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Abstract

This report contains the results of a study performed to implement eddy-viscosity
models for Large-Eddy-Simulations (LES) into Lattice Boltzmann (LB) algorithms for
simulating fluid flows. This implementation requires modification of the LB method
of simulating the incompressible Navier-Stokes equations to allow simulation of the
filtered Navier-Stokes equations with some subgrid model for the Reynolds stress
term. We demonstrate that the LB method can indeed be used for LES by sim-
ply locally adjusting the value of the BGK relaxation time to obtain the desired
eddy-viscosity. Thus, many forms of eddy-viscosity models including the standard
Smagorinsky model or the Dynamic model may be implemented using LB algorithms.
Since underresolved LB simulations often lead to instability, the LES model actually
serves to stabilize the method. An alternative method of ensuring stability is pre-
sented which requires that entropy increase during th,,_collision step of the LB method.
Thus, an alternative collision operator is locally applied if the entropy becomes too
low. This stable LB method then acts as an LES scheme that effectively introduces
its own eddy viscosity to damp short wavelength oscillations.
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Chapter 1

Introduction

This report describes a three-month effort whose objectives were to incorporate eddy-
viscosity models for Large-Eddy-Simulation into Lattice Boltzmann computer codes
and to perform numerical simulations using the methods for comparison with tradi-
tional CFD results. The report describes the accomplishment of these objectives and
concludes with some recommendations for future work.

Numerical simulations of turbulent fluid flow in non-trivial geometries are almost
always "underresolved". This is because the speed and memory of current computa-
tional facilities do not allow resolution of all of the scales of turbulence. Thus, fluids
simulations make use of some type of subgrid model to include the physical effect
that the unresolved motions have on the resolved fluid motion. These models often

take the form of eddy-viscosity models for the Reynolds stresses that serve to damp
oscillations of short wavelength. Recent research at Stanford's Center for Turbulence
Research has demonstrated that in some turbulent flows, the eddy-viscosity acting on
scales smaller than some applied test grid is a large positive number at some locations
and is a large negative number at others, at a given time[l]. Averaging over time,
there is net dissipation that corresponds to a positive average subgrid viscosity.

Thus the standard Smagorinsky model, which always makes use of a positive eddy
viscosity, does not adequately represent the "backscatter" that occurs when energy
flows from small scales to the larger scales of fluid motion. While the eddy-viscosity
models appear to be "physical" subgrid models, Boris[2] has argued that any stable
numercial method applied to the Navier-Stokes equations implicitly contains a subgrid
model because short wavelength oscillations are damped. Indeed, if one uses a stable
scheme in conjunction with a Smagorinsky-type model, it is not possible to distinguish
between the effects of eddy-viscosity and numerical viscosity of the method.at short
wavelengths.

This issue of subgrid physics vs. numerical stability is the primary debate cur-
rently underway in the turbulence simulation community. Can the physics of energy
exchange between resolved and unresolved scales be adequately modelled or can a
stable numerical scheme do as well? The work presented in this report does not pre-
sume to take sides in this debate but simply demonstrates that the Lattice Boltzmann
(LB) computational method is amenable to either approach.

The LB method of simulating laminar fluid flows has been demonstrated to be a



numerically efficient and accurate alternative to other numerical methods. However,
underresolved LB simulations often lead to instability. Inclusion of an eddy-viscosity
model is shown to stabilize LB simulations of 3-d channel flow. Alternatively, since
more standard CFD methods lead to unphysical dissipation at short wavelength, one
may similarly stabilize LB methods by defining an entropy-increasing collsion operator
that is applied only when the local entropy becomes too small. If the fraction of sites
at which this collision operator is applied remains small then Navier-Stokes behavior
should be accurately simulated for the longer wavelengths.

In Chapter 2, a derivation of the LB long-wavelength, low-frequency behavior is
derived and the modifications necessary to implement both the Smagorinsky-type
models and the entropy-increasing collision are presented. In Chapter 3 the results of
some 3-d channel flow simulations are presented. Chapter 4 presents some conclusions
and recommendations for future work.



Chapter 2

Theory of Turbulent Flow
Simulation

2.1 Review of Chapman-Enskog Method

This section provides a description of the Chapman-Enskog expansion applied to the
Boltzmann equation with the following definitions and conditions: 1) The particle
populations f may only move with velocities that are members of the set of discrete
velocity vectors ei. The corresponding populations are denoted f_. 2) A collision
operator with a single relaxation time, r, is used to redistribute populations f_ towards
equilibrium values f_q. This is also referred to as a BGK collision operator where r
is inversely proportional to density [3]. For constant density flows r is a constant. 3)
The equilibrium velocity distribution function is written as a truncated power series
in the macroscopic flow velocity.

The discrete velocity Boltzmann equation then becomes

Of,_
c3t _ ei. Vfi = -l(fi - fi_) (2.1)

where the velocity distribution function fi is constructed so that macroscopic flow
variables are defined by its moments: Mass:

n =-__, f, (2.2)
i

Momentum:

nu = __, fiei (2.3)
i

Equation (2.1) may be written in non-dimensional form by using a characteristic
flow length scale L, reference speed e_, and density n_. Two reference time scales
are used, tc to represent the time between particle collisions and L/e_ to represent a
characteristic flow time. The reference speed may be selected to be the magnitude of
the minimum non-zero discrete velocity. If only one speed is used, then the velocity
set for the non-dimensional equations is simply a set of unit vectors. The resulting



non-dimensional equation is

(9] ^ _7] 1 (] ]eq) (2.4)(9-"_"-I- ei' = _;'r" --

where the caret symbol is used to denote non-dimensional quantities _ = e_/e,,V =
LV, i = ter/L, . = r/tc, and f = fi/nr. The parameter ¢ = tcer/L and may be
interpreted as either the ratio of collision time to flow time or as the ratio of mean
free path to the characteristic flow length (i.e. Knudsen number). We will not use
the caret notation further but will assume that the equations are in non-dimensional
form henceforth.

The first step in the Chapman-Enskog procedure is to invoke a multi-scale expan-
sion of the time and space derivatives in the small parameter, _ as follows.

0 (9 a

o-7= + + "'
V = V1 + sV2 + ... (2.6)

We also expand the distribution function as

f,_ f!o)_{__f(1)_{__2f(2).}.... (2.7)

where the zeroth-order term is the equilibrium distribution function so that the col-
lision operator becomes

_ l(f, _ feq) _ l(fo) jr _f(2) jr ...). (2.8)
_T T

Since mass and momentum are conserved in collisions, the sum over the i velocities
of the collision term and the collision term multiplied by ei must be zero. Therefore,
the sums on f_ in equations (2.2) and (2.3) also hold for f!0) and sums over nonequi-
librium populations are zero. We make the further assumption that sums over the
nonequilibrium populations corresponding to each order in e independently vanish:
Zi f(¢(O= 0 and Zi eif! t) = 0 for 1 > O.

Substituting the above expansions into the Boltzmann equation, we obtain equa-
tions of zeroth and first order in ¢ which are written separately as

f(0) _{_e,. Vlf_ °) = l f!l) (2.9)
(9tl "r

and

0 S(0)+ (9 S!l) VxS!')+ e, V2f! °) -ls!2) (2.10)
(9t---2 -_1 + ei . " = "r

where it has been assumed that r is 0(1).
When equations (2.9) and (2.10) are summed over the i velocities the continuity

or mass conservation equation to first order in e is obtained as

On

O'-'t-+ V. (nu) = O. (2.11)
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The momentum equation to first order in ¢ is obtained by multiplying the above
equations by ei and then summing over velocities to obtain,

O(nu) + V. (n _°_+ n _) = 0 (2.12)Ot

where H(0 is the momentum flux tensor and is defined as

H(0 =_ _ e,_e,_fi (0 (2.13)
i

for l ----0, 1. The constitutive relations for this tensor are obtained by selecting a
particular lattice geometry and equilibrium distribution functional form and then
proceeding to match moments of the distribution function with terms in the Navier-
Stokes equations.

As an example, when this is performed for a hexagonal lattice with unit velocity
vectors defined by e, = {cos(2_r(i- 1)/6),sin(2_(i- 1)/6)} for i =1,2,...,6, a suitable
equilibrium distribution function is found to be

f_q = na - nu 2 (2.14)

f_/q .- 7"_(I 6-- 0/) "_"3"ei ' u Jr"Tn 2n (e,. u) 2 - 6 u2 (2.15)

where a is a constant that determines the distribution of m_s between the moving
and nonmoving populations [4].

We may readily evaluate the constitutive relations for this distribution function
by making use of the lattice relations

= (2.16)

E = + + 6o06), (2.17)i

and noting that summations of an odd number of e/'s are equal to zero.
Substituting equation (2.15) into the equation (2.13) for II(0 above, we find that

1--C_

which gives a Galilean invari_nt convective term in the momentum equation. By
identifying the isotropic part of this tensor as the pressure, we obtain an ideal gas law
equation of state (i.e. p = L_n) and the gradient of the pressure in the momentum
equation. The other term in the momentum equation is obtained by using Equation
(2.9) as an expression for fi(1) to obtain

H0) r _Ol1(°) + 0
- - x0t l._ _ e,_e,pe,_f!°) }. (2.19)-7



The next step in the Chapman-Enskog procedure is to replace time derivatives at
this order e level with spatial derivatives using the Euler level equations. Thus, the
time derivative of the density in the above equation may be replaced using the con-
tinuity equation. Also, the time derivative of nuo,uz can be replaced using the Euler
level momentum equation which converts the time derivative to spatial derivatives as
follows

O Op Ou_ Op 0
-- = nu_, _--:.--)+ u_( (nu_,u_)) (2.20)
at (nu°u_) uo( Oxz Ox_ Ox_ Oxz

where the terms of O(u 3) are neglected in the incompressible limit. The equation
of state from equation (2.18) is used to replace the pressure gradient with a density
gradient. Finally, when the equilibrium distribution is substituted into the last term
of equation (2.19), the only term that remains is the ei" U term which is evaluated
using Equation (2.17).

Upon substitution into equation (2.12), the final form of the momentum equation
is

Ou,_ Ou,_ Op 0 _ (Onu._ On On 0 . . Oua Ou,_= +b-G + + + + ))
(2.21)

where
7"n

/_ = -]-- (2.22)
and

)_= rn(2a- 1) (2.23)4 "

In two dimensions, the bulk viscosity is the sum of these two so that

Tn_

g = _ (2.24)

which gives zero bulk viscosity as expected for the monatomic gas when energy is
conserved (i.e. when a = 0 it can be shown that conservation of mass is equivalent
to conservation of energy).

Note that these equations are not the standard Navier-Stokes equations because
there are derivatives of the density in the second viscosity term on the right side of
the equation. If these gradients of density are negligible this hexagonal lattice, dis-
crete Boltzmann equation should behave approximately as the Navier-Stokes equa-
tions. Since the gradients of the density are O(u 2) (see references [5] and [6]), the
unphysical terms in equation (2.21) are O(u3). Thus, although the physics contains
compressibility effects (that differ from the compressible Navier-Stokes equations),
one may come arbitrarily close to solving incompressible flow by reducing the Mach
number and thereby allowing information to propagate throughout the domain while
little convection occurs. For this reason, no Poisson solver is required to determine
the pressure and simple particle reflections at boundaries may be used to invoke
no-slip conditions. We also note that if the second viscosity A is zero, the complete
compressible Navier-Stokes equations are given but the bulk viscosity is then nonzero.
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There are differences between the incompressible Navier-Stokes equations and
the macroscopic behavior of the discrete-velocity Boltzmann equations because of
the asymptotic nature of the Chapman-Enskog method. The differences may be
attributed to Burnett level and higher level terms or as small deviations from the
above relation for the kinematic viscosity. For this reason, previous LB studies have
reported comparisons between the Chapman-Enskog prediction and numerical simu-
lation measurements of the viscosity (e.g. Kadanoff et. al. [7]). However, the Burnett
level terms are expected to become negligible as the global Knudsen number becomes
small. Since the Knudsen number is proportional to the Macl_ number divided by the
Reynolds number, the Burnett terms may be classified with other "compressibility"
effects and should become small as the Mach number approaches zero for a fixed
Reynolds number.

In conclusion, the discrete Boltzmann equation in dimensionless form, equation
(2.4), may be discretized and numerically simulated to provide approximate solution
to the continuity and momentum equations given by equations (2.11) and (2.21), re-
spectively. The results can then be put back into dimensional form using the reference
quantities. Simulations may come arbitrarily close to incompressible Navier-Stokes
behavior with differences being attributed solely to discretization and compressibility
effects.

2.2 The Lattice Boltzmann Discretization

At this point we will narrow our view to a particular discretization of the non-
dimensional discrete Boltzmann equation. In particular, we will choose the lattice-
Boltzm_mn method which is an exact Lagrangian solution for the convective deriva-
tives. For a given convection velocity, this type of scheme is typically obtained by
using an Euler time step in conjunction with an upwind spatial discretization and then
setting the grid spacing divided by the time step equal to the velocity. Discretization
of equation (2.4) results in the following equation.

fi(x,t + At) -- fi(x,t) 4 fi(x + eiAx,t + At)- fi(x,t + At) _. (fi(x,t)- f(°)(x,t)).
At Az er

(2.25)
Lagrangian behavior is then obtained by the selection of the lattice spacing di-

vided by the time step to equal the magnitude of ei, which was normalized so that
the smallest velocity mag, iLude is unity. When the equation is multiplied by At, the
result is the cancellation of two terms on the left side of the above equa'don leaving
only one term evaluated at t + At so that the _l,ethod is explicit. The next charac-
teristic of the lattice Boltzmann method is the selection of the time step to equal the
reference collision time. The result is the cancellation of the Knudsen number in the

denominator of the collision term giving the following simple form that is commonly
referred to as the lattice Boltzmann equation (LI_E).

fi(x + eiLXt, t + At) - f_(x, t) = -l(fi(x, t) - f_°) (x, t)). (2.26)
T



This equation has a particularly simple physical interpretation in which the colli-
sion term is evaluated locally and there is only one streaming step or "shift" operation
per lattice velocity. This stream-and-collide particle interpretation is a result of the
fully-Lagrangian character of the equation for which the lattice spacing is the dis-
tance travelled by the particles during a time step. Higher order discretizations of
the discrete Boltzmann equation typically require several "shift" operations for the
evaluation of each derivative and a particle interpretation is less obvious. In fact, the
entire derivation of the LB method was originally based on the idea of generalizing
LG models by solving the LG Boltzmann equation and relaxing the exclusion prin-
ciple that particle populations be either zero or one for each velocity [8]. It did not
originally occur to the authors that the LB method could be considered a particular
discretization for the discrete Boltzmann equation.

The particle model allows boundary conditions to be implemented as particular
types of collisions. If populations are reflected directly back along the lattice vector
along which they streamed, the result is a "no-slip" velocity boundary condition. One
may also define specular reflection conditions that yield a slip condition. Models for
which energy is conserved allow specification of heat-transfer boundary conditions
using particle reflection conditions as well [9]. These simple boundary conditions
make the LB method particularly suited to parallel computing environments and the
simulation of flows in complex geometries.

Although first order discretizations have been used, the LB method is typically
considered to be a second order method because contributions that result from dis-

cretization error are taken to represent physics [10]. The inclusion of numerical vis-
cosity is accomplished by Taylor expanding equation (2.26) about x and t. When
the second order terms in this expansion are included in the above Chapman-Enskog
analysis, the result is that the coefficient r in the transport coefficients is simply re-

placed by 1"- -_(see reference [9]). Thus, the lattice contribution to the viscosity for
this LB scheme is negative, requiring the value of the relaxation time to be greater
than half of the time step to maintain positive viscosity. Note that third-order terms
in the Taylor-series expansion are necessarily of order ea in the Chapman-Enskog ex-
pansion. Thus_ as with traditional kinetic theory, there may be some error arising
from the Burnett level terms.

Since the LB method under consideration is valid only in the incompressible limit,
the main dimensionless parameter of interest is the Reynolds number. Convergence
of the solution to the incompressible Navier-Stokes equations for a fixed Reynolds
number is then obtained by letting the Mach number become small enough to remove
compressibility effects, and letting the lattice spacing e_At become small enough to
"resolve" the flow. Reverting to the caret notation for dimensionless quantities, the
Reynold's number for the hexagonal lattice may now be written

LU 4NU
= = (2.27)v .__1' 2

where N = _ is the number of lattice spaces. The dimensionless velocity is the
characteristic Ma_h number which should be small to simulate incompressible flow.



Thus, the convergence at a given Reynolds number is performed by increasing N
while either increasing _ and/or decreasing U appropriately. For a decrease in the
value of U, a proportionate increase in the number of time steps is needed to reach
the same flow evolution time.

Concluding, the LB method makes use of first order discretizations of the dimen-
sionless discrete velocity Boltzmann equation in both time and space. The dimen-
sionless time step and lattice spacing are set equal and numerical contributions to
viscosity are accounted for and considered to be part of the physics of the method.
With these effects included, the LB method is a second order method in both space
and time for the simulation of the Navier-Stokes equations. In the use of LB models
developed for incompressible Navier-Stokes simulation care must be taken to ensure
that both the Mach number and the Knudsen number are small enough that the
deviation from incompressible behavior is negligible.

2.3 Large-Eddy Simulations

In the simulation of any fluid flow, a discrete grid and time step are used so that
the desired results of the computation are not simply the values of the independent
variables of the corresponding governing PDE's at the grid points at each time step.
On the contrary, since the grid and time step limit t_.,_:results to a finite range of
wavenumbers and frequencies, the computational results desired are those of a filtered
version of the governing PDE's. The large-scale quantities one would like to simulate
are defined by a filtering operation

7 (x) = / f (x)G(x,x')dx' (2.28)

where G is the filter function and the integral is extended over the entire domain.
Several different filters are used which depend on the numerical method in use. For
finite difference methods, the box filter is used (whether one acknowledges its existence
or not!) and is defined as follows

1 for Ixi-xil< 2
0 otherwise, (2.29)

while for spectral methods, a cutoff filter defined in Fourier space is

G, (k, ) 1 for k, < K, (2.30)0 otherwise,

where (_i is the Fourier coefficient of the filter function in the ith direction, Gi,

Ki = _r/Ai is the cutoff wavenumber, and A_is the filter width in the ith direction.
The filtered continuity and Navier-Stokes equations are

-_=0
(Y_:i

+-_,___= ______+ o ( [__ a-_]_ (2.31)at ax_ - 7,ax, ax_ F_ t, Laz_ -4-az, j/ "
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These equations govern the evolution of the resolved fluid motions. For laminar
flows, today's computational power is often adequate to "resolve" the flow, which in
the context of filtering simply means that the Reynolds stress term r0 is negligible.
For turbulent flows however, the Reynolds stress

rij = U_U---'-j-_i_j (2.32)

is significant and must be modeled in some way. The use of standard CFD methods
applied to the Navier-Stokes equations, without this term being explicitly modeled,
is equivalent to setting discretization error of the other terms equal to this Reynolds
stress term. Thus, any numerical viscosity or other truncation error will effectively
serve as a subgrid turbulence model. The main criterion for stability of numerical
methods is that this term effectively damp short wavelength (but resolved) oscillations
in the flow.

The most common approach of modeling is due to Smagorinsky [11] in which the
anisotropic part of the Reynolds stress term is modeled as

in which 6i, is the Kronecker delta and ISI = _/2-Sij_ij is the magnitude of the large
scale strain rate tensor

I !

-- 1 (O'ai O-aj_ (2.34)
= \Ozj + J"

and C is known as the Smagorinsky constant. The isotropic part of the Reynolds
stress term is indistinguishable from the pressure term.

A popular recent modification to this model by Germano et al [12].is called the
dynamic subgrid eddy viscosity model and applies a test filter in addition to the
grid filter. The so-called "resolved Reynolds stress" terms that are computed for
scales between the coarse test filter and the grid filter can then be used to locally
compute the Smagorinsky constant, C. A problem with this model however is that the
Smagorinsky constant may become locally negative and numerical instability ensues.
This is avoided in practice by averaging over homogeneous flow planes to keep positive
eddy viscosities. As mentioned in the introduction, the eddy-viscosity should indeed
be negative for some time at some sites but should not lead to instability as observed
numerically.

With this background in LES presented, how may LB methods be used to perform
LES? The answer is that Equations 2.11 and 2.21 that are simulated using the LB
method converge to equations 2.31 if the value of the collision relaxation time is
locally adjusted so that the viscosity is equal to the sum of the physical and the eddy
viscosities for the LES simulation as follows (e.g. for the hexagonal model presented
in Section 2.1)

1T

-, + 71VLB = 4

Thus, the value of 7"is locally adjusted depending on the local magnitude of the large
scale strain rate tensor. The dynamic eddy viscosity model may also be implemented

11



by usingthelocalvalueofC'thatiscomputedfromtheresolvedReynoldsstressterm
usingtheappliedtestfilter.

Concluding,theLB method may beusedtoperformLES simulationsofturbulent
fluidflow.Both thestandardSmagorinskymodeland thedynamicmodelofGermano

etal[12].havebeenimplementedinFortrancomputerprogramsand runon theCM-5
computerattheLANL AdvancedComputingLaboratory.

2.4 Entropy-Increase Stability Method

As previouslydiscussed,ifstandardCFD methodsareappliedtotheNavier-Stokes
equations,withoutsubgridstressmodeling,thenthe discretizationerrorservesas

thesubgridmodelforthesimulation.SinceLB methodsarenotoriouslyunstablefor
underresolvedsimulations,theeddy-viscositymodelspresentedintheprevioussection
servetostabilizethemethod by dampingshortwavelengthoscillationsthatdevelop.
Alternatively,sinceshort-wavelengthbehaviorneedn'tbe "physical",we may locally
stabilizethe LB simulationsotherways. Researchershavepreviouslyperformedad

hocprocedurestostabilizethemethod but theresultsareseldomreportedbecause
theLB method hasalwaysbeenconsidereda "physical"modelthatshouldnotrequire

suchtampering.One suchprocedureistosetparticlepopulationsequaltoa small

positivepopulationifa collisionindicatesthatnegativepopulationsshouldarise.
Thiscan be done ina manner thateitherconservesmass and momentum ordoes

not.Thislocally"unphysicar'tamperingwiththeschememay be theequivalentof
introducingartificialviscosityorasubgrideddyviscositythatdamps shortwavelength
oscillations.We presentherea potentialmethod ofstabilizationof LB methods
thatmay be somewhat more physicallyappeallingthanthe adhocproceduresjust
described.

As oscillationsgrow duringan unstableLB simulation,theentropydecreases.

One may thereforeseta minimum entropythatisused tocharacterizenumerical

instability(orunderresolutionoftheflow)and requirethattheentropynotdecrease
further.The entropydoesnot necessarilyincreaseduringan LB collisionbecause

inadditiontoconservingmass and momentum, additionalconstraintsareimposed
toguaranteethatthegoverningequationsareobtainedinthelong-wavelengthlimit.
Sincestabilityisdesiredfortheshortwavelengthoscillations,iftheentropybecomes
toolow,an alternativecollisionmay beusedwhichincreasesentropywhileconserving
mass and momentum.

We proposeherethatan entropy-increasingcollisionmay be generatedinone of

thefollowingthreeways.

1)The method ofLagrangianmultipliersmay be usedtodeterminetheequilib-
riumdistributioncoei_icientswhilemass and momentum areconservedbuttheother

constraintsmay betemporarilyrelaxed.Iftherearefewenoughpointsintheflow,and
forshortenoughtimewhichreachtheminimum entropy,thenthelong-wavelength
Navier-Stokesbehaviorshouldberetained.

2)An apparentlyad hocapproachistousea collisionthatdistributesthemass
equallybetweenallvelocitystatesforzerovelocity,thatretainsthecoef_cientson

12



the ei.u term that is normally used in the equilibrium distribution function, and that
ignores higher order terms in the equilibrium distribution function. This should serve
to locally increase the entropy while still conserving mass and momentum.

3) Finally, if a collision decreases the entropy below the minimum, then simply
ignore the collision and go on to the streaming step. Since the mean free path is not
inversely proportional to density in the LB method, the viscosity is proportional to
the mean free path that is fixed by the lattice size. However, by ignoring a collision,
the local mean free path is effectively increased and the corresponding local viscosity
should increase and oscillations should be damped.

These methods have not been implemented into computer codes yet, it is proposed
that future turbulence simulations that encounter instability when the flow becomes
underresolved implement these three methods and compare results if stability is ob-
tained.

13



Chapter 3

Channel Flow Simulations

Several simulations of channel flow were performed using LES models as described
in Section 2.3. The 3-d LB method described by Alexander et al.[13] was used as
the numerical scheme. A rectangular array of lattice sites was used with bounce-
back particle reflection conditions at the top and bottom walls to provide a no-slip
boundary condition. The front and back planes of the domain wereconnected so that I
periodicity in this direction was enforced (periodicity is automatically assumed by
the CM-5 architecture). A linear pressure gradient was imposed in the flow direction
and the velocity profiles were set to be initially parabolic at all axial locations. Two
methods of simulation were then used. In the first method, the upstream velocity
profile was set to be parabolic for all times and the downstream velocity gradient
was set to zero. Simulations were performed until the downstream velocity reached a
quasi-steady condition. The downstream conditions were then used as the upstream
conditions and the flow was evolved until the downstream conditions again reached a
quasi-steady flow. This was iterated to effectivelysimulate fully-developed flowcondi-
tions at different axial locations along the channel. The second method of simulation
was to make the velocity periodic but to impose the pressure gradient as before. In
this case, evolving the flow to quasi-steady state is performed and the simulation is
stopped.

The first turbulence model implemented was the standard Smagorinsky eddy-
viscosity model. As shown in Figure 1, if the Smagorinsky constant is set to zero,
the flow reaches a laminar parabolic flow. The different curves represent iterations as
discussed for the first method discussed in the previous paragraph. The figure sublabel
indicates that 500 time steps were performed before the downstream conditions were
moved to the upstream location and that this procedure was performed 10 times.
Notice that even thought the Reynolds number was 6000, there were only four points
in the transverse direction so that essentially no 3-d effects could be represented and
transition to turbulence was not observed.

Figures 2 and 3 contain the results of simulations for which the x-direction and
y-direction is more coarsely resolved but the z-resolution is finer than in the sim-
ulations described above. The mean flow velocity was obviously different for these
to simulations. Additionally, "trip wires" two lattice sites tall were placed on two
adjacent walls (spanning front and bottom walls) at a site 1/3 down the channel axis
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and alsoon theothertwo walls(backand topwalls)ata site2/3 down thechannel
length.The resultwas thedevelopmentofa numericalinstability,theinitialstages
ofwhichareseeninthefigures.

The above simulationsusedzeroeddy-viscosity.When the Smagorinskycon-
stantwas settotheusualvalueof0.23,thenumericalinstabilitydisappearedbut

theflowremainedlaminarwitha non-parabolicvelocityprofile.Thisisconsistent
withtheresultsofotherSmagorinskymodelsimulationsoftransitionalflowthatare
describedby Piomellietal.[1].That is,theeddy-viscosityunphysicallydamps the
oscillationsthatshoulddevelop,preventingthetransitionto turbulencefrom ever
occurring.Othershaveobservedtransitionby allowingoscillationstodeveloptoa
givenamplitudebefore"turning-on"theeddy-viscosity.Thisadhocprocedureisnot

veryappeallingand ledtothedevelopmentofthedynamicmodel thathasitsown
numerical instability problems.
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Transition to Turbulence in Channel Flow
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Transition to Turbulence in Channel Flow
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Chapter 4

Recommendations

In reference [2] Boris concludes that "a factor of two increase in the spatial resolution
of (nonlinear monotone) models will bring more improvement in the accuracy of the
well resolved scales than all the work in the world on the subgrid model of a more
coarsely resolved LES model with the usual filtering procedure contaminating the
long wavelengths unnecessarily." With such harsh criticism of LES models, it is
recommended that future LB studies of simulating turbulent fluid flow focus on the
stabilization of the methods for underresolved flow. (Alternatively, the instability may
be considered to be a "good thing" because it indicates underresolution. Add grid
points!) In a spirit similar to that of nonlinear monotone convection algorithms, we
have proposed in Section 2.4 several methods that seek to stabilize short wavelength
oscillations while seeking to avoid "contamination" of the long wavelengths.

Are there conditions under which LB schemes are already stable to even steep
gradients? Recent work by Sterling and Chen [14] investigated the linear instability
of uniform flows as a function of mean velocity, mass distribution parameter, the col-
lision relaxation time, and the wavenumber. Stable parameter ranges were identified
and in some cases all wavenumber were indeed stable for uniform flow. The intro-

duction of velocity gradients into the analysis was not performed and simulations
indeed become unstable when velocity gradients become large. It is recommended
that entropy-increasing collisions be introduced to affect stability for sharp flow gra-
dients as discussed in Section 2.4.
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