the plume has been displaced several hundred correlation scales. In the
unsaturated zone, this may correspond to several tens of meters (see field studies referenced in

the introduction to chapter 8). If soil heterogeneity is found on a number of distinct scales of
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increasing order, ergodicity may not be achieved at all, even in the deep unsaturated zones
encountered in semi-arid and arid environments (see chapter 9).

The non-ergodic mean plume concentration has a meaning much different from the
ergodic mean plume concentration. It merely is a mass conservative, best estimate of the local,
time dependent concentration probability. Unlike the pdf of other RFVs, the concentration pdf
is difficult to determine due to the non-stationarity in space and time. Hence, the significance
of the first two unconditional concentration moments is questionable if the variability is very
large. To condition the stochastic evaluation of solute transport on all of the available
information - including the deterministic value of single measurement data - is therefore a
desirable approach not only to reduce the uncertainty of the concentration prediction but also
to fully reflect the information content of the available field measurements.

Conditional stochastic analysis has been applied to a number of groundwater problems.
Dagan (1982, 1984) derived analytical perturbation expressions for the conditional moments of
the saturated hydraulic conductivity (input variable), the conditional head, and-the spatial plume
moments (output variables) in a Bayesian framework. The work accounted for local
measurements of the hydraulic conductivity, of the head, and of the groundwater pore velocity.
Delhomme (1979) used the geostatistical method to generate conditional random input fields
of the saturated hydraulic conductivity (chapter 3; Journel, 1974). By generating ranciom fields
of K, and solving the saturated flow equation numerically, he evaluated the conditional head
moments through a Monte Carlo simulation. A similar approach was taken by Smith and
Schwartz (1981) who not only analyzed the conditional head, but also the conditional solute
arrival time to demonstrate the principal effect of conditioning. Binsariti (1980) and Clifton
and Neuman (1982) used transmissivity and water table measurements to condition the
transmissivity fields. They applied the statistical inverse method introduced by Neuman and
Yakowitz (1978) to condition the hydraulic conductivity data on measurements of head. Clifton

and Neuman (1982) reported a large decrease in prediction uncertainty with respect to the head
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moments, when head measurements are included in the conditional approach. The first effort
to condition hydraulic conductivity and the velocity field on concentration data was made by
Graham and McLaughlin (1989). They presented a first order analytical stochastic solution
based on spectral perturbation analysis and Kalman filtering. This work has to date been the
only rigorous approach that allows for conditioning with concentration data. Indirect and direct
information is used in the Lagrangian conditional transport analysis by Rubin (1991a), who uses
a cokriging approach to obtain the conditional moments of the velocity from measurements of
the saturated hydraulic conductivity and/or the head. The covariances and cross-covariances
necessary for the cokriging are derived from a linear first order analysis based on Dagan’s work
(1984). Using the conditional velocity fields, the conditional spatial moments (center of mass
and moment of inertia) of the contamination plume are evaluated in a Lagrangian framework
by particle tracking. Zhang and Neuman (1994a,b,c,d) devélop a new approach to obtain
conditional concentration moments, cond;tional spatial moments of the mean concentration, and
conditional solute flux moments based on the Eulerian-Lagrangian transport theory by Neuman
(1993). Transmissivity and hydraulic head data are used in their work to condition the
concentration moments.

To date, no attempt has been made to also analyze umsaturated transport with
conditional stochastic methods. Recently, an exact formalism to predict the conditional
moments of transient unsaturated flow (but not transport) in heterogeneous media has been
suggested (Neuman and Loeven, 1994). In principle, all of the above approaches lend
themselves for an analysis of the conditional plume and concentration moments under
unsaturated conditions. The main difficulty encountered in the numerical (Monte Carlo)
approach on one hand is the prohibitive amount of computation time needed to obtain just one
steady-state velocity field from the conditional random input fields of K, and a. The difficulty
of the analytical approaches on the other hand is the derivation of covariance and cross-

covariance functions necessary to obtain the conditional velocity moments.
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The work presented in the previous chapters has overcome both limitations: An
efficient numerical approach to compute steady-state unsaturated velocity fields, given a
heterogeneous realization of K and a, has been introduced (chapter 7; Harter and Yeh, 1993).
This allows the efficient implementation of Monte Carlo simulations similar to the work by
Smith and Schwartz (1981a,b). The stochastic moments of the unsaturated flow variables
f=logK,, a=loga (log: natural logarithm), and soil water tension (head) h have also been derived
(chapter 4; Yeh et al., 1985a,b). With these theoretical moments, Rubin’s (1991a) analysis of
conditional plume moments can easily be extended to unsaturated flow. His semi-analytical
approach, however, is limited to small perturbations. In this chapter the (nonlinear) numerical
Monte Carlo technique is applied to derive various conditional stochastic transport parameters
without having to linearize either the flow or the transport equation. Linearization is only used
to generate conditional input random fields f and a given data of either f, a, or h. For the
conditioning, a geostatistical inverse method called cokriging is applied (Myers, 1982; Kitanidis
and Vomvoris, 1983).

Conditional simulation of unsaturated transport distingufshes itself from the conditional
simulation of saturated transport not so much in the principle of the approach as in the inter-
dependencies between input and output RFVs. The same measurement data play a different role
depending on whether they are applied to saturated or unsaturated flow. In unsaturated flow
two independent parameters (or more - depending on the choice of the constitutive relationship)
define the actual local hydraulic conductivity. The unsaturated flow problem is inherently
nonlinear i.e., head and conductivity are interdependent unlike in the saturated case, where the
conductivity is independent of the head. It is therefore expected that the data measured in the
field and used to condition the stochastic analysis have a relevant information content that is
distinctly different from the saturated case. Much of the usefulness of one type of measurement
will depend on the availability of other types of measurements. Measuring, for example, either

the saturated hydraulic conductivity, or the soil pore size distribution parameter, or the soil
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water tension each by itself should result in much less conditioning than the combined effect
of all three measurements.

The main objective of this chapter is to investigate the role of both indirect information
(soil water tension data) and direct information (K, and a data), and the role of their spatial
distribution (monitoring network or sampling strategy) on the uncertainty of the conditional
stochastic prediction of non-reactive solute transport under variably saturated conditions in
isotropic and anisotropic soils. A second objective is to discriminate the effect that conditioning
has on the various measures of solute transport. Besides analyzing the local concentration
moments (Rubin (1991a, Zhang and Neuman, 1994b), the conditioning effects on the spatial
plume moments (Dagan, 1982; 1984), on the arrival time (Smith and Schwartz, 1981; Zhang
and Neuman, 1994c), and on the integrated breakthrough (Zhang and Neuman, 1994c) at an
arbitrary compliance surface are examined. The structure of this chapter is as follows: The
theoretical background and the implementation of the conditional unsaturated flow and transport
model is described in sections 10.2 and 10.3. ’i’he hypothetical field soil sites for the
conditioning study are a subset of the example soils described in the previous chapter and are
selected in section 10.4. The impact of different sampling strategies or monitoring network
designs on the reduction in the spatial moments of solute transport is investigated in sections
10.5 through 10.8. Parameter uncertainty in the context of conditional simulation is addressed
in section 10.9. Section 10.10 discusses the role of the spatial plume moments as a measure
to judge the effect of conditioning. In many applications involving environmental compliance
at a particular location or surface, the variable of interest is the solute arrival time or
breakthrough curve and not the spatial plume distribution. In the two sections 10.11 and 10.12,
the effect of conditioning on several local and integrated measures of solute travel time is
studied. The conditional mean concentration prediction at a highly conditioned site is compared
to the deterministic inverse modeling prediction in section 10.13. The chapter closes with a

summary and conclusion.
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102  Theory of Conditional Simulation by Cokriging

In chapter 3.3 a method was introduced to generate conditional random fields of the
same random field variable (RFV) of which measurement data are available. In the context of
this chapter the term conditioning is also applied to the process of generating random fields
(and their dependent functions) that are not only conditioned on data from the same RFV (direct
data e.g., random K fields conditioned on K, data) but also or even exclusively on data from
other physically related RFVs (indirect data e.g., random K, fields conditioned on head data).
The conditional simulation technique used in this study is based on the same principles and
numerical techniques as the conditional simulation algorithm described in chapter 3.3, equation
3-14 (Journel, 1974; Delhomme, 1979). The important difference is that cokriging rather than
kriging is employed because of the multivariate nature of the problem. The kriging equations
are given in (2-46) through (2-48). The cokriging equations are identical to the kriging
equations (2-46), (2-47) in chapter 2 (Carr and Myers, 1985). However, the array of measured
data X, in (2-46) contains data from more than one RFV e.g., from saturated hydraulic
conductivity data and head data, while the array of unknown data X, is - as in kriging -
comprised of data exclusively from one RFV e.g., the saturated hydraulic conductivity K,. A},
in (2-46) is the weight matrix of the measured data X, with respect to the estimate X,, which
is either of the same RFV as X (kriging) or of a different RFV (cokriging). In either case the
kriging weight matrix A,, is computed by solving the covariance matrix equation (2-47). For
the cokriging case, the cross-covariances between two RFVs must be known to determine the
matrices C,, and C,; in (2-47). Note, that the covariance and cross-covariance functions must

be positive definite, otherwise (2-47) has no general solution (Myers, 1982).

e g = = v ————— % S p—— e 2 ———yer— Py - iy = Sty Ay e N~ g - BT A 4 -~ Vg



327
103  Conditional Monte Carlo Simulation: Methods
103.1 Principal Elements of the Monte Carlo Algorithm

The principal procedures in the conditional Monte Carlo simulation are identical to
those of the unconditional Monte Carlo simulation introduced in chapters 8 and 9 (see Figure
8.2). Conditional realizations of f and g are generated and a conditional approximate solution
h is computed explicitly. The realization of each of these three RFVs is passed to MMOC2,
which computes the steady-state soil water tension through a finite element solution of Richards
equation, the flux field through a finite element solution of Darcy’s law, and the transient solute
transport by using a modified method of characteristics (chapter 5). The procedure is repeated
for 150 to 300 realizations (see below). Finally, the appropriate statistical sample parameters
are computed from the output of the M« ate Carlo simulation. The only difference between the
conditional simulations in this chapter and the unconditional simulations in chapter 9 is the
algorithm used to generate the random field realizations f and a and the approximate solution
h, all of which must be conditioned on measurement data, which are provided as input. As in
the previous chapter, the statistical parameters describing the RFVs f and a are assumed to be
known. The next sections discuss the actual implementation of the conditional random field
generator and the conditional extension of the ASIGN method described in chapter 7. A flow

chart of conditional ASIGNing and Monte Carlo simulation is shown in Figure 10.1.

103.2 Generating Conditional Random Fields

The conditional random field generator developed for this study is an extension of the
spectral random field generator described in chapter 3. Unconditional spectral representations
dZ; and dZ, are generated. The unconditional realizations f and a are computed from their

respective spectral representations via fast Fourier transform (FFT). The unconditional random
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field realizations are needed to obtain the conditional random field realizations from (3-14).
However, following the approach by Gutjahr et al. (1992), (3-14) is rearranged and the kriging
equation (2-47) is used to explicitly write the kriged terms in (3-14). Then the algorithm for

generating the conditional realization can simply be written as:

X, = X, + Ay (X,-X,) 10-n
where A, is the kriging weight matrix, X,, is the unconditionally generated mean removed
realization f or a. X, is the array of field measured data (unconditional mean removed), which
may include f, 4, and h data. X, is the array of unconditionally simulated data at the particular
locations, where measurements of the same variable are available in the field site (also
unconditional mean removed). X, is the conditional mean removed realization f®ora®. (10-1)
is computed once for each realization of each RFV.

If X, contains any head measurements (soft conditioning) or if (10-1) is used to
compute a linearized conditional solution h,° = X,,° (conditional ASIGNing, see below), the
unconditional realization h must be computed from the unconditional realizations f and a to fill
X, or X,, or both. Conditional flow simulation therefore requires that the unsaturated flow
equation be solved twice: once to obtain the unconditional random field h from the
unconditionally generated realizations f and a, and a second time to obtain the conditional
nonlinear solution h° from the conditional realizations f° and a°.

In the classical conditional approach, the unconditional head solution h is computed
using standard finite difference or finite element models. A more efficient method would be
to use ASIGNing (chapter 7), which combines the spectrally derived first order, linear
approximation h; of the head with the finite element model MMOC2. This is still a
computationally very expensive conditioning algorithm. For this study a much more efficient
alternative is chosen: The computation of the "true" nonlinear unconditional head h(f,a) with

MMOC?2 is omitted altogether. Instead the linear approximation hy(f,a) is used to fill either X,,
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or X, or both on the right-hand side of (10-1). Recall that the linear head solution hy is simply
cogenerated with f and a by explicitly solving for dZ,(k) = f(dZ(k), dZ (K), H, I (4-26) and
by applying the FFT on dZ,. Using a linearized unconditional solution by, in the conditioning
process is consistent with the linear estimation procedure (10-1) from which the conditional

random fields f€ and a ¢ are obtained.

1033 Conditional ASIGNing

The conditional random field realization h,© from (10-1) is used as initial approximation
of the nonlinear finite element solution hg® to the unsaturated flow equation given the
conditional realizations f° and a4 °. This is equivalent to the ASIGNing procedure for the
unconditional flow simulation (chapter 7), and is therefore called conditional ASIGNing. The
conditional random fields h, ® obtained from (10-1) are accurate enough to allow the numerical
algorithm to converge very efficiently to the conditional finite element solution hef(£€, a®).
No rigorous study similar to that in chapter 7 has been implemented here to determine for
which range of soil heterogeneity conditional ASIGNing leads to efficient numerical steady-state
flow solutions. However, in this work conditional ASIGNing has successfully been applied to
soils with o,’s 3.2,

It must be emphasized that the use of the spectrally derived linear head solution (4-26)
leads to a double advantage in the conditioning algorithm (10-1): It allows for a very efficient
evaluation of the unconditional head field (which reduces the CPU time by approximately three
orders of magnitude compared to using MMOC alone, see Figures 7.6-7.8). The unconditional
random head solution in turn is needed not only to condition f and a, but also to provide an
initial approximation of the conditional head field such that the finite element solution
converges approximately two orders of magnitude faster than without such an initial

approximation (chapter 7). The computational savings achieved by using the linear, spectral
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head solution h; in this context are so enormous that an entire conditional Monte Carlo
simulation of unsaturated steady-state flow with several hundred realizations can be carried out
as CPU-efficiently as a single conditional realization based on finite element solutions alone

(i.e. without using the linear, spectral head solution).

103.4 Covariances and Cross-covariances for the Cokriging Matrix A,

To obtain the conditional random field X,,°, the difference term (X, - X,,) in (10-1) is
cokriged using the kriging matrix A,, which remains identical for all realizations. Due to
storage space limitations, however, the entries to the kriging matrix A,, are actuaily recomputed
for every realization. With a field size of over 10,000 nodes (size of X,, and X,,) and up to
almost 1000 data measurement points (a maximum 320 measurements of each of the three
variables f, a, and h) (size of X, and X,,), the size of the A, matrix would exceed 10 million
entries for each of the three RFV fields, which adds to the equivalent of 3*80Mb of memory
when stored in double precision (8 byte per entry).

The cokriging matrix A,, is obtained by solving the covariance matrix equation (2-47).
The solution is computed by inverting C,, using Cholesky decomposition. The inverted matrix
is then multiplied with C,,. The subroutine SPPICD in ESSL (IBM, 1993) is used for the
matrix inversion.

The cross-covariance functions Cg and C, and the covariance function C, in the
covariance matrices Cy; and C,;;, can be computed from the analytical linear (cross-)spectral
density functions Sy, Sg, and S,;, (chapter 4). In chapter 8 it was shown that these quasi-
analytical, linearized (cross-)covariance functions are in qualitative agreement with the
numerically determined, nonlinear sample functions, but differ in their absolute values if the
perturbations are large. For the conditional simulation a modified quasi-analytical solution of

the (cross-)covariances is developed based on a calibration of the quasi-analytical, linear (cross-
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)covariances against the numerically determined sample (cross-)covariance functions. The
analytical functions are multiplied by a correction factor (defined separately for each (cross-
Jeovariance function and for each example soil) such that the modified analytical solutions
match the numerical, nonlinear sample (cross-)covariance functions with minimal error. The
calibration of the analytical cross-covariance functions is implemented by visual matching. The
head covariance is calibrated such that the modified analytical solution for the variance exactly
matches the numerically determined variance. Preliminary experiments were implemented and
it was found that the results from the Monte Carlo simulation are very robust with respect to
the potential error in the calibration procedure.

Calibrating the analytical (cross-)covariances rather than directly employing the
empirical (cross-)covariance functions derived in chapter 8 has two advantages: The analytical
cross-covariance functions are found to yield invertible covariance matrices C,;- However, no
attempt has been made to rigorously prove that either the analytical (cross-)covariance functions
or the calibrated (cross-)covariance functions yield positive definite matrix functions. This point
needs to be further investigated. The second advantage is that the discretization and domain
size of the empirical covariance function becomes irrelevant if the empirical functions are only
used for calibration of the analytical functions. The transport simulations in the last and in this
chapter, for example, are carried out in a domain roughly four times as large as the empirical
unsaturated flow studies in chapter 8. Only the calibrated analytical (cross-)covariance
functions provide values of Cy, C,,, and C,, at the large lag-distances needed in this conditional
flow and transport study. Since the small lag-distances are the most important ones in terms
of cokriging, it is sufficient to use the empirical cross-covariance solution at short lag-distances

to obtain a reliable, calibrated analytical cross-covariance functions even at large lag-distances.
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103.5 Nodal and Elemental Properties in the Finite Element Model vs. Grid Properties

in the Spectral Random Field Generator

In the finite element realization that serves as hypothetical field site (see next section),
head h and concentration ¢ are nodal values while the saturated hydraulic conductivity f and
the pore size distribution parameter a are element properties. In contrast, the spectral random
field generator and conditioning algorithm assume an identical grid and support for all variabies.
For the purpose of the conditional simulation it is simply assumed that the support scale of the
nodal and elemental properties that are "measured" are identical, and that the bottom left node
of each element has the same support and location as the element itself. This introduces a small
error in the computation of the cross-covariances (which are functions of distances between
measurement points; see chapter 9). The error is negligible since the element discretization is
rather small compared to the correlation scale. To be consistent, the assignment of nodal and
elemental properties in the finite element model from the conditional random field realizations
f° and a© and the initial head h® follows the reverse order: The f, a, and h value at the i®
column in the j®row of the conditional random fields are assigned to the i* element in the j*
element row (f, a) and to the i* node in the j® nodal row (h), which is the bottom left node to

the i® element in the j* element row.

104  "Field Test Sites” and Sampling Strategies: Methodology
10.4.1 "Field Test Sites"

The so-called "field sites" that are investigated here are computer-generated hypothetical
soil cross-sections (see also comment in the introduction to chapter 8). Computer-generated
field-sites allow a rigorous analysis of the information content of measurement data that can be

retrieved through conditional stochastic simulation. In the artificial field sites "field" hydraulic
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properties and the movement of the contamination plume can be perfectly sampled. The
physical processes governing the flow and transport of the so-called "real” plume and the
random properties of the soil are perfectly known. Measurement errors, parameter estimation
errors, and upscaling problems can for the moment be neglected.

A number of field sites are studied in this chapter to evaluate the amount of uncertainty
reduction achieved by measuring relevant data in situ. Each "field-site"” is a single, randomly
chosen realization from the unconditional Monte Carlo simulations of the previous chapter.
Only a subset of the soil types and moisture conditions simulated in chapter 9 is chosen for the
purpose of conditional simulation. The subset includes isotropic, anisotropic, wet, and dry soils,
soils with high textural variability and soils with moderate textural variability, soils with
correlated f and a, and soils with uncorrelated f and a (soil sites from simulations #3, #12, #15,
#21, #22, #28 in chapter 9, see also Table 9.1). Independent of the mean moisture content or
the textural variability of the soil, soils with similar unsaturated hydraulic conductivity statistics
are expected to behave alike not only with respect to the unconditional concentration moments
(see chapter 9) but also with respect to the conditional concentration moments.

Soil #3 is isotropic with oy2=0.86 and a weaKkly anisotropic covariance in y. All other
soils are strongly anisotropic with a vertical correlation scale of f, A, equal to 50 cm and a
horizontal correlation scale of y, A, equal to 300 cm. Soil #12 (wet, correlated f and a) has
the lowest cy2 = 0.53. Soils #28 (wet, uncorrelated f and a) and #15 (dry, uncorrelated f and
a) have similar 0,? = 1.76 and 0,2 = 1.47, respectively, although their textural variability (o7,
o) differs. Soils #21 (very dry, correlated f and a) and #22 (wet, uncorrelated f and a) both
have a very high oy2 = 3.12 and 0,2 = 3.16, respectively. These sites are grouped into four
categories of soils: Isotropic soil with mild to moderate variability (#3), anisotropic soil with
mild variability (#12), anisotropic soil with high variability (#28, #15), and anisotropic soils

with very high variability (#21, #22).
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104.2 Sampling Strategies

Two basic sampling networks were designed for each of the three parameters f, a, and
h: a "sparse” and a "dense" sampling network. The sparse sampling network consists of
measurement locations along three vertical columns near the plume source (e.g. tensiometer
nests or boreholes) spaced 1 horizontal A, apart with measurements at every 2A;, depth interval
(e.g. Figure 10.5¢). No data are sampled from an area within 2, of the bottom boundary of
the simulation domain. The center column intersects the source area of the solute plume (see
chapter 9). The total number of data points in the sparse network is 40.

A dense sampling network consists of double the data-density of the sparse sampling
network i.e., 0.5 A, in the horizontal and 1 A, in the vertical. In the dense sampling network,
the data are sampled throughout the entire simulation domain except the area within 2\, of the
vertical simulation domain boundaries (e.g. Figure 10.6a) resulting in a total of 320 data points
per RFV. Measurements of K| and a are obtained at identical locations. The sampling grid
for the head measurements is shifted both in the vertical and horizontal direction such that a
head measurement point is at the center between four adjacent K, measurements (Figure 10.5i).
The dense sampling network also includes measurements at all locations (nodes or elements)
within and adjacent to the contamination source, which is defined on the nodal grid. Monte
Carlo simulations are implemented with various combinations of f, a, and h sampling networks

as listed in Table 10.1.

10.5 Conditional Simulation of Unsaturated Flow

The results of the conditional flow simulations are important to subsequently understand

the behavior of the conditional solute plume, since conditioning directly affects the uncertainty

about the prediction of the soil water tension h and the logarithm of the unsaturated hydraulic
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conductivity y. The reduction of the velocity and concentration variance is only an indirect
consequence of the conditioning. The effect of conditioning on the statistical moments of Y,
h, and the pore velocity v is demonstrated for the two conditional simulations A and G (Table
10.1) of field site #28, a highly variable, wet, anisotropic soil with uncorrelated f and 2. Monte
Carlo simulations of other field sites give qualitatively similar results. Field-site #28 (like all
other sites except #3) is a vertical cross-section that is 12.8m deep and 24m wide, which is
approximately as wide but twice as deep as the experimental Las Cruces trench site (Wierenga
et al.,, 1991). The variability of f and a is 2.25 and 0.04, respectively. The two parameters are
considered to be independent of each other. The geometric mean of alpha, T, is 0.01 cm™.
Recall, that the soil is anisotropic with correlation scales for f and a of 3m and 50 cm in the
horizontal and vertical direction, respectively. The cross-section is therefore about 26 A, deep.

Figure 10.2a-d shows the actual field values of the maps of y, h, and the pore velocity
components v, and v, at site #28. The cross-section of y has the typical random character
described in chapter 8. In the center of the cross-section a high conductivity lens is layered
immediately above a relatively low conductivity area (Figure 10.2a), which correlates with a
partially saturated, very wet lens overlying a dry area with a relatively high tension (Figure
10.2b). The horizontal velocities reach some of their highest absolute values in this large, wet
region, because flow is around the low conductivify area. Another distinct feature of the
horizontal velocity field at the site is a strong positively diagonal downward/sideward flow
immediately beneath the contamination source (Figure 10.2c). The vertical velocity field has
the typical pattern of broad low velocity areas interrupted by relatively narrow vertical bands
of higher velocities (Figure 10.2d, see chapter 8).

The main features are preserved in the mean predictions of the two conditional
simulations A (Figure 10.2e-h) and G (Figure 10.2i-m). A is based on a dense data network
of all three variables f, a, and h, while G is based on only 40 soil water tension data (sparse

network) from three tensiometer nests. As the number of conditioning data decreases, the mean
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prediction becomes more and more uniform, asymptotically approaching the stationary moments
of the unconditional simulation. Since only head information is available to conditional
simulation G, it is not surprising to find that the head data are those best preserved.

Figure 10.3a-d again shows the field site values of y, h, and v together with the
variance distribution of the two simulation A (Figure 10.3e-h) and G (Figure 10.3i-m). In
conditional simulation A, the variance of y (Figure 10.3¢) decreases to less than 0.1 at the f and
a measurement points (but not at the head measurement points) compared to an unconditional
variance of 1.8. The extremely low variance is very local. Due to the anisotropic structure of
the soil, the conductivity variance is reduced significantly stronger in the horizontal vicinity of
the measurement points than in the vertical vicinity. Between rows of measurements, the
conductivity variance increases to values of nearly 0.7 in conditional simulation A. In the
sparse data conditional simulation G, the minimum local variance of y is several times larger
than in c;)nditional simulation A with values between 0.4 and 0.7 (Figure 10.3i).

The head variance in much of the area with tensiometer data is reduced to less than 150
cm? in conditional simulation A (Figure 10.3f) from 4900 cm? in the unconditional simulation
(chapter 8). The head variance, however, is nowhere less than 120 cm® In conditional
simulation G where no other data are used besides head, the variance reduction is not as strong
with a minimum variance of less than 300 cm? (Figure 10.3k). Despite the use of conditioning
head data, the head variance does not become zero at the measurement points. Neither does
the mean head at those locations always coincide with the measured value (Figure 10.4a). This
is an artifact of the linear conditioning procedure (Kitanidis and Vomvoris, 1983; Peck et al.,
1988; Yeh et al,, 1993; Gutjahr et al., 1994): The conditional realizations f© and a © are
obtained through /inear estimation (10-1) from head measurements (among others). But the
conditional realization h® is computed by solving the nonlinear flow equation (5-1). Note that
the head measurement data cannot be applied as internal boundary conditions in the finite

element solution.
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Although not entirely consistent, the conditioning technique generally gives satisfactory

results. It is weakest in areas where steep head gradients exist e.g., in the center of the
simulation domain between the very wet and very dry areas mentioned above (Figure 10.4a).
In those areas the héad changes rapidly with distance, and if the location of the steep head
gradient is not predicted with a very high accuracy, large head variances and a significant
deviation of the mean head form the measured head are the result. At field sites with smaller
cyz, the discrepancy between measured and mean conditional head decreases (Figure 10.4b,c).
Future work will have to assess how much more consistency is achieved by using a numerical
noniinear solution instead of a first order perturbation solver within the conditioning algorithm.
In the vicinity of datapoints the horizontal velocity variance is reduced stronger than

the vertical velocity variance: from an unconditional variance of 0.02 (cm/d)? to less than 0.004
(cm/d), a reduction of over 80% (Figure 10.3g,]). In contrast, the vertical velocity variance is
reduced only to approximately 60%-80% of the unconditional variance (Figure 10.3h,m). The
conditioning effect in the horizontal direction is very strong for the horizontal velocity, which
can be particularly well seen in the results for simulation G. The vertical velocity components
are well-conditioned by data in the immediate vertical vicinity, while conditional f, a, and h
data have little effect on the vertical velocity in the nearby horizontal vicinity. This is not
surprising since the vertical velocity covariance has a strong vertical correlation scale and a very

short horizontal correlation scale (see chapter 8).

10.6  Sampling Network Design Impacts on Concentration Prediction

10.6.1 Organization of Graphical Output for Concentration Moments

The maps of the actual plumes, of the mean concentration m,, and of the concentration
coefficient of variation CV_ are plotted in Figures 10.5 - 10.22. The organization of each of

these figures is identical: Each figure is divided into twelve panels plotted in four rows and
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three columns. Each panel shows a vertical cross-section of the soil site with the horizontal
axis being the horizontal distance [cm] and the vertical axis being the vertical distance [cm].
Each vertical row represents the results of one Monte Carlo simulation (MCS) or of the actual
plume movement. The variable that is mapped in the panels is indicated above the top panel
of each column. Each panel in a column represents a different output time. It increases from
top to bottom and is measured in dimensionless units t’ = V,/ A,. V, is the (arithmetic) sample
mean vertical velocity computed from the unconditional MCS for the particular soil site (chapter
8). A is the vertical correlation scale of f. t’=0 is the time of solute release. The initial area
of uniform concentration is indicated by the small black box in each panel. The output times
are identical to those of the unconditional MCSs in chapter 9 (see Table 9.2) and are indicated
in the panels of the leftmost column of each figure. Each row corresponds to only one output
time. The concentration maps are plotted with five gray-shaded contour levels, to which the
labels are found at the right side of the rightmost column. The soil site number (#) to which
the results belong is indicated in the bottom right coner. Note that the actual and mean
concentration contour levels at a particular output time t’ are identical for the maps of all MCSs
of one site and correspond to the contour levels chosen for the actual plume. All concentration
data are normalized with respect to the initial concentration c,, The contour levels have
logarithmic intervals (log base 10) and range over two orders of magnitude such that the
maximum contour level is at the most 15% below the peak concentration of the actual field
solute plume at time t’ (e.g. if the peak concentration is 9.45E-2, the contour levels are from
9.00E-4 to 9.00E-2). In all panels showing CV_maps, the CV, contour levels are in increments
of 0.3 in the interval from 0.5 to 2 as indicated by the labels on the right side of each figure.
In addition, the minimum CV, of each CV, map is printed out explicitly and the location is
indicated where necessary. The first panel in each column indicates the locations where
conditional data are available for the MCS shown in that column. Open circles are datapoints,

at which f and a data are measured. Black dots indicate soil water tension measurement points.
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Unless it is the map of the actual plume, the second panel in each column indicates the type

of MCS with the amount of data used for conditioning.
10.6.2 Solute Plume Movement at the Field Site

Again, field site #28 and the results from its Monte Carlo simulations are discussed at
length in this section. The Monte Carlo simulations of other example soils are discussed more
briefly in subsequent sections, where the emphasis is a c.omparative analysis. The plume
dynamics at field site #28 are depicted in Figure 10.5a-d. Initially the plume moves diagonally
downwards along a strong diagonal velocity field (Figure 10.2c,d), the tip of the plume splits
into two at an early travel time and spreads horizontally as it reaches a large wet area located
above a relatively dry lens in the center of the simulation domain (see previous section). At
late time t’=31 residual concentration is found primarily within and underneath the dry, low
permeability area. The plume is distinctly non-Gaussian with no tendency towards a more

Gaussian behavior even at late times (see also chapter 9).
10.6.3 Sensitivity of Concentration Moments to Sampling Networks (Site #28)
"Dense” sampling network for all parameters (f, a, h): simulation A

In this first example, data are available at a high sampling frequency (every five nodes
in each direction or 0.5X; in the horizontal and 1X; in the vertical). Both independent RFVs f
and g are sampled at identical locations. The soil water tension h is measured at nearby
locations (conditional simulation A, Table 10.1). This is the highest density measurement grid
used in any of the simulations (Figure 10.5¢). From a practical point of view, such a high

density of observation points cannot be achieved without partially removing or destroying the
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site (e.g., in the trench site experiment by Wierenga et al., 1989) But this type of conditional
simulation serves as a benchmark test to illustrate by how much prediction uncertainty can be
reduced in an optimally sampled field site.

As would be expected, the conditional mean concentration distribution is very similar
but not identical to the actual concentration distribution (Figure 10.5e-h). The conditional
solute plume shows many of the broader patterns of the actual field plume, but does not
distinguish between some local random patterns. The length scale associated with the
differences between the conditional plume and the actual plume is significantly larger than the
scale of the sampling intervals for the £, a, and h data (compare actual and mean plume at, for
example, t’=8). There are several reasons to explain why it is possible that the conditional
simulation uncertainties go beyond the confinement of the measurement grid:

a. The available field measurements are only indirect pieces of information with respect to
predicting the movement of the solute plume. Neither concentration nor velocities are
measured directly to confine the predictions.

b. Even the information about the hydraulic conductivity itself is not entirely certain anywhere
because head measurements are taken at different points than f and a measurements.
A small amount of uncertainty about y remains even at the f and a data locations,
especially in this highly heterogeneous soil (see Figure 10.3e).

c. The conditioning on the head data has been implemented only in a linear, approximate
manner i.e., the conditioning algorithm does not yield a zero head variance at the head
data locations (see section 10.3 and results in section 10.5).

The conditional concentration prediction from simulation A clearly shows the early diagonal

displacement, the horizontal spreading along a low permeability zone in the center of the

simulation domain, the breakthrough to the bottom boundary in the right half of the domain at
t’=16, and the residual concentration below the low permeability zone at late time t’=31. The

movement of the highest concentrations, or the plume center, is predicted very accurately.
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Error in predicting lower concentrations is indicated by the slightly larger vertical and horizontal
spreading of the conditional mean plume. Conditioning at this density is very useful not only
for predicting the movement of the center of a contaminant plume but perhaps more importantly
the general patterns of the fringes of the contamination plume (indicated by the c/c,(t) = 0.01
contour line). The approach seems particularly useful to identify possible preferential transport
paths on one hand and solute retention areas on the other hand.
To assess the difference between prediction and actual plume the absolute nodal error
measure E is introduced:

E =Y lefx) - <c(@)>| (10-2)

xeQ

where Q indicates the simulation domain, <c(x)>° is the conditionally simulated mean
concentration, and c(x) is the actual field-site concentration at node location x. For the four
output times t’ = 4, 8, 16, and 31 in Figure 4.Se-h, the absolute nodal error in the conditional
simulation is E = 5.4, 4.7, 3.9, and 2.8, respectively. This is approximately 40% less than in
the unconditional simulation with E = 9.0, 8.0, 8.7, and 4.0, respectively (Figure 10.7i-m).
Note, that the nodal error measure emphasizes errors in the regions of high concentrations.
Errors occurring away from the center of the conditional plume are small and therefore
insignificant with respect to E and cannot be reflected by such a measure. Often, however, very
low concentrations are of equal concern. Then a "success" measure like E can be very
misleading.

A statistically important measure of the quality of the simulated prediction is the
concentl-'ation coefficient of variation CV, where CV, = std_/ m,, the ratio of the concentration
sample standard deviation over the sample mean concentration. Figure 10.8e-h depicts the
dynamics of the CV_ plume for conditional simulation A. The CV_ plume depicts areas of least
uncertainty (darkest colors). At the CV,_ = 2 contour line, it is generally as wide or wider in

the horizontal direction as the mean concentration plume at the 1% C/Cpax(t”) contour line, but
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vertically less extensive than the mean plume. This is consistent with the 0.5A; horizontal
sampling density vs. a 1.0A; vertical sampling density and the general anisotropic structure of
the soil. It is also consistent with the fact that the head correlation scale is larger in the
horizontal direction than in the vertical direction. Conditioning reduces concentration
uncertainty stronger into the horizontal distances than into the vertical distances from the
measurement point. The minimum coefficient of variation in the center of the CV, plume
increases with time from 0.35 at t’=4 to 0.56 at t’=31 indicating increased uncertainty near the
center of the plume. The minimum CV, location coincides with the location of the peak mean
concentration. Like in the unconditional simulations of chapter 9 (see also Figure 10.7i-m), the
area of low uncertainty defined by the CV =2 contour increases with increasing mean plume
size and time (compare Figure 10.8¢-h with Figure 10.5e-h).

Numerical mass balance problems contribute approximately 0.1 to the CV_. This value
is estimated by computing the coefficient of variation of the mass balance variability between
different realizations. Initially the numerical mass balance error CV,(t) = std,,(t) / mass,,
(standard deviation of the total mass balance in the domain divided by the total initial mass)
is zero, then rapidly increases at early time and reaches a relatively stable plateau of 0.1. The
mass balance error is inherent to the modified method of characteristics and must be attributed
to the heterogeneous velocity field, for which the fourth order Runge-Kutta travel path

integration is known not to be accurate (see chapter 5).

Not sampling o, dense grid

Simulation B (Figure 10.5i-m) uses the same f and h data as simulation A, but assumes
that nothing is known in situ about loga. Only its unconditional mean and variance and the
form of its pdf are given. The difference between the conditional concentration moments of

simulation A and B is small, because the variance of loga is not very large and the soil is
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rather wet. The information about K, and h gives reasonably accurate estimates of the
unsaturated hydraulic conductivity even without measurements of o. The mean plume is
slightly larger with a smaller peak concentration. At early time (v’=4), simulation B has 25%
higher CV, than simulation A, but as time proceeds, the differences in CV, decrease (Figure
10.8i-m).

Sampling saturated hydraulic conductivity only

The uncertainty reduction relative to the unconditional MCS that is achieved from
saturated hydraulic conductivity measurements alone is considerably smaller than in the
previously discussed conditional simulations A and B. When sampled in a dense network
(simulation C, Figure 10.6a-d), the minimum CV, at t’=4 is 0.81, almost double as large as in
simulation B, which includes the head measurements in addition to the data used in simulation
C. The ratio of the minimum CV_ in simulation C over that in the unconditional simulation
decreases only slightly with time. Since the variance of a is moderate, f data are helpful in
discriminating the most probable fast flow paths from likely slow flow areas. The diagonal
flow path near the source is obvious in the conditional mean prediction, and so is the low
permeability area in the center of the cross-section. Clearly, the peak concentrations in C are
lower than in simulations A and B due to the larger concentration variability. When f is
sampled only on the sparse network (not shown) the results are almost identical to those shown
in Figure 10.6e-h for conditional simulation D with f and a data on the sparse network. The
indifference between the two simulations is again due to the moderate variability of g, its
relatively small mean value, and the relative wetness of the soil (the unsaturated hydraulic
conductivity differs little from the saturated hydraulic conductivity). Compared to the dense
sampling network for f (simulation C), the conditional solute plume D is considerably more

disperse, particularly at later time. The minimum CV_=0.88 at t’=4 is a less than 10% increase



Ml o “AalC I

344
over simulation C but CV_=1.29 at t’=16 is a 30% increase over simulation C. These values
approach those for the unconditional simulation, even exceed them at t’=16. The CV_ away
from the plume center, however, is always less in conditional simulation D than in the

unconditional simulation.
Sampling soil water tension only

For the conditional simulation G, three hypothetical tensiometer nests are installed three
meters or one correlation length apart with tensiometers placed every one meter or two
correlation lengths in the vertical (sparse sampling network). The forty head measurements are
used for conditioning the f and @ input random fields. Sparse sampling network G yields the
least conditioned simulation in this study. Nevertheless the tensiometer data cause a significant
improvement in the mean concentration prediction compared to the unconditional mean
concentration prediction (compare Figure 10.7e-h and Figure 10.7i-m). The mean plume
movement indicates the initial diagonal movement, the split of the plume into two lobes and
it hints at a low permeability zone in the center of the simulation domain. The peak
concentrations are much closer to the actual peak concentration than in the unconditional
simulation. The estimates of both the front and the tail of the plume are more realistic than in
the unconditional simulation.

If the number of tensiometers is doubled in both the vertical and horizontal direction
and extended over a larger cross-section (conditional simulation F, Figure 10.7a-d), the
prediction of the expected concentration does not improve very much. This shows that
additional measurements of the tension are not associated with an equal amount of uncertainty
reduction. The minimum CV, at t’=4 are 0.50. and 0.65, respectively, compared to 0.95 in the
unconditional simulation. Similar ratios between the minimum CV, of the different simulations

are obtained at later times. The minimum CV_ in both simulations F and G are significantly
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lower than in simulation C (dense f data, direct conditioning) (0.50, 0.65 vs. 0.81). In terms
of uncertainty it therefore appears that soil water tension data by themselves yield a greater
improvement of the prediction than saturated hydraulic conductivity data. Only at t’=31, the
minimum CV, in simulation G is higher than in simulation C, while the minimum CV, in
simulation F (dense h data, indirect conditioning) remains below that in simulation C. This is
in partial contrast to the mean concentration prediction, which - particularly at t’=16 and t’=31 -

seems significantly better in simulation C than in either simulation F or G. The relatively
lower minimum CV, in simulations F and G is probably caused by the smaller horizontal
spreading of the mean concentration plumes and its higher peak concentration.

Also, for both the sparse and the dense sampling networks, the conditional CV, plumes
seemingly "know" more about the actual plume behavior than the respective m_ plumes, since
their spatial pattern better mimic the actual plume. This latter observation is partially
coincidence, partially due to the particularly strong horizontal spreading of the plume around
’=16. Horizontal velocity components have a stronger horizontal correlation than vertical
velocity components. Similar observations are not made in MCSs of other field sites.

The results underline the importance of soil water tension data in the conditional
simulation of transport in highly heterogeneous flow fields. They also indicate that the
minimum CV_ alone can only serve as a guideline to measure reduction in prediction

uncertainty.

Other sampling network combinations for f, a and h

Figure 10.6i-m shows the mean concentration results for conditional simulation E based
on a sparse network of f and a measurements combined with a dense network of h
measurements. Again, the results are almost identical to those with sparse f data alone together

with a dense h measurement network (conditional simulation H, Figure 10.21a-d). The spatial
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concentration distribution is significantly better predicted than in either simulation D or F alone.
The mean plume is much less dispersed resulting in higher concentrations at the center of the
plume. The improvement is particularly visible at t’=16, when both the actual and the mean
plume exhibit the strongest horizontal spreading. The visual information is supported by the
results for CV, (Figure 10.9i-m). The minimum CV, for simulation E at t’=4, for example, is
0.43 compared to 0.88 and 0.50 in simulations D and F, respectively. The simulation results
are also better than those obtained from conditioning on a dense f sampling network (simulation
C) and very similar to simulation B which utilizes dense network data for both f and h.
Compared with simulation F, the additional saturated hydraulic conductivity information
particularly helps to outline the extremely high and extremely low permeability areas, since the
spatial variability of a is not very strong. But the comparison between simulations B and E
also points to the fact that there is no gain in increasing the number of f measurements from
40 to 320, when so many head data are already available for cond%tioning. This is particularly
important, since saturated hydraulic conductivity measurements are much more difficult to
implement in situ than head measurements. The results from this simulation indicate that a
combination of in situ h and f data, with more h measurements than f measurements, may be

the most economical approach to design a monitoring or sampling network.
10.6.4 Comparison to a Dry, Anisotropic Field Site of Equivalent Variability in y

Field site #15 has a much smaller textural variability than field site #28: The variance
of f and a are only 1 and 0.01, respectively, instead of 2.25 and 0.04 at site #28 (see chapter
8). However, the increased dryness (mean head H = -1000 cm) leads to a strong increase in
the unsaturated hydraulic conductivity unconditional variance, which is 1.5 compared to an
unconditional variance of 1.8 at field site #28. The head variances are also similar: Field site

#15 has an unconditional head variance of 4400 cm?® vs. 4900 cm? at field site 28.
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Figure 10.11a-m shows the actual plume at the field site and the conditional mean
concentration for the highest density and lowest density data simulations discussed above
(simulations A and G). Not surprisingly the tortuosity of the spatial path taken by the plume
is very similar to field site #28. The agreement between the conditional mean plumes A and
G and the actual plume is comparable to the findings at field site #28. This visual impression
is confirmed by the concentration coefficients of variation, which are very similar to those
found in the equivalent conditional simulations of field site #28 (Note that the output times for
field site 15 are slightly different: S, 10, 20, and 40 instead of 4, 8, 16, and 31). At similar
variances of the unsaturated hydraulic conductivity and soil water tension and for the same
mean « and correlation structure, the effects of conditioning on a set of f, a, and h data
(simulation A) or on h data alone (simulation g) are similar, regardless of the mean soil water
tension and the variability of the soil saturated hydraulic conductivity.

However, conditioning on f alone (conditional simulation C) neither improves the mean
concentration prediction, nor reduces the minimum CV, as much as in the wet soil #28 when
compared to the unconditional simulation (Figure 10.11n-u; Figure 10.12n-u). Relative to
simulation G, the mean concentration in simulation C has a much larger longitudinal and
transverse extension indicating significantly more uncertainty about the actual travel velocity
and the travel path. The higher uncertainty is caused by the weak correlation between saturated
and unsaturated hydraulic conductivity in dry soils, if f and a are uncorrelated. In contrast, the
soil water tension data as in site #28 provide information not so much on the unsaturated
hydraulic conductivity but on the gradient field and hence the approximate travel path of the
plume. If data on a and f are not available or if data on only one of the two parameters is
available, soil water tension data must therefore be considered an important source of

information for more accurate transport predictions.
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10.7  Unsaturated Hydraulic Conductivity Variance and the Effect of Conditioning Data

Increasing the unsaturated hydraulic conductivity and head variance leads to increased
solute spreading and increased uncertainty in the prediction of the mean travel path of a solute
plume. This theoretical result (Russo, 1993a) has been confirmed in the previous chapter.
Here, a qualitative analysis is given of the effect of soil variability on the conditional
concentration moment prediction. The concentration moments of two field sites are compared
with those discussed in the previous section. All field sites have the same anisotropic
correlation structure for f and g and the same mean F and A (see previous section, chapter 8).

Field site #12 is a moderately heterogeneous soil with correlated f and a, an unsaturated
hydraulic conductivity variance 0,2 = 0.53 and a head variance of 1900 cm® with a mean head
H =-150 cm. Field site 21 is the same as field site 12, but in a very dry condition (H=-3000
cm), resulting in g,> = 3.2 and a head variance 7600 cm® In terms of o,’, field site 12 ranks
lowest and field site 21 highest among the sites tested. Note that p,=1, whic;h means that
data perfectly predict a at the same location.

The unconditional plume for field site #12 is much less dispersed than those at other
field sites (Figure 10.13a-d). Consequently the unconditional simulation itself is a fairly good
description of the actual plume (at least compared to the conditional simulation results at field
site #28), although ergodicity (zero concentration variance) is not achieved even for this
moderately heterogeneous soil. The most obvious difference between the unconditional mean
plume and the actual plume is the rate of displacement. At t’=20, for example, the center of
the actual plume has traveled significantly further than the center of the unconditional plume
(compare Figure 10.13a-d to Figure 10.15a-d). The conditional simulation A (high data density,
Figure 10.15e-h) captures the actual rate of displacement of the field plume as well as its
particular shape. In contrast, the conditional simulation G (sparse head data only, Figure

10.15i-m) offers little improvement over the unconditional simulation. This is again reflected
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in the concentration coefficient of variation (Figure 10.14a-d and Figure 10.16e-h,i-m). At
'=20, the minimum coefficient of variation in the unconditional simulation is 0.79, which
decreases by less than 25% to 0.63 in conditional simulation G, but by more than 75% to 0.19
in conditional simulation A. Similar observations can be made at other output times. This is
a much better improvement in conditional simulation A compared to the results for field site
#28, but much less of an improvement in conditional simulation G. The difference is caused
by the changing information content of the data that are used for conditioning: In the
heterogeneous soil #28, the flow path of the plume is rather tortuous and hence dictated
primarily by the spatial distribution of the soil water tension. In this soil (#12), flow is almost
parallel, a situation which has been conceptualized in many stochastic soil flow and transport
models as the "parallel column model” (c.f. Destouni, 1993). Here, the uncertainty is reduced
‘to predicting the rate of solute displacement while the travel path is well-known. The vertical
velocity is then primarily controlled by the saturated hydraulic conductivity and a. In
simulation G, these values are conditioned indirectly through the h data. In simulation A both
are known at a high density and combined with the lower variability of the soil result in a lower
CV, than the comparable simulation for site #28.

For the same reasons, h data are even more important in simulating site #21 than in
simulating site #28. The unconditional mean concentration prediction (Figure 10.13e-h) has a
very high variability (Figure 10.14e-h). Nevertheless, the characteristic features of the actual
plume are well captured even by conditional simulation G (compare Figure 10.17i-m with
Figure 10.17a-d): The initial diagonal displacement (t’=5), the characteristic s-shape at t’=10,
and the residual concentration not far below the source. Although conditional simulation A
(Figure 10.17e-h) offers considerable improvements over simulation G, the uncertainty
associated with an unconditional simulation is so large that the three tensiometer nests for
simulation G alone offer almost as much improvement in prediction accuracy as all the data in

simulation A together. Again, the visual impression from the mean plume maps are confirmed
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quantitatively by the CV.. At t’=5, the unconditional minimum CV, is 1.51 (Figure 10.14e),
which improves by over 50% in simulation G to 0.73 (Figure 10.18i), and by almost 70% to
0.47 in conditional simulation A (Figure 10.18¢). Similar results occur at t’=10. At t’=20, the
minimum CV, of the unconditional simulation reduce to 1.37, while those for the conditional
simulations further increase relative to earlier time.

The two field sites #12 and #21 are particularly educational in that they illustrate how
the information content of field data with respect to the conditional moments of the
concentration changes with soil water content. Both sites represent the same type of soil, but
under different mean soil water tension conditions. Depending on H, the same amount of on-
site field data yields distinctly different improvements in the conditional plume prediction
relative to an unconditional stochastic plume prediction. Conditioning on tensiometer
measurements is particularly useful in soils with highly heterogeneous flow paths i.e., in soils
with a high degree of textural heterogeneity, in very dry soils, or in soils with a steep average
slope a of the logK(h) function. In soils with almost exclusively parallel vertical flow and
therefore only mildly heterogeneous unsaturated hydraulic conductivity fields, the same
tensiometer measurements have almost negligible effects. In contrast, saturated hydraulic
conductivity data and data defining a are important data to reduce uncertainty in soils with
more or less vertical parallel flow. But they loose their information content (measured in terms
of minimum CV, reduction relative to the unconditional minimum CV,) in soils with very

tortuous flow paths.
10.8  Anisotropy Ratio and the Effect of Conditioning Data
The isotropic soil site 3 is chosen for comparison with the conditional simulation results

of the previous two sections. Relative to the horizontal correlation scale, the horizontal plume

spreading is much larger in the isotropic soil than in the anisotropic soil #28, even though oy2
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at site 3 is only half of that at site #28 (see chapter 9). Note, that the vertical to horizontal
scale ratio for all site 3 maps is 3:1 (half the aspect ratio Ay/A, of the anisotropic soils) instead
of 1:1 (as in all maps of the anisotropic soil sites). Thus, the horizontal correlation scale for
the site #3 maps appears as half the absolute length of the correlation scale for the maps of the
anisotropic soils.

Since flow path tortuosity (Figure 10.19a-d) contributes considerably to the uncertainty
in the concentration prediction, in situ head measurements significantly reduce the prediction
uncertainty (compare Figures 10.13i-m, 10.14i-m to Figures 10.19i-m, 10.20i-m). The
minimum CV, reduction at t’=5 is more than 50% from 1.07 to 0.51 with simulation G, and
more than 85% from 1.07 to 0.14 with simulation A. Curiously, however, in this particular
case the tensiometer data increase the error in the mean concentration prediction near the source
att” > 10: In simulation G, a secondary concentration peak appears and remains immediately
underneath the source. Since the CV_ in this area is very high, the anomaly is probably caused

by an outlier and should be neglected.
10.9  Conditional Simulation under Parameter Uncertainty

In all of the previous simulations it is assumed that the stochastic parameters describing
the first and second moment of the input parameters f and a are known with certainty. In
actuality, these parameters must be derived from a sample population of field and laboratory
measurements. Generally, these sample populations are very small and the estimated mean and
covariance are themselves RFVs (see chapters 3 and 8) i.e., their a.ctual value is associated with
a degree of uncertainty that is best measured in terms of the theoretical sampling error. Note
that sampling errors are not the same as measurement errors. The effect of measurement eITors,
although important, has not been considered here. Parameter uncertainty in a conditional

stochastic framework has been addressed by Smith and Schwartz (1981b) who implemented a



_ 352
specific type of conditional Monte Carlo analysis of saturated flow and transport to assess the
additional uncertainty introduced by the sample estimation of the saturated hydraulic
conductivity. Their objective was to assess the difference in the moments of the solute flux and
concentration distribution introduced to the unconditional stochastic analysis by parameter
uncertainty. Their approach was too CPU expensive to address the combined effect of
parameter uncertainty and measurement network design. The conceptual limits imposed on
their study are the same f01" this study. Therefore, an alternative method is implemented to
understand - at least qualitatively - the effect of parameter uncertainty in the conditional
framework presented here.

Unlike the method by Smith and Schwartz (1981b) it is not the objective of this
exercise to define quantitatively the increase in concentration variance or the change in mean
concentration due to parameter uncertainty (which is computationally not feasible for the
conditional case). Instead the problem is tackled from the following point of view: How
different is a MCS result, if the sample moments, which are used as input to the MCS, are "far
off” the actual ensemble moments? As in Smith and Schwartz (1981b), the exercise here will
be restricted to the assessment of the effect of parameter uncertainty in the mean and the
variance of the input RFVs f and a and in the mean H of the soil water tension. It is still
assumed that f and a are known to be Gaussian distributed, that they are independent of each
other (p,; = 0), and that the correlation functions of f and a are known with certainty. For the
purpose of this exercise, "far off" sample moments are defined by the 95% confidence interval
of the sample moment distribution. For simplicity and without loss of generality, the
distribution of the sample moments is assumed to also be Gaussian (instead of e.g. the t-
distribution most commonly used). Then the standard deviation € of the sample mean G of
g (g=f,a,h) is the square root of (8-3) and the standard deviation €,, of the sample standard
deviation std, is the square root of (8-5) (chapter 8). The "far off" sample moments are the

means myqs = U, + 2¢5 and the standard deviation std, o5 = O, + 2¢,,, where y, is the ensemble
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mean and g, is the ensemble standard deviation of g. Theoretically, the sample moments are
"worse” i.e., more different from the ensemble moments, in only one of twenty sampling
campaigns.

Data for the conditional simulation H of soils site #28 are chosen to demonstrate the
method. Conditional simulation H consists of 40 measurements of f, 40 measurements of a,
and of 320 measurements of h (Table 10.1). Since the f and @ measurements are taken at least
one correlation length apart, one can reasonably assume independence. Using (8-3) and (8-5),
g = 0.24, g, = 0.032, g, = 0.17, €, = 0.022. Hence, with a 95% probability the sample
mean estimates of f and a are within the intervals [-0.5, 0.5] and [-4.7, -4.5], respectively (two
standard deviations about the mean). Note that the uncertainty about the mean of a is so small
that it can be neglected. With the same probability, the sample standard deviations of f and a
must be within the intervals [1.2, 1.8] and [0.16, 0.24], respectively. The soil water tension
data exhibit a much stronger correlation and are available at a much denser grid. It is
conservatively assumed that the 320 correlated head data are equivalent to only 50 independent
head data. From chapter 8, the unconditional head standard deviation is known (70 cm). Then
ey =~ 10 cm.

Four Monte Carlo simulations are implemented. The first one (simulation 1) is
implemented with overestimated parameters for the variances of f and a (0=18, 0,=0.24). It
also strongly overestimates the mean of a. Although A can be determined very accurately
under the above assumptions, it is the most difficult one to estimate in the field, since it is
generally derived from fitting theoretical equations such as Gardner’s (chapter 4) to
measurements of unsaturated hydraulic conductivity or the soil water retention curve. In the
first simulation, mean loga is therefore set to -4.0, simulating a type of measurement error of
half an order of magnitude. Thus the unsaturated hydraulic conductivity is expected to be lower
than in the actual field site due to the steeper average slope of the unsaturated conductivity

function. Figure 10.21e-h shows the conditional mean concentration for this case in comparison
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to the simulation with the correct parameters (Figure 10.21a-d). Due to the reduced mean
vertical flux (lower mean conductivity), the plume moves much slower, but along the same path
as in the perfect parameter case. The higher variance in f and a does not contribute
significantly to the spreading of the mean concentration. The higher variance in f is offset by
the conditioning effect of the actual field data (which are exactly the same as in the perfect
parameter case). The higher variance in 4 is still relatively low and doesn’t affect the overall
result significantly.

In the opposite case with underestimated variances (o=1.2, 0,>=0.16) and with a very
small mean loga=-5.2 (simulation J, Figure 10.21i-m), the plume moves much faster than the
actual plume. The unconditional mean vertical velocity is 6.8 times faster than in the previous
case I and almost twice as large as at the actual site. But the plume moves again along the
same travel paths and with only a small decrease in plume spreading. Since the travel paths
are essentially the same in simulations H, I, and J, the differences in plume spreading are best
compared for travel times that correspond to similar travel-distances: Conditional simulation
H at ’=8 against I at t’=31 (to be accurate it should be t’=28) against J at t’=4. The differences
in the plume spreading caused by erroneous assumptions about the soil variability are obvious.
Note that the different output times use different contouring levels.

Figure 10.22e-h shows the mean plume prediction from a simulation that again
overestimates the variances of f and a, but has the correct A (mean of @) and an overestimate
of F, the mean of f (conditional simulation K). Due to the conditioning, the plume moves only
slightly faster than in the perfect parameter case (Figure 10.22a-d) and again with little extra
spreading. Similar results are found, if the f and a parameters are estimated correctly, but the
mean soil water tension is too wet (conditional simulation L), resulting in a higher average
conductivity (Figure 10.2i-m).

These results show that conditioning not only reduces the uncertainty due to spatial

heterogeneity, but also reduces the unknown errors that arise from a limited knowledge of the
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overall soil properties. Conditioning data tend to neutralize the parameter estimation error.
With a high amount of tension data and some conductivity data, mean and variance estimation
becomes a relatively minor source of uncertainty compared to the uncertainty arising from the
spatial variability of the parameters. The effect of uncertainty in the correlation function needs

to be explored in a future study.

10.10 Conditional Mean Displacement Variance and Conditional Moment of Inertia

The concentration moments are a function of both space and time. The Monte Carlo
analysis of concentration moments is therefore associated with large amounts of data storage
and data handling. It is also cumbersome - particularly in three dimensions - to visualize the
results in an efficient manner. The spatial moments of the solute plume i.e., the center of mass
and the moment of inertia (chapter 9), are a much more concise measure of the concentration
distribution and of the uncertainty about the plume location. They reduce the multiple plots of
two- or three-dimensional concentration fields to a single-valued function of time. Dagan
(1984), Rubin (1991c), and Zhang and Neuman (1994c) use the second spatial moments of the
mean solute plume to illustrate the effect of conditioning in mildly heterogeneous porous media.
They show that the second moment of the mean concentration plume decreases towards the size
of the actual plume as the number of conditioning points increases, since the spreading of each
individual plume is smaller than that of the mean plume.

In chapter 9, three measures related to the position and size of the solute plume were
introduced: the mean vertical and horizontal spreading of each plume around its center, <M, >
and <M_>; the variance of the plume center displacement in the vertical and horizontal
direction, var(M,) and var(M,); and the vertical and horizontal spreading of the mean
concentration plume, X, and X, which is computed as the sum of the two former measures

(eqn. 9-3, see also Fisher et al., 1979). Figure 10.23 shows these moments for the actual plume
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at field site #28 as a function of dimensionless time ’=tV_/A,, (solid curve) with those from the
corresponding Monte Carlo simulations A (dense grid of f, a, h data; long dashed curve), H
(dense grid of h data, sparse grid of f data; short dashed curve), and G (sparse grid of h data;
dash-dotted curve), and for the unconditional simulation of this site (dotted curve). The
dimensionless moments (indicated by an apostrophe °) are normalized by dividing the actual
moments with the product of the square of the vertical correlation scale of f and the variance
of f, ( A,07) (see also chapter 9).

The average plume spreading <M,> and <M_> are determined primarily by the
variability and correlation scale of the soil texture (Russo, 1993a). The moments of individual
plumes may vary in many different ways, particularly since the spatial distributions of the solute
plumes are generally non-Gaussian for the hypothetical field sites studied here. At site #28, the
horizontal spreading of the actual plume has a small step increase at early time t* (0.5 - 1.5)
which stems from the diagonal plume movement, and a very large increase after t’=8 to almost
8 times the value for the vertical spreading at t’=15 (Figure 10.23a,b) indicating the horizontal
plume movement observed in the map of the actual concentration distribution (Figure 10.5a-b).
The vertical spreading indicates a strong expansion-contraction cycle between t’=8 and t’=16.
Since the expansion is seen for both the horizontal and the vertical moment, there is likely an
accelerated diagonal movement of parts of the plume after t’=8 (no concentration data are
available for the time between t’=8 and t'=16 to exactly explain the anomaly in M,).
Curiously, <M,,> from simulation A shows exactly the opposite anomaly at the same time
(Figure 10.23a): a strong contraction followed by some expansion. While the actual plume has
a vertical spreading comparable to the unconditional plume, all conditional piumes significantly
underpredict the vertical spreading of the solute. In contrast, the conditional data improve the
prediction of horizontal spreading that occurs after ’=8 (Figure 10.23b). At earlier times, the
horizontal spreading predicted is very similar for all three types of conditioning and for the

unconditional simulation.
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The variance var(M,) of the vertiml displacement of the plume center decreases
significantly as the number of data increases (Figure 10.23c). The unconditional simulation has
a very large center displacement variance, much larger than the average spreading <M,,> of the
individual plumes. For t’<7 the horizontal center displacement variance var(M,) also decreases
(Figure 10.23d). However, due to the strong horizontal spreading of the mean plume after t’=7,
the conditional horizontal plume spreading increases with the number of conditioning points,
and so does var(M,). At t’>12 var(M,) is larger in conditional simulation A than in the
unconditional simulation.

From those results it follows that the vertical spreading X_, of the mean plume (Figure
10.23e), which is the sum of the average plume spreading and the plume center displacement
variance, shows - for most parts - the expected decrease as the number of conditioning points
increases. The decrease in X,, stems mainly from the decrease in the plume center
displacement variance var(M,). But due to the difference between <M_> and the actual vertical
spreading of the field plume, X,, becomes smaller than that of the actual plume for conditional
simulation A at t’>8. For the horizontal X_, the results are ambiguous at early time (t’<8).
Only at later times, X,, comes closer to the actual horizontal plume spreading as the number
of conditioning points increases. Due to the strong horizontal spreading of the actual plume,
the horizontal spreading of the mean plume actually increases with the number of conditional
data available (’>8). Although not shown, it is found that the spatial moments obtained from
the conditional mean concentration plume are in good agreement with the sum X,= <M;> +
var(M;) (Figure 10.23e,f).

Overall the results indicate that the plume moments do not very accurately reflect the
prediction improvement as demonstrated by the conditional concentration moments in previous
sections. The discrepancy between the quality of the moment prediction and the amount of
conditional data invested is caused primarily by the non-Gaussian shape of the plume. Muitiple

peaks, meandering, parting of the plume and many other particular features of solute plumes
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in moderately to highly variable soils cannot be characterized by the spatial moments of the
plume. The larger the plume deviates from the Gaussian shape the less information is contained
in the first and second moment, since it becomes very sensitive to the particular distribution of
the plume i.e., to higher order spatial plume moments. This explains why the increase in
conditioning points does not necessarily improve the accuracy of the moment prediction.

In soils with a less variable flow field, the spatial concentration distribution is much
closer to the Gaussian form, and hence the above three measures of plume spreading are
increasingly helpful in describing the actual contribution of conditioning i.e., in describing the
actual plume movement. This is demonstrated in the spatial analysis of the concentration
distribution at site #12 (Figure 10.24), which has an only moderate variability in the unsaturated
hydraulic conductivity (cry2 = 0.5). Buteven here it is seen that at different times, the accuracy
of the predictions do not necessarily reflect the degree of conditioning (e.g. the prediction of
X in Figure 10.24f at time t’=5). This is consistent with findings of Zhang and Neuman
(1994c).

In soils with flow fields that are even more variable than at site #28, the value of using
spatial moments of the concentration distribution to assess the plume movement via conditional
simulation becomes questionable due to the highly irregular shape of the actual solute plume,

as demonstrated for site #21 (Figure 10.25), where 0,> = 3.2.

10.11 Conditional Local Solute Travel Time

From a regulatory point of view, the spatial distribution of solute concentration is in
many cases not as much of interest as the arrival time distribution of the solute at some
compliance surface. For transport through the unsaturated zone, the compliance surface is
mostly the aquifer water table, since the aquifer rather than the soil itself is the resource that

is protected under many environmental regulations. In this section the focus is the solute flux
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breakthrough at a certain depth below surface as a function of time and location on the
compliance surface. In the two-dimensional simulations the compliance surface reduces to a
horizontal compliance axis (CL). The compliance axis in all simulations is located across the
center of the two-dimensional, vertical simulation domain (/A;, = 11.6). In chapter 9, two
measures t0 characterize solute breakthrough at each horizontal location x of the CL were
introduced: The time t, of arrival of the peak solute flux and the time t, of first exceedance of
a certain compliance solute flux.

Figure 10.26 shows the peak time of solute flux at the field site and the mean and
variance of the peak time obtained from the conditional and unconditional MCSs. The vertical
time axis is normalized by the mean unconditional travel time t = V,/z where z is the distance
from the source to the compliance surface directly underneath the source. At the field site, the
main features of solute breakthrough are two areas of relatively fast breakthrough i.e., early
peak solute flux time, at x=~-200 .cm and at 400cm < x < 1000 cm (horizontal distances are
measured with respect to the point directly under the solute source). This corresponds to the
two advancing fronts of the solute plume seen in Figure 10.5 at t’=8 and t’=16. Prediction of
these two distinct and quickly advancing fronts would seem critical for regulatory purposes.

None of the conditional simulation predicts an advancement of peak travel time as fast
as it actually occurs at the field site. The best predictions are by conditional simulation A,
which predicts peak concentrations of the two advancing fronts to occur approximately 10%
later. Peak times at other locations of the compliance axis are estimated conservatively by
simulation A. Conditional simulation H (dense head data, sparse f data) predicts peak arrival
generally later than A and shows much less distinction for the two advancing fronts.
Conditional simulation G (sparse head data) makes a better distinction between the two
advancing fronts and gives a fairly accurate prediction of the location of breakthrough of these
fronts, but at later time than the other two conditional simulations. The variance of the peak

time increases with less conditional data due to the increase in concentration variance seen
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previously. Between simulation A and the unconditional simulation, the difference in variance
is approximately a factor 2 near the center of the compliance axis.

A more detailed picture of solute breakthrough is given by the arrival time t, or first
exceedance of the compliance solute flux s/s(;. In Figure 10.27 these times are mapped for
various compliance solute flux levels. The lowests/s, levels are first exceeded i.e., arrive first.
The white area outside the plume indicates that the compliance level was never exceeded (see
chapter 9). The advancement of the two split fronts of the solute plume is again seen in the
map for the field site: The arrival time of all but the highest s/s, levels is much earlier at -200
cm < x < 0 cm and 400 cm < 600 cm than at x = 200 cm. Conditional simulation A is the
only simulation that reproduces a similar split pattern. But even for this high data density, the
arrival times of any particulars/s, level is underestimated by approximately 20%. Also, at most
lower s/s, levels, the conditional simulation predicts an earlier breakthrough of the left front
when compared to the right front, while in reality the opposite is true. The distinction between
two advancing fronts is entirely lost in the other conditional simulations, which show the arrival
time of any s/s, level to be the shortest to the left of the center of the compliance axis, and then
longer the further away from the center. The unconditional simulation has the largest error in
predicting the arrival time of s/s, levels due to the fact that the actual plume moves overall
faster than the average velocity. Again the variance increases for less conditioning data.

Much of the insensitivity of the travel time moments may be due to the particular
location of the compliance surface at field site #28: It coincides with the region of strong
horizontal movement, which is well predicted with simulation type A, but less explicit and at
slightly different locations with simulation types G and H. At field site #21, the compliance
surface coincides with strong vertical solute movement on the left site of the center of the
compliance line. In this case, a much higher sensitivity of the solute arrival moments e.g., the
mean arrival time t, of s/s, is found, although the soil flux is much more variable.

In summary, the mapping of the two time parameters to characterize the solute flux
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breakthrough as a function of location on the compliance axis may not nearly be as sensitive
to conditioning as the local concentration moments are. If strong horizontal flux occurs at or
near the compliance surface, the results of the travel time analysis may be very vague. Ideally
the compliance surface should be located such that solute flux is known to be predominantly
normal to the compliance surface. Otherwise the effect of conditioning may only be weak in
the arrival time of certain solute flux compliance levels or the peak concentration. While
conditioning works well to predict the general spatial distribution of the concentration, this
shows that it may be less effective for predicting solute flux arrival times or breakthrough
curves, since the amount of data necessary to predict these accurately can under circumstances
be enormous. And depending on the flux pattern across the compliance surface, the
improvement in the mean time predictions due to sparse conditioning may be relatively small

or very significant.
10.12 Conditional Integrated Solute Breakthrough Curves

Given that the local breakthrough curves are not necessarily sensitive to conditioning,
the question arises whether the integrated solute breakthrough curve (BTC) is similarly
insensitive. The solute breakthrough curve represents total mass flux across the compliance
surface at any given time. The data are compiled not only at the compliance surface in the
center of the domain, but also at every other quartile of the domain depth (1/4 depth or 5.4,
travel distance, 3/4 depth or 17.8A, travel distance, and bottom boundary or 23.8\;, travel
distance). The actual breakthrough curve at field site #28 is plotted against the mean
breakthrough curves of the conditional simulations A, H, G, and the breakthrough curve of the
unconditional simulation (Figure 10.28a-d). The mean breakthrough curves clearly show the
effect of conditioning, particularly at the two top compliance axes (Figure 10.28a,b). At those

two levels, the actual plume BTC has an almost Gaussian shape, and increasing the data density
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leads to less dispersed mean BTCs in the conditional simulation with the result that the peak
concentration is much better predicted if more data are used for conditioning. At the 3/4 depth
and the bottom of the simulation domain, the BTC of the actual plume significantly deviates
from the Gaussian shape due to the very heterogeneous shape of the solute plume. The
conditional breakthrough curves give results of variable accuracy, which cannot be related to
the number of conditioning points (Figure 10.28c,d). This is not surprisingly similar to the
insensitivity of the spatial plume moments at later time, since the temporal plume moments are
related to the spatial plume moments and suffer from similar disadvantages. Note' that the
variance of the breakthrough curves nevertheless decrease as the number of conditioning points
increases (Figure 10.28¢-h). Also, as the number of conditioning points increases, the time span
of high standard deviations of the BTC decreases. This indicates that the while the prediction
about the average solute flux at a given time does not necessarily improve with the amount of
data used for conditioning, the uncertainty about the prediction decreases almost always.
Similar observations are made for field site #21 (Figure 10.30). In contrast, the effect of
conditioning is very obvious in the mean BTCs for the moderately heterogeneous site #12
(Figure 10.29) as found by other researchers in the past (Smith and Schwartz, 1981b; Gutjahr
et al., 1994; Zhang and Neuman, 1994c).

10.13 A Deterministic Geostatistical Inverse Approach in Comparison

It may be argued that with a reasonable amount of information - such as that in
sampling scheme A - the stochastic technique is superfluous and a reasonable prediction can
be made through deterministic approaches alone. This argument may be appropriate if one is
interested in a prediction of solute transport without an estimation of the associated uncertainty.
With deterministic modeling uncertainty cannot be quantified. If a model is only needed to

give an approximate prediction of the solute plume movement, methods other than the
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stochastic technique should be considered.

By generating a zero variance unconditional realization of f and a and by assuming that
all other pertinent statistical moments are known (F, T, €OV, COV,, COV,, CCOVy, cCov,,, Where
cov is the covariance and ccov is the cross-covariance), the conditional simulation algorithm
of section 10.3 (Figure 10.1) reduces to the geostatistical inverse modeling approach described
similarly for saturated groundwater flow by Neuman and Yakowitz (1979), Kitanidis and
Vomvoris (1983): The measurements of f, @, and h are used to estimate the remaining
unknown f and a data in the simulation grid through the linear, unbiased, cokriging estimator
introduced earlier. The steady-state head solution and solute transport is then computed for the
cokriged f and a field. The geostatistical inverse modeling technique is only one of several
other indirect inverse modeling techniques (Schweppe, 1973; Neuman and Yakowitz, 1979;
Carrera and Neuman, 1986; Peck et al., 1988).

The geostatistical inverse approach (cokriging) is applied to field site #28 given the
same data as used for the conditional simulation A of that site. Since the measured data density
is relatively exhaustive, the f and @ parameter estimation is associated with only small errors
(see section 10.5). Like any random realization of the conditional simulation A (section 10.6),
the concentration distribution predicted from the geostatistical inverse model is a very good
approximation of the overall plume movement (compare Figures 10.31e-h, 10.31i-m). The
solute plume predicted by the inverse model is less disﬁersed than the conditional mean solute
plume since it is not an average concentration. It is also less dispersed than the actual plume,
since the underlying parameter fields for f, 4, and h are subject to minimal perturbation given
the conditional data. A less tortuous travel path and a mass balance error in the transport
simulation of up to +13% lead to higher predicted peak concentrations in the inverse model

than observed at the field site.
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10.14 Summary and Conclusions

A number of studies presented in the literature analyze the uncertainty associated with
predicting transport of solutes in heterogeneous unsaturated soils. Both analytical and numerical
models have been developed to address this issue. But without exception in situ measurement
data have not been incorporated in the stochastic analysis except to determine the unconditional
parameters of the statistical models that describe soil heterogeneity. Neither has any study to
date taken advantage of the available in situ information for soil water tension or other data
indirectly related to the soil textural heterogeneity (indirect data) to reduce the prediction
uncertainty associated with the unconditional stochastic approach to modeling solute transport.
Most recently, Neuman and Loeven (1994) have introduced a new approach that allows one to
derive the conditional moments of the soil water tension, soil water content, and soil water flux.
But the approach has not yet been applied to also derive conditional concentration moments.
With the conditional approach developed in this work a model is provided to compute the
spatial distribution of estimation errors associated with solute transport predictions subject to
in situ data measurements of either direct data (K| and/or ) or indirect data (soil water tension)
or a combination of both.

The difficulties that have prevented conditional simulation of nonlinear unsaturated flow
and transport in the past are overcome by introducing an approach called conditional
ASIGNing. The method is based on the ASIGNing technique (Harter and Yeh, 1993; chapter
7), which generates not only unconditional random fields of f and &, but also an approximate
linearized solution h; to acceleratt; the CPU-time for the finite element solution h of Richards
equation. In this chapter, the ASIGNing method is combined with the geostatistical approach
in general (Matheron, 1971; Joumel, 1974; Delhomme, 1979) and cokriging in particular
(Myers, 1982; Carr and Myers, 1985). The key to the efficiency of the new conditional

simulation algorithm is the use of the first order perturbation approach described in chapters 4
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and 7 to compute an unconditional head random field h, that is approximately consistent with
the unconditional random fields f and a. h, is an intermediate result in the conditioning
algorithm (Figure 10.1). The h, field is necessary to condition the corresponding f and a
realizations (eqn. 10-1) on soil water tension data and to construct a geostatistical estimate of
the conditional soil water tension realization b, as initial estimate to again accelerate the CPU-
time for the finite element solution h° of Richards equation. Although the linearized, first order
head solution is only an approximation of h, the results indicate that its application in the
conditioning process is justified since the conditional moments of f° and a° are also linear
estimates (cokriged estimates). Like other (linear) conditional algorithms conditional ASIGNing
does not lead to solutions h° of the flow equation (given the conditional £¢ and a ) that
perfectly honor the measured head data. But the conditional variance of the head at the
measurement points are at the most 5%-10% of the unconditional head variance. Forcing the
correct heads at the points of measurement by imposing internal boundary nodes would lead
to ill-conditioned gradient and velocity fields.

In this chapter, conditional ASIGNing has successfuily been applied to the Monte Carlo
simulation of conditional stochastic transport in a number of hypothetical soil types with
varying degrees of textural variability, anisotropy, and moisture content. Conditional moments
were analyzed not only of the spatial distribution of the concentration mean and variance at
time t, but also of the overall plume spreading and of the arrival time of the solute as measured
by a number of different parameters such as the solute breakthrough curve at a hypothetical
compliance surface. In summary of the Monte Carlo simulation (MCS) results I have the
following conclusions:

From a numerical-technical point of view, conditioning even on a few indirect data is
an important tool to eliminate some of the most unlikely possible plume travel dynamics in the
Monte Carlo sampling procedure. Most importantly, conditioning on either direct or indirect

data at the source removes the outlier problem in unconditional Monte Carlo simulations of
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highly heterogeneous soils. Outliers of concentration levels occur near the source due to
sometimes extremely low conductivities at or near the solute source. Outliers of permeability
values far from the source are generally no problem, since the travel path of the plume avoids
such stagnant areas. Conditioning on near source information greatly reduces the risk of
outliers that may bias the sample statistics. In addition, less realizations are necessary per MCS
to achieve the same level of sample moment accuracy due to the decrease in the ensemble
variability. Conditional simulations are therefore computationally less expensive than
unconditional simulations, although additional CPU time is needed for the conditioning of each
realization. In this analysis, 150 conditional realizations gave very accurate sample estimates,
if either h or f or both are measured in a dense grid. If only sparse sampling data are available,
the number of realizations was increased to 300, the same number as in the unconditional
simulations (chapter 9).

The most important difference between unsaturated and saturated conditioning is the
physical nature of unsaturated hydraulic conductivity, which is not an independent property of
the soil, but determined by the soil water content and soil water tension and by a number of
textural properties of the soil. The unsaturated conductivity cannot be conditioned directly
unless it is measured in situ. It is here assumed to be dependent on two parameters besides the
soil water tension h, which are often measured at different locations. If both parameters
f=logK and a=loga of the K(h) function (4-8) are known at one location, and if the soil water
tension is measured nearby (0.25 A;), then the conditional variance of the unsaturated hydraulic
conductivity reduces to almost negligible values. But if a is not measured, the uncertainty
about K at the f measurement points may be significantly larger depending on the mean and
variance of a and depending also on the mean soil water tension.

In this study it is assumed that unsaturated steady-state flow occurs under unit gradient
conditions with the major anisotropy axis transverse to the mean flow direction. The steep

mean gradient and the transverse anisotropy have a stabilizing effect on the flow pattern.
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Hence, for anisotropic soils with moderately heterogeneous flow (0,2 < 1) the assumption of
one-dimensional vertical flow (parallel column model) is mostly justified. In such soils the
unconditional simulation approach yields results that are a relatively good approximation of the
actual plume even if the plume is from a small source (provided the source location is known).
The uncertainty about the solute plume movement is reduced primarily to uncertainty about the
vertical travel velocity. Since moderately variable flow is mostly restricted to wet soils, the
travel velocity is strongly correlated with the saturated hydraulic conductivity. Conditioning
on f will therefore reduce uncertainty more than conditioning on @ or h. In moderately
heterogeneous, anisotropic soils conditioning on head data alone will not significantly improve
the unconditional prediction of solute transport.

In soils with strongly heterogeneous, anisotropic flow fields (oyzal) i.e, in very
heterogeneous soils or in dry soils, the travel path significantly deviates from the vertical
direction and is characterized by a significant amount of horizontal displacement and tortuosity.
In isotropic soils, similar observations are made even for moderately heterogeneous flow fields
(0,>>0.5). Solute plumes of small initial lateral dimensions (0.3)) are found to have muitiple
peaks, multiple fronts, and are generally of a very erratic shape. With the unconditional
stochastic transport approach, the uncertainty about the plume movement in both the horizontal
and vertical direction leads to very large mean concentration plumes (see chapter 9). While an
unreasonable amount of data would have to be retrieved from the soil to accurately predict the
solute movement in such highly heterogeneous soils, conditioning on either a few indirect or
a few direct data will significantly improve the prediction of the mean concentration plume and
reduce the prediction uncertainty as measured by the spatial distribution of concentration mean
and concentration coefficient of variation.

The information content (i.e., the ability to reduce uncertainty in a conditional
simulation) of f alone decreases not only with increasing heterogeneity but also as the soil dries

out, particularly if the mean and variability of a is large and if a is not strongly correlated with
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f. Then the information content of the head becomes important for two reasons: The spatial
distribution of the head carries information about the head gradient field in the soil and
therefore about the travel path of a solute plume. Secondly, soil water tension data help to
better estimate the unsaturated hydraulic conductivity, which controls both travel velocity and
travel path. Hence, in soils with highly variable flow fields, conditioning with head data
significantly reduces transport prediction uncertainty despite the fact that the conditioning
technique itself relies on a strong linearization of the physical process, which becomes less
valid as the flux variability increases (Kitanidis and Vomvoris, 1983). In very heterogeneous
soils it appears that soil water tension data reduce the solute movement prediction uncertainty
(as measured by the minimum CV) more than the same amount of saturated hydraulic
conductivity data. The positive effect of head conditioning in very heterogeneous porous media
was also observed for saturated groundwater flow (Gutjahr et al., 1994).

This is a very encouraging result since the cost of equipment and labor associated with
soil water tension data is generally lower than that associated with obtaining saturated hydraulic
conductivity data. It is more likely to find in situ head data than to find in situ information
about the saturated hydraulic conductivity. The simulations suggest that a combined network
with a relatively high sampling/monitoring rate for soil water tension and a relatively sparse
sampling/monitoring rate for saturated hydraulic conductivity leads to a significant decrease in
prediction uncertainty about the concentration. From the examples in this study it appears that
the combined uncertainty reduction due to a combination of h and f data is beyond the additive
impact of head data by themselves and f data by themselves.

The minimum concentration coefficient of variation CV_ is used as a summary measure
of the conditioning effect on uncertainty reduction. The changes in the minimum CV, appear
to be approximately consistent with the visual changes on the concentration maps. Future
research must address the question of converting the large amount of information about c(x,t)

into other representative parameters. In this context I would also like to point out that an exact
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definition and quantification of the term "uncertainty” is very difficult, an issue that should be
addressed in future research.

The spatial moments of the mean concentration plume are another example of a
compact measure to study the impact of conditioning on solute transport in heterogeneous
porous media (Dagan, 1982, 1984; Rubin, 1991a; Zhang and Neuman, 1994c). The analysis
of the spatial moments of solute plumes in moderately variable flow fields indicated that
conditional data primarily reduce the uncertainty about the center of the plume. The uncertainty
about the mean spreading of the solute plume is fairly small and the spatial distribution of the
actual solute concentration is not much unlike a Gaussian plume. In mildly to moderately
heterogeneous, anisotropic soils, conditional spatial moments of the mean solute plume and
conditional mean breakthrough curves therefore accurately reflect the effect of conditioning on
the solute transport prediction. In strongly heterogeneous flow fields, however, and in isotropic
soils with moderate heterogeneities, the significance of the spatial moments of the conditio;xal
mean plume is strongly diminished due to the erratic (non-Gaussian) shape both of the
individual solute plume realizations and of the mean solute plume. It becomes therefore
difficult to quantitatively assess the effects of conditioning by analyzing the spatial solute plume
moments alone.

Similarly, the effect of conditioning on the arrival time or breakthrough of a solute at
a compliance surface or compliance point some distance away from the solute source is often
felt much less direct than in the spatial pattern of the conditional mean concentration, if the
flow patterns are strongly heterogeneous. While a significant decrease is found in the variance
of these measures, the actual shape of the conditional mean breakthrough curve (locally and
integrated) may or may not be similar to the actual breakthrough curve, even with a dense
sampling grid for f, @, and h. If the solute flux across the compliance surface is not
predominantly normal to the surface, the mean solute flux and arrival time become very

sensitive to small changes in the conditional mean flow field, and the effect of conditioning
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becomes axﬁbiguous. It therefore appears that the conditional simulation of breakthrough curves
in highly heterogeneous porous media must be accompanied by the concentration mean and
variance maps to help explain what is seen in the breakthrough curve and to evaluate the effect
of conditioning on the breakthrough. Breakthrough curves of solute transport from small
sources in strongly heterogeneous soils should therefore not be expected to be very accurate,
even when the amount of conditional data is large.

Besides spatial heterogeneity, the estimation of the statistical parameters f, @, and h and
the associated estimation error introduces additional uncertainty into the solute transport
prediction. The impact of parameter uncertainty is found to diminish with the amount of data
available in situ, because of reduced sampling error and more constraints on the stochastic
simulation. Parameter uncertainty about the variance of f and @ is mainly responsible for
increasing the overall spreading of the mean plume. In contrast, errors in the sample mean of
f, a, and h result in an error about the mean flux prediction and consequently the error will be
not in the travel path of the plume, but merely in the travel time. Overall, however, it appears
that the uncertainty of the solute transport prediction arising from soil heterogeneity is much
more significant than the uncertainty arising from parameter uncertainty.

In this study, several simplifications are made not only to be able to compare numerical
with analytical solutions (see chapters 8 and 9), but also to be able to establish some
fundamental relationships between monitoring/sampling network and the heterogeneity of the
soil. Future work must address the effect of variable moisture content and transient flow
conditions. Measurement errors, parameter estimation errors, particularly about the correlation
structure, and error in assuming the wrong models describing the K(h) and h(8) relationship
further increase prediction uncertainty and should be addressed in future research. Thus, it may
be expected that the effects of conditioning become smaller. The geostatistical conditional
simulation model must be recognized not to be a perfect measure of uncertainty itself, because

it is based on a linearization of a nonlinear physical problem (see section 10.2 and 10.3) and

bt add A e aahas Mo S R b
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on several important assumptions about the concept of spatial variability in soils (see chapter
2). A field validation of the conditional stochastic approach suggested here is therefore
necessary. However, the model is based on statistical concepts, and it seems at this time
impossible to implement such a field validation rigorously, because many field experiments
(samples) would be needed to judge about the goodness of the stochastic model.

From a practical point of view, the results are both encouraging and disappointing.
They are encouraging in that they show that with less computational effort than in the classic
unconditional approach, and with data that are relatively simple to obtain in situ (soil water
tension), the uncertainty about the predicted plume movement in space can be drastically
reduced, particularly for applications to highly heterogeneous soils. It is encouraging also in
that the conditional mean concentration predictions are pinpointing to areas where the plume
displacement significantly differs from the typical downward movement. This helps to identify
locations from which additional data may be taken. If the unsaturated flow field is very
heterogeneous conditioning on a few indirect or direct data will greatly improve the stochastic
predictions associated with unconditional simulation and with macrodispersion analysis (see
chapter 9). But the results are discouraging in that the simulations have shown how difficult
it is to describe the (conditionally simulated) plume movement in highly heterogeneous soils
by simple measures such as the spatial moments of the mean solute plume or the minimum
concentration coefficient of variation. The study has also underlined the difficulty of predicting
solute breakthrough at some compliance depth even when conditioning on a high density of
direct and indirect data. Further research needs to be done to address these disadvantages. It
appears from the results presented in this chapter that even with an enormous amount of field
sampling it will be very difficult to predict every detailed aspect of solute transport in
moderately to highly heterogeneous soils, particularly the prediction of very low levels of solute

concentration either in front of an advancing contamination plume or as residual.
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Table 10-1

Classification of the conditional simulation types. Conditional simulations A through
H are based on different sampling networks for the parameters f, a, and h. Simulations

I through L are applied to field site 28 only toa assess the effect of erroneous statistical
iput parameters.

e ———— ——
conditional sampling sampling sampling
simulation type density density density
f a h
A dense ) dense dense
B dense - dense
C dense - -
D sparse sparse -
E sparse sparse dense
F - - dense
G - - sparse
H sparse - dense
I(as H) but:
(sz = 1.8,
o2 =0.24,
<loga> = 4.0)
J (as H) but:
(sz = 1.2,
a,? = 0.16,
<loga> = 5.2)
K (as H) but:
(0{2 = 1-8,
0,2=0.24,
F=0.5
L (as H) but:
(H = -140 cm)
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Figure 10.2: Actual field site #28 (a-d), conditional simulation A (e-h), and conditional
simulation G (i-m) for the parameters logK (a,e,i), h (b,£,k), v, (c,g,l), and v,
(d,h,m). Contour labels are idential throughout each row.
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Figure 10.23: Average moment of inertia of individual plumes (a,b),
variance of the plume center of mass (c,d), and moment of inertia of

the mean plume (e,f) in the vertical (left column) and horizontal
dimension (right column). All moments are normalized (') by (A, 0,2).
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the mean plume (e,f) in the vertical (left column) and horizontal
dimension (right column). All moments are normalized () by (A, o?).
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Figure 10.28: Normalized mean breakthrough curve <S'(t)>, and standard dev.
of the breakthrough curve st.d.(S) at different depth: 5.4A,, (top row), 11.64,,
(second row), 17.8A,, (third row), and 23.84,, (bottom row). The breakthrough
curve for the field site is only plotted in the left column.
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Figure 10.29: Normalized mean breakthrough curve <S'(t)>, and standard dev.
of the breakthrough curve st.d.(S") at different depth: 5.4),, (top row), 11.6A,,
(second row), 17.8A,, (third row), and 23.8),, (bottom row). The breakthrough
curve for the field site is only plotted in the left column.
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(second row), 17.8M,, (third row), and 23.8,, (bottom row). The breakthrough
curve for the field site is only plotted in the left column.
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