

CONF 9109149-1

BNL-48143

**STRUCTURE DETERMINATION OF THERMAL-SPRAY MATERIALS
USING SYNCHROTRON X-RAY MICROTOMOGRAPHY**

P. Spanne and K. W. Jones

BNL--48143

Brookhaven National Laboratory

DE93 005586

Upton, NY 11973

H. Herman

State University of New York at Stony Brook

Stony Brook, NY 11794-2275

W. L. Riggs

GE Aircraft Engines

Cincinnati, OH 45215-6301

MASTER

Presented at

Symposium on Current Problems and Directions in Plasma-Spray Processing

Brookhaven National Laboratory, Upton, New York

September 23-25, 1991

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

By acceptance of this article, the publisher and/or recipient acknowledges the US Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

Structure Determination of Thermal-Spray Materials

Using Synchrotron X-Ray Microtomography*

P. Spanne and K. W. Jones
Brookhaven National Laboratory
Upton, NY 11973

H. Herman
State University of New York at Stony Brook
Stony Brook, NY 11794-2275

W. L. Riggs
GE Aircraft Engines
Cincinnati, OH 45215-6301

ABSTRACT

The structure of materials prepared using thermal spray methods is difficult to determine using conventional microscopy or porosimetry methods. The difficulties inherent in these approaches can be circumvented using synchrotron computed microtomography (CMT). An example of the use of CMT to produce a high resolution non-destructive image of a thermal-spray coating is described here to illustrate the power of this technique.

* Research supported in part by US Department of Energy under Contract No. DE-AC02-76CH00016 (PS,KWJ).

INTRODUCTION

Thermal spray technology is used to fabricate coatings of different types of materials that will improve the thermal properties or wear resistance of the substrate material. The quality of the coating is affected by its homogeneity, porosity, adhesion to the substrate, etc. The determination of these quantities is often attempted using conventional optical microscopy methods. This necessitates sectioning and polishing the coating which can produce artifacts that obscure the true nature of the section. Use of conventional porosimetry methods is also hazardous since the pores may not be connected.

Synchrotron CMT is an alternative technique which can be used to generate images of the morphology in transverse planes in a sample non-destructively. The limited x-ray brilliance from conventional x-ray tubes, however, generally makes the spatial resolution in CMT much worse than 20 micrometers, which is around the maximum size of pores observed by optical microscopy of thermal sprayed deposits. Synchrotron x-ray sources have orders of magnitude higher brilliance than x-ray tubes, and have made possible CMT with much higher spatial resolution (1,2). The construction of third generation synchrotron x-ray sources now taking place makes CMT with submicrometer spatial resolution conceivable, although it still has yet to be implemented.

EXPERIMENTAL APPROACH

A CMT instrument which can be used for non-destructive microscopy down to a volume resolution of 5 micrometers³ has been developed at the X26 Microscopy Beam Line of the National Synchrotron Light Source (3). This instrument is ideally suited to detect voids in small (one mm or less) samples of thermal sprayed coatings. It has been used for a study of voids and material homogeneity in a whole series of thermal sprayed deposits, produced at different temperatures and using different feedstock materials. The imaged quantity was the linear attenuation coefficient averaged over the energy spectrum of the synchrotron x-rays. The linear attenuation coefficient depends on both the material

composition as well as the density in the samples. For elements having a photoelectric absorption edge at an appropriate energy in relation to the sample size, it is possible to map the two-dimensional distribution for a selected element by making a subtraction image from images generated using two different x-ray energies straddling the edge energy (4).

EXPERIMENTAL RESULTS

To illustrate the application of CMT a thermal-spray coating of $\text{Cr}_3\text{C}_2/\text{NiCr}$ was prepared. The conditions were chosen to produce a coating with high porosity so that the ability of the CMT method to differentiate between the material and voids would be most evident. The tomographic section that was produced is shown in Fig. 1. The pixel size for this image is about $5 \mu\text{m} \times 5 \mu\text{m}$ with a slice thickness also of $5 \mu\text{m}$. The grey scale used to produce the image shows regions of high linear attenuation coefficients as lighter gray than regions of low attenuation coefficients (voids).

The relative quality of the specimen can be shown by constructing a histogram giving the frequency of occurrence of the linear attenuation coefficients within the specimen. The results obtained for the section shown in Fig. 1 are shown in Fig. 2. The area under the two peaks, the one for void space not being very distinct, can be used to estimate the porosities of the sample.

CONCLUSIONS

The results shown in Figs. 1 and 2 demonstrate the usefulness of synchrotron CMT for investigation of the thermal spray coatings. A systematic application of the method to investigation of thermal spray materials should give new insights into the quality of coatings produced under different conditions. This will make possible a correlation between quality and preparation conditions which has not been previously possible and should thus lead to improved coating methods.

REFERENCES

1. P. Spanne and M. L. Rivers, "Computerized Microtomography Using Synchrotron Radiation from the NSLS," *Nucl. Instrum. Methods in Phys. Res.* B24/25, 1063-1067 (1987).
2. K. W. Jones, P. Spanne, W. B. Lindquist, W. C. Conner, and M. Ferrero, "Determination of Polymerization Particle Morphology Using Synchrotron Computed Microtomography," *Nucl. Instrum. Methods in Phys. Res.* B68, 105-110 (1992).
3. K. W. Jones, R. S. Bockman, B. M. Gordon, M. L. Rivers, A. J. Saubermann, G. Schidlovsky, and P. Spanne, "Biomedical Applications of Synchrotron X-Ray Microscopy," *Proc. 2nd International Workshop - XRF and PIXE Applications in Life Science*, pp. 163-174, R. Moro and R. Cesareo, Editors, World Scientific Publishing Co., Singapore, 1990.
4. K. W. Jones, P. Spanne, S. W. Webb, W. C. Conner, R. A. Beyerlein, W. J. Reagan, and F. M. Dautzenberg, "Catalyst Analysis Using Synchrotron X-Ray Microscopy," *Nucl. Instrum. Methods in Phys. Res.* B56/57, 427-432 (1991).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

FIGURE CAPTIONS

Figure 1. Tomographic section through a specimen of $\text{Cr}_3\text{C}_2/\text{NiCr}$ produced using thermal spray technology under non-optimal conditions.

Figure 2. Histogram showing relative distribution of linear attenuation coefficients in the specimen. The coefficient for air is centered around zero attenuation coefficient.

Figure 1

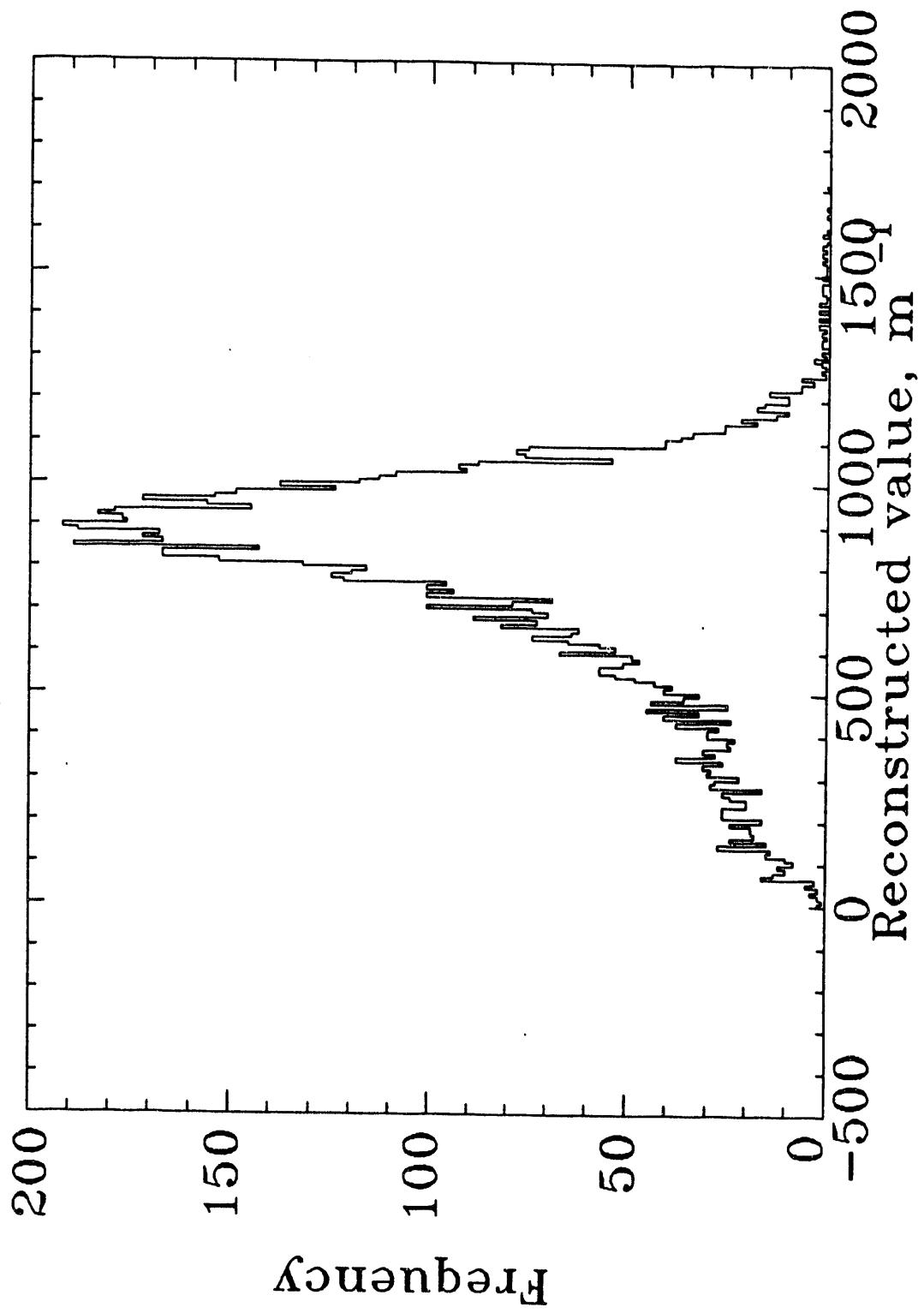


Figure 2

END

DATE
FILMED

3/3/93

