I

a—————
———

ST

I

VI

I

J—
———]
—

]
———
;"

I
I

01

e——
e ———

CFFFEEREE R

 Cond 93097764

Large-Scale 3-D Solutions of the
Time-Dependent Dirac Equation

BY
A.S. Umar, J.C. Wells, V.E. Oberacker, and M.R. Strayer

To appear in

Second International Conference On

' COMPUTATIONAL PHYSICS

September 13-17, 1993
Beijing, China

f

i
/
|

884

R

il
il
-
i

MASTER

RIS T WG iamd VAR Trim DOGUMEN T Ll i

i
g

;

Large-Scale 3-D Solutions of the Time-Dependent
Dirac Equation

A.S. UMAR!3, J. C. WELLS"*3, V. E. OBERACKER!?, M. R. STRAYER!?
! Center for Computationally Intensive Physics, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831, USA;
2 Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee $7831, USA;

and

3 Department of Physics & Astronomy, Vanderbilt University,
Nashuville, Tennessee 37285, USA

Abstract

We present the numerical approach used in solving the time-dependent Dirac equation on a
three-dimensional Cartesian lattice. Discretization is achieved through the lattice basis-spline
collocation method, in which quantum-state vectors and coordinate-space operators are ex-
pressed in terms of basis-spline functions on a spatial lattice. All numerical procedures reduce
to a series of matrix-vector operations which we perform on the Intel iPSC/860 hypercube,
making full use of parallelism. We discuss our solutions to the problems of limited node
memory and node-to-node communication overhead inherent in using distributed-memory,

1 Introduction

In this talk, we present the numerical methods developed for solving the ¢ime-dependent Dirac equation

in three

dimensions on parallel computers. The Dirac equation is one of the
fundamental equations of nature, being the relativistic analogue of
the Schrédinger equation. We will present computational applica-
tions of the Dirac equation to the lepton pair-production problem
of quantum electrodynamics. Since this is a computational talk I
will talk principally about the numerical methods used in our cal-
culations. The theoretical details of the lepton-pair production and
the reduction of the quantum electrodynamics to the well known
Dirac equation is extensively discussed in [1). Here, I will concen-
trate on the lepton pair production followed by the capture of the
negative lepton into the 1s atomic bound state of the target nu-
cleus. It is formally shown (using time-reversal invariance) in the
above reference that this process can be described by the evolu-
tion of the Dirac 1s state backwards in time under the influence
of the external time-dependent electromagnetic field of the passing
projectile. For colliders such as the Relativistic Heavy-Ion Collider
(RHIC) this external Coulomb field will be amplified by the rela-
tivistic 4 factor, which could be as large as 20,000. Thus, we deal
with a strong field problem that has no perturbative solution and

space

Projectile Bi=1
-

Figure 1: Depicted are two heavy ions
colliding at finite b in the target refer-
ence frame of a heavy ion, with lepton-pair
production with subsequent capture of the
negative lepton.

requires an exact numerical treatment. Figure 1 shows this dynamical process.

Z Lepton-Pair Production

Our starting point is the set of equations derived in Refs. [1, 2], in which we presented a nonperturbative

approach to electromagnetic lepton-pair production in peripheral heavy-ion collisions which is applicable over

v N ¢ P LTI I Sl se el e e e e A g e

a wide range of relativistic energies. Beginning with the general formulation of Quantum Electrodynamics,
we made reasonable assumptions about the nature of the lepton and radiation fields in relativistic heavy-ion
collisions which reduced the equations of motion to the time-dependent Dirac equation for the lepton field
interacting with the classical, electromagnetic fields produced in the heavy-ion collisions. In discussing the
solution of the Dirac equation, we use natural units i.e. i =c=m = 1.

We study the electromagnetic production of lepton pairs in a reference frame in which one of the nu-
clei, henceforth referred to as the target, is at rest. The target nucleus and the lepton interact via the
static Coulomb field, A}. The only time-dependent interaction, Ap(¢), arises from the classical motion of
the projectile. Thus, it is natural to split the Dirac Hamiltonian into static and time-dependent parts.

Accordingly, we write the Dirac equation for a lepton described by a spinor

E |} &(7,t) coupled to an external, time-dependent electromagnetic field as

[Br + He()]8(71) = i (7, 0), (1)
X(d

where the static Furry Hamiltonian, Hy, which describes a lepton in the

—_— presence of the strong, external Coulomb field of the target nucleus, is
+m | given by

)x Hp = —ia@-V+ - eA}, (2)

0 4 and the time-dependent interaction of the lepton with the projectile is

Hp(t) = ed@ - Ap(t) — eAD(t) . (3)

-m

We define the stationary states of the system, i.e. the eigenstates of the
x- Furry Hamiltonian Hr in Eq. (2), as
- Hexi(F) = Eixi(F) , 4

which are also proper ingoing and outgoing states for asymptotic times
\J [t]| = oo, where the interaction Hp(t) is zero. The index i in Eq. (4)
‘ represents the complete set of quantum numbers for the single-particle
Figure 2: Depicted is the Furry 440 xi(7).

spectrum consisting of bound states
(xn), positive (x(1)) and negative
energy (x{7)) free states. Equation
(5) is illustrated by showing transi-

tions of the 1s state to the negative- Py(t) = Z |(X£~)|¢§+)(t»|2 . (5)

energy states. r<-mgc?

The probability P, for lepton-pair production from the vacuum with
capture of the negative lepton into a bound state b may be written

To compute probabilities for lepton-pair production with capture, we
square the projection of single-particle solutions of the time-dependent
Dirac equation, initially in the bound state b, onto the static free states
with negative energy. Equation (5) is illustrated in Fig. 2. Measurable
probabilities are the asymptotic (¢ — 0o) limit of Eq. (5).

3 Numerical Implementation

We solve the time-dependent Dirac equation using a lattice approach to obtain a discrete representation
of all Dirac spinors and coordinate-space operators on a three-dimensional Cartesian mesh. We implement
our lattice solution using the basis-spline collocation method, which is briefly summarized in section 3.1.
This method uses high-order interpolates to obtain an accurate and stable representation of functions and
operators on the lattice. We limit this discussion to the special case of cubic lattices with uniform spacing
in all three directions. However, the basis-spline collocation method is equally well suited for nonuniform
lattice spacings. In order to provide the initial state for our time-dependent calculations, we must solve for
the Furry bound state of interest and then evolve this state in time.

3.1 Lattice Basis-Spline Collocation Method

Splines of order M are functions SM (z) of a single, real variable belonging to the class C(¥~2) with continuous
(M — 2)th derivatives. These functions are piecewise continuous, as they are constructed from continuous

PRSI TN S R T AT S

polynomials of (M — 1)th order joined at points in an ordered set {z/} called knots. Basis-splines have

minimal support in that they are zero outside the range of M +1 consecutive knots z{, z{,,,...,Z{;), and
non-negative otherwise. We label these functions with the inidex of their first knot BM (z).

Consider a region of space with boundaries at znmin and Zmax containing n + 1 knots, includ-
ing the knots on the boundaries. For a set of Mth-order basis-splines to be complete, M of the
functions must be nonzero on each knot
interval [z}, z{] within the physical re- ~— Physical Region ——>|
gion. For this to occur, M — 1 basis- 0.6
splines must extend outside each bound-
ary. Therefore, we require a knot se-
quence from zj to zj, ., _, in order
to construct a complete set of func-
tions, where zj, and z}, . correspond
to the lower and upper physical bound-
aries, respectively. The basis-splines
for the region are naturally numbered

A}] L] L] L]]
as BY(z), BY(z),..., By (e), a8 Xp X3 X5 X7 Xy Xy X
shown in Fig. 3. .
We expand each of the four compo- Figure 3: Depicted lS a complete set of 5'"-order basis-spline func-

tions for the region zj <z <1z}, for homogeneous lattice spacmg The

nents of the Dirac spinor, distinguished functions are labeled from the left as Bj(z), Bi(z),..., Bi(z).

by the index p, in this tensor-product ba-

sis as,
ﬂ+M—1 .o
XP(z,y,2)= Y. BM()BY(y)BY (), p=1,2,3,4, (6)
£.J.k=1

ijk

where we suppress quantum-number indices for clarity and {c } denotes the complex expansion coefficients

for the p*" component of the spinor. All state functions in thxs paper satisfy periodic boundary conditions
which are easily imposed by identifying B,Q’H, very B,’:'ﬂ(M-y with B BM_,, respectively. Consequently,
the basis-spline index ¢ will run to n instead of n+ M — 1. Procedures for implementing general nonperiodic
boundary conditions are discussed in Ref. [3]

We forsake the continuous description of the Dirac spinor for a lattice representation of x() through the
collocation method, in which the spinor is known only at each of the collocation points (za, ys, 2y) Which
define the lattice; thus x(7) is replaced by Xxq,,. Using boldface print to denote vectors and matrices in
collocation space, the Dirac spinor x will be a column vector of 4n® complex numbers. To implement the
lattice description of the Dirac spinor using the basis-spline expansion, we create a linear system of equations
by evaluating Eq. (6) at the collocation points

X&), = Z BaiBp;Byrcly , p=1,2,3,4, (7
i,j,k=1

where Boi = BM(z,) and the order M is omitted for simplicity. Collocation points may be chosen with
some freedom. An optimal and simple choice for odd-order basis-splines is to place one collocation point at
the center of each equally spaced knot interval within the physical boundaries,

Ta =4(Toypm-1 +Topm) @=1,.,n. (8)

The collocation points are denoted by Greek indices. The essence of the lattice approach is to eliminate the
expansion coefficients c() * from the set of equations in Eq. (7) using the inverse of the matrices B, Bg;,

and B,
n

W= L BB BTG Q
’I'y

where the inverse matrix, denoted B'® = [B~']4, plays the role of a metric in the discrete collocation space.
The choice of the collocation points in Eq. (8) ensures that the matrix B*® is nonsingular.

We now discuss the collocation-lattice representation of a linear, coordinate-space operator O by consid-
ering its action on the basis-spline expansion of x(7) iu Eq. (6),

n

(OXPlagy = > (OBM(2)BY (4)BY (2))cavpencls - (10)

ij. k=1

We now eliminate the expansion coeflicients cg,')‘ from Eq. (10) using Eq. (9) to obtain

n
OxPagy = Y 02ExE), (11)
mv =1

where we define the lattice representation of the coordinate-space operator as

n

oLt = 3 [0BM(2)BM (y)BY (2))e0.yp.s, B BI B¥E . (12)

ij.k=1

In summary, the collocation points define the lattice on which the calculations are performed; neither
the splines nor the knots appear explicitly again once the lattice representation of the operators has been
obtained at the beginning of the calculation. We have reduced the partial differential equation (Eq. (4))
to a series of linear algebraic equations which may be solved using iterative techniques. As a consequence
of eliminating the expansion coefficients from the theory, Hr has a blocked sparse representation which is
self-adjoint for periodic boundary conditions and uniform meshes.

3.2 Computation of the Initial Bound State

The complete eigensolution of Hp, providing its full spectrum of stationary states, currently ap-
proaches the state-of-the-art in computational capabilities due to the size of Hp, which is equiv-

alent to a rank 8n3 real matrix. We believe convergent calculations will be achieved for
n = 100, based on the length and momentum scales involved, and experience with one-
dimensional calculations. For this reason, we compute the lowest energy bound state (1s)

needed as the initial state for our time-dependent problems by a partial eigensolution of Hp.

Standard methods for partial eigensolution of large matrices which : g /j: ‘, : g 7 "/
are designed to converge to the lowest energy eigenstate of the spec- i : ‘., : .5 /.
trum are not directly applicable for computing the 1s state of Hy ANRENAE AR 4 L7
because its spectrum extends to negative energies. The continuous op- [yt 477 -
erator Hr has positive and negative continua, E > mc? and E < mc?, I 3 3 : [I : L7 s “,
as well as bound states |E| < mc?; the spectrum of Hp has the same B —, .7,
branches though all the eigenvalues are discrete. In Ref. [2]the 1s Zz [T 71717 T 7 —b 2.7,
state was computed using a damped relaxation method discussed in Fraasitrra s - ,
detail in Ref. [4] This algorithm is constructed to remove the high- - ‘I' dactirradLl,

. [L 7 s
frequency components from the residual, and does not depend on the B e e e B R
spectrum of Hy being bounded from below. - “-l-r+ 1 + X
For larger lattice sizes discussed in this paper, we have developed B T TN T T Y I

a more efficient iterative Lanczos algorithm to compute the initial y

state.[5, 6, 7] The Lanczos algorithm proves attractive for our pur-

poses as the memory requirements are relatively small and the method Figure 4: Tlustrated is an example

approximates extremal eigenvalues in the spectrum very well. Since of P‘““ﬁw“'.“ g a 3-D Cartesian lattice
. . . with 64° points into subblocks. In this

convergence is most rapid for extremal eigenvalues, we solve for the oyapple, the number of processors al-

lowest energy eigenstate of Hp?2, which has a positive-definite spec- located to each of the two dimensions

trum. By solving for the ground state of Hp?, we obtain the lowest- is 8, requiring each of the 64 subblocks

energy bound state of Hy. to have dimensions 64 x 8 x 8.

3.3 Time Evolution

We discretize time in the sense that the electromagnetic interactions are taken as constant in successive small
intervals of possibly varying size At, , and express the evolution operator in successive infinitesimal steps. A

pumber of different methods have been employed to approximate the infinitesimal time-evolution operater «
U(tegr,te) = exp(—i[Hr + Ho(leg1)) Dleyr) (13)

particularly in studies of the time-dependent Hartree-Fock method applied to atomic and nuclear collisions.(8,
9] The choice of a method usually depends on the dimensionality and structure of the Hamiltonian matrix.
Several methods which work well in one- and two-dimensional problems are impractical for unrestricted
three-dimensional problems because they require the inversion of part or all of the Hamiltonian matrix.[8]
In our three-dimensional solution of the Dirac equation, the exponential operator, Eq. (13), is implemented
as a Taylor series expansion

K , .
U(tegr,te) = (1 +3 (‘-ﬂ;‘_”‘l‘)i [Hr + HP(tl+l)]k)) (14)
k=1)

where K is the maximum number of allowed terms in the Taylor series expansion, chosen at each step
according to a convergence criterion on the wavefunction.

4 Details of the Hypercube Implementation

In this section, we discuss the details of implementing the lattice representation of the time-dependent Dirac
equation on the Intel iPSC/860/RX hypercube massively parallel computer at the Oak Ridge National
Laboratory (ORNL).

As with many parallel implementations, we face the problem of limited memory per node and the op-
timization of the algorithm to minimize the communication between nodes. We deal with these issues
in practice by partitioning the three-dimensional spatial lattice into subblocks and distributing the lattice
subblocks to the nodes of the hypercube.

4.1 Spatial Distribution of Dirac Spinors and Local Arrays

As discussed in Sec. 3, Dirac spinors are represented on a three-dimensional Cartesian lattice in our numerical
solution of the Dirac equation (Eq. (1))

¢(1)(Z,y,2, t) ¢(l)(zq‘yﬂ,2‘-¥,t)
- ¢(2)(.1:, Y 2, t) ¢(2)(zmyﬂ‘a Z-,,t)

¢(z,yy z, t) - ¢(3)(x, Y, 2, t) 41(3)(1'.;,3/,3,2-,,1)) (15)
¢ (z,y, 2,1) ¢ (24,8, 2y, 1)

where z,, yg, and 2z, denote the collocation lattice points in the z, y, and z directions, respectively. We
suppress quantum number indices for clarity. Indices in parenthesis denote the Dirac spinor component. In
the following, we denote the number of lattice points in the three Cartesian directions by n, ny, and n,.
We choose to parallelize the time-dependent Dirac equation by data decomposition. In practice, we choose
to partition the y and z dimensions of the lattice into subblocks while maintaining the full z dimension on
each node. Since we need to distribute two dimensions of a three-dimensional array across the hypercube,
we maintain optimal nearest-neighbor communication between nodes using the two-dimensional Gray lattice
identification scheme. We now discuss the details of this partition and distribution of the lattice subblocks
onto the processors.

To maximize the occurrence of nearest-neighbor communication, the number of lattice points in the y
and z directions are chosen to be powers of two. Given a total number of nodes, the task of partitioning
begins with finding the number of nodes needed in the y and z directions to form the Gray lattice. If the
number of allocated nodes, p, is an exact square (i.e. 4, 16, 64, etc.) we allocate p, = \/p and p, = ,/p nodes
in y and z directious, respectively. This results in a square Gray lattice. For intermediate powers of two
(i.e. 2, 8, 32, etc.), the partition is performed by p. = \/2p, py = 1/p/2, thus resulting in a rectangular Gray
lattice. After the determination of the node allocations in y and z directions, we determine the number of
lattice points kept on each node by

n;

Ny
m,=—, m,= . 16
y Dy P: ()

Thus, all local arrays have a spatial dimension of n,mym, on each node. An example is shown in Fig. 4.

4.2 ‘- The Ring Algorithm for the Dirac Hamiltonian

Al! of our iterative algorithms for the solution of the Dirac equation make use of the operation of the Dirac
Hamiltonian matrix multiplying the lattice representation of a Dirac spinor, ¢’ = Hp¢. In our lattice
representation, the action of the Hamiltonian on a spinor is given schematically in Eq. (17). Using Cartesian
coordinates, this product naturally decomposes into four parts, one for each coordinate direction (z,y, z),
and a diagonal part. This separability makes it easy to define this product implicitly in a storage-efficient
way. The explicit Hamiltonian matrix is never created in memory, reducing our memory requirements from
order n® to order n3.

The Dirac Hamiltonian matrix Hp contains local potential terms, which are diagonal matrices, and
nonlocal derivative terms, which are dense matrices, as described in Sec. 3.2. Performing matrix-vector
multiplications with the nonlocal summations in the y and z dimensions requires node-to-node communi-
cation as these dimensions of the lattice are distributed across the processors. These terms which require
communication are shown in brackets in Eq. (17).

1} Tz 4 ' '
(¢(:)) (a,ﬂ) 7) = i Z Dqy o Z ag:“)¢(’)(altﬂ’ 7)

a’=1 a'=]

py=1[mytmy(ic-1) 4 1
- 2 i Y Dap Yy a0 a, B, y)

ic=1 | p'=14my(io—1) szl |

ps—1 [my4m,(i,~1)

4
- E i Z D’m'Z“gul)‘ﬁ(a’)(asﬂﬂ')

ir=1 | y'=14m,(i,—-1) s'=1

r

4
+ eAs(ij k) 3 ol e, 8,7)

s'=1

4
+ eAy(i,j, k) Z agns')¢(a’)(a,‘ ﬂ‘ 7)

/=1

4
+ eAu(i g, k) Y ol 6 (a, 8,7)

s'=1
4
£ 3 (110 = A%, 5, B)6un) (e, B,) (17)

si=1

where the matrix D is the lattice representation of the first derivative, « and 8 are the 4 x 4 Dirac spin ma-
trices, and the diagonal matrices Ay, A2, A3, and A® are the components of the electromagnetic interaction,
all evaluated on the collocation lattice.

In the execution of the y and z nonlocal sums in Eq. (17), we use a ring algorithm to perform these
nonlocal matrix-vector operations economically. To accomplish the summation over the entire range of the y
and z coordinates, each subblock of the Dirac spinor must visit each node once. This is achieved by having
loops over the number of y and z nodes (p, and p,) performed on each node as shown in Eq. (17). All the
derivative matrices are stored in full on each node.

4.3 Communication Overhead and Speedup

In discussing the performance of our application, we will consider only Eq. (17), the matrix-vector product
discussed in Sec. 4.5, as this operation consumes more than 95% of the computational effort needed in solving
the time-dependent Dirac equation. Currently, the large memory requirement of our three-dimensional
solution limits the size of the lattice we consider to be smaller than the desirable 1002 points. Therefore,
we are particularly interested in the scaling properties of our parallel algorithm to larger parallel machines,
such as the Intel Paragon, as well as our codes performance on the Intel iPSC/860.

In our application, the overall run time, as well as the ratio of the communication time Tromm to the
calculation time T¢,), i.e. the fractional communication overhead f,,[10] is improved by having the com-
munication and calculation occur concurrently whenever possible. However, we neglect this feature in our
scaling model, as it complicates the modeling and is not essential in obtaining a reasonable scaling.

To execute Eq. (17) once, the total theorztical time per node needed to perform floating-point operations:
(Tealc) is the number of floating-point operations required, multiplied by the time tqo5(n) required to perform
a single 64-bit floating-point operation within a vector of length n words. Assuming that the lattice has an
equal number of points in the three coordinate directions, n, = ny = n, = n , the estimatcd calculation
time for Eq. (17) is

3
Teale = (48n + 448) %tﬁo,,(n) . (18)

The dependence of taop(n) on n is caused by the pipelined floating-point units of the i860 processor. We
determine that tqop(n) varies with n as the inverse of a logarithmic function

thop(n) ~ -
flopt™ ™ (15.110g(n) — 9.9) x 106

seconds (19)

over n ranging from 8 to 128. Substituting Eq. (19) into Eq. (18), we obtain

(48n* + 448n%)
p(15.110g(n) — 9.9) x 10°

seconds . (20)

Tcalc ~

Empirically, the communication time for a one-hop node-to-
© Measured node message is a linear function of the size of the message.[11]
{ In performing the nonlocal summations in Eq. (17), we are re-
-o-Predicted] quired to pass p, + p, messages of length 8n%/p 64-bit words.
Passing these subblocks of the Dirac spinor around the two-
dimensional Gray lattice ideally consumes the time

30 | 0

w20

n3
3 Tcomm = (Py + P:) (8;'tcomm + tsta.rt) + Tohead - (21)

0 100 200 300 400 500 600 where tecomm i8 the typical time needed to actually transmit
n a single 64-bit word of data between two nodes, and tyiart is

R . . . the startup time for a single communication request. i
Figure 5: Plotted is the fractional communi- ' oo 5% 00 iPSC/Sﬁg are tcomm = 3.2 x%ﬂ‘smﬁﬁd
cation overhead f¢ as a function of the lattice —4 . A
size n obtained from the predictions in Eqs. [lstart = 1.36 x 10~ *sec.[11] Despite the fact that tyart is about
(20) and (21). 40 times larger than tcomm, the startup contribution to Teomm

is small for realistic calculations since the size of the messages
passed between nodes, i.e 8n3/p words, is large. We adjust Topead
to fit the measured communication time.

Other important measures of the performance of a parallel application are the speedup S(p) and the
parallel efficiency ¢(p). The speedup is defined as the ratio of time required to complete a given calculation
on a single node to the time required to perform the equivalent calculation on p concurrent nodes.[10] We
define Thdprd (p) to be the time needed for computing Eq. (17) on a multiprocessor with p nodes in double
precision; the subscript is the name of the subroutine which performs this operation. The speedup for Eq.
(17) may be expressed in this notation as

Thdpra(1)
S(p) = —F=——= . 22
(p) Traira (7) (22)
The parallel efficiency is defined as the speedup scaled by the number of processors
S
d(p) =22 (23)

5 Timing Results

The predicted fractional communication overhead obtained using Eqs. (20) and (21) and the measured values
of this quantity are compared in Fig. 5. Notice that the predicted and measured values for this quantity
agree well throughout the range of problem sizes, 8 < n < 64 and that the communication overhead increases
rapidly up to n = 64. This initial increase in overhead with problem size at first seems counterintuitive,
but is explained by pipelining. Increasing floating-point performance with problem size causes the fractional

-communication overhead to increase. Our simple scaling model predicts improved fractional communication
overheads fer problem sizes greater than n = 64.

In Fig. 6, we compare the performance of our solution of the
time-dependent Dirac equation on the iPSC/860 with its perfor-
mance on two other computers to which we have access; a Cray-2
supercomputer and an IBM RS/6000 320H workstation. In com-
puting the floating-point performance of the 1860 for the purposes 8—1
of this comparison, we use the overall time Thqpeq for Eq. (17) =
without factoring the communication. We feel this give a rea- =
sonable performance comparison between sequential and parallel o~nl
machines as in Fig. 6, floating-point performance can be consid-
ered proportional to CPU time. We optimize our implementa- 100 . A A A ey
tion of Eq. (17) on the Cray-2 machine using the cf77 Fortran 0 10 20 30 40 S0 60 70
compiler with default vectorization, loop unrolling, and no au- n
totasking. For the IBM workstation,. we use the IBM.AIX XL Figure 6: Plotted is a comparison of the per-
Fortran Compiler/6000 version 2.2 with full optimization. The formance of implementations of Eq. (17) on
performance of the IBM workstation decreases with the problem the Intel iPSC/860 with p = n processors, on
size because of cache memory effects. a Cray-2, and on an IBM RS/6000 320H.

103

"~ -4-RS/6000
0

Acknowledgements

This research was sponsored in part by the U.S. Department of Energy (DOE) under contract No.
DE-AC05-840R21400 managed by Martin Marietta Energy Systems, Inc., under contract No. DE-FG05-
87ER40376 with Vanderbilt University, and by a DOE Graduate Research Participation Fellowship through
Oak Ridge Associated Universities. The numerical calculations were carried out on the Intel iPSC/860
hypercube multicomputer at the Oak Ridge National Laboratory, and the CRAY-2 supercomputers at the
National Energy Research Supercomputer Center (NERSC) at Lawrence Livermore National Laboratory,
and the National Center for Supercomputing Applications (NCSA) in Illinois.

References

[1) J. C. Wells, V. E. Oberacker, S. A. Umar, C. Bottcher, M. R. Strayer, J.-S. Wu, and G. Plunien, Phys.
Rev. A 45 (1992) 6296.

[2] M. R. Strayer, C. Bottcher, V. E. Oberacker, and A. S. Umar, Phys. Rev. A 41 (1990) 1399.

[3] C. Bottcher and M. R. Strayer, Ann. Phys. (N.Y.) 175 (1987) 64; A.S. Umar, J. Wu, M. R. Strayer,
and C. Bottcher, J. Comp. Phys. 93 (1991) 426.

[4] C. Bottcher, M.R. Strayer, A.S. Umar and P.G. Reinhard, Phys. Rev. A 40 (1989) 4182.

[5] J. Cullum, R. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. I
(Birkhauser, Boston, 1985).

(6] B. Parlett, The Symmelric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs NJ, 1980).

(7] J. C. Wells, V. E. Oberacker, S. A. Umar, C. Bottcher, M. R. Strayer, J.-S. Wu, J. Drake, and R.
Flanery Int. J. Mod. Phys. C vol.4, no.3 (1993).

[8] A.S. Umar and M. R. Strayer, Compul. Phys. Commun. 63 (1991) 179.
[9] C. Bottcher, G. J. Bottrell, and M. R. Strayer, Comput. Phys. Commun. 63 (1991) 63.

{10] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on Concurrent
Processors, Vol. I (Prentice-Hall, Englewood Cliffs, 1988), p. 261.

[11] T. H. Dunigan, Oak Ridge National Laboratory Technical Report, Oak Ridge, Tennessee, ORNL Report
No. ORNL/TM-11491 1990 (unpublished).

