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Abstract

We present the numerical approach used in solving the time-dependent Dirac equation on a
three-dimensional Caxtesian lattice. Discretization is achieved through the lattice basis-spline
collocation method, in which quantum-state vectors and coordinate-space operators are ex-
pressed in terms of basis-spline functions on a spatial lattice. All numerical procedures reduce
to a series of matrix-vector operations which we perform on the Intel iPSC/860 hypercube,
making full use of parallelism. We discuss our solutions to the problems of limited node
memory and node-to-node communication overhead inherent in using distributed-memory,

1 Introduction

In this talk, we present the numerical methods developed for solving the _ime-dependent Dirac equation
in three space

dimensions on parallel computers. The Dirac equation is one of the

fundamental equations of nature, being the relativistic analogue of j Projectile _f =1
the SchrSdinger equation. We will present computational applica- §
tions of the Dirac equation to the lepton pair-production problem _ _ r
of quantum electrodynamics. Since this is a computational talk I ¥

will talk principally about the numerical methods used in our cal- I b e.:s e

.

culations. The theoretical details of the lepton-pair production and / t_'-"-IL _.,,,_ _

the reduction of the quantum electrodynamies to the well known _1 (__,,4_1"
Dirac equation is extensively discussed in [1]. Here, I will concen-
trate on the lepton pair production followed by the capture of the

negativeleptonintothels atomicboundstateofthetargetnu- Target \tmjlr-/--_._
cleus. It is formally shown (using time-reversal invariance) in the
above reference that this process can be described by the evolu- _ e-

tion of the Dirac ls state backwards in time under the influence Figure 1: Depicted axe two heavy ions
of the external time-dependent electromagnetic field of the passing colliding at finite b in the taxget refer-
projectile. For colliders such as the Relativistic Heavy-Ion Collider ence frame of a heavy ion, with lepton-pair
(RHIC) this external Coulomb field will be amplified by the rela- production with subsequent capture of the
tivistic 7 factor, which, could be as large as 20,000. Thus, we deal negative lepton.
with a strong field problem that has no perturbative solution and
requires an exact numerical treatment. Figure 1 shows this dynamical process.

2 Lepton-Pair Production

Our starting point is the set of equations derived in Refs. [1, 2], in which we presented a nonperturbative
approach to electromagnetic lepton-pair production in peripheral heavy-ion collisions which is applicable over
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' a wide range of relativistic energies. Beginning with the general formulation of Quantum Electrodynamies,
we made reasonable assumptions about the nature of the lepton and radiation fields in relativistic heavy-ion
collisions which reduced the equations of motion to the time-dependent Dirac equation for the lepton field
interacting with the classical, electromagnetic fields produced in the heavy-ion collisions. In discussing the
solution of the Dirac equation, we use natural units i.e. h = c = m : 1.

We study the electromagnetic production of lepton pairs in a reference frame in which one of the nu-
clei, henceforth referred to as the target, is at rest. The target nucleus and the lepton interact via the

static Coulomb field, A_. The only time-dependent interaction, A_,(t), arises from the classical motion of
the projectile. Thus, it is natural to split the Dirac Hamiltonian into static and time-dependent parts.

• Accordingly, we write the Dirac equation for a lepton described by a spinor
E • _(_, t) coupled to an external, time-dependent electromagnetic field as

_" where the static Furry Hamiltonian, Hr, which describes a lepton in the

presence of the strong, external Coulomb field of the target nucleus, is
+m. given by

If > X HF = -ic_- V +/3- eA_, (2)

_!I=i= \ n aud the rime'dependent interacti°n °f the lept°n with the pr°jectUe is

O- j

HpCt) = e_..APCt) - eA_Ct). (3)
.-nil _

' We define the stationary states of the system, i.e. the eigenstates of the

,_, : i _ Furry Hamiltonian Hp in Eq. (2), as

/ HFXi(r') = EixiCP), (4) .

• which are also proper ingoing and outgoing states for asymptotic times

• Itl --_ co, where the interaction np(t) is kero. The index i in Eq. (4)
represents the complete set of quantum numbers for the single-particle

Figure 2: Depicted is the Furry state Xi(O.spectrum consisting of bound states
The probability Pb for lepton-pair production from the vacuum with(_c,), positive (x (+)) and negative

energy (X(-)) free states. Equation capture of the negative lepton into a bound state b may be written
(5) is illustrated by showing traalsi-
tiionsof the lsstate to the negative- Pb(t)= 2. (5)
energy states, r<-moc 2

To compute probabilities for lepton-pair production with capture, we
square the projection of single-particle solutions of the time-dependent
Dir_: equation, initially in the bound state b, onto the static free states

with negative energy. Equation (5) is illustrated in Fig. 2. Measurable
probabilities are the asymptotic (t --. co) limit of Eq. (5).

3 Numerical Implementation

We solve the time-dependent Dirac equation using a lattice approach to obtain a discrete representation

of all Dirac spinors and coordinate-space operators on a three-dimensional Cartesian mesh. We implement
our lattice solution using the basis-spline collocation method, which is briefly summarized in section 3.1.
This method uses high-order interpolates to obtain an accurate and stable representation of functions and

operators on the lattice. We limit this discussion to the special case of cubic lattices with uniform spacing
in all three directions. However, the basis-spline collocation method is equally well suited for nonuniform
lattice spacings. In order to provide the initial state for our time-dependent calculations, we must solve for
the Furry bound state of interest and then evolve this state in time.

3.1 Lattice Basis-Spline Collocation Method

Splines of order M are functions S M (z) of a single, real variable belonging to the class ¢(M-2) with continuous
(M - 2)th derivatives. These functions are piecewise continuous, as they are constructed from continuous



polynomials of (M - 1)th order joined at points in an ordered set {4} called knots. Basis-splines have" • "
' ' andminimal support in that they ate zero outside the range of M + 1 consecutive knots z_, zi+l,..., Zi.I.M,

non-negative otherwise. We label these functions with the i_dex of their first knot B M (z).
Consider a region of space with boundaries at Zmin and Zmax containing n + 1 knots, includ-

ing the knots on the boundaries. For a set of Mth-order basir_splines to be complete, M of the
functions muGt be nonzero on each knot

intervM [z[, x[+l] within the physical re- [_-- Physical Region _ [
gion. For this to occur, M- 1 basis- 0.6 , • . •
splines must extend outside each bound-
ary. Therefore, we require a knot se-

quence from x_ to z'n+2M_ l in order _._ 0.4
to construct a complete set of func- tn ..,

tions, where z_ and z_t+, correspond _ 0.2
to the lower and upper physical bound-
aries, respectively. The basis-splines
for the region are naturally numbered 0.0

as BM(z),BM(z),...,B,M+M_I(z), as X'I X'3 X'5 X'7 X'9 X'll X'13
shown in Fig. 3.

We expand each of the four compo- Figure 3: Depicted is a complete set of 5th-order basis-spline func-
tions for the region z's < x < z_0 for homogeneous lattice spacing. The

nents of the Dirac spinor, distinguished functions are labeled from the left as BSt(z), B_(z),..., B_(z).
by the index p, in this tensor-product ba-
sis as1

n+M-1

X(P)(z'Y'Z)= E BM(z)BM(y)BM(z)cI_ ' P= 1,2,3,4, (6)
i,j,k=l

, ijk_ denotes the complex expansion coefficientswhere we suppress quantum-number indices for clarity and to(p)1
for the p;h component of the spinor. All state functions in this paper satisfy periodic boundary conditions

which are easily imposed by identifying BM1, BalM_ l with B_, M•", -", BM- 1, respectively. Consequently,
the basis-spline index i will run to n instead of n + M - 1. Procedures for implementing general nonperiodic
boundary conditions are discussed in Ref. [3]

We forsake the continuous description of the Dirac spinor for a lattice representation of X(_ through the
collocation method, in which the spinor is known only at each of the collocation points (za, ya, z_) which

define the lattice; thus X(_ is replaced by Xa,a,_. Using boldface print to denote vectors and matrices in
collocation space, the Dirac spinor X will be a column vector of 4n a complex numbers. To implement the
lattice description of the Dirac spinor using the basis-spline expansion, we create a linear system of equations

by evaluating Eq. (6) at the collocation points

ti

(P)
XatJ?'- E BaiB_jn'ykci(_ ' p-'- 1,_,_,,4, (7)

i,j,k=l

where Be,i -- BM(za) and the order M is omitted for simplicity. Collocation points may be chosen with
some freedom. An optimal and simple choice for odd-order basis-spllnes is to place one collocation point at
the center of each equally spaced knot interval within the physical boundaries,

t !
z_, =½(Z_+M_ 1 + = ..., .=,,+M), 1, ,., (8)

The collocation points are denoted by Greek indices. The essence of the lattice approach is to eliminate the

expansion coefficients cijk from the set of equations in Eq. (7) using the inverse of the matrices Bai, B#j0')
and B_k,

ijk _k_ .,(p) (9)-" _ A.a/_-y s

--1
where the inverse matrix, denoted Bia = [B ]ei, plays the role of a metric in the discrete collocation space.
The choice of the collocation points in Eq. (8) ensures that the matrix Bia is nonsingular.



We now discuss the collocation-lattice representation of a linear, coordinate-space operator O by consid-

ering its action on the basis-spline expansion of X(_ in Eq. (6),

= cijk (10)
i,j,k=l

We now eliminate the expansion coefficients cijk from Eq. (10) using Eq. (9) to obtain(p)

(11)-" ,.,c,I_._A.#u( ,
#,u,_'=l

where we define the lattice representation of the coordinate-space operator as

fg

- (12)a/_'y
ij,k=I

In summary, the collocation points define the lattice on which the calculations are performed; neither
the splines nor the knots appear explicitly again once the lattice representation of the operators has been

obtained at the beginning of the calculation. We have reduced the partial differential equation (Eq. (4))
to a series of linear algebraic equations which may be solved using iterative techniques. As a consequence
of eliminating the expansion coefficients from the theory, HF has a blocked sparse representation which is
self-adjoint for periodic boundary conditions and uniform meshes.

3.2 Computation of the Initial Bound State

The complete eigensolution of HF, providing its full spectrum of stationary states, currently ap-
proaches the state-of-the-art in computational capabilities due to the size of HFs which is equiv-
alent to a rank 8n 3 real matrix. We believe convergent calculations will be achieved for
n _, 100, based on the length and momentum scales involved, and experience with one-

dimensional calculations. For this reason, we compute the lowest energy bound state (ls)
needed as the initial state for our time-dependent problems by a partial eigensolution of HF.

Standard methods for partial eigensolution of large matrices which ' / ,',, ,",, ," ,, ," / I/."s s , ,, , "/" .1
are designed to converge to the lowest energy eigenstate of the spec- /. ,,," ,,, ,, . ,, / - n

trum are not directly applicable for computing the Is state of HF / . , - -" I ,.. f ,, .,- I

because its spectrum extends to negative energies. The continuous op- ! ! ! ! ! ! ! 4 " ,"" ,"" ]1" "1' -I --I-- I- "1" "T

erator HF has positive and negative continua, E > mc 2 and E < mc 2, L J .J _ I_ L J. J .-_ s s s _'¢ ]

as well as bound states IE] < mc2; the spectrum of HF has the same I ! | I | ! | ._ " J s ]

branches though all the eigenvalues are discrete. In Ref. [2] the ls Z _""/-I -I I ! ! .._ ,, ,, ,, ,, ,, ]state was computed using a damped relaxation method discussed in r -t -1-!- r- 1- -1
detail in Ref. [4] This algorithm is constructed to remove the high- L .1 .J_!_ L L .1 .._ s _s "]

frequency components from the residual, and does not depend on the T "i -I- 1- V T "i
spectrum of HF being bounded from below, t- -_ -t-I- I- t- -_ 4sj 'f X

For larger lattice sizes discussed in this paper, we have developed v v I I I I I L/

a more efficient iterative Lanczos algorithm to compute the initial y
state.J5, 6, 7] The Lanc,.os algorithm proves attractive for our pur-
poses as the memory requirements are relatively small and the method Figure 4: Illustrated is an example
approximates extremal eigenvalues in the spectrum very well. Since of partitioning a 3-D Cartesian latticewith 643 points into subblocks. In this
convergence is most rapid for extremal eigenvalues, we solve for the example, the number of processors a,l-
lowest energy eigenstate of HF 2, which has a positive-definite spec- located to each of the two dimensions
trum. By solving for the ground state of HF 2, we obtain the lowest- is 8, requiring each of the 64 subblocks
energy bound state of HF. to have dimensions 64 x 8 x 8.

3.3 Time Evolution

We discretize time in the sense that the electromagnetic interactions are taken as constant in successive small
intervals of possibly varying size Art, and express the evolution operator in successive infinitesimal steps. A



number of different methods have been employed to approximate the infinitesimal time-evolution operatt_r •

0(gt+l,tt) = exp (-i ['/-/F-t-Hp(tt+l)] All+l) , (13)
i

particularly in studies of the time-dependent Hartree-Fock method applied to atomic and nuclear collisions.[8,

9] The choice of a method usually depends on the dimensionality and structure of the Hamiltonian matrix.
Several methods which work well in one- and two-dimensional problems are impractical for unrestricted

three-dimensional problems because they require the inversion of part or all of the Hamiltonian matrix.J8]
In our three-dimensional solution of the Dirac equation, the exponential operator, Eq. (13), is implemented
as a Taylor series expansion

f-J(tt+,,tt) -_, 1 + E (-iAtt+l)k [HF + Hp(tt+t)] t (14)k!
k=l

where K is the maximum number of allowed terms in the Taylor aeries expansion, chosen at each step
according to a convergence criterion on the wavefunction.

4 Details of the Hypercube Implementation

In this section, we discuss the details of implementing the lattice representation of the time-dependent Dirac
equation on the Intel iPSC/860/RX hypercube massively paralld computer at the Oak Ridge National
Laboratory (ORNL).

As with many parallel implementations, we face the problem of limited memory per node and the op-

timization of the algorithm to minimize the communication between nodes. We deal with these issues
in practice by partitioning the three-dimensional spatial lattice into aubblocks and distributing the lattice
subblocks to the nodes of the hypercube.

4.1 Spatial Distribution of Dirac Spinors and Local Arrays

As discussed in See. 3, Dirac spinora are represented on a three-dimensional Cartesian lattice in our numerical

solution of the Dirac equation (Eq. (1))

= (15)0 '

where za, Ya, and z.v denote the collocation lattice points in the z, y, and z directions, respectively. We
suppress quantum number indices for clarity. Indices in parenthesis denote the Dirac spinor component. In

I

the following, we denote the number of lattice points in the three Cartesian directions by n_, ny, and n,.
We choose to parailelize the time-dependent Dirac equation by data decomposition. In practice, we choose
to partition the y and z dimensions of the lattice into subblocks while maintaining the full z dimension on
each node. Since we need to distribute two dimensions of a three-dimensional array across the hypercube,
we maintain optimal nearest-neighbor communication between nodes using the two-dimensional Gray lattice
identification scheme. We now discuss the details of this partition and distribution of the lattice subblocks
onto the processors.

To maximize the occurrence of nearest-neighbor communication, the number of lattice points in the y
and z directions are chosen to be powers of two. Given a total number of nodes, the task of partitioning
begins with finding the number of nodes needed in the y and z directions to form the Gray lattice. If the

number of allocated nodes, p, is an exact square (i.e. 4, 16, 64, etc.) we allocate Pz = V_ and Pv - x/_ nodes -
in y and z directions, respectively. This results in a square Gray lattice. For intermediate powers of two

(i.e. 2, 8, 32, etc.), the partition is performed by pz = x/_, Py = x/_ thus resulting in a rectangular Gray
lattice. After the determination of the node allocations in y and z directions, we determine the number of
lattice points kept on each node by

ny nz
rn u = --, mz = --. (16)

Py Pz

Thus, all local arrays have a spatial dimension of n_rnyrn_ on each node. An example is shown in Fig. 4.
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4.2 • Tile Ring Algorithm for tile Dirac Hamiltonian

AI' of our iterative algorithms for the solution of the Di/ac equation make use of the operation of the Dirac
Hamiltonian matrix multiplying the lattice representation of a Dirac spinor, qb_ = HD¢. In our lattice
representation, the action of the Hamiltonian on a spinor is given schematically in Eq. (17). Using Cartesian
coordinates, this product naturally decomposes into four parts, one for each coordinate direction (z, y, z),
and a diagonal part. This separability makes it easy to define this product implicitly in a storage-efficient
way. The explicit Hamiltonian matrix is never created in memory, reducing our memory requirements from
order n 6 to order n3.

The Dirac Hamiltonian matrix HD contains local potential terms, which are diagonal matrices, and
nonlocal derivative terms, which are dense matrices, as described in Sec. 3.2. Performing matrix-vector
multiplications with the nonlocal summations in the y and z dimensions requires node-to-node communi-
cation as these dimensions of the lattice are distributed across the processors. These terms which require

communication are shown in brackets in Eq. (17).

nz 4

- E i Z OP'P' E a('")_(")'_u" , ,/31,7)
ic=l Ol= l+rnl_(i¢-- 1) sl=l

,,.-,[ , ]ir=l 7t=l+mz (it-- 1) 11--1

4

+ eA,(i,j,k) E _(_'")¢(")(a'/3'7)
,11e-.-. 1

4

+ eAu(i'j'k)E c_'")¢(")(a,/3,7)
se=l

4

+ eA:(i,/,k)
St-- l

4

+ Z ([/31('")- ea°(i,j,k)6,,,) ¢(")(a, fl, 3') , (17)
St-- l

where the matrix D is the lattice representation of the first derivative, a mad 13are the 4 × 4 Dirae spin ma-

trices, and the diagonal matrices A1, A2, A3, and A ° are the components of the electromagnetic interaction,
all evaluated on the collocation lattice.

In the execution of the y and z nonlocal sums in Eq. (17), we use a ring algorithm to perform these
nonlocal matrix-vector operations economically. To accomplish the summation over the entire range of the y
and z coordinates, each subblock of the Dirac spinor must visit each node once. This is achieved by having
loops over the number of y and z nodes (py and Pz) performed on each node as shown in Eq. (17). All the
derivative matrices are stored in full on each node.

4.3 Communication Overhead and Speedup

In discussing the performance of our application, we will consider only Eq. (17), the matrix-vector product
discussed in Sec. 4.5, as this operation consumes more than 95% of the computational effort needed in solving
the time-dependent Dirac equation. Currently, the large memory requirement of our three-dimensional

solution limits the size of the lattice we consider to be smaller than the desirable 1003 points. Therefore,
we are particularly interested in the scaling properties of our parallel algorithm to larger parallel machines,
such as the Intel Paragon, as well as our codes performance on the Intel iPSC/860.

In our application, the overall run time, as well as the ratio of the communication time Tcomm to the

calculation time Tcalc, i.e. the fractional communication overhead/c,[10] is improved by having the com-
munication and calculation occur concurrently whenever possible. However, we neglect this feature in our
scaling model, as it complicates the modeling and is not essential in obtaining a reasonable scaling.



To execute Eq. (17) once, the total theot_ticad time per node needed to perform floating-point operations'.
(Tea]c) is the number of floating-point operations required, multiplied by the time t_op(n) required to perform
a single 64-bit floating-point operation within a vector of length n words. Assuming that the lattice has an
equal number of points in the three coordinate directions, n= = n u = nz = n , the estimated calculation
time for Eq. (17) is

n 3

Tea o= (48n+ 448) (18)
The dependence of tfiop(n) on n is caused by the pipelined floating-point units of the i860 processor. We
determine that tflop(n) varies with n as the inverse of a logarithmic function

1

tflop(n) _ (15.1 log(n) - 9.9) × 10s seconds (19)

overn rangingfrom8to128.SubstitutingEq.(19)intoEq.(18),weobtain

(48n4 + 448na) seconds (20)
Tcalc_-,p(15.1 log(n)- 9.9) x 10s

Empirically, the communication time for a one-hop node-to-3.5 .............................
o Measured node message is a linear function of the size of the message.[11]

3.0 _ed In performing the nonlocai summations in Eq. (17), we are re-

25 _" quired to pass lau + lax messages of length 8na/p 64-bit words.Passing these subblocks of the Dirac spinor around the two-
_.u 2.0 dimensional Gray lattice ideally consumes the time

1.5

1.0 Tcomm = (p, .6 p,) 8"_tcomm .6 tstart "6Tohead • (21)
0.5

0 100 200 300 400 500 600 where tcomm iS the typical time needed to actually transmit

n a single 64-bit word of data between two nodes, and t,tart is
the startup time for a single communication request. Typi-

Figure 5: Plotted is the fractional communi- cad times for the iPSC/860 ate tcomm "- 3.2 × 10-6sec, andcation overhead f¢ as a function of the lattice
size n obtained from the predictions in Eqs. tatart = 1.36 x 10-4sec.[11] Despite the fact that tatart is about
(20) and (21). 40 times larger than tcomm, the stattup contribution to Tcomm

is small for realistic calculations since the size of the messages
passed between nodes, i.e 8na/p words, is large. We adjust Tohead

to fit the measured communication time.

Other important measures of the performance of a parallel application are the speedup S(p) and the
parallel efficiency _(p). The speedup is defined as the ratio of time required to complete a given calculation
on a single node to the time required to perform the equivalent calculation on p concurrent nodes.J10] We
define Thdprd (P) to be the time needed for computing Eq. (17) on a multiprocessor with p nodes in double
precision; the subscript is the name of the subroutine which performs this operation. The speedup for Eq.
(17) may be expressed in this notation as

Thdprd(1) (22)s(p) - rhdp (p)"

The parallel efficiency is defined as the speedup scaled by the number of processors

e(p) _ S(p) (23)
P

5 Timing Results

The predicted fractional communication overhead obtained using Eqs. (20) and (21) and the measured values
of this quantity ate compared in Fig. 5. Notice that the predicted and measured values for this quantity
agree well throughout the tango of problem sizes, 8 _<n _<64 and that the communication overhead increases

rapidly up to n = 64. This initial increase in overhead with problem size at first seems counterintuitive,
but is explained by pipelining. Increasing floating-point performance with problem size causes the fractional
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40 j

•cormnunication overhead to increase. Our simple scaling model predicts improved fractional communication
overheads for problem sizes greater than n = 64.

In Fig. 6, we compare the performance of our solution of the
time-dependent Dirac equation on the iPSC/860 with its perfor- 103 .....................................

mance on two other computers to which we have access; a Cray-2 ...-o

supercomputer and an IBM RS/6000 320H workstation. In corn- m 102 ._._ ...............puting the floating-point performance of the i860 for the purposes gh ._ .....

of this comparison, we use the overall time Thdprd for Eq. (17) ,.,-4_ oy -o-p=n

without factoring the communication. We feel this give a tea- _ 101 -c_-Cray2
sortable performance comparison between sequential and parallel n--. _. - _.. -_ -RS/6000
machines as in Fig. 6, floating-point performance can be consid- "-a

ered proportional to CPU time. We optimize our implementa- 100 ..................................
tion of gq. (17) on the Cray-2 machine using the cff7 Fortran 0 10 20 30 40 50 60 70
compiler with default vectorization, loop unrolling, and no au- n

totasking. For the IBM workstation, we use the IBM AIX XL Figure 6: Plotted is a comparison of the per-
Fortran Compiler/6000 version 2.2 with full optimization. The formance of implementations of Eq. (17) on
performance of the IBM workstation decreases with the problem the Intel iPSC/860 with p = n processors, on
size because of cache memory effects, a Cray-2, and on an IBM RS/6000 320H.

Acknowledgements

This research was sponsored in part by the U.S. Department of Energy (DOE) under contract No.
DE-AC05-84OR21400 managed by Martin Marietta Energy Systems, Inc., under contract No. DE-FG05-

87ER40376 with Vanderbilt University, and by a DOE Graduate Research Participation Fellowship through
Oak Ridge Associated Universities. The numerical calculations were carried out on the Intel iPSC/860
hypercube multicomputer at the Oak Ridge National Laboratory, and the CRAY-2 supercomputers at the
National Energy Research Supercomputer Center (NERSC) at Lawrence Livermore National Laboratory,
and the National Center for Supercomputing Applications (NCSA) in Illinois.

References

[1] J.C. Wells, V. E. Oberacker, S. A. Umar, C. Bottcher, M. R. Strayer, J.-S. Wu, and G. Plunien, Phys.
Rev. A 45 (1992) 6296.

[2] M.R. Strayer, C. Bottcher, V. E. Oberacker, and A. S. Umar, Phys. Rev. A 41 (1990) 1399.

[3] C. Bottcher and M. R. Strayer, Ann. Phys. (N. Y.) 175 (1987) 64; A.S. Vmar, J. Wu, M. R. Strayer,
and C. Bottcher, J. Comp. Phys. 93 (1991) 426.

[4] C. Bottcher, M.R. Strayer, A.S. Umar and P.G. Reinhard, Phys. Rev. A 40 (1989) 4182.

[5] J. Cullum, R. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Voi. I
(Birkhguser, Boston, 1985).

[6] B. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs NJ, 1980).

[7] J. C. Wells, V. E. Oberacker, S. A. Umar, C. Bottcher, M. R. Strayer, J.-S. Wu, J. Drake, and R.
Flanery Int. J. Mod. Phys. C vol.4, no.3 (1993).

[8] A.S. Umar and M. R. Strayer, Comput. Phys. Commun. 63 (1991) 179.

[9] C. Bottcher, G. J. Bottrell, and M. R. Strayer, Comput. Phys. Commun. 63 (1991) 63.

[10] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on Concurrent
Processors, Vol. I (Prentice-Hall, Englewood Cliffs, 1988), p. 261.

[11] T. H. Dunigan, Oak Ridge National Laboratory Technical Report, Oak Ridge, Tennessee, ORNL Report
No. ORNL/TM-11491 1990 (unpublished).



i I
I

Q

g

i

!




