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BUBBLE FUSION: PRELIMINARY ESTIMATES 

R. A. Krakowski 
January 4, 1995 

ABSTRACT 

The collapse of a gas-filled bubble in disequilibrium (Le., internal pressure 
<< external pressure) can occur with a significant focusing of energy onto 
the entrapped gas in the form of pressure-volume work and/or acoustical 
shocks; the resulting heating can be sufficient to cause ionization and the 
emission of atomic radiations. The suggestion that extreme conditions 
necessary for thermonuclear fusion to occur may be possible has been 
examined parametrically in terms of the ratio of initial bubble pressure 
relative to that required for equilibrium. In this sense, the disequilibrium 
bubble is viewed as a three-dimensional "sling shot" that is "loaded" to an 
extent dlowed by the maximum level of disequilibrium that can stab1 be 
achieved. Values of this disequilibrium ratio in the range 10-5-10- are 
predicted by an idealized bubble-dynamics model as necessary to achieve 
conditions where nuclear fusion of deuterium-tritium might be observed. 
Harmonic and aharmonic pressurizations/decompressions are examined as 
means to achieve the required levels of disequilibrium required to create 
fusion conditions. A number of phenomena not included in the analysis 
reported herein could enhance or reduce the small levels of nuclear fusions 
predicted. 
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I. INTRODUCTION 

Liquids exposed to intense ultrasonic waves can generate small cavities or bubbles that 
upon expansion and subsequent implosion create strong local heating. Studies of acousto- 
chemical or sonochemical reactions induced by this strong local heating have been recently 
reported'-2 and thoroughly reviewed. Although temperatures of 10,000s K have been 
reported, extension of these sonochemical conditions to those required to induce 
thermonuclear fusion have also been suggested. To examine the latter possibility, the 
standard (simplified) bubble-dynamics equation has been solved parametrically in 
the context of DT fusion, and projections are reported herein. This parametric analysis is 
based on modeling the dynamics of a cavity filled with a (nearly) ideal gas (g) and vapor 
(v); the gas-filled cavity is subject to a constant hydrostatic (h) pressure and an oscillatory 
externally applied pressure (a). W e  a van der Waals equation of state is used and free- 
electron (Ehemsstrahlung) radiation losses are included, the generally optimistic 
assumptions of no gradient-driven transport, no gaslplasma interactions with the cavity 
wall, and completely stable spherical implosions are invoked. 

4-10 

1,7,11 

4,8,12,13 

While the impact of gas-phase shock waves launched from the inward-moving spherical 
piston are not included in this analysis, the creation and interactions of these cavity-wall 
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14-16 launched and reflected shocks has been suggested as one explanation for the timing 
and location of sonoluminescence observed under some conditions. Other explanations for 
the radiation observed to accompan bubble collapse include collision-induced emission 
from dipolesI7 and Casimir energy released when a dielectric hole (Le., the cavity) is 
filled. The latter two explanations would preclude conditions where nuclear fusion of 
light elements might occur, whereas the modeling multiply interacting, reactive shocks is an 
area for future work; the present "scoping" calculations, therefore, are based on modeling 
uniform, nearly adiabatic compressional heating of a hard-sphere gas in a collapsing cavity 
usin a formalism that differs little from that reported by Lord Rayleigh nearly eighty years 
ago . 

1 I  

19 

8 

The collapse of a gas-filled bubble with an internal gas pressure Pgo c< Ph was simply and 
accurately modeled in 1917 by Lord Rayleigh , who suggested that the potential energy 
-(4/3) R: (Ph - Pso) created by the formation of a non-equilibrium cavity of radius R, in a 
hydrostatically pressurized liquid at a pressure P, could be converted to kinetic energy of 
all the surrounding liquid and focused onto the gas trapped in the cavity of ever- 
diminishing radius R(t). This "disequilibrium" bubble (e .g . ,  fq = Pgo/PgQ << 1, where 
PgQis the gas pressure needed to achieve force balance with the environment) can be 
viewed as a three-dimensional "sling shot", cocked and ready to convert the elastically 
stored potential energy in the liquid and to perform pressure-volume work on the contained 
gas. 

20 

The f is t  part of the analysis reported herein parametrically describes in a fusion context 
(e.g., fusion neutron yield, density-time-temperature product) the effect of varying the 
loading of this three-dimensional "sling shot" vis 6 vis the disequilibrium parameter fes. 
The feasibility of achieving the required level of disequilibrium starting with an equilibrium 
bubble (e.g., fq = 1) is then investigated by solving the bubble-dynamics equation under 
conditions of both harmonic and aharmonic/resonant pressure loading of the liquid 
surrounding the (initially) equilibrium bubble. The main goal of this study is to understand 
better conditions where deuterium-tritium fusions might be observed; not even a hint of a 
prognoses for practical application is intended at this point. 

II. MODEL 

A gas-filled bubble in pressure equilibrium between forces associated with a uniform 
hydrostatic pressure, Ph, vapor pressure in the cavity associated with the surrounding 
liquid, P,, the surface-tension or Laplace pressure, P, = 20/R, and the internal (insoluable) 
gas pressure, Pg, is describe for a bubble of radius R relative to some reference radius R, 
as follows: 

3 where z = (R,/R) is the compression ratio, and the subscript "0" refers to a reference 

(initial) equilibrium conditions (e&, pgQ = Ph, + P,, - P,), the cavity wall is assumed to 
be isothermal (e.g., the vapor pressure, P,, is assumed to be constant), and an ideal gas 
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with polytropic exponent y are assumed. The parameter fq = Pg0/PkQ is introduced as a 
measure of initial force or pressure "disequilibrium" within the gas bubble. While the path 
to this "disequilibrium" is left unspecified in the first part of the parametric analysis, the 
(starting) pressure Pg, = fqPkQ does not satisfy the equilibrium described by Eqn. (l), 
and for fq e 1 the bubble will collapse under the force of this disequilibrium.20 The 
potential energy associated with this disequilibrium bubble of (initial) radius R, emersed in 
a liquid under hydrostatic pressure Ph is given by 

(PE)i = (4/3)n[R: - (R, EQ ) 3 ] p h 

As this f < 1 disequilibrium bubble collapses, the potential energy relative to (PE), is 
describe8 y 

and the kinetic energy of the inward-moving liquid surrounding the collapsing bubble is 
summed up over all radii r > R(t) as follows: 

A- 

KE = J $ ( 4 ~ r ~ p t d r ) ( d r / d t ) ~  , 
R 

(4) 

where the radial coordinate r is associated with the liquid. Including the work expended in 
adiabatically compressing the gas entrapped within the bubble [for an ideal gas, P&zy = 
constant, work = P,,V,{ zy- -1 }/(y - 1) for y > 1 or P,,V, 1; z for y = 11, along with 
the assumption of incompressibility of the host liquid [e.g., 4n r (dr/dt) = 4n R (dR/dt)], 
the following bubble kinetics equation results from the balance of KE, PE, and pressure- 
volume work . 

2 

13,20. 

where 

and O, = ,/m-/Ro is the natural (resonant) frequency of the initial (disequilibrium) 
bubble. For the case where P,, = P,, = 0, the time for the disequilibrium collapse, z* = 

jR!r /(dR / dt) , is given by2' 
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where T(y) = e-’ xy - dx is the Gamma Function. Lastly, the “impulse parameter”, 
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I 
P,dt , is expressed below in “fusion units,” n( l/m ), z(s), and Tkev(keV): 

When a time-varying pressure, Pa(t), is added to the hydrostatic pressure, Ph, far from the 
bubble and included in the balance between kinetic energy, Fotential energy, and work, 
along with the addition of a viscous pressure term [-4 q R (dR/dt)/r] to P h ,  and using 
the relative pressure balance described by Eqn. (l), the following (Rayleigh-Plesset) 
bubble-dynamics equation results: 

13 

13 where v = dR/dt. The Rayleigh-Plesset (Noltingk-Neppiras-Poritsky) equation describes 
a highly idealized bubble and is subject to a number of important limitation, some of which 
are listed below 4,10,13- 

single bubble in an infinite medium 
spherical bubble, no distortions or breakup 
spatially uniformity within and outside the bubble 
absence of body forces 
acoustic wavelengths (associated with Pa) much greater than R 
no viscous effects within the bulk liquid [the term in Eqn. (9) is associated only 
with fluid motion near the bubble surface] 
incompressible liquid phase 
constant gas inventory within the bubble 
constant liquid vapor pressure (isothermal cavity wall) 
no molecular diffusion into or out of the bubble 
no acoustic streaming and impact of resulting shear stresses on bubble shape 
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0 ideal-gas, adiabatic behavior within the bubble with a constant polytropic 
coefficient. 
no radiation loss from the gadplasma within the bubble 
no gas-phase shock formation (c >> dWdt). 

With these limitations in mind, Eqn. (9) is solved for both a sinusoidal (Pa = PA sin o t) 
and an aharmonic/resonant pressure function, [Pa(t) = PA 2 for the Nth compression in 
a series of compression-expansion cycles], starting with an equilibrium bubble (xo = 
R,/REQ = 1, fq =1). In the case of driven systems, an initial radius, REQ, is chosen to 
give a natural resonant frequency, or, equal to the driver frequency, 2 n f; otherwise, a 
significant art of the numerical computation is devoted to resolving uninteresting transient 
oscillations . In addition to determining R(t) and T(t), the resulting gas pressure, P,(t) is 
assumed to be generated in a deuterium- tritium (DT) gas mixture, an impulse parameter 
<n z T,,> is computed for each compression the arises, and the DT fusion yield 

N- 1 

EL3 

YLD = l$ n 2 < o v >  dt (4/3) n R3 dt , 

for each compression registered, where n = pg N, and <o v> is the DT fusion reactivity. 
These integral quantities, along with the peak radial compression, xmin = Rmin/RO, and the 
maximum temperature, T(xmin), are correlated with the disequilibrium parameter, fq = 
Pgo/ PEQ, evaluated at the beginning of each major compression. 

Both DT depletion through burnup and fusion-product heating are monitored, but this 
information is not incorporated into the time-dependent model; for most of the conditions 
examined, these fusion-related effects on the bubble dynamics and response are not 
important. 

Although most of the approximations listed above are retained in the present analysis, the 
following van der Waals equation of state replaces the ideal-gas assumption: 

w = C, T = (V - v,) P/(y- 1) (12) 

P(v - VH) = s/c, , (13) 

where v = Up, is the specific volume of the gas and vH = 0.05 m3/kmole is the "hard- 
sphere" volume of the hydrogen atom. In this case the ideal-gas adiabatic is subject to the 
following correction: 

1 p .3Y = - - 
PO fVDW 



fVDW - - [' - 1 -  vkLx3T VH , 

where vk= pgo vH and pgo = Pgo/(G To) is the initial pressure gas pressure in the bubble. 

A second correction to the ideal-gas adiabatic is applied to adjust (approximately) for 
"sliding adiabaticity" associated with energy shed from the compressing bubble from free- 
electron (Bremsstrahlung) radiation. In this case, the right-hand side of Eqn. (14) is 
multiplied by the factor , where the integral I(t) is given by 

I(t) = l* dt , 

and 

The radiation power density and the total energy density in the bubble are  RAD and w,  
respectively. The degree of ionization, fion, is assumed to be given by the Saha 
equilibrium relationship 21,22 

1 
1 +  JGTEj fion = 

The dissociation of DT is neglected, the atomic and ionic partition functions Qo,l, are taken 
as unity, Tev is the temperature in electron-volts, and the ionization potential is E, = 
13.6 eV. 

III. RESULTS 

The conditions where DT fusions might be generated in the course of a compressional 
heating driven by the liquid forces transferred to a collapsing gas-filled cavity are explored 
at two levels using the simplified model described in Sec. II. At the parametric level, the 
"disequilibrium" parameter fes along with and initial equilibrium bubble radius, REQ, are 
specified to determine an initial normalized radius, x, = Ro/ REQ , with which to begin the 
time-dependent calculation of R(t) and the fusion-related integral and peak parameters. At 
the second level, the Rayleigh-Plesset equation, Eqn. (9), is solved for an initially 
equilibrium bubble with a radius REQ chosen to assure that the natural resonance 
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frequency, or = d m / R F Q ,  matches that of the drive frequency, 2 n f, where P,(t) = 
PA sin (2 n f t). A second, aharmonich-esonant drive scenario was also investigated, 
wherein P,(t) is applied only during a given bubble collapse at a value that is double the 
value used to drive a previous collapse. For either of these harmonic- or 
aharmonich-esonant-driven simulations, the value of fq prior to each collapse is recorded 
and correlated with the fusion performance [e.g., xmin, TkeV(xmin), a ' c  TkeV>, and YLD]. 
For all computations a van der Waals equation of state is used, and the correction for 
(accumulated) radiation losses embodied in Eqns. (16)-(20) is imposed. The fixed 
parameters listed in Table I are used, which generally reflects the properties of water at To 
= 300 K. 

A. Correlation Based on Specification of Disequilibrium Parameter, fq 

Figure 1 gives a schematic representation of the case wherein an equilibrium (x = 1, fq = 
1) bubble is brought by some unspecified route to a state of disequilibrium (feq e l), the 
resulting three-dimensional "sling shot" is released, and the ensuing compression (and 
rebound) is numerically followed in time. The unspecified (unmodeled) equilibrium + 
disequilibrium trajectory, x = 1 + x, is assumed to occur slowly (relative to the time scale 
of the ensuing collapse) and isothermally; the initial conditions used for the modeling of the 
bubble collapse in terms of the equilibrium (x = 1, fq = 1) state are as follows: 

R O  

To = TEQ . 

The state conditions upon peak (adiabatic) compression are approximately given by 

The product of peak pressure, -nTkeV, and the collapse t h e ,  'c*, given by Eqn. (7) scales 
as follows: 

where 
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and from Eqn. (7), or ?;* is near unity. These relationships are based solely on equilibrium 
conditions and are given only as an indication of key scaling dependencies in the search for 
means to maximize T and <n ?; TkeV>. 

All computations that varies fq parametrically correspond to an equilibrium bubble of 
radius RfQ = 100 pm, with the isothermal excursion to the initial radius R, where actual 
modeling of the bubble collapse begins, being given by 

~n this expression, x, = R J R ~ Q ,  vk = po vH, and p, = (Ph + P,, - P,,)/(Q T,) is the 
(DT) gas density in the equilibrium (x = 1) bubble; for all cases, the Table-I parameters are 
used, dong with Ph = 1x10 Pa and P,, = 2 o/RFQ. 5 

20 The parametric dependencies of xmin/x, = Rfin/%, <nrGT>/10 , YLD/106, and T ( X ~ ~ )  on 
fq are shown on Fig. 2. The sample normalized-radius trajectory (during compression) 
used in the Fig.-1 illustration corresponds to fq = 0.01. Shown also is the fq dependence 
of xmi, = Rmin/ RfQ . The peak temperatures reported correspond to an adiabatic heating 
along an adiabat that starts with a disequilibrium bubble at To = 300 K, under the 
assumption that the equilibrium + disequilibrium trajectory was achieved slowly and 
isothermally; the T - l/fq dependence suggested by Eqn. (22) is indicated. Shown also on 
Fig. 2 are temperatures for the case where the expansion p m  of the trajectory was also 
adiabatic; that is, the expansion from x = 1 to x = x, was accompanied by a cooling prior to 
the subsequent bubble collapse and adiabatic compressional heating. [e.g., neglecting the 
van der Waals correction, which is small in this region, To = TOq /(x~(~-'))]. The <nrcT> 
and YLD values reported on Fig. 2, however, correspond to the more optimistic isothermal 
equilibrium + disequilibrium trajectory. For this case, measurable quantities of neutrons 
from a single bubble collapse would require that bubble to be "set up" with fq e 
Considerable lower values of fq would be required if the assumed expansion from the 
equilibrium to the disequilibrium state is adiabatic, as will be seen from the following 
evaluations of the Rayleigh-Plesset equation to describe an initially equilibrium bubble 
trajectory to disequilibrium and subsequent collapse under a range of externally driving 
pressures. 

B. Correlations for Driven Equilibrium Bubbles 

1. Harmonic Drive [Pa = PA sin (2 n f t)] . 

The radius trajectory of an (initially) equilibrium bubble subjected to PA = 5x105 Pa 
pressure oscillations at an f = 10-kHz frequency is shown on Fig. 3. For this case, the 
(initially) resonant bubble has a radius RFQ = 292 pm when Ph = 1x10 Pa. Comparing x 
= R/RtQ to the driver pressure, also given as 1 + Pa(t)/Ph on Fig. 3, indicates an initially 
harmonic, but highly non-linear, response that is followed by the bubble trajectory settling 

5 
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onto a moderately rhythmic forth subharmonic. Fairly deep compressions (limited by the 
van der Waals equation of state) from fq - 0.5-1.0~10‘~ disequilibria are predicted for 
these sinusoidally driven bubbles. The correlation of xmin, T(xmin) and <n%T> with the 
computed fq values taken from the Fig.-3 trajectories just prior to a given collapse is 
shown on Fig. 4. The relatively low (peak) temperatures for even low values of fq result 
from the adiabatic cooling computed during the expansion part of the trajectory, as well as 
the cumulative effects of radiation cooling for this constant-amplitude sinusoidal drive. The 
impact of elimination of radiative losses is also shown on Fig. 4; the accumulated radiation 
losses impact primarily those deep compressions that occur later in the chain of 
compressions depicted on Fig. 3. As for the cases where the bubble is forced to begin to 
collapse from a specified fq value (Sec. III.A.), the van der Waals equation of state limits 
the maximum compressions permitted. The neutron yield, YLD, for all compressions 
registered on Fig. 3 are below the minimum scale used on Fig. 4 for this PA = 5x105-Pa 
harmonic-drive case; a means must be found to pump more energy into the collapsing 
bubble while forcing it to higher levels of disequilibrium prior to collapse. 

2. Aharmonic/Ftesonant Driver 

Just as more energy and greater excursions can be transferred to a ball tethered to a paddle 
by an elastic band through timely swats, so can tailoring of the impulse to the anharmonic 
trajectory of the bubble radius increase the response and performance. Figure 5 gives the 
time dependence of the normalized bubble radius and drive pressure for the case reported in 
Sec III.B.2., but with pressure being applied only once the bubble collapse commences. 
Furthermore, this aharmonic application of ressure is doubled in intensity for each 
subsequent collapse, with Pa starting at 1x10 Pa. The values of xmin, T(xmin), <nTT> 
and YLD for each bubble collapse registered on Fig. 5 is shown on Fig. 6 as a function of 
the respective value of fq just prior to collapse. The impact of (cumulative) radiation loss 
is not as great as that reported of the harmonic drive because of the ratcheting of the applied 
pressure in the aharmonic/resonant case. The neutron yields, however, remain low unless 
fq < lom6 primarily because of the low (peak) temperatures related to the adiabatic cooling 
during each expansion to the disequilibrium state that proceeds a give bubble collapse. 
Generally, the assumption of fully adiabatic expansion (and cooling) leads to unrealistically 
low temperatures prior to collapse and requires an improved model. 

F 

24 

Iv. SUMMARY 

The collapse of a gas-filled bubble in disequilibrium can occur with a significant focusing 
of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical 
shocks. The suggestion that extreme conditions necessary for nuclear fusion may be 
possible been examined parametrically in terms of the ratio fq of initial bubble 
pressure relative to that required for equilibrium. The disequilibrium bubble is viewed as a 
three- dimensional “sling shot” loaded to an extent allowed by the maximum level of 
disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 

are predicted by an idealized bubble-dynamics model as necessary to 
ac eve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic 
and aharmonic pressurizations/decompressions have been examined as means to achieve 
the required levels of disequilibrium, with the latter drive scenario offering a possible 
means to achieve fq values and peak temperatures where measurable quantities of fusion 

1,7,11 

- f ey=  
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might occur. While the simplified “adiabatic” compressional model uses a hard-sphere 
equation of state and allows for Bremsstrahlung losses, any number of the phenomena 
listed in Sec. 11. and not included in this analysis could impact these predictions in a 
generally negative way. The creation of multiple and interacting gas-phase shock waves 
and mechanisms that allow isothermal expansions to the disequilibrium state could enhance 
the predictions of relatively low fusion yields, however; an improved understanding of the 
potentially positive impact (from the view point of heating, density amplification, and 
increased fusion yield) of multiple interacting shocks is suggested as a course for future 
work, as well as the incorporation of gradient-driven transport, gas/plasma-wall 
interactions, and an improved radiation model. 
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NOMENCLATURE 

sound speed in gas 
gas heat capacities at constant pressure,volume 
Bremsstrahlung radiation coefficient, 4 . 8 ~ 1 O - ~ ~  
(hydrogen) ionization potential 
electronic charge 
driver frequency 
disequilibrium parameter, PgJ PgQ 
(Saha) ionization fraction, Eqn. (1 8) 
van der Waals correction, Eqn. (15) 
pressure-volume work function, Eqn. (6) 
Planck‘s constant, 6 . 6 2 5 2 ~ 1 0 - ~ ~  
radiation integral, Eqn. (15) 
Saha function, Eqn. (19) 
8.6 17x 1 0-5 
kinetic energy 
mass flow of liquid towards collapsing bubble 
electron rest mass, 9.1083~10”~ 
number of a series of sequential bubble compressions 
Avagadro’s number, 6 . 0 2 4 9 ~ 1 0 ~ ~  
gas particle density, pg NA 
time-averaged gas pressure during a given bubble collapse 
acoustic (time-varying) pressure exerted on cavity 
amplitude of acoustic (time-varying) pressure exerted on cavity 
gas (non-condensible) pressure in cavity 
gas (non-condensible) pressure in cavity for equilibrium bubble 
hydrostatic (constant background) pressure exerted on cavity 
vapor pressure (of liquid) in cavity 
effective surface-tension pressure, 2 OR 
potential energy 
(Bremsstrahlung) radiation power density 
partition function for atom,ion 
bubblekavity radius 
gas constant, 8,317. 
radial coordinate into liquid 
initial bubblekavity radius 
initial cavity radius for equilibrium bubble 
enthalpy 
time 
temperature of gas 
reference (initial) temperature of gas 
thermodynamic critical temperature of water 
gas/plasma temperature in electronvolts 
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gas/plasma temperature in kiloelectronvolts 
initial volume of bubble, (4/3) 7cR: 
gas molecular (atomic) volume, l/r 
(m h o l e )  molecular (atomic) volume 3 

normalized molecular (atomic) volume, vHpgo 
van der Waals correction, Eqn. (14) 
gadplasma-phase energy density 
radius compression ratio, R/ RFQ 
normalized disequilibrium radius, RJ REQ 
number of (DT) fusions per bubble collapse 
atomic number of ionized gas 
volumetric compression ratio, (RJR) 
maximum compression (dR/dt = 0) 
heat of vaporization 
liquid viscosity 
gas heat-capacity ratio 
Gamma function 
surface tension of liquid 
(DT) fusion reactivity 
driver frequency, 2 n f 
bubble resonance frequency, 1I(p,lpe> / R, 

3 

liquid density 

gas density 
bubble natural response time, or nominal inertial confinement time 
(as in <nfl>) 
collapse time of a pressureless cavity 



EQUILIBRIUM/DISEQILIBRIUM/COLLAPSE TRAJECTORY 

10' 
80 s 
II 
X 

Figure 1. Schematic diagram of bubble radius trajectory illustrating approach to fes e 1 
disequilibrium from fq, x = 1 equilibrium state, followed by collapse to xmin. 
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PARAMETRIC DEPENDENCIES on f eq 

l2/28/94 Los Alomos 

io-' io-" io-' io-' ioo 
DISEQUILIBRIUM PARAMETER, f eq 

Figure 2. Parametric dependence of integral and peak-compression parameters on 
disequilibrium parameter, fq = PgJ Pgo EQ . 



f = 10. kHz; REQ = 292. ,urn; PA/Ph = 5.00 
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Figure 3. Response of normalized bubble radius to f = 10 kHz, PA = 5x10 Pa sinusoidal 

equilibrium pressure oscillations starting with a resonant (a, = 2 n f), 
(x, fes = 1) bubble. 
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Figure 4. Dependence of integral and peak-compression parameters for the harmonically 
driven bubble compressions given on Fig. 3. 
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N -1 f = 10. kHz; RtQ = 292. pm; PA/Ph = 2 
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Figure 5. Response of normalized bubble radius to progressively doubled pressure pulses 
for conditions that are otherwise identical to those used for the harmonically 
driven case given on Fig. 3. 
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N - 1  f = 10. kHz; R:Q = 292. pm; PA/Ph = 2 
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Figure 6. Dependence of integral and peak-compression parameters for the 
aharmonic/resonant drive given on Fig. 5. 
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Table I Input Parameters 

Liquid density, pe(kglm3) 

Background hydrostatic pressure, Ph(Pa) 
Vapor pressure at To = 300 K, Pvo(Pa) 
DT molecular volume, vH(m h o l e )  
Heat-capacity ratio, y 
Surface tension, G (Nm) 
Fluid viscosity, q (kg/m s) 
Reference temperature, To(K) 
Critical temperature, T,“,(K) 
Ionization potential, EI(ev) 
Atomic number of ionized gas, 2 
Partition functions for neutral, ionic species, QO,, 

3 
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