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BUBBLE FUSION: PRELIMINARY ESTIMATES
by

R. A. Krakowski
January 4, 1995

ABSTRACT

The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure
<< external pressure) can occur with a significant focusing of energy onto
the entrapped gas in the form of pressure-volume work and/or acoustical
shocks; the resulting heating can be sufficient to cause ionization and the
emission of atomic radiations. The suggestion that extreme conditions
necessary for thermonuclear fusion to occur may be possible has been
examined parametrically in terms of the ratio of initial bubble pressure
relative to that required for equilibrium. In this sense, the disequilibrium
bubble is viewed as a three-dimensional "sling shot" that is "loaded" to an
extent allowed by the maximum level of disequilibrium that can, stablﬁy be

achieved. Values of this disequilibrium ratio in the range 10 -10" are
predicted by an idealized bubble-dynamics model as necessary to achieve
conditions where nuclear fusion of deuterium-tritium might be observed.
Harmonic and aharmonic pressurizations/decompressions are examined as
means to achieve the required levels of disequilibrium required to create
fusion conditions. A number of phenomena not included in the analysis
reported herein could enhance or reduce the small levels of nuclear fusions
predicted.

I. INTRODUCTION

Liquids exposed to intense ultrasonic waves can generate small cavities or bubbles that
upon expansion and subsequent implosion create strong local heating. Studies of acousto-
chemical or sonochemical reactions induced by this strong local heating have been recently

reportedl'2 and thoroughly reviewed. Although temperatures of 10,000s K have been
reported, extension of these sonochemical conditions to those required to induce

. 1,7,11 . .
thermonuclear fusion have also been suggested. To examine the latter possibility, the

standard (simplified) bubble-dynamics equation""g’lz’13 has been solved parametrically in
the context of DT fusion, and projections are reported herein. This parametric analysis is
based on modeling the dynamics of a cavity filled with a (nearly) ideal gas (g) and vapor
(v); the gas-filled cavity is subject to a constant hydrostatic (h) pressure and an oscillatory
externally applied pressure (a). While a van der Waals equation of state is used and free-
electron (Bremsstrahlung) radiation losses are included, the generally optimistic
assumptions of no gradient-driven transport, no gas/plasma interactions with the cavity
wall, and completely stable spherical implosions are invoked.

While the impact of gas-phase shock waves launched from the inward-moving spherical
piston are not included in this analysis, the creation and interactions of these cavity-wall
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14-16 . .
launched and reflected shocks has been suggested as one explanation for the timing
and location of sonoluminescence observed under some conditions. Other explanations for
the radiation observed to accompany bubble collapse include collision-induced emission

from d1poles17 and Casimir energy1 released when a dielectric hole (i.e., the cavity) is
filled."”” The latter two explanations would preclude conditions where nuclear fusion of
light elements might occur, whereas the modeling multiply interacting, reactive shocks is an
area for future work; the present "scoping" calculations, therefore, are based on modeling
uniform, nearly adiabatic compressional heating of a hard-sphere gas in a collapsing cavity
usinﬁ)a formalism that differs little from that reported by Lord Rayleigh nearly eighty years

ago

The collapse of a gas-filled bubble with an 1ntema1 gas pressure Py, << P, was simply and
accurately modeled in 1917 by Lord Rayle1gh who suggested that the potential energy
~(4/3) R?, P, - g0) created by the formation of a non-equilibrium cavity of radius R, in a
hydrostatically pressurized liquid at a pressure Py, could be converted to kinetic energy of
all the surrounding liquid and focused onto the gas trapped in the cavity of ever-
diminishing radius R(t). This "disequilibrium" bubble (e.g., f,q = Pgo/ Pg%Q << 1, where
P&,Qis the gas pressure needed to achieve force balance with the environment) can be

viewed as a three-dimensional "sling shot”, cocked and ready to convert the elastically
stored potential energy in the liquid and to perform pressure-volume work on the contained
gas.

The first part of the analysis reported herein parametrically describes in a fusion context
(e.g., fusion neutron yield, density-time-temperature product) the effect of varying the

loading of this three-dimensional "sling shot" vis 4 vis the disequilibrium parameter f.,
The feasibility of achieving the required level of disequilibrium starting with an equlhbnum

bubble (e.g., f; = 1) is then investigated by solving the bubble-dynamics equation under
conditions of Poth harmonic and aharmonic/resonant pressure loading of the liquid
surrounding the (initially) equilibrium bubble. The main goal of this study is to understand
better conditions where deuterium-tritium fusions might be observed; not even a hint of a
prognoses for practical application is intended at this point.

. MODEL

A gas-filled bubble in pressure equilibrium between forces associated with a uniform
hydrostatic pressure, P}, vapor pressure in the cavity associated with the surrounding
liquid, P, the surface-tension or Laplace pressure, P; = 26/R, and the internal (insoluable)

gas pressure, P,, is describe for a bubble of radius R relative to some reference radius R,
as follows:

P, = (Ppo + Poo — PV)ZY + Py - Psoz , (1)

ll n

where z = (R /R) is the compression ratio, and the subscript "o" refers to a reference

(initial) equilibrium conditions (e.g., PgoQ =Py, + Pg, — Py), the cavity wall is assumed to
be isothermal (e.g., the vapor pressure, P, is assumed to be constant), and an ideal gas
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with polytropic exponent y are assumed. The parameter f,, = P,/ P is introduced as a

measure of initial force or pressure "disequilibrium" within the gas bubble. While the path
to this "disequilibrium"” is left unspecified in the first part of the parametric analysis, the

(starting) pressure Py, = f, PgoQ does not satisfy the equilibrium described by Eqn. (1),
and for f, < 1 the bubble will collapse under the force of this disequilibrium. % The
potential energy associated with this disequilibrium bubble of (initial) radius R, emersed in
a liquid under hydrostatic pressure Py, is given by

(PE); = (4/3)mR3 — RSP, . )

As this f,, < 1 disequilibrium bubble collapses, the potential energy relative to (PE); is
descnbec?qb

= @4/3)mR3 - R3p, , 3)

and the kinetic energy of the inward-moving liquid surrounding the collapsing bubble is
summed up over all radii r > R(t) as follows:

KE = J‘%—(Mtrngdr)(dr/dt)z , @

where the radial coordinate r is associated with the liquid. Including the work expended in
adiabatically compressing the gas entrapped within the bubble [for an ideal gas, Pg/z
constant, work = P, oV {z -1}/(y-1) fory>1or P, oVo mzfory =1], along with

the assumption of 1ncompre551b111ty of the host liquid [e.g., 47 r2 (dr/dt) = 4w R (dR/dt)],
the following bubble kinetics equation results from the balance of KE, PE, and pressure-

volume work ™’

37 dR/dr P _ 3 Poo 173, Pgo
E[m] =z-1-3 3 l-271- 5" @ &
where
z Zn(z) vy =1
£@) = {77 _ : ©

v = (v>1)

and @, = +/(P,/ps) /R, is the natural (resonant) frequency of the initial (disequilibrium)
bubble. For the case where Pg, = Py, = 0, the time for the disequilibrium collapse, T* =

R
Jdr /(R / dt), is given by™
R,

R e e




Zmax = °
* 3 dz
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where I'(y) = J-e‘x x¥ ~ 1 dx is the Gamma Function. Lastly, the "impulse parameter”,
(o}

J‘Pgdt , is expressed below in “fusion units,” n(l/m3), T(s), and Ty y(keV):

Zmax
3 = Na kg Peo 2! 4 4
<ntTey>(s keV/m®) = —4 K J- Eers - ®

When a time-varying pressure, P,(t), is added to the hydrostatic pressure, Py, far from the
bubble and included in the balance between kinetilc3 energy, Eotential energy, and work,
along with the addition of a viscous pressure term ~ [~4 1 R™ (dR/dt)/r] to Py, and using

the relative pressure balance described by Eqn. (1), the following (Rayleigh-Plesset)
bubble-dynamics equation results:

pl[R% + %vz] = (Py + Poo — PZ¥ + P z'°
®
4 1/3
- gt —- B - RO,

where v = dR/dt. The Rayleigh-Plesset (Noltingk—Neppiras-Poritsky)13 equation describes
a highly idealized bubble and is subject to a number of important limitation, some of which

are listed below '

single bubble in an infinite medium

spherical bubble, no distortions or breakup

spatially uniformity within and outside the bubble

absence of body forces

acoustic wavelengths (associated with P,) much greater than R

no viscous effects within the bulk liquid [the term in Eqn. (9) is associated only
with fluid motion near the bubble surface]

incompressible liquid phase

constant gas inventory within the bubble

constant liquid vapor pressure (isothermal cavity wall)

no molecular diffusion into or out of the bubble

no acoustic streaming and impact of resulting shear stresses on bubble shape




e ideal-gas, adiabatic behavior within the bubble with a constant polytropic
coefficient.
no radiation loss from the gas/plasma within the bubble
no gas-phase shock formation (c >> dR/dt).

With these limitations in mind, Eqn. (9) is solved for both a sinusoidal (P, = P, sin ® t)
and an aharmonic/resonant pressure function, [P,(t) =P, 2N ! for the N* th compression in
a series of compression-expansion cycles], starting with an equilibrium bubble (x, =
R,/ REQ = 1, feq =1). In the case of driven systems, an initial radius, REQ, is chosen to

give a natural resonant frequency, ®,, equal to the driver frequency, 2 & f; otherwise, a
significant part of the numerical computation is devoted to resolving uninteresting transient

oscillations 3 . In addition to determining R(t) and T(t), the resulting gas pressure, P (1) is
assumed to be generated in a deuterium- tritium (DT) gas mixture, an impulse parameter

<n T T}.y> is computed for each compression the arises, and the DT fusion yield
t
YLD = J-% n<ov> dt (4/3) & R® dt , (10)

for each compression registered, where n = p, N, and <o v> is the DT fusion reactivity.
These integral quantities, along with the peak radial compression, X, = Rppin/Ro. and the
maximum temperature, T(Xp;,), are correlated with the disequilibrium parameter, f., =
P, /Pg%Q , evaluated at the beginning of each major compression.

Both DT depletion through burnup and fusion-product heating are monitored, but this
information is not incorporated into the time-dependent model; for most of the conditions
examined, these fusion-related effects on the bubble dynamics and response are not
important.

Although most of the approximations listed above are retained in the present analysis, the
following van der Waals equation of state replaces the ideal-gas assumption:

P(v-vyp =Rg (1D
w=c, T=(v-vyg P/(y-1) (12)
P(v - vy) =S/, , (13)

where v = 1/p, is the specific volume of the gas and vy = 0.05 m 3/kmole is the "hard-
sphere” volume of the hydrogen atom. In this case the ideal-gas adiabatic is subject to the
following correction:

P oy _ 1
P, * fvpw )




* 37y
fypw = [1“—""/—"] , (15)

where vi=p go Vi and Pgg = Pgo/(Rg T) is the initial pressure gas pressure in the bubble.

A second correction to the ideal-gas adiabatic is applied to adjust (approximately) for
"sliding adiabaticity" associated with energy shed from the compressing bubble from free-
electron (Bremsstrahlung) radiation. In this case, the right-hand side of Eqn. (14) is

multiplied by the factor e7'®, where the integral I(t) is given by

t
_ PRAD
Ity = J—W dt , (16)
o]
and
prAD(W/m%) = Cpr(Z fion 1) Thto (17)
w(l/m®) = %(1 + fo)kpThn . (18)

The radiation power density and the total energy density in the bubble are pgap and w,
respectively. The degree of ionization, fj,,, is assumed to be given by the Saha
equilibrium relat;ionshipﬂ’22

1

fion = 1
fon 1+ 0+ 4/K) (12
3/2 3/2
— 201 |2 T me € [Tev] —E;/Tey
K Q0 [ 2 ] o e ) (20)

The dissociation of DT is neglected, the atomic and ionic partition functions Q ;, are taken

as unity, T,y is the temperature in electron-volts, and the ionization potential is E; =
13.6 V.

1. RESULTS

The conditions where DT fusions might be generated in the course of a compressional
heating driven by the liquid forces transferred to a collapsing gas-filled cavity are explored
at two levels using the simplified model described in Sec. II. At the parametric level, the

"disequilibrium" parameter f,, along with and initial equilibrium bubble radius, REQ are

specified to determine an initial normalized radius, x, = R/ REQ, with which to begin the
time-dependent calculation of R(t) and the fusion-related integral and peak parameters. At
the second level, the Rayleigh-Plesset equation, Eqn. (9), is solved for an initially

equilibrium bubble with a radius REQ chosen to assure that the natural resonance




frequency, ®, = NGCYEDY REQ , matches that of the drive frequency, 2 7t f, where P,(t) =
P, sin (2mft). A second, aharmonic/resonant drive scenario was also investigated,

wherein P,(t) is applied only during a given bubble collapse at a value that is double the
value used to drive a previous collapse. For either of these harmonic- or

aharmonic/resonant-driven simulations, the value of f, prior to each collapse is recorded

and correlated with the fusion performance [e.g., Xpins Txev(Xmin)> <0T Tyey>, and YLD].
For all computations a van der Waals equation of state is used, and the correction for
(accumulated) radiation losses embodied in Eqns. (16)-(20) is imposed. The fixed

parameters listed in Table I are used, which generally reflects the properties of water at T,
= 300 K.

A. Correlation Based on Specification of Disequilibrium Parameter, f.,

Figure 1 gives a schematic representation of the case wherein an equilibrium (x = 1, foq =

1) bubble is brought by some unspecified route to a state of disequilibrium (feq < 1), the
resulting three-dimensional "sling shot" is released, and the ensuing compression (and
rebound) is numerically followed in time. The unspecified (unmodeled) equilibrium —

disequilibrium trajectory, x = 1 = X, is assumed to occur slowly (relative to the time scale
of the ensuing collapse) and isothermally; the initial conditions used for the modeling of the

bubble collapse in terms of the equilibrium (x = 1, f; = 1) state are as follows:
Pgo = feq Pfg)Q ’
R,= REQ/£° ; 1)
T, = TeQ .

The state conditions upon peak (adiabatic) compression are approximately given by

— pEQ /¢y -1) .
B = BRI Y

R = er fe(g—v)/3/(7—l) , (22)
T=Te/fy .

The product of peak pressure, ~nTy.y, and the collapse time, T*, given by Eqn. (7) scales
as follows:

nt T _ 1

D), ~ @PaD (23)
where

(T T = —f— @) VB p1 (24)




and from Eqn. (7), ®, T is near unity. These relationships are based solely on equilibrium
conditions and are given only as an indication of key scaling dependencies in the search for

means to maximize T and <n T Tyey>.

All computations that varies f,, parametrically correspond to an equilibrium bubble of

radius REQ = 100 pm, with the isothermal excursion to the initial radius R, where actual
modeling of the bubble collapse begins, being given by

ity + vi |
Xo = {_u] . (25)
1+ vy

In this expression, X, =R/ REQ, vii = pova,and p, = (Py, + Pgo — Pyo)/(Rg T,) is the
(DT) gas density in the equilibrium (x = 1) bubble; for all cases, the Table-I parameters are
used, along with Py, = 1x10° Pa and P, = 2 o/REQ.

The parametric dependencies of X;;,/Xo = Rpin/Ro, <nTT>/ 1020, YLD/ 106, and T(X ;) on
foq are shown on Fig. 2. The sample normalized-radius trajectory (during compression)
used in the Fig.-1 illustration corresponds to fo; = 0.01. Shown also is the f., dependence
of Xpin = Rmin/ Ro EQ. The peak temperatures reported correspond to an adiabatic heating
along an adiabat that starts with a disequilibrium bubble at T, = 300 K, under the
assumption that the equilibrium — disequilibrium trajectory was achieved slowly and
isothermally; the T ~ 1/f,, dependence suggested by Eqn (22) is indicated. Shown also on
Fig. 2 are temperatures for the case where the expansion part of the trajectory was also
adiabatic; that is, the expansion from x = 1 to x = X, was accompanied by a cooling prior to
the subsequent bubble collapse and adiabatic compressional heating. [e.g., neglecting the
van der Waals correction, which is small in this region, T, = Tg1 /x3Y"Dy]. The <nTT>
and YLD values reported on Fig. 2, however, correspond to the more optimistic isothermal
equilibrium — disequilibrium trajectory. For this case, measurable quantitles of neutrons
from a single bubble collapse would require that bubble to be "set up” with f; < 10"

Considerable lower values of f., would be required if the assumed expansion from the
equilibrium to the disequilibrium state is adiabatic, as will be seen from the following
evaluations of the Rayleigh-Plesset equation to describe an initially equilibrium bubble

trajectory to disequilibrium and subsequent collapse under a range of externally driving
pressures.

B. Correlations for Driven Equilibrium Bubbles
1. Harmonic Drive [P, =P, sin 2 w{ t)]

The radius trajectory of an (initially) equilibrium bubble subjected to P, = 5%10° Pa
pressure oscillations at an f = 10-kHz frequency is shown on Fig. 3. For this case, the

(initially) resonant bubble has a radius REQ =292 um when P, = 1x10° Pa. Comparing x

=R/REQ to the driver pressure, also given as 1 + P,(t)/P, on Fig. 3, indicates an initially
harmonic, but highly non-linear, response that is followed by the bubble trajectory settling




onto a moderately rhythmic forth subharmonic. Fairly degp compressions (limited by the
van der Waals equation of state) from fo; ~ 0.5-1.0x10"" disequilibria are predicted for

these sinusoidally driven bubbles. The correlation of X;,, T(Xpi,) and <ntT> with the
computed f., values taken from the Fig.-3 trajectories just prior to a given collapse is

shown on Fig. 4. The relatively low (peak) temperatures for even low values of f, result
from the adiabatic cooling computed during the expansion part of the trajectory, as well as
the cumulative effects of radiation cooling for this constant-amplitude sinusoidal drive. The
impact of elimination of radiative losses is also shown on Fig. 4; the accumulated radiation
losses impact primarily those deep compressions that occur later in the chain of
compressions depicted on Fig. 3. As for the cases where the bubble is forced to begin to
collapse from a specified f,, value (Sec. IIL.A.), the van der Waals equation of state limits
the maximum compressions permitted. The neutron yield, YLD, for all compressions

registered on Fig. 3 are below the minimum scale used on Fig. 4 for this P, = 5x10°-Pa
harmonic-drive case; a means must be found to pump more energy into the collapsing
bubble while forcing it to higher levels of disequilibrium prior to collapse.

2. Aharmonic/Resonant Driver

Just as more energy and greater excursions can be transferred to a ball tethered to a paddle
by an elastic band through timely swats, so can tailoring of the impulse to the anharmonic
trajectory of the bubble radius increase the response and performance. Figure 5 gives the
time dependence of the normalized bubble radius and drive pressure for the case reported in
Sec III.B.2., but with pressure being applied only once the bubble collapse commences.
Furthermore, this aharmonic application of ?ressure is doubled in intensity for each
subsequent collapse, with P, starting at 1X10” Pa. The values of X, T(Xpin), <0TT>
and YLD for each bubble collapse registered on Fig. 5 is shown on Fig. 6 as a function of
the respective value of f, just prior to collapse. The impact of (cumulative) radiation loss
is not as great as that reported of the harmonic drive because of the ratcheting of the applied
pressure in the aharmonic/resonant case. The neutron yields, however, remain low unless
foq < 10°° primarily because of the low (peak) temperatures related to the adiabatic cooling
during each expansion to the disequilibrium state that proceeds a give bubble collapse.
Generally, the assumption of fully adiabatic expansion (and cooling) leads to unrealistically

low temperatures prior to collapse and requires an improved model.

IV. SUMMARY

The collapse of a gas-filled bubble in disequilibrium can occur with a significant focusing
of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical
shocks. The suggestion that extreme conditions necessary for nuclear fusion may be
possiblel’7’11 been examined parametrically in terms of the ratio f,, of initial bubble
pressure relative to that required for equilibrium. The disequilibrium bubble is viewed as a
three- dimensional “sling shot” loaded to an extent allowed by the maximum level of
disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range
f.=10" - 10° are predicted by an idealized bubble-dynamics model as necessary to
achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic
and aharmonic pressurizations/decompressions have been examined as means to achieve
the required levels of disequilibrium, with the latter drive scenario offering a possible

means to achieve f., values and peak temperatures where measurable quantities of fusion

EDNC: M K S S




might occur. While the simplified "adiabatic” compressional model uses a hard-sphere
equation of state and allows for Bremsstrahlung losses, any number of the phenomena
listed in Sec. II. and not included in this analysis could impact these predictions in a
generally negative way. The creation of multiple and interacting gas-phase shock waves
and mechanisms that allow isothermal expansions to the disequilibrium state could enhance
the predictions of relatively low fusion yields, however; an improved understanding of the
potentially positive impact (from the view point of heating, density amplification, and
increased fusion yield) of multiple interacting shocks is suggested as a course for future
work, as well as the incorporation of gradient-driven transport, gas/plasma-wall
interactions, and an improved radiation model.
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NOMENCLATURE

c(m/2)

p,V(J/kg/K)
Cpr(W m’/keV'"?)
E/(eV)

e(/eV)
f(Hz)

feq

f.

0on

fypw
g(z)
h(Js)
1

K

kg(eV/K)
KE®)
M'(kg/s)

me(kg)

NA(entltles/mole)
n(l/m )

<nTT>(s keV/m3>
P, (Pa)

P,(Pa)

P, 50(P2)

P;2 (Pa)

P,(Pa)

Pv,vo(Pa)

P, (Pa)

PE(J )
Prap(W/m )
Qo,1

R(m)
Rs(I/kg/K)

1(m)

R,(m)

R5< (m)

S(I/K)

t(s)
T(K)

To(K)
Terie(K)
Toy(eV)

sound speed in gas

gas heat capacities at constant pressure, volume
Bremsstrahlung radiation coefficient, 4. 8x10~"
(hydrogen) ionization potential

electronic charge
driver frequency

disequilibrium parameter, P,/ Pe>
(Saha) ionization fraction, Eqn. (18)

van der Waals correction, Eqn. (15)
pressure-volume work funct1on Eqn. (6)

Planck's constant, 6. 6252x107

radiation integral, Eqn. (15)

Saha function, Eqn. (19)

8.617x10°

kinetic energy

mass flow of liquid towards collapsmg bubble

electron rest mass, 9. 1083x10~
number of a series of sequential bubble compressions

Avagadro's number, 6.0249x10

gas particle density, p, Ny

time-averaged gas pressure during a given bubble collapse
acoustic (time-varying) pressure exerted on cavity

amplitude of acoustic (time-varying) pressure exerted on cavity
gas (non-condensible) pressure in cavity

gas (non-condensible) pressure in cavity for equilibrium bubble
hydrostatic (constant background) pressure exerted on cavity
vapor pressure (of liquid) in cavity

effective surface-tension pressure, 2 6/R

potential energy

(Bremsstrahlung) radiation power density

partition function for atom,ion
bubble/cavity radius

gas constant, 8,317.

radial coordinate into liquid

initial bubble/cavity radius

initial cavity radius for equilibrium bubble
enthalpy

time

temperature of gas

reference (initial) temperature of gas
thermodynamic critical temperature of water
gas/plasma temperature in electronvolts
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TyevkeV)
Vo(r3n3)

v(m" /kmole)
VH

vH

VDW
W(J/m3)

Zmax

AH(J/mole)
n(kg/m/s)
Y

I'(y)
6(N/m)

<c v>(m3/s)
w(rad/s)

® (rad/s)
pu(kg/m’)
pg(kmole/m’)
T(s)

T (s)

gas/plasma temperature in kiloelectronvolts
initial volume of bubble, (4/3) TER?,

gas molecular (atomic) volume, 1/t
(m3/kmole) molecular (atomic) volume
normalized molecular (atomic) volume, vyPg,
van der Waals correction, Eqn. (14)
gas/plasma-phase energy density

radius compression ratio, R/REQ

normalized disequilibrium radius, R/ REQ
number of (DT) fusions per bubble collapse
atomic number of ionized gas

volumetric compression ratio, (R(,/R)3
maximum compression (dR/dt = 0)
heat of vaporization

liquid viscosity

gas heat-capacity ratio

Gamma function

surface tension of liquid

(DT) fusion reactivity

driver frequency, 2 ©t f

bubble resonance frequency, /(Py/ps) /Ro
liquid density

gas density

bubble natural response time, or nominal inertial confinement time

(as in <nTT>)
collapse time of a pressureless cavity

14
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EQUILIBRIUM/DISEQILIBRIUM/COLLAPSE TRAJECTORY

1

10

NORMALIZED RADIUS, x = R/RE®

—
C)I

Figure 1. Schematic diagram of bubble radius trajectory illustrating approach to fo, < 1
disequilibrium from f, x = 1 equilibrium state, followed by collapse to xmm
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PARAMETRIC DEPENDENCIES on feq
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Figure 2. Parametric dependence of integral and peak-compression parameters on
disequilibrium parameter, fo, = Pgo/ Pg%Q.
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10. kHz; REQ =292. um; P, /Py, = 5.00

f =

Los Alamos

@)
i

99/%d + T prtl/d =X

NUMBER OF CYCLES, t/T

5><105 Pa sinusoidal

10 kHz, P,

pressure oscillations starting with a resonant (®, = 2 7« 1),

(X, foq = 1) bubble.

Figure 3. Response of normalized bubble radius to f

equilibrium
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f = 10. kHz; RE =292. um; P,/Py = 5.00
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HARMONIC DRIVE (adiabatic expansions)
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Figure 4. Dependence of integral and peak-compression parameters for the harmonically
driven bubble compressions given on Fig. 3.
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f = 10. KHz; RER = 292. 4 P, /Py, = 28
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Figure 5. Response of normalized bubble radius to progressively doubled pressure pulses
for conditions that are otherwise identical to those used for the harmonically
driven case given on Fig. 3.
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Figure 6. Dependence of integral and peak-compression parameters

DISEQUILIBRIUM PARAMETER, feq

aharmonic/resonant drive given on Fig. 5.
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Table I Input Parameters

Liquid density, p,(kg/m’) 988.
Background hydrostatic pressure, P,(Pa) 1.00x10°
Vapor pressure at T, = 300 K, P,(Pa) 421x10°
DT molecular volume, vy(m™/kmole) 0.05
Heat-capacity ratio, Y 1.67
Surface tension, ¢ (Nm) 0.0729
Fluid viscosity, n (kg/m s) 0.00
Reference temperature, T,(K) 300.
Critical temperature, T ;(K) 647.
Tonization potential, Ej(ev) 13.6
Atomic number of ionized gas, Z 1.0
Partition functions for neutral, ionic species, Qg 1.0,1.0
21

2y e = e -
RS AN A g AN



	io-" io-'
	aharmonic/resonant drive given on Fig

