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ABSTRACT

The Dykstra-Parsons method for prediction of oil recovery by water
flooding is a well known technique which has been used by the petroleum
industry since 1945. The present work carries their study further, solving -
the same problem of calculating coverage for certain values of
permeability variation having water-oil-ratio and mobility ratio as fixed
parameters. The work herein, instead of using 50 layers, uses 200. Also a
more precise theoretical approach to the problem is given. Because of
these differences the resulting curves are slightly modified.

In a second part, we deal with empirical simplifications with
considerable success. The idea was to collapse the data and curves obtained
in the first part into a single curve which covers most of the range of
variables commonly seen in reservoir displacements.




1. INTRODUCTION

The Dykstra-Parsons! method for prediction of oil recovery by water
flooding is a classic in secondary recovery. It is based on piston-like
displacement of oil by water. Only water is assumed to be produced from a
layer after breakthrough of the layer. A total of 50 layers with differing
permeabilities was considered in their original study, and the result, when
applied to large scale projects, closely fit waterflood recoveries. To our
knowledge, up to the present time, no one has tried to verify whether their
curves are correct. With the advance of computer facilities, this is not a
difficult task. We decided, however, to take into account a more precise
theoretical approach to calculate the values of water-oil-ratios. Also, for
the sake of greater accuracy with the theory, we worked with 200 layers,
rather than 50, as had been done by Dykstra and Parsons.

We recognize that the ideas embodied in the Dykstra-Parsons method
are not limited to waterflooding. They will work for any recovery process
where there is nearly piston-like displacement of oil by the displacing
fluids.

In the second stage we developed a simplification to the curves
obtained in the first stage. Many empirical relationships between the
parameters were studied. We present only that method which gave the best
result.

2. MATHEMATICAL FORMATION FOR A LAYERED SYSTEM

To illustrate the ideas involved, we first take a system of two layers
initially saturated with oil and connate water, and displace these fluids with
injection water from the left. After a certain period of time we would have

the situation pictured below.

Fig. 1. Two-layered waterﬂood displacement.




2.1 PISTON-LIKE DISPLACEMENT

To simplify the equations defining this process, we assume that:

1. Both layers have the same fluid saturations Sg;,Sy4, prior to
water-flooding, and both layers have the same saturations,S,,
behind the water front.

2. There is no cross-flow between layers.

3. The water and oil relative permeability ratios are equal for both
layers.

4. Production in both layers, at the outflow end, changes abruptly
from oil to water; that is, a piston-like displacement. V

It should be recognized that these assumptions are not limited to waterflood
displacements. They are valid any time the displacing fluid acts in a
piston-like manner in the recovery process being used. However, for
simplicity the remaining narrative will focus on waterflooding, as Dykstra
and Parsons did. ,

Applying Darcy’s law to Layer 1, we have,

___ki(Apy+Apy) kjAp
HwX1 Mo(L-%x1)  pyX) 4 Po (L—x)
kI‘W kro kI’W kro

where:
ki = absolute permeability of Layer 1
Repeating the equation for Layer 2,

vy =- xo4p (2)
Bwxy | Ho(L—x2)
ka kI'O
but,
dxl
=0AS,, — 3a
Vi 0. W dt (3a)
and,
dx, . ‘
= OAS,, —= 3b
vy = 0AS,, at (3b)




Substituting Eqs. 3a and 3b into Egs. 1 and 2, and rearranging, we get,

Xm - V1 - klAp 1 ( 4)
dt  0ASy HwX1 + HO(L—XI) $AS,,
. | kpy ko
and,
dX2 - V2 - k2Ap 1 (5)
dt 0ASy | puXy , Bo(L—Xz) |0AS,,
L krw kI'O
where:
[ = porosity
ASy, - change in water saturation between oil zone and water zone,

1_Swi "'Sor

Rearranging Eqgs. 4 and 5, and equating, we get,

—Ap - wa1+“o(L—xl) _l_dxl = HwX2 +“O(L—X2) _1_dX2 (6)
0AS, | Koo ko |k dt | ko ko |k dt

where the porosity and the change in water saturation are assumed to be
the same for both layers. Multiplying by kp,/Hy  and letting
M=kl / kiolly, where M is the mobility ratio, we have,

[%i + M(L — x;)Jkpdx; =[x5 + M(L - x, ) kydx, (7)

Integrating from zero to L for the first strip and from zero to x; for the

second strip, we get,
L X2 ' ‘
f[x1 +M(L - x1)]kodx; = [ [x5 + M(L —x7)[kydxy (8)
0 0

or,
(1-M)x3 L2Mxy
12 L

X2 +M)=0 (9)
k;




Solving for x,/L we have,

M+ JM2 +(kp /Ky )(1 -m?)

1-M (10)

X2 _
L
Defining cove'rage,r C, as the fraction of the total volume of the system

which has been flooded with water, we get,

_ 1+X2/L
2

C (11

If there were n layers, at breakthrough of the first strip the equation

would be,
1 § /L
+ ¥x:
C= 1+xp/L+...4+4%x,/L - i=2 ' (12)
n n

Equation 12 gives the coverage at the time water is first produced from the
layer of highest permeability, k;. Using Egs. 10 and 12, we can write,

n M—y\M2 + (k; /iy )1-M2)
i=2 M-l

= (13)
n

When the interface has reached the right end of the top (highest
permerability) layer, the rate of water production (assuming a perfect
interface) will be, '

__AikjAp
Qwl = (14)
vl Uwl/kiy

And the rate of oil production from any lower permeability layer will be,

AikiAp

PwXi . Ho(L —x;)
krw kfo

GQoi = (15)




Therefore the producing water-oil-ratio (WOR) will be,

9wl _ Ay/L
WOR = = (16)

)1_1' doi § Aik;/A1kg

i=2 i=2 % +M(L —x;)
Substituting Eq. 10 in Eq. 16 we have,

1
= 17
WOR =73 Aiki /A1kg 17

=2, /M2 + (k) (1- M)

This last equation gives the producing water-oil-ratio from n strips of
permeabilities kj,k;....k;, at the time water is first produced from layer,
kq, in terms of k;/k; and M.

For the case where the mth layer has just been flooded through, and
where A;=Aj;=..=4A,, itis easy to show that Egs. 13 and 17 become,

m+(n'm)M—-—l— T M2+lf—i(1—M2)

C= M-1 M—1i=m+1 m i (18)
n
and,
’ m
2kj
= i=l ' 19
WOR = ki (19)

i=§+1 \/Mz +(k; /kpy )(1 - MZ)

An interesting case happens wheﬁ M=1. In this special case the
equations need to be derived in a slightly different manner, but their
developments are quite simple, so they will not be discussed further here.

2.2 MODIFICATIONS TO THE CALCULATIONAL APPROACH

It is also important to consider the case where the m’th layer is not
quite completely flooded through. The coverage in the this case will be the
same as when the m’th layer is completely flooded, but the water-oil-ratio
is not the same. Nor is it the same as when the (m-1)’th layer has just




been flooded out. Dykstra and Parsons did not consider this case in their
study. It is important to consider this condition for with a finite number of
layers, the calculated water-oil-ratios, as indicated in the figures below,
proceed through a series of discrete jumps as each layer breaks through,
rather than predicting a smooth curve.

The Dykstra-Parsons equations calculate the values on the tops of the
stair-step curves (indicated by circles). The concept that will be described
here, calculates the bottoms of these curves (indicated by triangles). With
a finite number of layers, both must be calculated to generate the best
smooth curve.

For this purpose, the coverage equation will remain the same as
before, as indicated in Figs. 2 and 3. But the WOR equation will differ, since
the m’th layer will be producing oil rather than water just pﬁor to
breakthrough of that layer. When the m’th layer has not quite broken

3
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Coverage

Fig. 2 Water/oil ratio history for M <.

WOR

Coverage

Fig. 3 Water/oil ratio history for M>1.




through, Eq. 19 is changed to,

m-1

Xk
WOR = — — (20)
2 1
i=m M +(1- M2)(k; /km)

Note that in the numerator of Eq. 20 we do not include kp, while in the
denominator, we include it, because we are still producing oil from that
layer.

To make smooth WOR curves, the arithematic averages of Egs. 19 and
20 were used to define the WOR histories of all the cases studied.

3. DYKSTRA-PARSONS PERMEABILITY DISTRIBUTION

Dysktra and Parsons concluded that when permeability values were
arranged in descending order, the distribution followed a log-normal
curve, as indicated in Fig. 4. If more then one geologic unit is present,
each unit presents its own characteristic log-normal curve.

100

Sample Permeability, Mp,
=

A Y SR SR W W |

A
3 10 30 50 70 90 97 99

14
1

Portion of Total Sample Having
Higher Permeability

Fig. 4 Log-normal permeability distribution graph.
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This idea can be put into an equation, as follows,
1 logk; — logE)
hf =—|1+erf 1 (21)
2 [ [ :/20'2

= cumulative fraction of cores, to value, i

where:

permeability of core, i
= permeability of the average core, Kksg

Q K~ oo
-
]

= standard deviation of the permeability
distribution

To define the standard deviation, ¢ , Dykstra and Parsons defined a term
they called permeability variation, V, as follows,

E-kg

V=—xe
k

(22)

where:

ks = the permeability at one standard deviation on
the log probability graph, equal tokgy 13

Substituting Eq. 22 into the definition for ©, we get,

o =logk ~log(kg)=—log(1- V) (23)
As aresult, Eq. 21 becomes, '

m=1%+a{Lf§ﬁELH | (24)

2 V2log(1-V)

Equation 24 can be used to calculate permeabilities of individual layers
as a function of the permeability variation, V, and of the number of layers
chosen. We chose to use 200 layers to help smooth the resulting curves. To
accurately calculate the value of the permeability of each layer, we used an
accurate empirical algorithm from Abramowitz and Stegun? based on the




definition of the Gaussian distribution commonly used in statistics. For
easy comparison, the results were interpolated to the same values of WOR
used by Dykstra and Parsons. The resulting curves are displayed in Figs. 5-
14, with WOR’s of 0.10, 0.20, 0.50, 1.0, 2.0, 5.0, 10, 25, 50 and 100.

4. EMPIRICAL CORRELATION

In this part of the work, we tried some simplifications on the curves.
The idea was to collapse the entire set of 130 curves into a single curve that
would include the parameters: Coverage, C, Permeability Variation, V ,
Mobility Ratio, M, and Water-Qil-Ratio, WOR. The advantage of having a
single curve is obvious, since a unique equation could be fitted to it, and
anyone wishing to calculate Coverage knowing the other parameters could
do it simply, without needing to use a large set of curves. A hand calculator
could be used to produce answers in a few seconds.

Many correlation’ /'techniques were tried. The best we found was to
graph WOR on logarithmic coordinates against Coverage on arithmetic
coordinates. An example of these curves is shown, at a permeability
variation (V) of 0.5, in Fig. 15. Note that the upper and right-hand parts of
these curves have similar shapes. They can be moved vertically in such a
way that they fall nearly on top of each other.

The lower parts of the curves do not fit with each other in this way.
We found, however, that if we add a constant to the value of WOR the
curves did have similar shapes over larger portions of their ranges.
Constants ranging from 0.1 to 0.5 were tried, and it was fond that a value of
0.4 gave the best fit of the data. This idéa is shown, as an example, in Fig.
16. In this figure, the shapes of the curves are similar except at very low
WOR’s at a high mobility ratio (M >10).

The shapes of these curves were also similar at other values of
permeability variation, V, ranging from 0.3 to 0.8. We found that V’s
equal to 0.2 and 0.9 did not fit the data as accurately. But these values of V
are outside the range normally seen in reservoirs.

Since the curves now had similar shapes on semilog paper, it only
remained to correlate them as functions of WOR, permeability variation,
V , and mobility ratio, M. The resulting match equations were a bit




Coverage as a Function of Permeability
Variation and Mobility Ratio

PERMEABILITY VARIATION, V

COVERAGE,C

Fig. 5. Coverage curves for WOR =(.1.
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Coverage as a Function of Permeability
Variation and Mobility Ratio

PERMEABILITY VARIATION, V

COVERAGE,C

Fig. 7 Coverage curves for WOR =0.5.
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Coverage as a Function of Permeability
Variation and Mobility Ratio

PERMEABILITY VARIATION, V
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Fig. 9. Coverage curves for WOR=2.
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PERMEABILITY VARIATION, V

Coverage as a Function of Permeability
Variation and Mobility Ratio
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Coverage as a Function of Permeability
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Coverage as a Function of Permeability
Variation and Mobility Ratio
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Fig. 13. Coverage curves for WOR = 50.
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Coverage as a Function of Permeability
Variation and Mobility Ratio
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Fig. 14. Coverage curves for WOR =100.
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complex, being partly linear and partly semi-logarithmic, but the result fit
the data well, and is displayed in Fig. 17. Notice that the correlating
parameter, the y axis, is,

(WOR +0.4)(18.948 — 2.999V)
(M +1.13702 — 0.809 43‘,)10—0.6891+0.9735V-l.6453V2

y= (25)

The various terms, WOR, M and V in this complex coordinate are the
result of the correlating procedure discussed above.

The curve in Fig. 17 was later fitted to an empirical equation by
Fassihi.3 The equation he found was as follows,

This equation fit the curve of Fig. 17 almost exactly. Thus, by combining
Egs. 25 and 26, a simple hand-held calculator program can be used to
calculate the recovery history of a waterflood, both rapidly and easily.

Since this correlation is empirical,' it seems worthwhile to assess its
accuracy, using the results of Figs. 5-14 as a basis. To test this, we checked
permeability variation, V, values of 0.3, 0.5 and 0.7; at WOR’s ranging from
1to25;and M from 0.1 to 10; for a total of 60 points. The greatest errors in
these results were two points which gave errors of 6 and 8%, and a few
others which were slightly greater than 2% in error. These all occurred at
very low WOR'‘s where the errors are not too important from an overall
recovery history point of view. The overall standard deviation of the
correlation for all 60 data points was 1.81%, a very good result, indeed. A
simple computer program which expresses this correlation analytically
was published by Fassihi.3
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5. CONCLUSIONS

As a result of the work discussed here, the following conclusions can
be drawn.

1. The more precise calculation techniques used here modified the
Dykstra-Parsons curves slightly. These revised curves are shown
in detail.

2. It was possible to empirically correlate these curves into a single
curve which can be used in an equation to calculate coverage over
a broad range of parameters. The Permeability Variation, V, can
range from 0.3 to 0.8, the Mobility Ratio, M, can range from 0.1 to
10, and the water-oil ratio, WOR, from 1 to 100.

3. In this correlation, low WOR’s of 1.0 show greater errors in
predicting Coverage (up to 8% in error), but higher values of WOR
produce errors of less than 2% over the entire range of the
correlation’s validity.

6. REFERENCES

1. Dykstra, H. and Parsons, R.L.: “The Prediction of Oil Recovery by
Waterflood,” Secondary Recovery of QOil in the United States,
second edition, API, Dallas (1950) 160-74.

2. Abramowitz, M., and Stegun, L.A., “Handbook of Mathematical
Functions.”

3. Fassihi,_ M.R,, “New Correlations for Calculation of Vertical
Coverage and Areal Sweep Efficiency,” SPERE 1, No. 6 (November
1986) 604-606.

24




NOMENCLATURE

>

Cross sectional area of layer
Dykstra-Parsons coverage

Error function

Cumulative fraction of cores in permeability distribution graph
Permeability

Average permeability, ksg

F 8 0

il

Q

Permeability at one standard derivation, kg4 13
Total length of layer
Mobility ratio, kKiylto/KroHw

:Bg[-‘

Index on layer number

Total number of layers
Change in water saturation

time

&
€

* Flow rate
Dykstra-Parsons permeability variation
v Darcy velocity
WOR Water/oil ratio

X Horizontal distance
Viscosity
¢ Porosity

Ap  Pressure drop
c Standard deviation of permeability distribution

Subscripts

b o

Individual layer

Index on layer number
Total number of layers
relative

water

oil

Layer one

Layer two

R L
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