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ABSTRACT

The multiple scattering theory (MST) method of Korringa, and of Kohn and-Rostoker for
determining the electronic structure of eolids, originally developed in connection with potentials
bounded by non-overlapping spheres (muffin-tin (MT) potentials), is generalized to the case of
space-filling potential cells of arbitrary shape through the use of a variational formalism. This
generalized version of MST retains the separability of structure and potential characteristic of
the application of MST to MT potentials. However, in contrast to the MT case, different forms of
MST exhibit different convergence rates for the energy and the wave function. Numerical results
are presented which illustrate the differing convergence rates of the variational and nonvariatonal

ffi forms of MST for space-filling potentials.
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The method proposed by Korringa[l] and by Kohn and Rostoker2] (KKR) provides a con-
venient way of calculating the electronic structure of an assembly of atoms. The method was
originally formulated for periodic systems and for use with potentials of muffin-tin (MT) form,
i.e., potentials that are non-zero only within a sphere inscribed inside the Wigner-Seitz cell and
are also spherically symmetric. Its numerical applications have also been confined almost ex-
clusively to such potentials. However, in spite of the fact that the MT approximation is quite
appropriate in many cases, e.g. reasonably close packed crystalline metals[3], it cannot properly
describe a number of physical systems, e.g., semiconductors and surface and interface regions.
The atomic (cell) potentials in such systems often deviate drastically from their spherical average,
and the contributions from regions outside the inscribed spheres are often non-neglible. Thus, a
proper treatment of such systems within the KKR method requires the extension of the method
to non-MT, space- filling cells.

Much work[4-25] has been devoted to the question of the applicability of the KKR method to
space-filling potential cells. In this work, a great deal of attention has béet paid to the issue of ~/
“near field corrections”, a term used to indicate that MST cannot be applied without modification
to potontials with shapes and positions such that their circumscribing spheres overlap. This, in
turn, would imply that the separability of strucfure and potential, so convenient for computations
in the case of MT potentials, would be lost with the result that the application of MST to space-
filling cells would become a much more arduous undertaking, both conceptually and in practical
terms.

In this paper we present a derivation of the secular equation of multiple scattering theory for
non-MT potentials within a variational formalism. The existence of a variational form of MST i
has a number of important implications. First, it is of practical importance, in, for example, the
dctermination of the total energy in charge-self-consistent calculations of the electronic structure.
Second, it is of formal importance because it provides a complete justification of the validity of
MST in the case of space-filling cells. In addition, the formalism of this paper shows clearly that
the problems encountered in generalizing MST to space-filling potentials are primarily geometrical
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in nature involving the convergence of the angular momentum expansion of the free particle
propagator.

This derivation also shows explicitly that MST retains the desirable seperability of potential
and structure even in the case of non-MT, space-filling cells. However, in contrast to the case
of MT potentials, the variational nature of the eigenvalues of the secular equation determining
the band structure is greatly affected by the particular form in which that equation is written.
This feature is borne out by numerical calculations whose results are presented in a later section.
This feature is new in the sense that in the case of muffin-tin MST all of the various forms of
the muffin-tin MST secular equation yield energies that are variational with respect to the wave
function.

THE VARIATIONAL PRINCIPLE OF KOHN AND ROSTOKER

The time independent Schrédinger equation,
[-V? 4 V(r)~ El¥(r) =0 (1)

may, for bound states, be written in the integral form
w(r) = [ dr'Gor, PV ()(x), @)

where Go(r,r’) is the Green function for the Helmholtz equation and is the solution of the
equation,
(V¥ 4+ E)Go(r,r") = é(r ~ t'). (3)

Kohn and Rostoker[2] showed that Eq. (2) is equivalent to the variational principle §A[¢)] = 0
where the functional A is defined by the expression

A= / dr () (x)(r) - f dr / dr' " (r)V (£)Golr, )WV (£)(r). )

This variational principle can be used to obtain a secular equation determining the wave function.
Upon using a trial function of the form,

Y=Y a;¢;, (5)
=0

with a; a complex coefficient and ¢; an element of some basis set, and substituting into Eq. (4)
we obtain,

n
A= Z alAija;j, (6)
1,J=0
where
A; = [HEVEEE
- [ [ 80V EGLr - ¥ V(r)gs(r)drd, ™)
is a Hermitian matrix. The application of the variational principle to Eq. (6),
§A :
3-‘;:—-0 t=1,2,...,n, (8)

yields the set of homogeneous linear equations,

Y Ayej=0, i=1,2.,n, . (9)
=1
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I which has non-trivial solutions only if its determinant vanishes. This requirement leads to the
secular equation,
' det |Ai;(E)| = 0, (10)

which determines the energy. The energy dependence of A comes from the energy dependence
of the Green function and possibly from the energy dependence of the basis functions. Since the
energy is determined from a secular equation based on a variational principle the error in the
energy will be of second order with respect to the error in the wave function,

There are two important differences between the Kohn-Rostoker variational principle and the
more common variational procedure that is usually associated with the names of Rayleigh{26]

and Ritz[27], 6Q{y] = 0, where

Q= /dr v (r)E - H]p(r). (11)

Firstly, the Kohn-Rostoker secular Eq. (10) is not linear in the energy even if the basis functions
¢; are energy independent. Thus, since the convenience of a secular equation that is linear in
energy is lost from the beginning there is no further loss in convenience if the basis functions are
chosen to be energy dependent. The second important difference is that since the Kohn-Rostoker
variational functional, A[1], only involves integral operators rather than the differential operator
that occurs in the Rayleigh-Ritz procedure, it remains vaiid in the presence of discontinuities in
the basis functions which would lead to singularites in Eq. (11). This makes it possible to choose
basis functions that are piecewise combinations of locally exact solutions to the Schrodinger
equation,

Thus, although Kohn and Rostoker could have chosen almost any set of functions, ¢;, in
which to expand their trial wave function, they chose functions which took best advantage of
their variational principle. They divided space into cells, approximated the potential within
each cell by a inuffin-tin potential, and used as basis functions the exact local solutions to the
Schrédinger equation (for the muffin- tin potential) within each cell. The use of locally exact
solutions has the important benefit of allowing the volume integrals within each cell that occur
in Eq. (4) to be reduced by means of Green's theorem to surface integrals which turn out to be
trivial to evaluate for muffin-tin potentials. In the following we shall extend their derivation to
the case of non-overlapping potentials of general shape.

VARIATIONAL DERIVATION OF MST FOR SPACE-FILLING CELLS

For convenience of exposition we treat the case where the total potential V(r) is confined to a
finite region of space. Our final formulae will, however, be applicable to infinite systems as well.
We divide this region into non-overlapping, but otherwise arbitrarily shaped cells, denoting by
), the volume occupied by cell n, and by v,(r) the potential within that cell. Thus A will be
written as A = 3_,, A" where

A" = j; dr (e)un(r)B(r) (12)
and where B(r) is given by the expression
B(r) = ¥(r) - / dr'Go(r, )V (') (). (13)
By use of the identities,
V() p(r') = (V2 + E)p(r) (14)
and
Y(r) = / dr'(V"? + E)Gofr, ) o(r") (15)

together with Green’s theorem, Eq. (13) can be converted to a surface integral,

B(r) = /S dS' i - [V'Go(r,¥') = Go(r, r)V'}(x). (16)
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Similarly, the identities,

| (V2 4+ E)B(r)=0 (17)
and
P (r)oa(r) = (V2 + E)P"(r) (18)
can be used with Green's theorem to write A" as
A* = /S ds - [V9*(x) - ¥*(r)V]B(r) (19)
=//s ds & - [V (r) - $"(r)V]
X /s 4" & [V'Golr, ') = Go(r, )V IU(F) (20)

The surface S’ may be any surface that encloses the region where V(r) # 0, and the surface Sn
is the surface enclosing ©,, that region of space where vn(r) is nonzero (Fig. 1).

In order to derive a useful formula for A", we must separate the integrals in Eq. (20). This
can be done by using the Green function expansion,

Golr, ) = 32 Ju(ra)Hi(ra), for rh > ra (21)
L

where r, = r — Ry, is centered about a point in cell n. In order for this expansion to be convergent,
it is only necessary that all points on the surface S’ be further from the expansion center in cell
n than all points on the surface, Sy, of cell n (Fig.1). The choice of these surfaces provides one
way of obtaining a valid, convergent expansion of Gy in terms of intracell vectors in adjacent cells
that can be integrated independently over the cell surfaces. Thus A™ is given by

A" = Z ds # - [Vi,b*(l') - ’(/)'(l')V]JLH(rn)

L” s"
X /s, dS' &' - [V' Hpo(r'n) = Hpo(x's)V'19(F), (22)

where the sum over L” could be moved outside the integrals because it is convergent for every
value of the integrand.

At this stage it is convenient to employ local sets of basis functions to expand our trial wave
function in the form,

P(r) = 3 ¥a(r)On(r) = ) ALSL(E,Tn)On(r) (23)
n nlL

where ©,,(r) is unity for r inside cell n and vanishes otherwise, and where ¢7(E,ry) is a solution
of the Schrédinger equation for energy E, corresponding to the potential in cell n. The functions
¢, have the form

su(r) = S L (r)Cui(r) + Hu(r)Sww(r)] (24)
Ll
where
Cpu(r) = ~[Hr Ll = —Tg_/rd"' NHp (2 )V'SL(x') ~ V' Hi(x)r(r)] (25)
and
Spi(r) = v, dLlr = T’/rdf' (I BL(r') = V' I (x gL (r)]. (26)

and where {f, g] denotes the Wronskian of the two functions f and g.
Using these local solutions, the integral over S, becomes

Is, = AT [ dSi-(VOE(F) = 1 (1)VMun(en) (21)
L n
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Now, consider the surface integral over §',
I = /S dS'i' - (V' Hyn(r'n) = Hpa(r' ) V]9(r). (28)

This integral can be written as a sum of surface integrals over the surfaces of each of the cells in
the system. Using the expansion in terms of local basis functions, Eq. (24), we have

Iss = ¥ AL /S (A"’ (V' Hpu(r'n) - Hpn(r')Ve3(r' ). (29)
n'L}

At first glance, it might appear that the surface of integration can be either §' or any surface
bounding cell n’, such as the surface S, of the cell itself because the functions ¢} are local
functions that satisfy the Schrédinger equation for the cell potential v,(r) . A conceivable reason
for this is that, by the use of Green's theorem, the integrals in Eq. (29) can be written as volume
integrals

8 b1 — /0 do' Hi, (¢ Yo (2 )7 (¥ ) (30)

where €, is the volume contained within surface Sy.. Clearly this integral is independent of
the volume of integration as long as it includes all of the volume in which v, is nonvanishing.
However, the integral over the surface, S, of the large sphere always includes the singularity of
the Hankel function, while the integral over the surface of a cell may not. This is true when the
Hankel function is expanded about the center of an adjacent cell. Even though the contribution
of this singularity is non vanishing, it is still true that the replacement of one surface integral
by the other does not affect the expansion for A. That this is indeed the case is shown in the

appendix.
Thus A can be written in the form,
A=Y A"= 3 APALAL (31)
n nn/LL'
where

A = 3 [ dsn 198 () = 0 () VM)
IJ” n

X / dS'R - (V' Hya(t'n) = Hun(e'n) V60 (E' ), (32)
S

and where the integral over §' has been replaced with the integral over the surface,Sy, of the
cell Q,,. Note that it is now necessary that the surface integrals be performed before the sum
over L". Otherwise the sum would diverge whenever r/ is smaller than ry, a situation that will
occur for general potentials, but which can be avoided for muffin-tin potentials. The reason for
the lack of commutivity of the sums and integrals in the last equation is the fact that one may
replace complete sums or integrals by complete sums or integrals of the same value, but one may
not necessarily be allowed to rearrange the individual terms of the sums.
The generalized KKR equations are obtained by minimizing Eq. (31) with respect to the
coefficients A7, with the result
Y AL (E)AT = 0. (33)
n’'L!
The eigenvalues of Eq. (1) are found among those values of E for which the determinant of the
Hermitian matrix Z’L', vanishes. This matrix is the product of the generalized sine and cosine
matrices, S7;,, and CZ?,I" defined by the expressions

St L(E) = L dSi - (V1 (rn) = JL(En) VB0 (rn) (34)

and
CIE = [ 48" [V'Hu(s's) = Hu(e'n) VW) (35)
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|
g}ﬁ so that
nn'

} . LL = 5: S’?JLUCBE'LI- (36)
| "

! with a tilde denoting the transpose of a matrix. Note that in C}}, the integral extends over the
surface of cell ©2,,» but that the Hankel function is expanded about the center of cell 2,,. We see
that Cer = CE?/"

If the shape of the cell is such that the intercell vectors which connect the expansion centers
of each cell are larger than all of the intracell vectors between a cell center and its boundary,
the generalized cosine matrix, C}},, can be be expanded using the addition theorem[29] for the
spherical Hankel functions

HL(rn) = ZGLL’(Rnn')JL’(rn')v for Rnn’ > 7‘:1, (37)
LI
allowing the generalized cosine matrix to be written, for n # n’, as
CZZ': = ZGLL"(RHH’)'S‘E:’L’ (38)
L"

where Gpr(Rnm) is the real-space structure constant between the centers of the two cells, and
is given explicitly by the expression,

Gru(R) = 4r S i7¢-'C (LL'L") Hyn(R), (39)
L

with C(LL'L") being a Gaunt number, (integral of three spherical harmonics). For periodic
materials, the Fourier transform of Gpp/(R, ) yields the well-known structure constants of the
KKR method. With the use of Eq. (38), the secular equation which determines the allowed
energies can be written in the form,

det

§ncn _ én [Gnmsm]I = 0. (40)

Here, quantities in bold type denote matrices in L-space, and the brackets indicate that for nearby
cells, e.g., nearest neighbors, the product of the structure constants and one of the sine matrices
must be caried to convergence before the other sine matrix is multiplied by the resulting product.
The last expression shows that the secular equation for MST for space filling, even non-convex but
non- overlapping cells has the same form as the secular equation for MT potentials. In particular
the separation of structure and potential, i.e., the structure constants and the sine and cosine
matrices, that characterizes MST in the MT remains a feature of the non-MT case subject to the
constraint mentioned above, namely that the expansion of the generalized cosine matrix Eq. (38)
into a structure constant matrix and a sine matrix requires that the distances between expansion
centers in different cells exceed the distances between the expansion center for a given cell and
all points on its boundary.

Formally, Eq. (40) can be written in a number of equivalent forms which, however, exhibit
different convergence characteristics. It is possible, for example, to derive rigorously a version of
the MST equations which omits the §, i.e.

> C™ AL = 0 (41)
n'L!

but the energies for which this equation is satisfied will not be variational with respect to the
wave function as are those obtained from eqs.(33 or 40). The result that some forms of the KKR
secular equation are variational while others are not is a new feature which distinguishes non-
muffin tin MST from the muffin- tin limit and is due to the conditional convergences associated
with non muffin-tin MST and the consequent necessity of converging internal angular momentum
sums. The practical consequence of this is that one may not view Eq. (40) or A3%, in Eq. (36)
as the products of square matrices §™ and cm,
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Table I: Calculated energies and wave function errors for the second and third & = 0 states of a

square lattice. These calculations employed the variational version of MST, Eq. (31).

) Mh .

brax Eeract Ecale MSWFE %ﬁ%ﬁ Eyor
0 -5.0 -5.9291847 6.91x10~% -3.58 -4.906345

4 -5.0 -4.9999550 7.97x10°8 5.65 -4.999792

4 -1.0 -0.994071 1.15%1073 5.15 -0.978936

| 8 -1.0 -0.99999989 1.55x10~8 7.02 -0.9999989

NUMERICAL RESULTS

In order to demonstrate the validity of Eq. (40) and the variational nature of the energy for
its solutions, we have calculated the energy and the wave function for some of the k = 0 states
of a two dimensional square lattice. In this test the individual potentials v,(r) were taken as a
constant Vp within cell n and zero outside. The cells were squares arranged so as to completely
fill the plane. Thus, although the total crystal potential was, Vp, a constant which allowed us to
trivially calculate the exact wave function and eigenenergies of the Schrodinger equation, MST was
faced with the formidable task of representing these functions using the free space Green function.
Details of the the two dimensional “empty lattice test” such as the two dimensional versions of
Hp(r), JL(r), and Gr(R) can be found in papers by Butler and Nesbet[30] and Faulkner[14].
Note, however, that our conclusions concerning the validity of MST as determined by the empty
lattice test differ from those of Faulkner, who obtained extremely poor convergence in angular
momentum and was not able to decide whether or not near field corrections are necessary.

Results for the empty lattice test are shown in Table I. The depth of the potential in this
example is taken as Vp = —9, and the side of the square is x. The energy is measured in units
of I=? where ! is the unit length. The maximum angular momentum used in the calculation is
denoted by €,,,z, while Fepget and Egy. denoted the exact and calculated energies and MSWFE
denotes the mean square error in the wave function. E.q, denotes the energy calculated by using
the calculated MST wave function in the Rayleigh-Ritz variational expression for the energy. The
column denoted by £,z shows the maximum value of the orbital angular momentum used in
the expansion of the wave function. We emphasize, however, that it is necessary to converge
all internal sums if one is to obtain meaningful results in a test such as this. Thus, internal
sums were not truncated at £,,,,, but carried to full convergence by means of calculating the
quantities CZZ" through direct integration for the first two nearest neighbor shells of a given site.
Since the state being investigated was a state with full square symmetry, only values of orbital
angular momentum evenly divisible by four entered the calculation. The column denoted by E.,.
contains the energies for which the secular Eq. (40) is satisfied. We also show the ratic of the
error in the energy (Ecalc — Fezact) to mean square error in the wave function (MSWFE) defined
as

/drw’calc(r) - ‘bcxact(r)lz//drlwcxactlza (42)

where the calculated value of the wave function, ¥/, was obtained from Eq. (24) using the
coefficients a} obtained form Eq. (33). Finally, we show E.,, a variationally refined value of
the energy calculated by using the Rayleigh-Ritz variation principle with the calculated wave

function,
E r = f dr¢:ﬂlc(r)H¢’calc(r)
" fdrl’l’culc(r)'g

The important point to notice is that the error in the energy is of the same order as the mean
square error of the wave function, even though both of these vary over eight orders of magnitude
for the different values of £yqx. Furthermore, it is clear that the variational procedure does not
iuprove the energy over the value obtained from the secular equation itself. These results may
be contrasted with similar calculations using the version of the MST equations without the §,

(43)
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lr Table 1I: Calculated energies and wave function errors for the second and third k = ( states
~ of a square lattice. The paraineters are the same as for the previous table. These calculations
employed a non- variational version of MST, Eq. (41).

lrax Eeract Ecale MSWFE %m‘ Evar = fout {1'}1'4'
0 -5.0 -4,0386580 1.88%x 1071 5.12 -4,2449788
4 -5.0 -5.0125155 3.39x10-8 -369.22 -4.9996807
4 -1.0 -0.8783834 1.87x1073 65.10 -0.9704981
8 -1.0 -0.9992260 1.33%10"7 5811.48 -0.9999960

Eq. (41), which are shown in Table II. The energy for this version improves with increasing ¢,nqz
but not as fast as the mean square error of the wave function. For this version, however, the
Rayleigh-Ritz refinement does greatly improve the energy. The wave functions are of comparable
accuracy in the two versions of MST.

DISCUSSION

The question of whether or not the MT form of MST remains valid in the case of space-filling
cells has been debated in the literature for over twenty years. It is relatively easy to derive
the MST equations for non-spherical muffin-tin potentials and to postulate that the same form
remains valid for space filling cells. A more careful consideration of the problem, however reveals
several reasons for doubting that this could be the case. Approaching the problem from the
point of «1iew of scattering theory one soon realizes that a partial wave which is scattered off of a
non-spherical scatterer does not attain its asymptotic form within a sphere which circumscribes
the potential. Moreover, if one attempts to use the asymptotic form within this circumscribing
sphere it can be found to diverge. On the other hand if one approaches the problem from the
point of view of the Lippmann-Schwinger equation one quickly faces the problem of expanding
the Green function in partial waves while rigorously maintaining the proper conditions on its
arguments to assure convergence.

It is clear however, that although the considerations of the previous paragraph indicate the
conceptual difficulties that must be faced in extending MST to treat full cell potentials they do
not constitute a proof of the existence of “near field corrections”. The formalism presented above
makes it apparent that MST can be applied to space-filling cell potentials provided that care is
taken to guarantee the convergence of sums over angular momentum states. In this regard, MST
assumes identical forms in the MT and non-MT cases. However, we have also established that
the variational properties of MST depend strongly on the particular form of the secular equation.
Depending on that form, the eigenvalues of the secular equation may or may not be variational
with respect to changes in the wave function. This and other features of non-MT scattering
theory will be explored in greater detail in a future publication[28].

APPENDIX

We pointed out above that the replacement of an integral over the surface, §', of the sphere
bounding an assembly of scattering cells by an integral over the surface of one of these cells may
not be justified because the former includes *the singularity of the Hankel function whereas the
latter may not. To see that this circumstance does not affect the value of the functional A, we
calculate and compare the values obtained for the surface integral in the two cases.

We begin by wiitting Eq. (12) in the form,

an= [ ey (e)un(r) B"(e) (44)




{ where
I

B(r)=% /S dS' 3 - [V'Go(r,¥') - Go(r, t)V'¥(r"). (45)
m m
|
j Using the expansion of ¥(r) in terms of basis functions, Eq. (24), we can write
i B"(r) = Y_ Bi"(r)el, . (46)
! mL’
where
BEM (r) = /s dS'i! - [V'Go(r,1) — Go(r, ) V165, (47)

If cells n and m are neighbors far enough apart the surface S, can be expanded so that the
conditions for the expansion of the free-particle propagator are satisfied. In that case, B} can
be written in the form,

BEM(x) = = _ Jr,(ra)[HL, 811 5m (48)
L,

where the square brackets denote a Wronskian type surface integral over the surface of cell m of
an irregular solid harmonic centered in cell n and a basis function centered in cell m.

It is slightly less obvious but equally true that B} can be written in this form when n» and m
are the same cell or near neighbors. First consider the case where m = n. In this case the surface
S, in Eq. (47) can be expanded to a sphere which circumscribes the cell without changing the
value of Bf*. This can be seen by using Green’s theorem to convert Eq. (47) into a volume
integral,

BP™(r) = ¢7(r) — /ﬂ dr'Golr, ' Yom ()8 (r') (49)

fiom which it is clear that 1y, can be any volume which includes cell m, i.e. the region where
vy, is non-zero, and therefore Sy, can be any surface which encloses cell m. Expanding Sm to a
sphere circumscribing cell m allows the use of the Green function expansion to obtain Eq. (48).

When m and n are neighbors we can again expand thc surface So, so that all points on its
surface are farther from the expansion center in cell n than all points on the surface Sy, (Fig. 2).
In performing this expansion, however, it is necessary to enclose the expansion center in cell n
with the result that the value of the surface integral is changed. Let S,. represent the expanded
surface and let BZI" represent the value of the surface integral over the expanded surface. It is

clear that
By (r) = 6 (r) - f dr'G(r, T)om(r) BT (') (50)
while
Bl (r) = - / dr'G(r, ' Yom(r )BT ()- (51)
Thus Bpr(r) = Bf7(r) + ¢T(r). Now B} can be written as
Bir(e) = = Y Ju, (ra)l AL, 605, - (62)
Ly

Consider the surface integrals [H B‘,d)'z",]gm. Each of these may be split into an integral o~ r S,

and an integral over the the surface bounding the remainder of Q,n. This latter surface integral
may be reduced to the integral over a small sphere centered at the the expansion center in cell

n. Thus

(H},,¢5)5,, = (HL, ¢T)sm + [HE, 6Dy (53)
where SO is a small sphere surrounding the expansion center in cell n, ie. the singularity of
Hp, (rn).

Now ¢ satisfies the Helmholtz equation, (V2 + E)¢J(r) = 0, for r outside of cell m. For
this reason, ¢ can be expanded in regular solid harmonics about the point r, = 0,

() = EL; JL, (Fa)egLr (54)
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“ ‘ Then using the relation [Hy,Jp] = —6p1 we have

H\l . [H21’¢T’159| = *QZ;"L', (55)

and
- %:Jga(rn)[ﬂl':,,ﬁf']sg = ¢7(r). (56)

which is valid so long as r is inside a sphere inscribed within cell n. However, this relation
defines a boundary condition for the wave function represented by the above summation and its
derivative on the surface of this sphere. This together with the fact that the same wave function
satisfies the Helmholtz equation, uniquely determines its values throughout the cell, and in fact
throughout the region where v, = 0. Consequently summation(56) gives ¢7\(r) everywhere in
cell n.

Thus B} (r) can be written as

Bpr(r) = =Y Jr,(va)HE, 8D s + SL/(T). (57)
Ly

which implies (upon comparison with Eqs.(50) to (52)), that B™™ can be written in the form,

BYr(r) = =y Ju,(ca)HL, 8D )sm (58)
L,

even if cells n and m are near neighbors. Th value of BPm does not change when the surface of
integration is expanded from that in Fig. 2 to " in Fig. 1. Thus, an integral over S’ in Eq. (29)
can be replaced by an integral over a cell surface in all cases, which justifies Eq. (31).
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Figure Captions
Fig. 1 The surface of integration 5’ of a sphere bounding a scattering assembly.
Fig. 2 The surface integral over cell m may be expanded to enclose an adjacent cell, n.
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