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Abstract

A time varying weighting (6f) scheme for gyrokinetic particle simulation
is applied to a steady state, multi-species simulation of neoclassical trans-
port. Accurate collision operators conserving momentum and energy are
developed and implemented. Simulation results using these operators are
found to agree very well with neoclassical theory. For example, it is dy-
namically demonstrated in these multispecies simulations that like-particle
collisions produce no particle flux and that the neoclassical fluxes are am-
bipolar for an ion-electron plasma. An important physics feature of the
present scheme is the introduction of toroidal sheared flow to the simula-
tions. Simulation results are in agreement with the existing analytical neo-
classical theory of Hinton and Wong. The poloidal electric field associated
with toroidal mass flow is found to enhance density gradient driven electron
particle flux and the bootstrap current while reducing temperature gradient
driven flux and current. Finally, neoclassical theory in steep gradient profile
relevant to the edge regime is examined by taking into account finite banana
width effects. In general, the present work demonstrates a valuable new ca-
pability for studying important aspects of neoclassical transport inaccessible
by conventional analytical calculation processes.




I. INTRODUCTION

It is generally acknowledged that neoclassical theory provides a useful
lower bound for comparing confinement properties in magnetically confined
plasmas.! Standard neoclassical theory begins with the assumption of a
static magnetic field equilibrium with no fluctuating fields. Recently sev-
eral authors?®* have pointed out that external electrostatic and magnetic
fluctuations can strongly influence neoclassical transport. Another issue of
current interest is the realistic extrapolation of the neoclassical bootstrap
current into advanced tokamak operating regimes and assessing its efficacy
for driving a steady state device.>® Neoclassical theory is also an important
area of stellarator research since present-day experiments find that this type
of transport is apparently dominant in the long mean free path regime.’
Analytical neoclassical theory has its limitation in all of the just noted situ-
ations due, for example, to complications introduced by realistic geometry.
It is, therefore, of interest to systematically analyze this problem using par-
ticle simulation techniques. Potentially significant modifications associated
with finite gyro-radius dynamics, energetic particle effects, sheared flows,
and the influence of fluctuating electric fields can be examined with this ap-
proach. The scaling of the bootstrap current under realistic conditions in a
steady-state tokamak can also be properly investigated. Finally, the fully 3-
dimensional non-axisymmetric nature of stellarator configurations can best
be addressed by particle simulations.

The numerical simulation of neoclassical transport based on the drift-
kinetic formalism was carried out in early works by Tsang, et al.® More
recently, Wu and White® used a Hamiltonian guiding center Monte-Carlo
code to study the bootstrap current. Ma, et al.}? developed a particle sim-
ulation scheme using the conventional gyrokinetic algorithm (total-f) and
binary collisions. Our present work is intended to develop a tool which can
be used for more comprehensive investigations. To this end, we have ex-
tended the gyrokinetic simulation techniques developed by Lee and cowork-
ers!~13 to a new regime of applicability. Specifically, the new §f scheme is a
fully dynamical, self-consistent and systematic approach, which has distinct
numerical advantages over conventional simulation methods.

The approach in this paper differs from previous studies in a number of
significant ways. First, the §f scheme is a steady state simulation without
profile relaxation effects, while a Monte-Carlo simulation will cause profile
modification due to transport. Secondly, the noise level is greatly reduced in
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the present scheme compared to conventional particle simulations. Finally,
momentum-conserving collision operators can be readily implemented using
df scheme. The present work is the first steady state, multi-species simula-
tion with ion dynamics retained and complete collision operators properly
implemented. Simultaneously accounting for the ion and electron dynamics
is very important because of the sensitivity of the ion response to effects
such as sheared flows and finite gyroradius physics. This in turn can signif-
icantly modifies the electron transport through the collisional coupling and
quasi-neutrality constrain.

In the usual 6 f scheme for turbulence simulations, the distribution func-
tion is separated into a “known” or background fy and a perturbed part §f.
When §f < fo, the noise level is reduced by a factor of (§f/fo)? compared
to the total f scheme.l*!5 In the simulation of microturbulence, fy rep-
resents the background equilibrium distribution function and §f accounts
for the perturbation. In neoclassical transport, there are no fluctuations.
Nevertheless, to facilitate the computations, the distribution function can
still be separated into a Maxwellian fo plus a perturbed part, §f, with the
perturbed part resulting from magnetic drifts and spatial inhomogeneity.
We can then load a Maxwellian fp and calculate §f as a time dependent
quantity in the simulation. In this way, we can extend the §f scheme to
steady state simulation and study steady state phenomena by the initial
value approach.

In the present paper, we extend the §f schemes based on the small gyro-
radius ordering of drift kinetic equation to simulate steady state physics.
The numerical scheme is benchmarked by using a simple model collision op-
erator to study neoclassical transport. Simulations results of particle fluxes,
energy fluxes, and bootstrap current are found to agree very well with stan-
dard neoclassical theory. Based on the approach adopted by Xu and Rosen-
bluth and later by Dimits and Cohen,!® accurate collision operators are de-
veloped and implemented. Specifically, all collisions conserve local momen-
tum and energy, and the like-species collision operator properly annihilates
the linearized shifted Maxwellian distribution. The relevance of momentum
and energy conservation and the role of like-species collisions in neoclassical
transport is explored in detail. Ion dynamics are self-consistently retained
for the first time in these multi-species simulations, and it is dynamically
demonstrated that (¢) like-species collisions produce no particle flux; and
(2) neoclassical fluxes are automatically ambipolar for simple ion-electron
plasma. Pure toroidal flows have also been introduced for the first time




into these simulations. The trends predicted by the analytic neoclassical
theoryl” of large toroidal mass flow is confirmed. In the banana regime, the
neoclassical enhancement of the viscosity is a Pfirsch-Schluter factor times
the classical viscosity, and the enhancement of ion heat fluxis observed. The
direct effect of toroidal flow on electron particle transport is negligible when
the Mach number is smaller than unity. Furthermore, the poloidal electric
field associated with the flow is found to enhance the density-gradient-driven
electron particle flux and bootstrap current, but reduce temperature gradi-
ent driven electron particle flux and the associated bootstrap current con-
tribution. The effect on electron thermal fluxes is largely negligible. Finally,
the neoclassical theory is re-examined in the steep gradient profile regime
where the ion poloidal gyroradius is comparable to the equilibrium profile
scale length. This finite banana width effect is studies both analytically and
numerically. It is found that both the ion thermal flux and the toroidal mass
flow are increased by factors of order (ppk)? when the finite banana width
effects are taken into account, where Pp is the ion poloidal gyroradius and &
is the profile gradient. Future work using this new simulation technique to
study various aspects of neoclassical transport will be discussed.

The rest of the paper is organized as following. Section II presents
the basic formalism. Section III shows the results of benchmarking single
species simulations. Accurate collision operators are developed in Section
IV. The relevance of conservation properties of the collision operators is
demonstrated in Section V. The effects of toroidal flow and the associated
poloidal electric field are investigated in Section VI. Finally, neoclassical
theory for the steep equilibrium gradient profile case is examined in Section
VII with finite banana width effect retained. Section VIII summarizes the
main findings of the present work and comments on future studies.

II. ¢6f SCHEME FOR NEOCLASSICAL TRANSPORT

A. Basic Formalism

To illustrate the basic principle behind the computational approach de-
veloped to address the neoclassical transport problem, we begin by consid-
ering a simple steady state plasma with static magnetic field Bb and no
electric field. The usual drift kinetic equation for a guiding center distribu-
tion function f(E, p,x), where E is particle kinetic =nergy, p is magnetic
moment and x is guiding center coordinate, has the form,!
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where vq4 is guiding center drift velocity, C is the drift kinetic collision op-
erator. In the steady state,
of

ot

The basic small expansion parameter is

0.

P
=22,
where p, is the ion poloidal gyroradius and Ry is the major radius of the
torus.

Since the drift term v is smaller than transit term vy by a factor of 4,1
a perturbation expansion base on § ordering is appropriate; i.e. ,

f=fo+fit.
The zeroth order equation then becomes

wb- 20 o) =0 @

with its solution being a local Maxwellian

Jo=noF, = ?0 e_‘_';‘: .
T2,
The first order equation is
. Of d
v||b-§1—0(f1)=—vd-£. (3)

Together with the solubility conditions from the second order equation, we
can solve for f1 in term of linear functions of fy. The formal solution is

.8 L
f1=(v“b-§—0) vq-Rfo,

where
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with k, and k; representing the inverse of density and temperature scale
length, respectively.

In order to utilize particle simulation techniques to solve the first order
equation, Eq. 3, we adopt the following approach. This equation is solved
numerically by following the zeroth order guiding center trajectory in phase
space, which is defined by the characteristics of zeroth order equation, Eq. 2.
To cast the drift kinetic equation in a form suitable for particle pushing, we
make a transformation to guiding center phase space variables (p,,v",x),

f(E,/.L,X) - f[‘U"(E, #’x)aﬂ:x]a
which leads to,

of

of of Ov
(&)E,y = (gx')p,u" -+ (ﬂ)p,x(_"
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After defining
]
o =vyb-(F)Eu,
Eq. 2 and Eq. 3 can then be expressed as

% t+ub - +aft-cf)=0,

(4)
%% + b - %‘% +a||§v% —C(fi)=va-Rfo.

With regard to the physical interpretation of these equations, we note
that a steady state distribution function close to a local Maxwellian has
been considered. It can then be linearized and separated into a zeroth order
background Maxwellian and a first order perturbation part. The background
inhomogeneity only comes in through the drift term in the steady state drift
kinetic equation. Since this drift term is much smaller than the transit term,
we can separate it out and treat it as a source term in the linearized drift
kinetic equation.

Eqgs. 4 illustrate the desired form needed for numerical simulation. It
contains all the important neoclassical effects, i.e., the v4 term accounting
for magnetic gradient and curvature drifts, and the a| term representing
the mirror force term which gives rise to particle trapping. These equations
can be readily solved utilizing the linearized weighting scheme of Dimits
and Lee.}? In this linearized scheme, particles are pushed by following the



zeroth order guiding center trajectory without the gradient and curvature
drifts which are taken into account in the first order equation. f; (or §f in
the usual notation of gyrokinetic simulation) is solved by integration along
the particle trajectory. In this way we can solve the steady state problem
by initial value methods. The steady state solution of f; is obtained after
several characteristic time periods governed by the left side of Eq. 4. This
is the collisional time in the banana regime and the parallel diffusion time
in the collisional regime.

Magnetic surface averaged neoclassical fluxes and diffusion coefficients
only depend on local density, temperature and their gradients. Hence, in-
stead of loading a real profile, we can load a normalized fo which is uniform
in space with density and temperature equal to those of the magnetic surface
on which we are computing the neoclassical fluxes.

B. Finite Banana Width Effects

In order to take into account finite banana width effects which usually
are not included in the neoclassical theory, we need to follow a more exact
guiding center motion. Thus, the drift term v4 must be retained to the
leading order in drift kinetic equation,

7]
Lt togptva) Loy oL f —c(f) =o0. (5)
For
f=fo+4df,
fo now satisfies
0 - 0 7]
5;“ +yb- aff +tayg - fo = C(fo) =
The governing equation for the perturbation is then become,
o) L) 06
32{ (‘U”b + Vd) —f -+ a” a f C((gf) =Vga- Iifo . (6)

Equation 6 can be efficiently solved using the nonlinear weighting scheme
of Parker and Lee!3 . This is accomplished by first defining a symbolic
operator

D _ 90 0 0

E 6t (‘U”b + Vd) b; + a7 av“ -C,
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and weight w

w
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Then, we have

D

—D_z::{ =vd-n%= (1-w)vg-&.
If a Maxwellian distributiqn is considered,

f(t=0)=f0=Fm)

for
N

=1
the solution of éf is then given by

N
§f =Y wib(Z - Zs),
=1
where Z represents the five-dimension phase space variables (B9, %) .

When ion-electron collisions are neglected, the solution of f can be
generalized to a shifted Maxwellian Fyp, (v — v))9) with mean velocity Y)j0-
The associated equilibrium gradient scale parameter & is defined as,

2
v 3 2(v) = vjo)vpo
I€=I§n+(;j§—§)fit+—_vt2h—nv,

where x, is the inverse of flow velocity scale length.

III. BENCHMARKING THE NUMERICAL SCHEME

To benchmark the numerical scheme, a simulation in toroidal geometry
is carried out using a model collision operator. Consider an axisymmetric
toroidal geometry with circular cross section. The magnetic field can be
written as R R

B = Br(r)¢+ Bp(r)0,

where r, q§ and 6 are, respectively, the minor radius, the toroidal and the
poloidal angles. Here By = By/h, Bp = Byo/h with h defined as

hEl+—T—c05951+ecos9,
Ry
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and Rp is the major radius. By and By are related by the safety factor g,

_ rBy
q ROBPO .

For numerical simplicity, we use the familiar Lorentz model without velocity
dependence, i.e.,

b =10 8
C—I/L—V2a§(1 5)85,

~

where v is the collision frequency, L is the pitch angle scattering operator,
and ¢ is the particle pitch with respect to magnetic field line,

U

é‘:._

-
A. Analytical Neoclassical Theory

In order to provide the benchmarks for the simulation results, we ana-
lytically calculate the neoclassical fluxes for the model collision operators in
both collisionless and collisional limits. We begin with the first order steady
state drift kinetic equation, Eq. 3, with the drift velocity! and the collision

operator written as
Yl

B * V(h'U") )

Udr =

)|

d
an i)‘gﬁ_
NN’
respectively. Here €, = eBpo/mc and X = h(1 — £2).

C = v2h¢

1. Banana Regime

In the banana ordering, f1 can be expanded as;
A=+ 4

where the smallness parameter is,

0

3
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where w; is the transit frequency. The-zeroth order equation becomes

UK
o - V(" — Z-h€)Fn =0,
P

or 0
1Y = ZFa(hé + f), (7)
Qp
where R
0f1 _
20 =
Application of the annihilator
dé

ul
to the first order equation,
0
ub- v - (") =0,
leads to the following solubility condition:

do
—c(f") =0,
Yji

Thus, we find for f;

oh _ _ 1
O 2<E>

H(hmin - A) ’

where H is a step function, and hpi, = 1 — e deﬁnes the boundary
between trapped and passing particles. With f and first order equa-

tion for f specified, we can calculate the corresponding neoclassical
fluxes:

2
I =< [dvvg fL >= %Ilvpz‘z’gn(n,, + k7)),
2
Q=< fd%%mvzfud,fl >= %(F + %11Vp2g7nI€T) , (8)
d d
=< fd%—”'fl >= fip= ;12 %133—32

where < --- > represents the flux surface averaging, [ hdd/2m. Here,
T is the partlcle flux, Q is the energy flux and j, 1s the bootstrap

10
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current with p being the thermal gyroradius (p = murc/eBy), f: is
the fraction of trapped particles, and to the lowest order in ¢,

L =13= 1.38\/2—6-.

For a finite €, as pointed out by Wu and White,? the next order cor-
rection to the trapped particle fraction can be estimated heuristically
by requiring fi(e = 1) = 1. This yields:

fi = 1.461/€ — 0.46¢ .

We note that to measure local (not volume averaged) current density,
it is essential to calculate < [ d3vfiy)/h > rather than < [d% Jivy >.

. Collisional Regime

In collisional regime, f; can be expanded as:
A=A+ 0+ 1P+,
where the smallness parameter is

S e
_1 .
ey

The associated lowest order equation is
-1
e M) =0,

or 1 1
f{— ) = f{— )(E,T79)'

The zeroth order equation is then given by
0 ~ -
C(?) =ub- vV,
This yields
0 v€ ~ -
70 =-%h. g,

For the first order equation,

-~ VK -~
C(") =vb - V11" — - Fuub - v (hE),
P
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fl(o) can then be substituted and the annihilator
h
/ dx
0
/2# do
o h

< h™2>-1
h

can be applied together with

to give

byt = ngm( — ). 9)
'

The corresponding neoclassical fluxes are

I'= qupzn(nn + K’T) ’
(10)
Q = Z(T + vg*p’nrr).

B. Simulation Results

In this benchmark simulation, we consider a static magnetic field and no
electric field. A uniform Maxwellian of electrons is loaded over an annulus
section of torus. We follow the electron guiding center trajectories and
treat the ions as a cold Maxwellian background. The simplified Lorentz
collision operator is implemented by the utilizing the Monte-Carlo pitch
angle scattering model,

¢ = £o(1 — vAt) + (R - 0.5)[12(1 — E)wAD)]?,

where £ and g are pitch angles after and before collisions, respectively, At
is the time step, and R is a uniform random number between 0 and 1.

The neoclassical fluxes are measured within an annulus centered by a
magnetic surface. Results from the 3-D toroidal code are shown in Figs. 1,
2, and 3, where we show the collision frequency dependence of, respectively,
particle flux T, energy flux Q and bootstrap current j, (jp is normalized
by the collisionless limit value jp). Results from the analytical neoclassical
calculations using the same model collision operator are also plotted on these

12
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figures for comparison purpose. The effective collision frequency is defined
by
«_ vV2qRy
Vv = -3 -
€2 Uk

Throughout this paper, we use the gyrokinetic normalization of By =T, =
m; = 1 . Key parameters in the simulations are: Ry = 512, ¢ = 0.213,
qg=2.5, k, =0.02,and K, =0 .

The simulation results agree very well with analytic theory in both
the collisional and the collisionless limits where analytical results are valid.
This numerical scheme is sufficiently accurate to actually measure §f. To
demonstrate that the present computational scheme correctly represents the
physics, we now examine the neoclassical transport in some details in these
two limits of collisionality.

1. Collisional Limit

In the collisional regime, fi can be written as

2u(r,0)v
2ulns By

fi=6én(r,0)F, +
Vth

where 07 is local density perturbation, and u is the parallel flow ve-
locity. By expanding én and u in poloidal harmonics,

(o]

n = Z 81 (r)e™

m=0
©

u = Z um(r)ei"‘e,

m=0

and accurate to the lowest order in € for Eq. 9, the solutions are

fl(_l) = cos gﬁg_f’i’f};‘m ,
fl(o) = cos 62qU"nFm ,
where Q = eBy/me. Thus,
Sy = 2¢2Rovk ’
Q
13
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and gk
uy = —Q— .
Good agreement is obtained for the amplitudes of dny and u; between

analytic theory and simulation results as depicted in in Fig. 4.

Diamagnetic current driven by background pressure gradient produces
a parallel flow (Pfirsch-Schliiter current or return current) in the col-
lisional limit as required by the quasineutrality condition. Due to the
short mean mean path of the particles, this return current produces
a first order pressure variation within the magnetic surface. The re-
sulting diamagnetic-type drift gives rise to a neoclassical fluxes. Here
the local Maxwellian fl(_l) represents the pressure variation, and the

shifted Maxwellian fl(o) accounts for the parallel return current. In the
simulation, f1 reaches a steady state solution when the friction force
on the return current due to collisions is balanced by the driving force
from the gradient of the pressure perturbation. A plot of time history
of the particle flux is shown in Fig. 5. It is found that the particles
reach steady state in a few parallel diffusion times.

. Collisionless Limit

In the collisionless (banana) regime, the pitch angle scattering pumps
trapped particle into the untrapped population. At a giving magnetic
surface, trapped particles with opposite parallel velocities comes from
opposite sides of the surface, respectively, and hence carry different
parallel momentum due to the density gradient. The circulating par-
ticles gain this momentum due to the detrapping process, and the
resulting parallel flow give rise to a bootstrap current. On the other
hand, the circulating particles lose momentum due to ion-electron col-
lisions. When the friction force of the collisions balances the driving
force of the density gradient, f; reaches a steady state solution. In
this collisionless limit particles move freely along the magnetic field
line to maintain uniform pressure, but the drift motions perturb free
particle motion and give rise to stress anisotropy. The neoclassical
fluxes again result from the diamagnetic outward drift due to this
stress anisotropy. A example of the time history of the bootstrap cur-
rent is shown in Fig. 6 where it is illustrated that this current reaches
steady state in a few collision times.

14



C. Lorentz Model

Since the Lorentz model is extensively used in neoclassical theory, it is in-
teresting to assess its accuracy for computing the actual transport. In Fig. 7
the particle flux (represented by X) obtained by using Lorentz model is com-
pared to theoretical fluxes calculated with the full Fokker-Planck operator.
We note that in the collisional limit, the Lorentz model is quite adequate to
produce the neoclassical fluxes. However it generally gives smaller fluxes in
the banana regime where electron-electron collision cannot be ignored.

To include electron-electron collisions in the banana regime, note that
only the pitch angle scattering part is important. It is convenient to adopt
the model pitch angle scattering operator from Hinton and Hazeltine’s re-
view paper; A

C= (Vee + Vei)L 3

where,
. _ 37 Uhg
V81 - 4Tb( v ) b
37r v
Vee ( th)3¢(_)

_32

be) = (- 5p)erf(z)+ o

and er f(z) is the error function. The results of particle flux are also shown
in Fig. 7 (represented by +). This form is accurate in the small collision
frequency limit but overestimates the fluxes in the more collisional regimes.

1IV. FOKKER-PLANCK COLLISION OPERATION

Realistic gyrokinetic particle simulation requires the implementation of
accurate collision operators with all conservation properties retained. As
shown by analytical theory, momentum conservation can play an important
role in neoclassical transport. Therefore, this problem provides a relatively
simple yet direct physical test for collision operators conserving momentum
and energy. Appropriate accurate collisions operators conserving momen-
tum and energy for a simple (electron-ion plasma) plasma are developed in
this section.

15
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A. Like-Species Collision Operators

Following the approach introduced by Xu and Rosenbluth!® and then
modified by Dimits and Cohen,'® we have developed a like-species particle
collision operator which can (i) conserve all the collisional invariants(particle
number, momentum and energy); and (ii) annihilate a shifted Maxwellian
equilibrium distribution with small mean velocity. In dealing with collisions
of test particles () with background particles (3), we begin with the Rosen-
bluth potential, assume both distribution functions f* and f# to be close to
Maxwellian, linearize, and keep terms responsible for momentum and energy
conservation. The linearized operator is!%:20
; 8v628v [G(Iv? — vv) + Hvv)éfe

(11)
where the first term P accounts for the momentum and energy conserva-
tion, and the other two terms are the test particle drag and diffusion parts.
Functions F' , G , H are defined by

C(6f%) —P(Fm,sfﬁ)+ — - (VF3f®) +

F = (1+ﬁ)¢(z)uo,

= 11~ o)(a) + 2

H = %¢(z)Vo,

]0)

respectively. Here z = v /vfhﬂ and ¢(z) is the Maxwellian integral defined

by
2 [ _,
T)=— e *Vtdt.
The basic collision frequency here is defined by
4mngg? %ln Aap

vy =
m2vs

The diffusion tensor can be diagonalized by transforming to the coordinate
system w in which the z-axis is the direction of the test particle velocity,
w =w, =V . This lead to

C(Sf“)—P(Fm,éfﬂH—( Fof) 450 2< PHE[) 4 (o V2G5 1%)

(12)

6262)(
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where w, and wy are orthogonal to w) and to each other. The test particle
part can be readily implemented in this diagonalized form.2!

In the drift kinetic limit, we can transform the velocity space coordinate
to cylindrical coordinate (v",v 1,0) with ¢ representing gyro-angle. After
averaging over gyrophase ¢ , we have (now ¢ is guiding center distribution
function),

b5} 3} 82
C@f) = 3_1,”(”8”51’)"'W(Vsl‘;f)'*W(”nl‘gf)

2
1
18 1 &
+56—vﬁ(l/”5f) + —2"(371)2(1&67) + P, (13)

where the collision coefficients are
vl =y,
vey =200F —v2H — (2‘uﬁ +42)G,
y = ’UﬁH + ‘U_2LG )
vi =42(2H+ vﬁG) ,
V".L = 2'0_21_’0“ (H - G) .

The test particle drag and diffusion terms can be implemented by utiliz-
ing the following Monte-Carlo method?!:18:16 ;

Y = Yo V,"At + \/1_2(R1 — 0.5)1/1/“At,

2
Vi
012 = 3~ vy  At+ VI2(Ry — 0.5), ' (vy — %)At (14)
I

+VIZ(R: - 0.5)’;'#, [mAt,

where R;, Ry are two independent uniform random numbers.

In particle simulations using the é f scheme, the momentum and energy
conservation term P can be readily implemented. This term has been cal-
culated analytically by Xu and Rosenbluth.!® Since it appears as a source
term in the linearized gyrokinetic equation, Dimits and Cohen?® implement
this term by changing particle weights to ensure the conservation of first
order momentum and energy,

2
Aw=—v-6P - (2~ 3)sE, (15)
Vtha 2
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where § P and 6 E are weighted changes of the momentum (Av;) and energy
(Av?), respectively, of test particles due to test-particle collisions; i.e. ,

2
P= 3 wiAvi, :
) -~ ,- w;Av; (16)
and 5
— E : A2
CSE = m : 'LU,A'U,— . (17)

For like-species collisions, the collisional steady state solution is a shifted
Maxwellian Fypm = Fin(v ~ v)p), and the collision operators should accord-
ingly annihilate this function. However, the implementation of Eq. 15 fails to
maintain a shifted Maxwellian. This method compensates the test-particle
momentum and energy loss due to test-particle collisions by putting them
back into particle weights. However, this approach does not take into ac-
count the velocity dependence of the momentum and energy loss rates gener-
ated by collisions. As a result, the shifted Maxwellian is distorted in velocity
space, and only three velocity moments ( < v >, < v >, < v? >) are con-
served. As demonstrated in the next section, application of this procedure
to the neoclassical transport problem will give incorrect energy flux, which
is a quantity associated with third and higher order velocity moments.

Note that for small mean velocity (vjo < ws), a linearized shifted
Maxwellian is linear both in v and v? to second order in vjjo/ven- We can
therefore maintain a linearized shifted Maxwellian by restoring the momen-
tum and energy according to their loss rates. The loss rates of momentum
and energy!? can be readily calculated from Eq. 12:

dv.
at ——FV,
& — _(2F - 2G - H)?.

Substituting the functions F, H and G defined in Eq. 11, we now can im-
plement conservation properties with the correct velocity dependence,

Aw = —3\/§¢(z)(?zl—a)3v - 6P — 3\/§[¢(m) - %]%JE (18)

with 0P and §E determined by Eq. 17.

Egs. 13 and 18 represent an appropriate set of Fokker-Planck collision
operators. It is obvious that these operators conserve the collisional invari-
ants and properly annihilate a Maxwellian. To test the second property, a
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shifted Maxwellian §f* = 2ujuo/v%,, is loaded and subjected to the test
particles drag and diffusion processes (Eq. 13). We then comparing the re-
sults obtained from applying Eq’s (15) and (18), respectively. The shifted
Maxwellian 6 f¢ after three collisional times is shown in Fig. 8. It is clearly
evident here that results using our new formulation, i.e., Eq. 18, (represented
by solid line) maintains the form of the shifted Maxwellian § f¢, while result
from the application of Eq. 15 (represented by dotted line) fails to do so.
The older model pumps the momentum from low velocity particles to high
velocity particles and generates an increase in the higher velocity moments
associated with the momentum accumulation of these high velocity parti-
cles. Fig. 9 compares the third velocity moment history of the same shifted
Maxwellian under these two schemes.

B. Inter-Species Collision Operators

Collisions between ions and electrons can be simplified by neglecting the
mass of the electron. In the ion frame, the electron-ion collision operator,
accurate to first order in (1/z) and including pitch-angle scattering and
energy diffusion can be expressed as,

2
Ca61) = m3 g1 - )55 +mvan(odrs+ 2.2 57 (19)
For the present analysis, only the pitch angle scattering needs to be retained.

Ion-electron collisions can be simply modeled as ion Brownian motion in
an electron fluid. Only the friction force by the electrons must be retained
since the ion-ion collisions provide the ion-velocity-space diffusion on a time
scale much faster than that of the ion-electron collisions. The local momen-
tum loss of the electrons due to electron-ion collision is properly taken into
account, and the first order ion momentum is then modified to ensure that
the local momentum conservation between ions and electrons is maintained.

V. TWO SPECIES SIMULATIONS

A. Role of Like-Species Collisions

To the lowest order in the mass ratio expansion, the ion collision op-
erator only includes ion-ion collisions. It is well known that due to the
momentum conservation like-species collisions alone should produce no neo-
classical particle transport. It is demonstrated in Fig. 10 that ion particle
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fluxes resulting from like-species collisions will indeed drop to zero when
appropriate conservation properties are retained in the simulations. In the
case of no temperature gradient, k; = 0, the energy flux is also expected to
vanish.! In Fig. 11, the new collision operator developed in Section IV gives
the correct zero energy flux, while the Dimits and Cohen model produces
an unphysical inward energy flux. We note that this is the first dynamic
simulation which clearly verify the zero flux result for like-species collisions.
The total f scheme has considerable difficulty in implementing kinetic colli-
sion operators with all conservation properties retained. Although attempts
have been made to implement binary collisions including all conservation
properties for total f schemes,!? definitive results of the type reported here
have not been published. Ion-ion collisions are known to produce a toroidal
neoclassical rotation through the decay of poloidal rotation due to magnetic
pumping.?? Although this parallel flow is present, momentum conservation
prevents collisions from generating frictional forces. As a result, since pres-
sure variations or stress anisotropy cannot be set up, and no flux is induced
because of the absence of outward diamagnetic-type drifts. A more impor-
tant consequence of ion-ion collisions is the enhanced ion energy flux in the
presence of a temperature gradient. Since this flux is a square root of the
mass ratio larger than that of the electron, they can dominate ion thermal
transport under certain circumstance. In Fig. 12 the dependence of ion en-
ergy fluxes on the effective collision frequency is plotted, and a comparison
of the simulations results to the theoretical results of Hinton and Hazeltine
! is illustrated.

Complete electron dynamics requires including electron-electron colli-
sions as well as electron-ion collisions since they are on the same time scale.
To show the importance of conservation properties, we compare results from
an electron-electron collision model conserving momentum and energy with
a non-conserving model. In Figs. 13 and 14, the results of particle flux
and bootstrap current are compared with theoretical predictions from Hin-
ton and Hazeltine’s review paper (with T} = 0) .} Here it is seen that the
momentum-conserving collision operators give a much better fit to the the-
oretical calculation results in the entire range of collisionality. Furthermore,
as predicted, the electron-electron collisional contribution to neoclassical
particle transport only occurs in the presence of electron-ion collisions. Es-
timates for the particle flux from the non-conserving collision model overes-
timates the neoclassical flux in the collisiona' regime. The reason is that the
flux here is caused by parallel frictional forces due to first order parallel flows.
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Since the electron-electron collisions do not contribute to this frictional force
in lowest order because of momentum conservation, the associated flux is
negligible. On the other hand, the test particle drag and diffusion operators
without momentum conservation tend to drive the distribution function to
a Maxwellian and thus artificially create frictional forces. In the banana
regime, the particle fluxes are dominated by trapping and de-trapping pro-
cesses. Thus only the test particle drag and diffusion terms are important.
For the bootstrap current, the operators without momentum conservation
underestimate the current. This is because the bootstrap current is governed
by the momentum balance of circulating electrons. The electron-electron
collisions should contribute to the rate of momentum transfer from trapped
particles to circulating particles but not to that from electron to ions. Again,
the operators without momentum conservation create an artificial frictional
force and therefore cause additional unrealistic momentum loss of circulat-
ing electrons to ions. Consequently, the results from such collision operators
fit quite well only with the theoretical results of Z.5; = 0o, where electron-
electron collision can be neglected.

B. Ambipolarity

Ton dynamics affects electron transport through the collisional coupling
and quasi-neutrality constrain. When ion dynamics is retained in two-
species simulations with T; = T, and x; = 0, the bootstrap current as
well as electron particle and energy fluxes are doubled with respect to the
single-species simulation results (corresponding to T; = 0) (as expected from
neoclassical theory).

For a simple plasma, ion and electron particle fluxes are automatically
ambipolar because of the momentum conservation between ions and elec-
trons. This key ambipolar feature is demonstrated for the first time in
the present dynamical simulations. Representative results are displayed in
Fig. 15.

VI. TOROIDAL FLOWS

A. Basic Formalism

In steady state, toroidal flow is a function only of the magnetic surface;
i.e., ug = u(r)& = w(r)Rpé;. Following the approach of Hinton and Wong,'”
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we transform to a rotating frame, v — ug — v, linearize and then gyro-
average the Fokker-Planck equation for the ion distribution function. The
inertial forces, and thus the guiding center drifts associated with these forces,
are retained in this rotating frame. The governing linearized drift kinetic
equation becomes,

- e 3 m
ob - V6f — C(6F) = var(en + (m? — Skt + ZwR( +wR)R)Fo, (20)

where £, is the inverse of angular velocity scale length. Here the zeroth
order distribution function is,

Fo = na(r)Fin = "4 exp(-705),

7!'2‘Uth

where the invariants of motion are defined in the rotating frame,

4
l‘l’ 2B7
and 22
1,5, o e w
e=§(v"+vl)+;@— 5

The guiding center drift velocity includes the usual vB, v x B and
V@ x B drift terms together with new drift terms produced by the centrifugal
force, mw?R, and Coriolis force, 2mv”f) X wé&, in the rotating frame. This
has the form:

b v‘}_ vB 0 ~ e 2 - 1
v4d = 5 X (7—B—+’U"b‘Vb+ ;V@—w R + 2wé€, x bv”).
The electrostatic potential is defined solely by charge neutrality, and can

be represented as;

T. mw?

T.+T: 2

ed = (R’— < R? >). (21)

B. Effects of Toroidal Flows without Electrostatic Field

To separate the effects of the poloidal electrostatic field and rotation,
one approach is to set this potential to zero and assume charge neutrality
is achieved by other mechanisms. The solution of Eq. (20) gives rise to
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vy ——

neoclassical viscosity (u;) and ion thermal conductivity(x;). In the large
aspect ratio limit of the banana regime, the results are,1?

2,2
Bi = 0114 ) ' (22)
Ti
and 0.6602 o2
x; = 66165‘1 %(1 +2.24¢ — 3.62¢% +2.32¢3), (23)
2

where ( is defined by ( = m;w?R?/2(T: 4+ T.) .

The radial derivative of the angular velocity appear in the linearized drift
kinetic equation as a driving term. Therefore, Eq. 20 is a generalization of
the usual linearized drift kinetic equation, Eq. 3, and can be readily solved
by the numerical scheme developed in Section II.

Simulation results including toroidal viscosity are shown in Fig. 16. They
agree quite well with the theoretical results of Hinton and Wong.!” Specif-
ically, it is confirmed that the neoclassical enhancement of the viscosity is
a Pfirsch-Schluter factor times the classical viscosity in banana regime and
that there is no enhancement in the collisional regime. No anomalous vis-
cosity is observed. It is noted that if energy conservation property of the
collision operator is not incorporated, results indicate a much higher viscos-
ity.

Fig. 17 shows the toroidal mass flow enhancement of ion energy fluxes
in the banana regime, in agreement with Eq. 23. This enhancement comes
from the additional guiding center drift associated with the centrifugal force.
It is observed in these two species simulations that when the Mach number is
much smaller than unity, the influence of toroidal flow on electron transport
and the bootstrap current is negligible.

C. Effects of Electrostatic Field Associated with Toroidal
Flows

The effects of the electrostatic field associated with the toroidal flows
can be included by adding the equilibrium potential defined in Eq.(21). It
is found that this electric field can enhance both the density gradient driven
electron particle flux and the bootstrap current, but tend to reduce tem-
perature gradient driven electron particle flux and the associated bootstrap
current. The effect on electron thermal fluxes again tends to be negligibly
small for small Mach number. This behavior is likely associated with the
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fact that the poloidal electric field has a stronger influence(trapping and
de-trapping) on low energy particles than on those at high energies.

VII. NEOCLASSICAL TRANSPORT FOR STEEP GRA-
DIENT PROFILE

The standard neoclassical theory assumes that the ion poloidal gyrora-
dius is much smaller than the equilibrium profile scale length (p, < Lp).
However, this assumption breaks down both in the tokamak edge regime,
where steep gradient profiles have been observed in the H mode plasmas, and
in the region close to the seperatrix of diverted tokamaks. This motivates
analysis of possible new physics effects when the usual small gyroradius or-
dering is not invoked. Using the formalism developed in Section II, both
numerical and analytical studies have been carried out to investigate the
finite banana width corrections to standard neoclassical theory. Simulation
results indicate that the ion thermal flux and toroidal mass flow increase
due to the finite banana orbit size. As shown in Fig. 18, simulation results
show that the ion thermal flux increases linearly with (ppn)2. In order to
analytically estimate the finite orbit size correction, we adopt the smallness
ordering (pp < Lp). The drift kinetic equation based on this small parameter
is then expanded with the lowest order correction retained.

A. Enhancement of Ion Thermal Flux

For a qualitative estimate of the ion thermal flux, we consider the fol-
lowing steady state drift kinetic equation,

vb- Vi +va-vfi = C(f1)) = —va- VFn. (24)
A simplified Lorentz model is employed in the banana regime; i.e.,
g, 0
= v2hf—M—.
C=r2h o M o
Expanding f; using banana ordering, the zeroth order equation becomes,

'U"EO . Vf:{o) +vq- Vfl(o) =—-vgq- -VFn. (25)

Only the radial drift velocity needs to be retained here since the poloidal
component make a neglecgible contribution to the banana size. Hence,

©
. (0 _ v~ ~_Uy. 0f;
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This equation can be solved iteratively by treating the term on the right
side as a small perturbation; i.e.,

1 = (14 Sohe) Fm(hE+ F1), . (27)
Qp "0
where oF
1 —
50— 0.
We then apply the annihilator,
df
Y
to the first order equation
wb- 9/ + ZLb- 7wy O _ o) =o. (28)

Again, to simplify the orbit averaged collision operator, we employ the iter-
ative scheme.
Ofi vk < hE> 1
O Qp <E> 2<E>

H(hmin - A) )

where H is a simple model step function. The next order contribution from
the drift term is proportional to (ppx)2. Thus, the distribution function
exact to first order is given by:

vk < hE > 1
p < &> 2<€E>

UK

ﬁ=ﬂ+§M) Frlhé+ o H(hmin = 2)]  (29)
P

Note that the first order correction does not contribute to the ion ther-

mal flux, while the second order correction makes a positive contribution.

Specifically,

Q=< /dsv%mvzvdrfl >= Qo(1+ a(ppr)?) . (30)

Here Qg is the usual neoclassical thermal flux with zero orbit size and « is
a positive number. This simple estimate confirms the same trend as that
observed in the simulation; i.e., ion thermal flow is increased by a factor of
order (ppk)2.
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B. Density-Gradient-Driven Neoclassical Poloidal Rotation

Using the fact that the ion-ion collision operator annihilates a shifted
Maxwellian, we can solve Eq. (3) when temperature is uniform (x; = 0).
This yields '

vk vK
1 = 1+ (g he) I 5= Fimh . (31)
P P

It then follows that the associated parallel mass flow is increased from the
usual neoclassical toroidal flow by a factor of [1+ (ppx)?]. As a consequence,
the poloidal component of the parallel flow no longer balances the ion dia-
magnetic flow. A net poloidal rotation is thereby generated. If the impurity
density gradient is the same as that of the main ion component, this effect
should be stronger because of the larger gyroradius.

VIII. CONCLUSIONS

A gyrokinetic simulation of steady state, multi-species neoclassical trans-
port has been successfully carried out for the first time. Simulation results
using appropriate model collision operators are found to agree very well with
standard neoclassical theory.

A new §f scheme to deal with this class of problem has been devel-
oped and implemented including appropriate collision operators conserving
momentum and energy. The importance of momentum and energy conser-
vation is demonstrated; i.e. it is shown that significant qualitative errors are
introduced if the conservation properties are violated.

Ion dynamics are self-consistently retained for the first time in a multi-
species simulation, and it is dynamically demonstrated that: () like-species
collisions produces no particle flux, and (4z) neoclassical fluxes are automat-
ically ambipolar for a simple ion-electron plasma.

Toroidal flow has also been introduced for the first time into these sim-
ulations. Trend from the neoclassical viscosity theory of Hinton and Wong
is confirmed. The poloidal electric field associated with this flow is found to
enhance the density gradient driven electron particle flux and the bootstrap
current.

Neoclassical theory appropriate for steep equilibrium gradient profiles is
examined both analytically and numerically. It is shown that both the ion
thermal flux and the toroidal mass flow increase by factors of [1 + (px)?]
when the finite banana width effects are taken into account.
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Building on the advantages of the present approach, (e.g., multi-species
capability, steady state, fully dynamical approach, low noise), we will explore
in future studies potential significant modifications of neoclassical trans-
port which are usually inaccessible by conventional calculation processes.
These investigations will deal with sheared toroidal flows, energetic particle
physics, fluctuating fields(non-self-consistent and self-consistent), and real-
istic geometric effects in advanced tokamaks and stellarators.
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FIGURE CAPTIONS

FIG. 1. Particle lux I" versus v* computed using simplified Lorentz collision
model. The solid line is the analytical neoclassical result. °

FIG. 2. Energy flux Q versus v* computed using simplified Lorentz collision
model. The solid line is the analytical neoclassical result.

FIG. 3. Bootstrap current j; (normalized by jo) versus »* computed using
simplified Lorentz collision model.

FIG. 4. Poloidal variations of én(8)/ny and u;(0)/vs in the collisional
regime.
FIG. 5. Time history of particle flux in the collisional regime.

FIG. 6. Time history of bootstrap current in the banana regime.

FIG. 7. Particle fluxes I" versus v* for the Lorentz model(x) and pitch-angle
scattering model of Hinton and Hazeltine(+). The solid line is theoretical
the analytical result of Hinton and Hazeltine (1976).

FIG. 8. Comparison of collision operators. Dashed line represents linearized
shifted Maxwellian, solid line represents results using model improved oper-
ator, and dotted line represents results using Dimits-Cohen operator.

FIG. 9. Time history of the third velocity moment. Solid line represents re-
sults using improved operator, and the dotted line represents results Dimits-
Cohen operator.

FIG. 10. Ion particle flux time history (time averaging) resulting only from
ion-ion collisions.

FIG. 11. Ion energy flux time history (time averaging) due only to ion-ion
collisions (k; = 0). Solid line represents results using improved operator,
and the dotted line represents results Dimits-Cohen operator.

FIG. 12. Ion energy fluxes @ versus v* (k; # 0). The dashed line is the
analytical neoclassical result.

FIG. 13. Particle fluxes I" versus v* for ion-electron and electron-electron col-

lisions with momentum conservation(x) and without momentum conservation(+).

The solid line represents the analytical result of Hinton and Hazeltine (1976)
for Zess = 1.
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FIG. 14. Bootstrap current j, (normalized by jg) versus v* with ion-electron
and electron-electron collisions with momentum conservation(x) and with-
out momentum conservation(+). The solid line represents the analytical
result for Z.¢5 = co. The dashed line corresponds to Zefs = 1.

FIG. 15. Time history of Ambipolar particle fluxes (time averaged). Solid
line is for the ion, and dashed line is for the electron.

FIG. 16. Ion momentum flux versus v* normalized by analytical result in
collisionless limit.

FIG. 17. Ion energy fluxes Q versus { normalized with the corresponding
value in the zero rotation limit. Solid line represents the analytical results.

FIG. 18. Increasing of ion energy flux with the parameter px. Here 6Q =
Q — Qo, and Qg is the ion flux in the limit of px =0
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