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Abstract

A system of N sensors S1,53,...,Sn is considered; corresponding to an object with
parameter z € R, sensor S; yields output y() € R¢ according to an unknown probability
distribution p;(y‘|z). A training l-sample (z1,11), (T2, ¥2),...,(Z1, ) is given where y; =
(y,(l),y,gz), . ,y‘(N)) and y‘(j) is the output of S; in response to input ;. The problem is to
estimate a fusion rule f : RV s R4, based on the sample, such that the expected square

error
1) = [lz = F60,5®, . y™)Pp(y®, 5@,y e)p(a)dyVdy® ... dyVda

1s to be minimized over a family of fusion rules A based on the given [-sample. Let f, € A
minimize I(f); f. cannot be computed since the underlying probability distributions are
unknown. Using Vapnik’s empirical risk minimization method, we show that if A has finite
capacity, then under bounded error, for sufficiently large sample, f.m, can be obtained such
that

P[I(fcmp) - I(f.s) > 6] <6

for arbitrarily specified ¢ > 0 and 6,0 < § < 1. We identify several computational methods to
obtain f.m, or its approximaticns based on neural networks, radial basis functions, wavelets,
non-polynomial networks, and polynomials and splines. We then discuss linearly separable
systems to identify objects from a finite class where f.,,, can be computed in polynomial
time using quadratic programming methods.
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1 Introduction

It has been realized by many researchers that there are fundamental limitations on the
capabilities of single sensor systems in a number of application areas such as robotics (see
special issue on sensor data fusion edited by Brady [6] and the book by Abidi and Gonzalez
[1]). Diverse information from many different sensors can often be used to overcome the
limitations of a single sensor through coordinated interpretation, where the information
from the individual sensors is to be suitably “fused”. Research efforts on several aspects of
theory and application of data fusion methods are very extensive; a rccent survey could be
found in Luo and Kay [24]. Also in some systems, a number of sensors of same kind are
employed for fault tolerance, and in several others multiple sensors are required to achieve
the given task.

A successful operation of a multiple sensor system critically depends on the methods that
combine the outputs of the sensors. The problem of obtaining a fusion rule has been the
focus of extensive research over the past decades. In general, the design, implementation
and computational issues in multiple sensor systems are considerably more challenging than
their counterparts in single sensor systems, for the issues due to the distributed information
processing are seemingly absent in the latter (Tsitsiklis and Athans [45]). A number of
issues related to this problem have been studied under the framework of distributed sensor
networks (Barnett [2], Lesser et al. [23], Wesson et al. [50]); see Abidi and Gonzalez [1] and
Iyengar et al. [19] and references therein for some recent works. Comprehensive treatments
on specialized topics such as spatial reasoning (Kak and Chen [20]) also exist.

We consider the problem of inferring a suitable rule using training examples, where the
errors introduced by various individual sensors are unknown and not controllable, e.g. a
robot system equipped with sensors. Here, the choice of the sensors has been made and
the system is available, and the fusion rule for the system has to be obtained; this aspect
has to be contrasted with the general areas of team decision problems (e.g. Radner [31])
and distributed detection (e.g. Tsitsiklis and Athans [45]) where the individual elements as
well as the fuser are to be designed to achieve an overall goal. This paradigm is applicable
to several existing robot systems equipped with sensors whose error probabilities are either
unknown or hard to estimate, but, several objects with known features can be sensed using
the system. If the sensor error distributions are known, several cases of this problem have
been solved. Some of the earlier work in this direction is due to Chow [10]. This problem
is also related to the group decision models studied extensively in political economy (for
example see Grofman and Owen [15]); some of the early majority methods of combining the
outputs of probabilistic Boolean elements date back to 1786 under the name of Condorcet
jury models. The distributed detection problem based on probabilistic formulations have
been extensively studied (Chair and Varshney [8], Demirbas [13], Reibman and Nolte [37],
Sadjadi [39], Tenney and Sandell [41], Thomopoulos et al. [43, 44]); see Thomopoulos [42]
for a summary of a number of results on this problem. Many of these sensor integration
techniques are based on maximizing the a posteriori probabilities of hypotheses under a
suitable probabilistic model. However, in situations where the probability distributions are
unknown or difficult to estimate (or compute) such methods are ineffective. One alternative
is to estimate the distribution based on a sample; as illustrated in general by Vapnik [47],
sometimes (depending on the classes of probability distributions) the problem of estimating




the distributions is more difficult than the subsequent problem of estimating a dependence
(such as a pattern classification rule). This property holds for several pattern recognition
and regression estimation problems [47].

We consider a general framework based on a multiple sensor system with unknown sensor
noise characteristics. But the system is available so that readings corresponding to known
parameters can be obtained. In this context, we address the problem of inferring the fusion
rule based on a set of training data with only a limited assumptions made on the noise. We
formulate this problem as a special case of empirical risk minimization problem of Vapnik [47].
We show that a fusion rule close to “optimal rule” can be inferred under the condition of finite
capacity of the fusion rules and boundedness of the errors. This result is existential in that
the computational problem of computing such approximation rule could be computationally
intractable. Then we illustrate a system for which the computational problem is polynomial-
time solvable. From a learning point of view, the paradigm of training to obtain a fusion
rule has been applied in the context of neural networks (for example see Huntsberger [18]),
but no performance guarantees based on finite samples are available. We are interested in
obtaining the bounds for the error based on a finite sample so that system can be trained
with the required number of examples.

Consider a system of N sensors Sj, Sy, ..., Sy such that corresponding to an object with
parameter T € %d, sensor S; yields output y{) € R? according to an unknown probability
distribution p;(y(|z). A training l-sample (z1,y1),(z2,¥2),--.,(z1, 41) is given where y; =

(y(l),y,m, . ,y,(N)) and yfj) is the output of S; in response to input r;. The problem is to
estimate a fusion rule f : ®V4 — R4, based on the sample, such that f(y®, y@, . .. y*))
“closely” approximates z. More precisely, we consider the expected square error

I(f)= /[x—f( M,y "M2p(y,y@,. .y M z)p(a)dyMay® . dyMdz (1.1)

which is to be minimized over a family of fusion rules A based on the given [-sample. Let
f« € A minimize I(f); f. cannot be computed since the underlying probability distributions
are unknown. Furthermore, since no restrictions are placed on the underlying distributions,
it will not be possible to to infer f. (with probability one) based on a finite sample.

Now consider that the empirical estimate

N
emp IZ[x - y‘(l),y‘ )v y( ))]2 (12)

is minimized by f = f.mp € A. Using Vapnik’s empirical risk minimization method, we
show that if A has finite capacity, then under bounded error, or bounded relative error for
sufficiently large sample
PI(femp) = I(f.) > €] < 6 (1.3)
for arbitrarily specified ¢ > 0 and 6,0 < 6§ < 1. Thus this approach yields a fusion rule whose
“error” is bounded by an arbitrarily specified precision € with arbitrarily specified confidence
1 — & given sufficiently large sample. We estimate the required sample size in terms of ¢ and
8 and the parameters of A. This estimation directly follows from the principle of empirical
risk minimization of Vapnik [47].
The problem of computing the required hypothesis f.np is computationally hard for sev-
eral cases of A. For example, if A is the set of feedforward neural networks, the corresponding
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computational problem is called the loading problem which in NP-hard (Blum and Rivest
[4]). Even for much simpler cases of a single sensor with Boolean output, several of these
computational problems are NP-complete (Pitt and Valiant [29]). Also, since no restrictions
are placed on the information of the sensors, even if there is no probabilistic error in the
sensors, several multisensor fusion problems are NP-complete (Tsitsiklis and Athans [45],
Rao [32], Rao et al. [33]). We then identify several approximation methods for computing
femp based on neural networks, radial basis functions, wavelets, non-polynomial networks,
and polynomials and splines.

We then consider a special class of linearly separable systems, where the associated
computational problem can be solved (exactly) as a quadratic programming problem with
positive semidefinite constraint matrix; hence this problem can be solved in polynomial time.

Because of the distribution-free nature of the results, this work is related to the Probably
and Approximately Correct (PAC) learning results (Valiant [46], Natarajan [26], Blumer et
al. [5]). In this vein, the present problem is a generalization of the N-learners problem that
deals with the problem of combining a system of PAC learners (Rao et al. [35], Rao and
Oblow (34]).

The organization of this paper is as follows. We present some preliminaries in Section 2.
In Section 3, we propose a solution method based on the empirical risk minimization methods
of Vapnik [47]. Then, in Section 4, we discuss the class of linearly separable systems.

2 Preliminaries

In this section, we present some basic definitions from Vapnik [47]. For family {A,}+er,
A, C A, and for a finite set {a;,az,...,a,} C A we define

H{A”({ﬂ],dz, e ,dn}) = {{a;,ag,. ‘. ,Gn} N A-y}—ye[‘.

We maximize this quantity with respect to the set {a;,as,...,a,} to obtain
H{Av)(n) = alm?‘x_‘an 'H{Ay}({a17 Az, ... aan})"

The following is critical identity established in [47].

2" fn<h
My (n) = { <15% ifn>h

Notice that for a fixed h, the right hand side increases exponentially with n until it reaches
h and then varies as a polynomial in n with fixed power h. This quantity h is called the
Vapnik-Chervonenkis dimension of the family of sets A,; it can also be alternatively defined
as the largest size h of a set {a;,a,...,a,} C A that can be subdivided in all possible ways
into two classes by means of sets A,. Formally,

VC_d'lm({Aa’}) = mna'x{n(ahai’v--lan)(n) = 2"}’

The VC dim plays a very critical role in the convergence of empirical measures of sets to their
actual measures in that its finiteness is both necessary and sufficient for the convergence.
This property has been extensively used in PAC learning in various learnability results [5].
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For a set of functions, the capacity is defined as the largest number h of pairs (z;,y;) that
can be subdivided in all possible ways into two classes by means of rules of the form

{6l(z — f(y,2))* + Bl}ass

where
1 ifz>0

6)(Z)={0fz<o

Formally, the capacity of {f(y, @)}aea is the Vapnik-Chervonenkis dimension of the set of
indicator functions

{8l(z - f(y,0)* + Bl}@yenxs:

In terms of the convergence of empirical measures to expectations, the capacity of set of
functions plays a role similar to that of the Vapnik-Chervonenkis dimension for family of
sets.

3 Empirical Risk Minimization

In this section we surnmarize various results from Vapnik [47] that yield solutions to several
formulations of the fusion rule estimation problem. To solve for a rule f, € A that minimizes
the expected error in (1.1), we instead minimize the empirical error in (1.2) to obtain a best
empirical estimate f,,,. The closeness of f.n, to f. is specified by the parameters precision
¢ and confidence 6 in condition (1.3) referred to as the (e, §)-condition; condition (1.3) can
also be written as

PU(fomp) = I(f.) < €] > 1= 6.

In order to ensure the (¢, §)-condition, two types of conditions are to be satisfied [47]:
(a) the capacity of {fa}aeca must be bounded;

(b) the error I(.) must be bounded, i.e., sup(z — f(y,a))? < 7 or the relative error must
Iy,

be bounded as follows for some p > 1

[/ (z = f(z,@))? P(z,y)dzdy)'?

sup <T.

« J(z = f(z,0))*P(z,y)dzdy

First we illustrate a very simple case where both z and f, take values from {0,1}.

Theorem 3.1 Consider that x and f, take values from {0,1}.

(1) Given | samples, we have

* (2l)h -x2l/4
P [I{aemp) — I(a®) > 2k] < Q-Fe

where h is the capacity of A.



(ii) If the hypothesis space is finite in that {f(y,a)} = {f(v, ), f(y, a2, .. f(v,em)},

given | ezamples, we have
P [I(0temp) — I(@) > 2&] < 2Me™ %L,

Parts (i) and (i) of this theorem directly follows from Theorem 6.1 and 6.7 of Vapnik [47)
respectively. This special case deals with PAC learning formulation, which is also referred to
as the pattern recognition problem in [47]. The bounds of this theorem can be sharpened in
several cases of PAC learning (see Blumer et al. [5]). In Part (i), notice that the upperbounds
on the right hand side are products of two main factors: first one is {* and the second one
is e=**!/4 For a fixed value of h, the latter will be decreasing with the sample size [; if { is
chosen large enough the right hand side can be made equal to 6.

An example of infinite hypothesis class can be given by the set of all neural net works
with a fixed number of nodes, where f(y, ) stands for a feedforward neural network with
connection weight vector a.

We now consider the general case. First we consider that the error is bounded by 7 in
Theorem 3.2, and in Theorem 3.3 the relative error is bounded.

Theorem 3.2 Consider that the error is bounded as sup(z — f(y,a))* < 7.

T,y

(i) Then given | examples, we have

. 20" _,
PlI(qemp) — I(a”) > 276] < QQ-E!)—-e M,

FEquivalently, with probability at least 1 — 7, we have

h(ln%’-—i—l)—lng
; )

(i) If the hypotheis space is finite in that {f(y,a)} = {f(y,a1), f(y,@2),... f(y,an)}.

Then given | ezamples, we have

P [I(@temp) = I(@®) > 27x] < 18Mle™""!/4,

Haemp) < I(a®) + 47\‘

The Part (i) and (ii) of this theorem directly follow from Theorem 7.1 and 7.3 of Vapnik
(47] respectively.

Theorem 3.3 Consider that the relative error be bounded such that for some p > 1 we have

[/ (z = f(z,0))? P(z,y)dzdy]'/”

sup <.
a

[(z = f(z,0))*P(z,y)dedy

(a) If p > 2, we have

I(e) = Temp(e) —R21/4
P{ T(a) > Ta(p)fc} < 24le™"Y

where /
[=1pr ]
op) = [2(.» - 2)»-*]



(0) If 1 < p <2, we have

P { I(@) = Iemyla) | er(n)} < 24104

where

l p=L
nK P
Vo(k) =& [1 - p!/-1)(p — 1)]

This theorem directly follow from Theorem 7.6 of Vapnik [47]. "

Note that the results of this section are mainly existential in nature; they do not yield
computational methods to either represent f, or to compute the required a.,p; this prob-

lem is addressed in the next section. However, they provide very strict guidelines for the
conditions under which this empirical estimation procedure is a viable option.

3.1 Computational Problems

Now the basic computational problem of last section is to solve for a.m, satisfying

l
Lonp(0ens) = mind T 3l = Flus )"}

We now consider finitely representable hypothesis classes, where A = R¢ or o = (a1, g, . . ., aa).
The hypothesis classes too numerous to be so represented are unlikely to be of use in practical
implementations.

We now briefly discuss some existing methods that are applicable to several classes of A.
In most cases, we fix a class of A and then identify a “network” structure with “connection
weights” vector that corresponds to a. Typically a@emp is obtained using an incremental
algorithm that starts with some initial weight vector and updates it in response to the
accuracy of the present weight. This approach is motivated by a wide availability of results on
such networks (neural networks being some of the most popular ones) and their incremental
algorithms. Typically the problem of computing an exact solution aem, is computationally
intractable, but many practically useful implementations of the incremental algorithms are
available.

(a) Feedforward neural networks: Each f, is represented by an artificial neural network
with at least one hidden layer and with a finite number of nodes. As shown in Cy-
benko [12], such networks can approximate continuous functions with arbitrary levels
¢ " precision (see also Hornik [16], Hornik et al. [17], Barron [3]). Here a corresponds
the connection weight vector. The problem of computing aem, is NP-hard in general.
An approximation to aem, can be computed using the well-known backpropagation
algorithm (Werbos [49] and Rumelhart et al. [38]). Convergence properties of such
algorithm have been studied by White [51] (also see White [52]), Stankovic and Mil-
sosavljevic [40], Finnoff [14] and Nedeljkovic [27].

(b) Radial basis functions: The radial basis networks with suitably chosen non-linear hid-
den layers (Broomhead and Lowe [7], Chen et al. [9]) can be used in the computation
of femp; also there are a number of learning algorithms that can be applied in this case.
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(c) Wavelet-based expansion: Wavelets and related methods have become the focus of at-
tention of a number of researchers (Chui [11]). Zhang and Benveniste, [53] proposed
networks of wavelets (in a manner analogous to neural network) which can approxi-
mate arbitrary continuous maps; each network is characterized by a finite real vector
that corresponds to the dilation and translation operations. They also propose an
algorithm similar to the back propagation algorithm that can be used to compute an
approximation to aemp.

(d) Networks of non-polynomial Units: In a general treatment, Leshno et al. [22] showed
that finite networks of non-polynomial units can be used to approximate the arbitrary
continuous maps. Although no algorithms to compute the required connection weights
are available, backpropagation style algorithms can be designed in several cases.

(e) Classes of polynomials and splines: The classes of polynomial and splines have been
originally considered by Vapnik [47]. The approximation properties of these classes are
fairly limited (Powell [30]), but in cases where A is adequately represented by these
classes, these methods can be effective. Note that the networks based on these classes

are do not satisfy the approximation properties enjoyed by the other above classes
(Leshno et al. [22]).

In some cases, it is possible to compute an approximation of f, directly using a stochastic
approximation algorithm so that the (¢, §) condition is satisfied (Rao et al. [36]).

4 Linearly-Separable Systems

Consider a detection system consisting of finite set of objects O = {0y,02,--+,0,}. Whenan
object is detected in the workspace, each sensor outputs a random vector which corresponds
to an “error-free” vector corrupted by noise of an unknown probability distribution. Given a
vector of sensor readings y correspondings to an unknown object, we are required to identify
the object. Note that this is a special case of formulation of last section where = takes n
distinct values.

We call the detection system (O, S) to be linearly separable if for each O; € O, there
corresponds a known interval [a, 5], with positive and finite a(),b) € R as follows: (a)
the intervals of the distinct objects are disjoint, and (b) there exists a vector a € R¢ with
all finite components, such that

aly € [, 1), for 1=1,2,...n

where y denotes the sensor readings corresponding to O;, when no errors are present in
sensing. Informally, if the sensor errors are ideally assumed to be zero, there exists a hyper-
plane a, that maps the distinct obstacles into disjoint intervals (under the scalar product
operation).

In a learning phase, an object corresponding to the interval [a, b] chosen according to an
unknown distribution is placed in the workspace and the corresponding sensor reading y is
recorded; the vector (a;, b;,y;) is the ith ezample.




4.1 Empirical Estimation

We consider the loss function

Q(a,y,a,b) = [(a — a"y)(b— aTy))4

[2]s = z fz20
*7 1o ifz<0
Notice that if there are no sensor errors, we have Q(e.,y, a,b) = 0; in the presense of errors,

Q(ax, y,a,b) = 0 if Ty € [a,b] and increases quadratically away from [a,b]. Now we have
the expected loss given by

(@) = ¥ [ia=aTy)(b- oTy)lsp(a,bly)dy
(a:ib) y

/ [(a - aTy)(b- aTy))+p(a,b,y)dydadb
(a,0)y

where for z € R, we have

where p(a,b,y) = p(a,bly)p(y) is the joint density of (a,b,y). Now based on (1.1), the
corresponding empirical functional is given by

Iemp(@) = Z[ i = aly) (b = aTyi)ls.

Assuming that each component of the sensor reading is bounded, we have oy < ¢, for
some constant c. We have [(a — aTy)(b — aTy)]y < T where 7 = ¢(a™*® 4 blmax)) and
a(max) = max{a( )}. We can apply Theorem 3.2 to this case, and thus we are posed with the

mlmmlzatxon of Iemp(a). First, the VC-dimension of set of all « is Nd since they constitute
hyperplanes ®V? [5]. Now the capacity of A is upperbounded by the VC-dimensional of
set of polygonal regions formed by three hyperplanes; then the capacity of A in this case is
upperbounded by 3Nd + 1 [5, 48].

4.2 Quadratic Programming Problem
We solve the problem of computing I, in two steps:

(a) We first check if I, can be made zero by solving the linear programming problem
by checking for a; such that a; < afy; and ofy; < &, for i = 1,2,...,1. This
problem of linear inequalities can be solved using the ellipsoid algorithm [28] with a
time complexity of O(N2d?L) where L = 2{Nd + log [P], P is the product of the
nonzero coefficients in input specification of the problem. If no such a; exists, then

I.mp(a) > 0 for all a, then we solve this problem in the next step.

(b) Then, we use the interior ellipsoid method in [25] to minimize Iemp

1 {
Iemp(a) = -I-Z a; —al vi)(bi — a y,)]
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1 { 1 ] 1 4
= 7o' yy e =13 (e +b)aly] + 73 asb;
1=1

=1 =1

= a’Qa+:Ta+c
! !
where z is Nd-vector given by z = =4 3= [(a; +b;)y,], ¢ = } 3 a,b;, and Q is Nd x Nd
=1 1=1

!
symmetric matrix given by @ = } 3 yiy”, where y;yT is the outer product. Here Q is
1=1
symmetric and positive definite matrix. The time complexity of minimizing I.,,(a) is

polynomial in terms of size of the sample [ [21].

We summarize the above results in the following theorem.

Theorem 4.1 Given 0 < ¢,6 < 1, 7 = c(a™® 4 b)) for (M) = max;{a)} and
aTy < ¢, if | satisfies the inequality

INd+1
9(20) ———-e"x's%'

(3Nd + 1)!

&(l,¢€) 2

we can compute a fusion rule .p,p in polynomial time (inl, d, N), such that
P{lI(a.) — I{aemp)| 2 €} < 6

where a. 1s an optimal fusion rule of the given linearly separable multiple sensor system.

5 Conclusions

We considered a general framework based on a system of multiple sensors with unknown
noise characteristics. But the system is available so that readings corresponding to objects
of known parameters can be obtained. In this context, we addressed the problem of infer-
ring a fusion rule based on a set of training data with only a limited assumptions on the
noise. We formulated this problem as a special case of empirical risk minimization problem
of Vapnik [47). We showed that a fusion rule close to “optimal rule” can be inferred under
the conditions of finite capacity of the class of fusion rules and boundedness of the errors.
This result is existential in that the computational problems associated could be intractable.
We identified several computational methods to obtain f.,, or its approximations based
on neural networks, radial basis functions, wavelets, non-polynomial networks, and polyno-
mials and splines. Then we illustrated a system for which the computational problem is
polynomial-time solvable.

The proposed methods are applicable only if suitable samples are available. If the under-
lying probabilities are available, then other methods are more likely te be effective. Future
research directions include (a) identification of classes of A based on the specific properties
of the system (b) analysis of the effect of the approximation methods for computing f.m, on
the € and 6, and (c) investigation of constructive methods that directly attempt to compute
an approximation to f, in stead of computing an approximation to femp.
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