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Abstract

Despite intensive efforts in the area of dynamic graph algorithms, no efficient algorithms are
known for the dynamic versions of some basic graph problems such as strong connectivity and
transitive closure. We provide some explanation for this lack of success by presenting quadratic
lower bounds on the strong certificate complexity of such problems, thereby establishing the
inapplicability of the only known general technique for designing dynamic graph algorithms,
viz., sparsification. These results also provide evidence of the inherent intractability of such
dynamic graph problems. Some of our results are based on a general technique for obtaining
lower bounds on the strong certificate complexity for a class of graph properties by establishing
a relationship with the witness complexity.

In many real applications of dynamic graph problems, a certain amount of lookahead
is available. Specifically, we consider the problems of assembly planning in robotics and
the maintenance of relations in databases which, respectively, give rise to dynamic strong
connectivity and transitive closure. We exploit the (naturally available) Jookahead in these two
applications to circumvent the inherent complexity of the dynamic graph problems. We propose
a variant of sparsification, viz., lookahead based sparsification, and apply it to obtain the first
efficient fully dynamic algorithms for strong connectivity and transitive closure.
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1 Introduction

A dynamic graph problem is that of efficiently maintaining some property of a graph undergoing
structural changes defined by update operations such as insertion and deletion of edges, so as to
minimize the amount of recomputation needed after each update. An “efficient” algorithm for such
problems will be able to incrementally maintain the graph property at a cost (per update operation)
that is significantly smaller than the cost of computing the graph property from scratch.

While much of the prior research in the design of dynamic graph algorithms involved problem-
specific approaches [4, 5, 6, 12, 14], recently Eppstein, Galil, Italiano, and Nissenzweig [7] presented
a general paradigm called sparsification that is useful in both designing new dynamic graph algo-
rithms, and speeding up existing ones. The sparsification technique is based on the notion of a
sparse strong certificate which, informally, is a sparse graph whose structure is representative of
the input graph with respect to the property of interest. Eppstein et al established the existence of
sparse strong certificates for a variety of graph properties? such as edge and vertex connectivity,
bipartiteness, and minimum spanning tree, thereby obtaining efficient dynamic graph algorithms.

In practice, two particularly important dynamic graph problems are strong connectivity (in
industrial robotics applications [15]) and transitive closure (in database applications [18]). Despite
intensive efforts, it has proved to be impossible to devise efficient dynamic graph algorithms for
these two problems (and a host of others), with or without the use of sparsification. In general,
it appears that sparsification is of little help for non-trivial directed graph problems. We attempt
to explain this lack of success by initiating a study of the strong certificate complexity of graph
properties. For a variety of graph properties, we establish the existence of n-vertex graphs for which
every strong certificate must have Q(n?) edges, thereby ruling out the application of sparsification
and providing evidence towards the inherent complexity of the dynamic maintenance problem.

Fortunately, many real systems have some form of lookahead available, ie., the dynamic
algorithm is provided with information about future updates. We consider in detail a problem
in industrial robotics — assembly planning — which requires an efficient dynamic algorithm for
strong connectivity, and indicate why lookahead is available in this setting. Also, the problem of
dynamic transitive closure arises in numerous database applications [18]. This is equivalent to
maintaining the transitive closure of a (binary) relation as it undergoes frequent updates, and it is
usually desirable to update the transitive closure only after processing batches of updates, leading
to the availability of lookahead. While the issue of lookahead is receiving increasing attention in
onlinealgorithms [2, 10, 11], there has been no work along these lines for dynamic graph algorithms.
We initiate the study of lookahead as a means to circumvent the inherent complexity of dynamic
graph problems by proposing a lookahead-based variant of sparsification and applying it to obtain
efficient fully dynamic algorithms for strong connectivity and transitive closure.

In Section 2, we briefly review sparsification in a slightly more general framework than that
of Eppstein et al [7]. Section 3 develops the concept of strong certificate complexity and witness
complexity; we present a theorem relating these two measures and hence obtain a general technique
for bounding the certificate complexity. We present quadratic lower bounds on this complexity for a
variety of problems. In Section 4, we present a framework for incorporating lookahead into dynamic
graph algorithms via a variant of sparsification. We describe the assembly planning problem in
Section 5 and develop two algorithms for strong connectivity using our new framework. Finally, in
Section 6, we extend this to the transitive closure problem.

tAs we explain in Section 2, the word propertyis used in a broad sense to include non-boolean functions on graphs.




2 Preliminaries

We will view a graph GG as being a set of edges, and the underlying set of vertices will be clear
from the context; in general, these graphs will be defined over the same set of n labeled vertices.
This interpretation allows us to conveniently apply set operators, such as union and difference, to
graphs. We use |G| to denote the number of edges in a graph G.

Eppstein, Galil, Italiano, and Nissenzweig [ 7] present the sparsification technique in a framework
designed for boolean graph properties, although they also provide applications to non-boolean
functions such as minimum spanning tree. We review their sparsification technique using a more
general formalism directly applicable to non-boolean graph properties.

Let P denote an arbitrary function, also referred to as a graph property, which maps graphs to
non-empty sets of objects. For example, the minimum spanning forest function will presumably
map a given weighted undirected graph to several possible minimum weight spanning forests. In
case of boolean properties, P may map graphs to symbols TRUE and FALSE. The sparsification
technique is based on the notion of certificates.

Definition 1 (Strong Certificate) For any graph property P, a strong P-cettificate of a graph G
is a graph G’ on the same vertex set as G such that for any graph H, P(G'U H) C P(G U H).

Definition 2 (Sparse Strong Certificate) A property P has sparse strong certificates if for every
graph G, there exists a strong P-certificate for G with O(n) edges.

It is easy to verify the following two propositions due to Eppstein, Galil, Italiano, and Nis-
senzweig [7] hold under the extended definition.

Proposition 1 (Transitivity) If G’ is a strong P-certificate for G and G" is a strong P-certificate
for G, then G" is a strong P-certificate for G.

Proposition 2 (Monotonicity) If G’ is a strong P-certificate for G and H' is a strong P-certificate
for H, then G' U H' is a strong P-certificate for G U H.

Propositions 1 and 2 together imply that a recursive divide-and-conquer approach can be used for
computing the certificates. The basic idea in the sparsification technique is to maintain a complete
binary tree with [|G|/n] leaves such that each leaf represents n edges of the graph. Each internal
node maintains a sparse strong certificate of the graph formed by the union of its two children. Thus
using the transitivity and the monotonicity properties of the sparse strong certificates, it follows
that the root contains a sparse strong certificate for the whole graph. As the edges are inserted and
deleted from the graph, the certificates along the appropriate leaf-root paths are updated. Since
each certificate has only linear number of edges, an update on the whole graph now reduces to
O(log(|G|/n)) updates on sparse graphs. In essence, this technique has cost which is the same as
that incurred while processing updates on a sparse graph.

3 Lower Bounds on Strong Certificate Size

The sparsification technique allows us to devised efficient dynamic algorithms for a host of graph
properties including connectivity, minimum spanning trees and bipartiteness. However, sparsifica-
tion has its limitations: there are many dynamic graph problems which do not yield to sparsification.
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Some examples of such graph properties include strong connectivity, maximum matchings, tran-
sitive closure and graph search trees. In this section we endeavor to explain this phenomenon
by establishing the lack of sparse strong certificates for these properties. We show that each of
these properties have instances which require quadratic-sized certificates. -We begin with a few
definitions.

Definition 3 (Property Values) A graph property P is said to be mono-valued if for any graph G,
P(QG) is a singleton; otherwise, it is said to be a multi-valued property.

For example, all boolean graph properties are mono-valued. However, the class of mono-valued
graph properties is a strictly larger class as it also includes properties such as the transitive closure
of a graph.

Definition 4 (Critical Graph) A graph G is called P-critical if for every subgraph G' of G, we
have P(G") # P(G).

Definition 5 (Witness Complexity) Let H denote the family of all n-vertex P-critical graphs for
a mono-valued property P. Then the witness complexity g(n) of the graph property P is defined
as maxXgey lG |

Let C(G) denote the set of graphs G’ which are strong P-certificates for G.

Definition 6 (Distinguishing Graph) Given two graphs G| and G», a graph H is called a P-
distinguishing graph for Gy and G, if P(G1U H) # P(G, U H).

Thus a graph G’ € C(G) iff there does not exist a P-distinguishing graph for G and G".

Definition 7 (Strong Certificate Complexity) Let G denote the family of all n-vertex graphs. Then
the strong certificate complexity f(n) of a graph property P is defined as

max min |G|
GEG G'eC(G)

3.1 Mono-Valued Properties and Lower Bounds via Witness Complexity -

We show that the witness complexity of a mono-valued property P can be used to derive lower
bounds on its strong certificate complexity.

Theorem 1 Let P be a mono-valued graph property with witness complexzty Q(g(n)). Then the
strong certtﬁcate complexity of P is Q(g(n)/logn).

The proof proceeds as follows. Let G be a P-critical graph and let F denote the family of
all labeled subgraphs of G. We claim that for any distinct G1,G2 € F, C(G1) N C(Ga) = 0.
Suppose not; let G’ € C{(G1) N C(G>). Assume without loss of generality that |G| > |G|, and let
H = G\ G;. Clearly, G} U H = G. On the other hand, by our assumption, G| must contain at
least one edge not present in G. Therefore, (G, U H) C G and since G is P-critical, we conclude




that P(G1 U H) # P(G2 U H), thereby contradicting the existence of such a G’. Thus, if f(n)
denotes the strong certificate complexity of P, we must have

oy
> ("(ni U) > | 7|

1=0
Using Stirling’s approximation and the fact that | F| = 29("), we obtain the desired result.

Corollary 1 The following (di)graph properties have Q(n?/logn) strong certificate complexity:
(1) the transitive closure; (2) the diameter property; and, (3) the minimum cut value.

Each of these three properties is mono-valued and we obtain the results by applying Theorem 1
to the following critical graphs: (1) a directed bipartite graph with all edges directed from one
bipartition to the other; (2) the complete bipartite graph K, , (diameter two); and, (3) the complete
graph K. With some further work, all three lower bounds may be improved to Q(n?). The details
and some other interesting applications of this theorem are deferred to the final version.

3.2 Multi-Valued Properties and Properties with Sparse Witnesses

Theorem 1 has its limitations in yielding good lower bounds. Several graph properties have linear
witness complexity and yet no sparse strong certificates. The properties of strong connectivity and
perfect matching are two such examples. In this section, we study several such properties and
establish an Q(n?) lower bound on the strong certificate complexity of these properties.

We first show that the certificate complexity of strong connectivity is Q(n?).

Lemma 1 Let Gy, G be two labeled directed graphs on the same set of vertices, say V, and let Hy
and H, respectively denote their transitive closure graphs. Then if Hy ¢ H>, there exists a graph
H such that Gy U H is strongly connected and G, U H is not. ‘)"‘)7 vek=07T

The proof proceeds as follows. Consider an edge e = (z, y) such thate € H; ande ¢ Hy. Let
X be the set of vertices in i, which are reachable from z arid let Y be the set of vertices in H, that
y is reachable from. Clearly, X NY = r; Let Z =V \ (XUY U{z,y}). For
any collection of disjoint sets of vertices V1, .., Vi, we define H(V1, V2, ..., V) as the complete
k-partite graph where (u,v) € H{V1,V2,..., V%) if and only if u and v do not belong to the
same set V;. Finally, we define H as the graph H({y}, Z,Y, X, {z}) \ H,. Itis easy to see that
H, U H is strongly connected. On the other hand, we observe that the graph H, U H is not strongly
connected as there is no path from z to y in H, U H. Let T'C(G) denote the transitive closure of
a digraph G. The lemma now follows by observing that for any two graphs G and H, we have
TC{(GUH)=TC(TC(G)U H).

Consider now the directed bipartite graph G = (X UY, E) where |X| = |Y| = n and I/
contains an edge (z,y) forajlf € X and y € Y. It is easily seen that TC(G) = G. We claim that
for any graph H such thay/ I'C(G) # TC(H). '

To see this, assurfie a graph H exists. Consider an edge (z,y) € G\ H. Suppose

there 1s a path from z to y in . Such a path in H must contain either an edge from a vertex in X to
another vertex in X, or an edge from a vertex in Y to another vertex in Y, or an edge from a vertex
in Y to X. But none of these edges are present in G = TC(G). Therefore, TC(G) # TC(H). On




the other hand, if there is no path from z to y in H, then T'C(G) # TC(H). Thus, by Lemma 1,
there exists a graph which distinguishes G and H for the property of strong connectivity. We
conclude that any certificate of the graph G’ must contain every edge in the graph G.

Theorem 2 The strong certificate complexity of strong connectivity is Q(n?).

We now turn to the problem of maintaining a maximum matching in an undirected graph.
Consider the bipartite graph G = (X UY, E) where | X| =2n,Y = Y1 UY,, [Y1]| = |Y2| = n, and
E = {(z,y)|z € X, y € Y1}. Observe that it is useless for a certificate G’ of G to have any edge
e ¢ E because such an edge does not belong to any maximum matching of G. Thus G’ C G.

We claim that G’ must have at least n2 + 1 edges of G. Suppose not; then, there exists a vertex
y € Y; such that y is connected to no more than k < 7 vertices in X in the graph G’. Let X’ denote
the set of neighbors of y. Consider the graph H = (X UY, Eg), where Ey contains all edges
(z,y) such that z € X’ and y € Y,. Clearly, the graph G U H has a maximum matching of size
n + k while no matching of G’ U H can have size more than n + k£ — 1. We obtain the following
theorem.

Theorem 3 The strong certificate complexity of the property of maintaining a maximum matching
in a graph is Q(n?).

This theorem can be extended to the boolean property of having a perfect matching in the
graph. The basic idea is to consider again a specific bipartite graph G and show that if the certificate
contains an edge not in H, then using the special structure of G, we can always create a distinguishing
subgraph for this property. We defer the details to the final version.

We can use techniques similar to ihe above to establish the following results concerning breadth-
first and depth-first search tree maintenance in dynamic graphs; the proofs are omitted.

Theorem 4 The strong certificate complexity of the breadth-first search tree property from a given
vertex in a directed or undirected graph is Q(n?).

Theorem 5 The strong certificate complexity of a lexicographic-first depth-first search forest prop-
erty in a directed graph is Q(n?).

3.3 Canonical Hard Instances and a Conjecture

It is rather surprising that the “hard” instances for most of the properties were simply bipartite
graphs. A natural question is: do bipartite graphs provide canonical hard instances for strong
certificate complexity? The following theorem asserts that this is almost the case. The proof is
deferred to the final version.

Theorem 6 Let f(n) denote the strong certificate complexity of a property P, and h(n) the
strong certificate complexity of P when the input is restricted to bipartite graphs. Then, h(n) =

Q(f(n)/logn).

A rather intriguing trend which seems to emerge is that a somewhat restricted class of graph
properties appears to have either linear or quadratic strong certificate complexity, not in between.
More precisely, we make the fotlowing conjecture.

Conjecture 1 Let P be a monotone graph property such that there exists a graph G € P such that
G has O(n) edges. Then the strong certificate complexity of P is either O(n) or Q(n?).




4 Sparsification with Lookahead

The strong certificate complexity results of the previous sections provide some explanation for the
lack of efficient dynamic graph algorithms for a variety of problems. However, many of these
properties routinely arise in many practical applications and there is a need for efficient algorithms.
Fortunately, at least some of these applications have the crucial feature of a lookahead in terms of
some knowledge of the updates that will be performed in the future. Formally, we say a problem
has a lookahead k if at each step, the next &k edge operations are fully specified. This lookahead
framework encompasses both the off-line setting and a fully-dynamic setting as special cases, as
the value of the parameter k is varied from zero to infinity.

In this section, we introduce a new notion of sparsification, namely, lookahead based sparsifi-
cation. The sparsification technique as presented by Eppstein, Galil, Italiano, and Nissenzweig [7]
is essentially an edge-sparsification technique where the sparse certificates are used to encapsulate
the essential structure of the original (dense) graph into a sparse set of edges. The lookahead based
sparsification, on the other hand, is a vertex-sparsification technique where we use the knowledge
of the next k operations to construct a representative graph H on a smaller set of vertices such
that processing the edge operation sequence on the original graph is "equivalent" to performing the
sequence on this smaller graph H (which may possibly be dense in edges).

Definition 8 (Lookahead Certificate) Given a sequence o of k operations to be performed on a
graph G, a k-lookahead certificate of size (f(k),g(k)) is a graph H on f(k) vertices with g(k)
edges for which there exists a function F, as well as.a mapping £ from edge operations in G to
edge operations in H, such that P{G, o) = F (G, P(H, &(0))).

Intuitively, a lookahead certificate is a graph on a small set of vertices whose edges can encode the
structural changes that occur under the sequence of operations known in advance. We now indicate
how the notion of lookahead certificates may be used in designing efficient dynamic algorithms.
Suppose we are given a sequence o of operations to be performed on a graph G and we wish
to evaluate property P on graph G after each operation; let P(G, o) denote the output sequence.
Partition the given sequence into p = [|o|/k] sequences of length k each, except possibly the last
one. Let o; denote the ith sequence and let H; denote the lookahead certificate for the graph G;
with respect to the sequence o;, where G is the graph G after the ‘operations in 01,02,...,0i-1
have been performed. By the definition of lookahead certificates, we have that

P(G,0) = F(G1, P(H1,€(01))) 0 F(Go, P(H, E(02))) © - - - 0 F (G P(Hp, £(05)))

where o denotes concatenation.

Let G be any n-vertex graph with m edges, and let T1(n, m, |o|) denote the worst case time
complexity of computing P(G, o) by some dynamic algorithm A, let T3(n, m,|c]) denote the
worst-case time complexity of computing F (G, P(G, o)) and let T3(n, m, |o|) denote the worst-
case time complexity of computing a |o|-lookahead certificate. Then the total cost of the lookahead
algorithm is given by ‘

‘ [%’] [T1(f (), g(k), k) + Ta(n, m, k) + Ts(n, m, k)],

as opposed to T (n, m, ||) which results from a direct application of algorithm A.

6




5 Assembly Sequencing and Strong Connectivity with Lookahead

Automated assembly planning holds promise to reduce the effort required to create manufacturing
plans for products, as well as provide valuable and timely design-for-assembly feedback to designers.
Together with the rising use of Computer-Aided Design (CAD) systems, this opportunity has fueled
a decade of research in assembly planning (see, e.g., [9]).

Assembly sequencing is a subproblem of assembly planning. Given a set of parts and their final
positions in a product, assembly sequencing attempts to find a sequence of object motions that will
build the assembly from the parts without inducing part collisions. Assuming that the parts are rigid
and each operation mates two rigid subassemblies to produce a larger one, an assembly sequence
can be found by disassembling the product and then reversing the operations and their order. The
initial assembly is divided into two subassemblies, each of which is disassembled recursively to
find the disassembly sequence.

The blocking graph is a central structure in assembly sequencing, allowing polynomial-time
sequencing in many situations [16, 17]. Given a rigid motion d (for instance an infinite translation
along a vector d = (dz,dy, dz)), a part P; blocks a part P, along d if and only if P; collides with
P, when moved along d. The blocking graph G (A, d) for an assembly A and motion d is a directed
graph with one vertex for each part in A, and an arc from vertex N; to N; exactly when P; blocks
P; along d. A proper subassembly S of A can be removed along d if no parts in A\ S block parts
in S. Such an S exists if and only if G(A, d) is not strongly connected [15, 16].

Finally, consider the space of all possible motions d. This space can be partitioned into regions
such that the blocking graph is constant for all motions in that region; furthermore, the graphs of
neighboring regions differ by at most one arc. Refer to Appendix A for useful classes of motion
and the regions that result. To find a removable subassembly, it suffices to check all the blocking
graphs for strong connectedness; this step dominates the running time of the algorithm [16]. A
traversal of the regions yields a directed graph and a sequence of edge insertions and deletions to
that graph. This yields the following problem: givena graph G and a sequence o of ¢ edge insertions
and deletions, determine for each i € [1...¢] if the graph obtained after the ith edge operation is
strongly connected. The order of ¢ could lie anywhere between n? and »°, depending on the type
of motion used for the disassembly (see Appendix A).

5.1 Exploiting Lookahead in Dynamic Strong Connectivity

In principle, in the above application, the entire sequence o can be computed in advance, yielding
an offline version of the dynamic strong connectivity problem. However, note that the basic goal is
to find a point in the sequence (i.e., a direction vector d) at which the resulting graph is rot strongly
connected. Having found this point, the graph will be decomposed into its strongly connected
components, and the problem then needs to solved independently on these components. Thus, it
would be extremely wasteful (in terms of both time and space) to compute the entire sequence ¢
in the case where the disassembly could be performed very early in the sequence, as is typically
the case. A more reasonable approach is to use a lookahead & significantly smaller than ¢, thereby
ensuring that only a near-optimal prefix of the sequence ¢ needs to be computed.

Let m denote an upper bound on the maximum number of edges the graph may have at any
time. In practice, the graphs arising in this application have Q(n?) edges. Thus the straightforward
algorithm to verify the strong connectivity from scratch after each edge operation leads to an Q(tn?)




solution to this problem.

We may improve the running time by making use of the fact that the sequence of edge operations
is partially known in advance at any given time. The idea is to decompose the processing into t/k
phases with each phase involving precisely k edge operations, where k is the amount of lookahead
available. Let G, denote the graph in the beginning of a phase p and, for 1 < ¢ < k, let Gp,; denote
the graph obtained after the ith edge operation within the phase p. The total number of vertices
involved in the k edge insertion and deletions within a phase cannot exceed 2k; call these vertices
as the active vertices during the phase. We will need the following notation: A denotes the set
of active vertices; E4 denotes the set of all possible directed edges between the active vertices;
E;‘ denotes the set of the edges actually present between the active vertices in the graph G; Eﬁi
denotes the set E;‘ after the ith edge operation in the phase p; define G, as the graph G, \ E4 and
let H,, denote the induced subgraph on the set of active vertices in the transitive closure of the graph
G, (ie., in the graph H,, there is an edge from « to v if and only if G, has a path from « to v in
which u and v are the only active vertices); H,,; is the graph on the active vertices with precisely
the edges in H, and EZ; finally, define G; as the graph G, U EA,

p.i?
The following lemmas are crucial for the proof of correctness of our algorithm.

Lemma 2 If G, ; is strongly connected, then the graph G;’,‘ is also strongly connected.

Lemma 3 For any two active vertices, say u and v, there exists a directed path from u to v in G, ;
if and only if there exists a directed path from v to v in Hy ;.

We defer the proofs to the final version.

Theorem 7 The graph G, ; is strongly connected if and only if both G; and H,; are strongly
connected.

This theorem can be proved as follows. If G, ; is strongly connected then the graph G;*,‘ must
also be strongly connected by Lemma 2. Also, by Lemma 3, the strong connectivity of G ; implies
that H,,; is strongly connected. To see the other direction, observe that the strong connectivity
of H,; implies that TC(G,;) includes all edges in the set £# where TC(.) denote the transitive
closure of a given graph. Therefore, )

TC(Gp;) 2 TC(G, U E#) = TC(GY).

Thus G, ; must be strongly connected.

The running time is determined by how efficiently strong connectivity of the graphs G;’ and
H,; can be verified. The strong connectivity of the graph G;' can be verified at the beginning
of the phase in O(m + n) time by simply collapsing all active vertices into a single vertex and
then running the standard strong connectivity algorithm. Let T'(n, m) denote the time complexity
of a computing transitive closure on a n-vertex graph with m edges. Then the graph H,, can be
constructed in O(T'{n, m)) time. Finally, the strong connectivity of each H,; can be verified in
O(k?) time. Hence the running time for each phase is given by O(m +T(n, m) + k3) and the total
running time is given by O(t(k* 4 T'(n, m)/k)). This expression is minimized when a lookahead
of size ©(T'(n, m)!/3) is used. The running time for the whole sequence becomes O (tT'(n, m)*?)
which is an improvement over the naive approach for any m = Q(T (n, m)?/3).




Observe that if the graph contains o(T'(n, m)?/3) edges, our algorithm is slower than the naive
approach. This can be handled easily by adding a simple feature to the lookahead algorithm. At
the beginning of each phase, the algorithm computes the number of edges in the current graph. If
the graph contains Q(T'(n, m)?/3) edges, it uses the above algorithm, else it simply uses the naive
approach of running the strong connectivity algorithm for each operation in the phase.

Theorem 8 There is an algorithm for fully-dynamic maintenance of the strong connectivity of a
graph at a cost of O (min{m, k? + T(n, m)/k}) per operation using a lookahead of size k =
O(T(n, m)'/3), where T(n,m) denotes the time complexity of the transitive closure algorithm
used.

In the above algorithm, we continued to recompute the strong connectivity from scratch for each
H, ; within each phase p. But observe that the problem of determining strong connectivity of each
H,; within each phase p is identical to our starting problem. This suggests a recursive approach
which achieves a significantly improved running time. We defer the proof of the next theorem to
the final version.

Theorem 9 There is an algorithm for fully-dynamic maintenance of the strong connectivity of a
graph at a cost of O(T(n, m)/n) per operation using a lookahead of size ©(n), where T (n, m)
denotes the time complexity of the transitive closure algorithm used.

Transitive closure of a graph can be computed using boolean matrix multiplication [1]. Let
M (n) denote the complexity of a boolean matrix multiplication algorithm. Then for instance, if
we use the best-known (but impractical) algorithm for matrix multiplication due to Coppersmith
and Winograd [3] with M(n) = n2376, then the time per operation of the recursive algorithm
is O(n!-376). On the other hand, using the more practical algorithm due to Strassen [13] with
M(n) = n>8%, we achieve a bound of O(n!3%) per operation. These should be contrasted with
the naive algorithm requiring Q(n?) time per operation. Note that in this application, the graph has
Q(n?) edges at most points of the update sequence.

Of course, it would be desirable to avoid using matrix multiplication altogether, and it is
our expectation that using a good transitive closure algorithm instead would still yield significant
speed-ups in practice. However, in our next application of this techniciue, we show that it achieves a
significant speedup even while using the O (mn) time combinatorial algorithm for transitive closure.

5.2 Practical Implications

In terms of our motivating application, we briefly discuss some practical aspects of the solution ob-
tained in this paper. Figure 1 shows a discriminator, a safety device with 42 complex parts modeled
in the ProEngineer CAD system. A version of the infinitesimal rigid motion disassembly algorithm
discussed in Appendix A is used in a planner that finds an assembly plan for the discriminator in
about 30 seconds on an SGI Indigo? workstation. The planner checks several thousand blocking
graphs in the planning process.

Planning for typical industrial assemblies (such as a car) will require massive numbers of strong
connectedness checks on graphs having on the order of one million edges. For such assemblies,
methods such as those described in this paper will be critical.




6 Exploiting Lookahead in Transitive Closure

In this section, we briefly sketch the extensions of the techniques from the previous section to
transitive closure computation. We borrow the notation from there and outline the computation
done in each phase.

At the beginning of a phase p, we first compute the transitive closure of G, in O(T'(n, m))
time. For each non-active vertex v, let I'Y~*4(v) and ry ~N () denote, respectively, the set of all
active vertices and the set of all non-active vertices that it can reach in the graph G . Similarly, for
each active vertex v, let l"A“”N (v) denote the set of all non-active vertices that it can reach in G,

At the ith step in this phase we compute the transitive closure of H,,; in O(T'(k, k%)) time. For
each active vertex v, let FA“"A (v) denote the set of all active vertices it can reach in the graph Hp ;.
Now, if I',, ;(v) denotes the set of all vertices reachable from a vertex v in G ;, we may compute it
as follows. We begin by computing for each active vertex v,

L) =Ta4wu{ U 4N (z)}.
z€l)T4(v)

Next, for each non-active vertex v, we compute

i) =" wu{ U T}

J:EI‘};""‘A('U)

The computation of T, ;(v) for active vertices can be easily performed in O (k%n) time. Similarly,
a straightforward implementation has O (kn?) running time for computing I', ;(v) for all non-active
vertices. This may be slightly improved as foliows.

Consider a bipartite graph H* = (A, V, E*) such that there is an edge (z,y) in E*, z € A
and y € V, if and only if y € T,;(z). It can be shown that the computation of I',;(v) for
a non-active vertex v reduces to answering a reachability query in the graph H*, ie., given

={z € FN ~4(v)}, find the set of vertices adjacent to X in H*. Using the approach of
Hellerstem Klem and Wilber [8], we can construct a data structure to perform this computation
in O(n%k/ log? ») time for all the non-active vertices. Thus the total running time of each phase
is given by O(T(n, m) + kT (k, k?) + n?k?*/ log? n), which is minimized when the lookahead is
k = \/T(n, m)logn/n. We obtain the following theorem.

Theorem 10 There is a combinatorial algorithm for fully dynamic maintenance of the transitive
closure of a graph at a cost.of O((n\/mn)/logn) per operation, using a lookahead of size

O(v/m/nlogn).

Contrast this bound with the bound of O (nm) time per operation achieved by the naive algorithm
which performs a transitive closure computation at each step. In fact, we can obtain further speed-
ups by using fast matrix multiplication instead of the combinatorial transitive closure algorithm.

Theorem 11 There is an algorithm for fully dynamic maintenance of the transitive closure of a

graphatacost of O((n/M(n))/ log n) per operation using a lookahead of size @(\/ h_/l (n log n/n),
where M(n) denotes the time complexity of boolean matrix multiplication.

These ideas also apply to the single-source transitive closure problem; we defer the details to
the final version.




Figure 1: The discriminator assembly
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Appendix

A  Geometric Assembly Planning

Depending on the desired output of assembly planning and the rest of the planning system in
which an assembly sequencer operates, several classes of relative motions between subassemblies
might be allowed. Each class generates a space of possible motions and regions in that space;
however, computing the strong connectedness of a sequence of blocking graphs dominates the
algorithm’s running time for each class of motion. We first present a more detailed view of a
disassembly algorithm for a simple case, that of infinitesimal translations in two dimensions. We
then summarize algorithms for two types of three-dimensional motions used in real assembly
planning systems: infinite translations and infinitesimal rigid motions (see [16] for further details).

A.1 A Simple Case

Consider a two-dimensional polygonal assembly A such as the one shown in figure 2. We wish to
identify a subassembly that can be translated infinitesimally without colliding with any other parts,
if one exists. Representing a direction of infinitesimal motion as a unit vector d = (dz, dy), the set
of all motions is the unit circle S!. Consider one contact between an edge of a part F; and an edge
of part P;. The diameter of S 1 parallel to the contact edge divides the set of motions into an open
half-circle of motions for which P; blocks P;, and a closed half-circle of motions for which P; does
not block P; at that contact. A similar division occurs if a point of P; contacts an edge of P;.

Figure 2: A simple assembly and blocking graphs for two directions of motion

The set of diameters corresponding to all the contacts of the assembly divide S !into a set of
regions. Since blocking relationships only change at the endpoints of these diameters, it is clear
that the blocking graph for all points in any region is constant. Furthermore, if no two diameters
coincide, the blocking graph for a region differs by at most one arc from the blocking graph of each
neighbor region. Figure 3 shows the arrangement on S! and some of the blocking graphs for the
regions.

To identify a movable subassembly, we construct the above arrangement on .S 1 and compute a
blocking graph G(A, Ry) for one region Ry. We then step around S !to each region in turn, which
gives a sequence ¢ of arc additions and deletions to the blocking graph G(A, Ro). If the assembly
has n parts with € edges in total, the arrangement can be constructed in O{e log €) time and has O(e)
regions. If the amortized time to check an n-vertex graph in the sequence for strong connectedness
is f(n), then identifying a movable subassembly requires O (e(f(n) 4 loge)) time.
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Figure 3: The arrangement on S! and some of the blocking graphs for the assembly in figure 2

A.2 Infinite Translations

Consider now a more realistic case: an assembly A of polyhedra, to be disassembled using single
translations to infinity. In this case, the set of translation directions can be represented by S 2 A
part P; blocks part P; in a (generally non-convex) region of the sphere bounded by arcs of great
circles; this region is computed by projecting the Minkowski difference F; © F; onto S% by a
central projection. In an assembly with a total of v vertices, there are O(v?) boundary edges of
these regions, which define an arrangement of O(v*) cells on the sphere. This arrangement can be
computed in ©(v*) time. O(v*) blocking graphs must be checked for strong connectedness, for a
total of O(v* f(n)) time.

A.3 Infinitesimal Rigid Motions

Now assume that we wish to identify subassemblies of A that can be moved an infinitesimal distance
in rigid motion. Such subassemblies are a superset of all possible remcvable subassemblies. A
direction of rigid motion can be represented as a 6D unit vector giving three degrees of translation
and three degrees of rotational motion. Thus the set of motions can be represented as the surface of
the unit sphere S°. The constraints on motion imposed by contacts can be represented as finite sets
of point-plane constraints [16]. Each point-plane constraint defines a 5D hyperplane through the
origin, cutting S° along a “great sphere” (for want of a better term). The set of constraints between
any two parts defines a convex polytope on S>; for motions within this polytope the two parts are
free to move and outside of it the parts collide.

The set of convex polytopes for all contacts of A determines an arrangement on S, consisting of
relatively-open cells of dimensions 0, . . ., 5. Foratotal of ¢ point-plane constraints, this arrangement
can have O(c?) cells, which are computable in the same time bound. Thus the running time for the
local rigid motion disassembly algorithm is O(c’ f(n)).
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