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Abstract

This paper describes numerical simulations that were
performed to study laminar flow through a square duct
with a 90° bend. The purpose of this work was two fold.
First, an improved understanding was desired of the
flow physics involved in the generation of secondary
vortical flows in three-dimensions. Second, adaptive
gridding techniques for structured grids in three-
dimensions were investigated for the purpose of
determining their utility in low Reynolds number,
incompressible flows. It was also of interest to validate
the commercial computer code CFD-ACE. Velocity
predictions for both non-adaptive and adaptive grids are
compared with experimental data. Flow visualization
was used to examine the characteristics of the flow
though the curved duct in order to better understand the
viscous flow physics of this problem. Generally,
moderate agreement with the experimental data was
found but shortcomings in the experiment were
demonstrated. The adaptive grids did not produce the
same level of accuracy as the non-adaptive grid with a
factor of four more grid points.

Introduction
Flows in curved ducts are found in a very wide range
of practical applications of fluid dynamics. In
manufacturing applications, curved ducts, diffusers, and
nozzles for liquid and gas handling are ubiquitous. In
aerodynamic flows, for example, the design of curved
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gas turbine intake ducts critically determines the
compressor performance and stall characteristics over
the range of engine thrust.

Several experiments have been conducted in ducts of
square cross section, with short and long straight
sections upstream of the curved portion. Of particular
interest is the effect of thin boundary layers and fully-
developed flow on the evolution of the secondary
motion in the curved portion. Ploneenng work in this
area was done by Humphrey et al.l. Other representative
experiments of this type are those of Taylor et al2,
Chang et al.3 and Iacovides et al.*. Measurements in
fully-developed flow in a square duct clearly reveal that
the secondary motion arises from curvature-induced
pressure gradients which drive low-momentum fluid
from the outer (concave) wall on to the inner (convex)
wall. Strong curvature leads to the formation of
longitudinal vortices that move toward the convex wall.
The principal difference between developing and fully-
developed flow is that, in the former, the secondary
motion is weaker and confined to the boundary layers.
The effects of surface curvature on turbulence are
obviously present in these flows as well, but they are
generally masked by those of the secondary motion.
Also, the secondary motion due to the wall shear stress
interacts with the much stronger pressure-driven
secondary motion in the curved section, resulting in a
flow that is influenced by different factors. Because of
these flow complexities in a relatively simple geometry,
square-duct experiments with a 90° bend have been
used in computational code validation to test the
numerical accuracy and turbulence models.

Significant contributions to the understanding of
curved-duct flows have also been made through the
solution of the Navier-Stokes equations. Again,
pioneering work in the generation of laminar flow
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solutions of the steady, three-dimensional Navier Stokes
equations for square cross-sections was done by
Humphrey et al®. In addition, the laminar flow
solutlons of the Nawer—Stokes equations by Gma and
Sokhey Yoon et al’, and Rogers et al® also
demonstrate strong secondary flows. In both the
Humphrey et al. and the Yoon et al. studies, it was
shown that the calculated results were in fair agreement
with measurements even though a small number of grid
points were used. However, grid convergence and
iterative convergence were not evaluated. In the Rogers
et al. study, three different grids were used, but no
quantitative study of grid convergence was conducted.
Rogers et al. concluded that the calculated results were
fairly close to the data with the exception of two trends.
First, the formation of a second maximum in the
streamwise velocity near the inner wall side occurs
further upstream in the computations than in the
experiment, Second, at the 90° bend station three
velocity maxima occur, whereas the experimental
measurements show two. Rogers et al. suggested that a
small change in the Reynolds number or even a small
amount of turbulent mixing could change the swirling
mechanism enough to explain the difference between
the computation and the experimental measurements.

Non-reacting, laminar flow problems, where the
physics of the problem is well understood, provide a
good validation test of a computational fluid dynamics
(CFD) code. In addition, simple geometry problems,
particularly in three-dimensions, make it easier to test
specific elements of the code. In any careful validation
study, it is critical to ensure that differences in results
are not due to a lack of grid convergence. If the grid is
too coarse, then the truncation errors, particularly in
high gradient regions, makes it impossible to evaluate
the physical models within the computer code.
Therefore, it is necessary to run several numerical
simulations with finer and finer grids until the solution
does not change. For two-dimensional flows, a good
example of grid convergence studies has been flow over
a back step. This problem has been stud1ed by many
researchers, see for example Gartling®, and CFD codes
are commonly evaluated for this problem. However, it is
not always practical, particularly in 3-D problems, to
increase the grid size until grid convergence is achieved
due to computer or fiscal limitations. Solution adaptive
gridding is an alternative approach to achieving a grid
converged solution without having to use an enormous
number of grid points.

Adaptive grid generation is now an area of intense
research activity, particularly for supersonic flow. There
are numerous adaptive strategies found in the literature.
Representative adaption techniques for Navier Stokes
calculations are those of Huang et al.10 , Perng et alll

and Luong et al.12, In the latter study, improvements in
shock resolution on coarse grids were shown by
adapting to either the density, the gradient of density, or
the curvature of density. For high Reynolds number
problems, the variables chosen for adaption are also
well known. Luong et al. pointed out that the utility of
grid adaptation is more difficult to assess in
incompressible, low Reynolds number flows, as the
analyst normally “adapts” the initial grid in anticipation
of the boundary layer. Thus, it is not clearly understood
what is the best variable to adapt to for incompressible
flow problems. Still, regions of separated flow and
recirculation are not well anticipated, and it is in these
applications that adaptive gridding holds promise for
reducing the cost and increasing the accuracy of
incompressible flows in complex geometries.

The primary purpose of this paper is to improve the
understanding of the flow physics of laminar flow
through a 90° curved duct of square cross-section. An
additional purpose is to investigate adaptive structured
grids for curved duct problems. Computational results
are presented for a curved duct with a 90° bend and
square cross-section. Velocity predictions from a
commercial code, CFD-ACE, are compared with
experimental data for a laminar, fully-developed flow at
the inlet. In addition, grid convergence studies with and
without adaption were performed in order to determine
the size of grid necessary to obtain an accurate solution
for this problem. Finally, extensive flow visualization is
used to look at the characteristics of the flow though the
curved duct in order to better understand the flow
physics of this complex problem. Generally, moderate
agreement with the experimental data was found, but
shortcomings in the experiment were demonstrated.

Experimental Data

Several experimentsl'z'5 have been conducted for
flow through curved ducts of square cross-section for
the purpose of CFD code validation. In the experiment
of Humphrey et al.5, a 90° duct geometry was used as
shown in Figure 1. The 40 x 40 mm duct had a inner
radius of 72 mm and an outer radius of 112 mm. A
straight duct of 1.8 m length (45 hydraulic diameters)
was located ahead of the bend in order to produce inlet
flow that was fully-developed. The bend was located in
the vertical plane with a 1.2 m length (30 hydraulic
diameters) of straight duct attached to its downstream
end. In this experiment, the hydraulic diameter (H=40
mm) is defined as the length of a side of the square cross
section. The bulk velocity (V) of the water at 25°C was
19.8 mm/s corresponding to Reynolds number (Re) of
790 based on the hydraulic diameter.

The Dean number of this flow was De =
Re(1/2H/R )\ = 368, where R, is the mean radius of
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curvature, The De number is a similarity parameter for
fully-developed flows in curved ducts of arbitrary but
similar geometry. This number provides an indication of
relative curvature effects and a value of 368 is
considered to be a strong curvature case.

Measurements of the longitudinal component of the
velocity were obtained with a laser-Doppler
anemometer, In Reference 13, a detailed analysis was
performed to quantify the error sources affecting the
experimental measurements. The author determined that
the combined effect of transit-time, gradient, and noise
broadening had a negligible influence on the measured
mean velocity, with an estimated precision of roughly
+0.5% of the bulk velocity. Experimental
reproducibility was checked by repeating traverses for
mean velocity at various locations in the flow.
Differences between traverses were smaller than the
experimental uncertainty affecting the results from
random error sources in the electronic instrumentation.
Finally, selected contour plots for mean velocity in the
longitudinal direction were integrated numerically to
check that continuity was being preserved by the
experimental data between measuring stations. The
largest difference observed in mass flow rates between
experimental stations was less than 3.5% of the bulk
mass flow rate.

Humphrey et al’ presented velocity profiles for six
streamwise locations: two locations ahead of the bend;
and four locations in the bend. Only half profiles of the
longitudinal velocity were presented for all radial
stations shown. Measurements were taken, however,
over the whole depth of the duct to check that the flow
was symmetrical about the symmetry plane. As it was
concluded that this was the case, to within experimental
precision, the data on either side of the symmetry line
were averaged to produce the profiles shown. Also, flow
visualization was used in the experiment to identify
qualitatively regions of recirculation.

Figure 1 also shows the coordinate system used to
represent the experimental data. The streamwise
coordinate is represented by x/H values before the bend,
0 values in the bend, and x/H values after the bend.
Before the bend, the x/H values are negative and
decrease to zero at the start of the bend. In the bend, the
0 values range from 0 degrees at the start, to 90 degrees
at the end. After the bend, the x/H values are positive
and increase from a value of zero. The gapwise or radial
coordinate is represented by y/H values which range
from 0.0 at the outer wall to 1.0 at the inner wall.
Finally, the spanwise coordinate is represented by
Z/(H/2) and ranges from 0.0 at the center of the duct to
1.0 at the wall.

ional i mi

The computer code used for the numerical
simulations is CFD-ACE. It is commercially available
from CFD Research Corp., Huntsville, Alabama. The
code has been used in hundreds of numerical
simulations. Over sixty validation test cases have been
carefully evaluated using the code, ranging from
incompressible flow to reacting, supersonic, two-phase
flows.

Numerical Method

CFD-ACE is a pressure-based code that solves the
three-dimensional, compressible, Favre-average Navier-
Stokes equations in finite volume form. The code uses a
multi-block approach with an implicit domain interface
treatment which makes the solver fast and robust for
complex geometry problems. The governing equations
express the conservation laws of mass, momentum, and
total enthalpy and can be written in Cartesian tensor
form as follows:
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where u; is the i-component of the velocity, p is the
fluid density, P is the static pressure, h, is the total
enthalpy, g; is the j-component of the heat flux, and 7.
is the stress tensor (both laminar and turbulent). For
turbulent flows, the Reynolds stress tensor is closed
with a choice of various turbulence models. It should be
noted that body forces due to gravity and coordinate
system rotation can also be included in the governing
equations. However, for the curved duct problem, no
gravitational forces were included.

The cartesian equations are then transformed from
physical space to computational space. The resulting
equations are similar to the above equations with the
exception that the spacial derivatives are now with
respect to the coordinates in computational space. In
addition, a Jacobian transformation matrix is included in
each term of the equations. The transformed equations
are in general non-orthogonal coordinates which allow
the use of equally spaced difference formulas.
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The discretization of the differential equations is
carried out using a finite-volume approach. First, the
solution domain is divided into a large number of
discrete volumes or “cells,” where all dependent flow
variables and space transformation variables are stored
at their geometric center. Then the fluid dynamic
equations and turbulence model equations are integrated
over each control volume. The finite-volume approach
is used because of its attractive capability of conserving
flow quantities both locally and globally.

CFD-ACE includes several different spacial
difference schemes. A first-order upwind scheme is
available. This tends to be the most stable scheme, but,
as is well known, it is very dispersive. Two second order
schemes, a central difference scheme and a second-
order upwind scheme, are also options. In addition, a
unique damping scheme called the Smart scheme is
included in CFD-ACE. This scheme is designed to
adaptively reduce to a first-order scheme, a central
difference scheme, or a second-order upwind scheme as
dictated by the local variation of the flow variables.
Finally, other higher-order schemes such as the Osher-
Chakravarthy scheme and Roe’s Superbee scheme are
available. For the duct problem, the central difference
scheme was used in all of the numerical simulations.
The second-order upwind scheme was tested on a few of
the cases but did not produce as good of results as the
solutions which used the central difference scheme.

The numerical solution of the discrete equations uses
a pressure-based algorithm by combining the continuity
and momentum equations to form a Poisson-like
equation for pressure comection. The density is
determined as a function of pressure via an equation of
state. For incompressible flows, the density is a constant
and there is no need for an equation of state or an energy
equation, As a result, this algorithm is particularly
appropriate to incompressible flows, but is also
applicable to compressible flows.

CFD-ACE uses an iterative, segregated solution
method wherein the equation sets for each variable are
solved sequentially and repeatedly until a converged
solution is obtained. The equation sets are solved with
either an enhanced version of Stone’s solver or a
conjugate gradient squared method. In addition, the
SIMPLE! algorithm and its variants are used to ensure
the proper coupling of the velocity and the pressure
fields. For more information on the general
mathematical formulation and numerical methods in
CFD-ACE see, for example, References 15, 16, and 17.

Boundary Conditions

CFD-ACE provides the capability to specify inflow,
exit, wall, and symmetry boundaries over surfaces of the
calculation domain. Periodic boundary conditions can
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also be specified, as can body forces due to gravity and
to coordinate system rotation.

Two types of inflow boundary conditions are used in
CFD-ACE, a prescribed mass flux boundary and a
prescribed total pressure boundary. In the duct problem,
the prescribed mass flux boundary was used as the
inflow condition. The inflow velocity profile was
prescribed to be fully developed laminar flow in a
straight square duct given by Berker! at a location 5
hydraulic diameters ahead of the bend.

Three types of exit boundary conditions are used in
CFD-ACE, a fixed pressure boundary intended for use
in incompressible problems, extrapolated conditions
boundary intended for use in supersonic flows, and a
combination of the two intended for use where there
may be subsonic and supersonic flow across an exit
boundary. In the duct problem, a fixed pressure
boundary was used as the exit condition at a location 5
hydraulic diameters from the end of bend.

In order to ensure that the location of the of the exit
boundary did not influence the flow in the bend, two
calculations, one with a straight section 5 hydraulic
diameters long and another with a straight section 10
hydraulic diameters long, was conducted. There was no
difference in the velocity profiles in the bend between
the two calculations. In addition, the pressure field at the
5 hydraulic diameter location was essentially constant
within the plane which justifies the use of a fixed
pressure boundary condition. It should be noted that the
flow at the exit does not have to be uniform, nor fully
developed, in order to accurately use a fixed pressure
boundary condition.

At a wall boundary, the velocity normal to the
boundary is set to zero. This results in no mass source
for the pressure correction equation. In the duct
problem, a wall boundary condition was prescribed on
all four sides.

At a symmetry boundary, the velocity normal to the
boundary is set to zero and for all variables the gradient
normal to the boundary is set to zero. This results in no
mass source for the pressure correction equation and no
contribution to the source term for the other equations.
Symmetry boundaries were not necessary in the duct
problem since the complete geometry was used. It was
necessary to test grid adaption across the entire duct
because of the one-dimensional adaptive approach used
in the adaption code (refer to the Section Adaptive Grid
Generation).

Numerical Con nce

Tterative convergence for the curved duct simulations
was determined by the residual history of each
dependent variable. Residuals in CFD-ACE are
calculated at every grid point and represent the



imbalance in the governing equations at each iteration.
Figure 2 shows the pressure residual history for all three
non-adaptive grid solutions. The residual values shown
in this figure are the sum of all the residuals over every
grid point in the entire grid. The pressure residuals for
all three grids converged approximately 6 orders of
magnitude to values below 1.0e-05. In addition, all three
velocity residuals (not shown) converged approximately
7 orders to values below 1.0e-06 for the each grid
simulation.

As expected, the medium grid simulation converged
slower than the coarse grid simulation in Figure 2. For
this reason, it was necessary to run the medium grid
simulations 500 iterations longer in order to converge to
the same residual value. It was thought that the fine grid
solution would also converge slower than the medium
grid simulation and so the fine grid simulation was run
for an additional 500 iterations. However, the fine grid
simulation actually converged faster than the medium
grid simulation. Thus, the fine grid residual converged
approximately 8 orders to a value below 1.0e-07. The
reason the fine grid simulation converged faster than the
medium grid simulation is possibly due to the values
chosen for relaxation parameters. For each grid, there is
an optimum value of relaxation parameters which will
increase the convergence rate. The same value of
relaxation parameters was used in all three grid
simulations and it is possible that the value chosen just
happened to be optimum for the fine grid. No further
investigation into convergence rates was conducted.

All simulations were performed on a SUN
SPARCstation 10, model 51, with sufficient RAM to
process each calculation in memory. The CPU times for
each grid simulation are shown in Table 1 below. These
times increased by a factor of 8 since each grid
contained 8 times more grid points.

Table 1:
Number | CPUTime Total
Grid of Grid [Mteration | CPUTime

Points (min/iter) (min)

Coarse 10,496 0.1 100
Medium 77,841 0.85 1,275
Fine 559,081 1.5 15,000

Grid Generation

In an attempt to eliminate any numerical uncertainties

in the present study, detailed grid convergence studies
with non-adaptive and adaptive grids were conducted.
Three non-adaptive grids and four adaptive grids were

generated. The variables and the methodology used for
adaption is described below.

Non-Adaptive Grids

The structured grids for the duct problem were
generated using the Eglin Arbitrary Geometry ImpLicit
Euler (EAGLE)19 grid generation package. The duct
geometry consisted of a straight section of 5.0 hydraulic
diameters ahead of the bend and a straight duct of 5.0
hydraulic diameters after the bend. Three computational
grids of various sizes were generated to ensure grid
convergence. The first computational grid consisted of
41 streamwise points and 16x16 cross-sectional points
for a total of 10,496 grid points. The second
computational grid doubled the number of points in
each direction (81x31x31) for a total of 77,841 grid
points. The third and finest computational grid doubled
again the number of points in each direction
(161x61x61) for a total of 559,081 grid points. Figure 3
shows a cross-sectional grid of the duct with the
medium 31x31 grid points. All three grids were
generated with grid points clustered along the walls of
the duct. The ratio of the normal spacing at the center of
the duct to the spacing at the wall was 4.3 for all three
grids since the grids were refined uniformly. This ratio
of clustering was arbitrarily chosen to capture the
velocity gradients at the wall.

The distribution of the streamwise points for the
coarse grid was 11 grid points in the straight section
before the bend, 21 grid points in the bend, and 11 grid
points in the straight section after the bend. The same
streamwise distribution ratio was also used for both the
medium grid and the fine grid. For all three grids, the
streamwise points in the straight section were clustered
near the start of the bend since the upstream influence of
bend at the inlet is small. The streamwise grid spacing
ratio at inlet of the computational domain to that at the
start of the bend was 4.0. The points in the bend were
equally spaced. The fine grid, for example, had the
streamwise points spaced every 1.5° through the bend.
The points in the straight section after the bend were
clustered near the end of the bend in order to preserve
the vortices that developed in the bend region. The
streamwise grid spacing ratio at the exit of the
computational domain to that at the end of the bend was
2.3.

Adaptive Grids
In order to determine the utility of grid adaption in

low Reynolds number flows, the multidimensional Self-
Adaptive Grid code (SAGE)?® was used to adapt the
grid to a flow-field solution. The adaptive-grid method
is based on grid-point redistribution through local error
minimization. The procedure is analogous to applying
tension and torsion spring forces proportional to the
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local flow gradient at every grid point and finding the
equilibrium position of the resulting system of grid
points that minimizes the solution error. The multi-
dimensional problem of grid adaption is split into a
series of one-dimensional problems along the
computational coordinate lines. The reduced one-
dimensional problem then requires a tridiagonal solver
to find the location of grid points along a given
coordinate line. Multi-directional adaption is achieved
by the sequential application of the method in each
coordinate direction. More sophisticated grid adaption
procedures are available where the grid is adapted in
multiple directions at one time, for example see
Reference 12,

Four different adaptive grids were generated from an
non-adaptive grid solution. The most accurate solution
obtained with the non-adaptive grids was the fine grid
(161x61x61) solution and so a smaller size grid
(161x31x31) was chosen for adaption. This grid is a
combination of the medium and fine grids used above.
The reason for using the same number of longitudinal
points as the fine grid is that adaption only occurs within
each longitudinal plane and not between planes. The
same number of cross-sectional points as the medium
grid were chosen to see if it was possible with adaption
to produce the same accuracy as the fine grid solution.

The same adaption parameters, with the exception of
the adaption variable, were used to generate all four
grids. The ratio of the normal spacing at the center of the
duct to the spacing at the wall was specified to be 4.0.
However, since there are many parameters that effect
the clustering ratio, this control is not absolute and so
the actual ratio for the adaptive grids was approximately
5.0.

In SAGE, the gradient of the adaption variable is first
calculated in the z-direction and then in the y-direction.
Initially, adaption variables such as pressure and
temperature were tested. However, the solutions with
these adaptive grids did not agree very well with the
experimental data or the fine grid results. Instead,
velocity and vorticity were chosen as suitable adaption
variables for this duct problem. To start, all three
velocity components were used as the adaption
variables with equal influence of each. This approach
produced grids with kinks in areas with small gradients
simply because of the way the code adapts. Therefore, it
is best to adapt to scalar quantities rather than vector
components when using a series of one-dimensional
adaptions. For this reason, magnitudes of velocity and
vorticity components in the plane of adaption were each
used as adaption variables. For example, the velocity
magnitude with ponents was calculated as
Velocity (2) = 4v +w . Also, the total magnitude
of velocity and vorticity with all three components were
each used as adaption variables. For example, the

velocity magnitude with tr?e%—c%mpoxients was
calculated as Velocity (2) = Ju " +v +w .

In the case where velocity is the adaption variable,
SAGE is actually adapting to the first derivative of
velocity. In the case where vorticity is the adaption
variable, SAGE is actually adapting to the second
derivative of velocity since vorticity is simply a
combination of first derivatives of velocity. The right
side of Figure 4 shows an adaptive grid at the 6=90°
plane produced by adapting to the gradient of total
velocity. The left side of Figure 4 shows contours of
total velocity magnitude. The adaptive grids using the
three other adaption variables produced similar grids to
the grid shown in Figure 4.

Discussions of Results

Velocity predictions are compared with experimental
data for fully-developed laminar flow at a Reynolds
number of 790. Three computational grids of various
sizes were generated to ensure grid convergence.
Comparisons with data of the numerical predictions for
all three grids are shown at four locations in the curved
portion of the duct. Results are also discussed for
various adaptive grid strategies and compared with the
fine grid solutions. Finally, three-dimensional flow
visualization of the flow patterns in the duct are
discussed.
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Figure 5 shows a comparison of the numerical results
for each grid with the experimental data of Humphrey et
al? at a streamwise location at the start of the bend,
© = 0°. The variation of the streamwise component of
velocity (u/Vc) in the radial direction (y/H) is shown at
two spanwise locations (z/H/2). This velocity is
normalized by the bulk velocity V.. The first location
(z/H/2=0.0), Figure 5a, is at the symmetry plane and the
second location (z/H/2=0.5), Figure 5b, is halfway
between a side wall and the symmetry plane. The
numerical predictions agree well with the data at the
plane of symmetry, but disagreement is noted at the
intermediate plane. As can be seen, there is very little
difference in the numerical results due to grid size. Even
at the beginning of the bend, the influence of the bend
has already caused asymmetries to appear in velocity
profile.

Figure 6 shows a comparison of the numerical results
with the experimental data at a streamwise location of
© = 30°. The variation of the streamwise component
of velocity in the radial direction is shown at two
spanwise locations. Again, there is very little difference
between the three numerical predictions. There are,
however, notable differences between the predictions
and the data.

Figure 7 shows a comparison of the numerical results
with the experimental data at a streamwise location of
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© = 60°. The variation of the streamwise component
of velocity in the radial direction is shown at two
spanwise locations. At this angular location in the bend,
there is a larger difference between the three numerical
results. The medium grid solution follows the fine grid
solution fairly closely, while the coarse grid solution
shows a much larger difference. All of the numerical
predictions show large differences compared to the
experimental data. In both figures, the numerical
predictions show a distinct second maximum in the
velocity near the inner wall. The experimental data
appears to lag the numerical predictions in the
streamwise development of this feature.

Figure 8 shows a comparison of the numerical results
with the experimental data at 8 = 90 ° for two spanwise
locations. Both the medium and the fine grid solutions
show the existence of a third maximum in the
streamwise velocity near the wall. The coarse grid
solution and the experimental data do not show this
feature.

In order to try and resolve this troublesome difference
between our predictions and the experimental data, a
rough assessment of the quality of the experimental data
was attempted. The mass flow rate was calculated from
the velocity profiles reported at each streamwise station.
A variation in the mass flow rate was noted between the
stations, with a maximum difference of approximately
6% between the x/H=-5.0 location and the 6 = 0°
location. A similar check was made in the expeﬁment5
and a maximum difference of 3.5% of the bulk mass
flow rate was reported. Our computation of the mass
flow rate used five radial positions per measuring
station as given in the report. Several more profiles,
however, were measured at each station. These
additional profiles could help reduce the discrepancy in
the experimental mass flow rate from our check as
compared to Reference 5. How a 3.5%, or 6%, error in
mass flow rate might effect the velocity profiles cannot
be estimated. Difficulties associated with the
experimental data would only be speculation at this
time,

Rogers et al® also made comparisons of their
numerical predictions with the same experimental data.
They also used three different grids sizes. The finest
grid used in that study was 121x41x41 which is in
between the present medium grid and fine grid. The
numerical predictions of Rogers et al. were in good
agreement with the current fine grid predictions. The
same two trends that were noted in the current study
were also shown in Reference 8. First, the formation of
the second maximum in the velocity on the inner wail
side occurred further upstream in the computations than
in the experiment. Second, at the 90° bend station three
velocity maxima occur, whereas the experimental

measurements show only two. The good agreement
between two completely independent numerical
formulations and computer codes lends significant
credence to the accuracy of these predictions. For the
present case of steady laminar incompressible flow,
high quality CFD solutions should yield accurate
solutions to the Navier Stokes equations.

A ri

Four different adaptive grid strategies were
developed and applied using the SAGE code. As
discussed in the Section Adaptive Grid Generation,
velocity and vorticity were chosen as the best adaption
variables for this incompressible flow problem. The
magnitude of velocity and vorticity in the plane of
adaption were each used as adaption variables. The total
magnitude of velocity and vorticity (including all three
components) were also used as adaption variables. The
SAGE code was used to adapt to the gradient of these
variables in each direction of the planes across the duct.

Figure 9 shows a comparison of the numerical results
for the fine grid and for the four adaptive grids at a
streamwise location of 8 = 30°. The streamwise
component of velocity is shown at the same two
spanwise locations discussed earlier. The numerical
predictions generated with adaptive grids were almost
identical to the fine grid solution. However, the adaptive
grid solution which used two components of velocity
(Velocity(2)) did differ slightly from the fine grid
solution. The grid used to generate this solution was the
most distorted of all the adaptive grids and, apparently,
failed to locate points in the regions with the largest
truncation errors.

Figure 10 shows a comparison of the numerical
results for the fine grid and the four adaptive grids at a
streamwise location of @ = 60 °. At this location, there
is a noticeable difference between the adaptive grid
predictions and the fine grid solution. Again, the
Velocity(2) adaptive grid solution shows the largest
difference. In Figure 10a, the adaptive grid solutions
capture the first and second maximum in velocity quite
well, but are higher than the fine grid solution in the
minimum velocity region. In Figure 10b, the adaptive
grid solutions capture the maximum in velocity near the
outer wall, but fail to capture the maximum near the
inner wall as well as the fine grid solution.

Figure 11 shows a comparison of the numerical
results for the fine grid and the four adaptive grids at a
streamwise location of 6 = 90°. Again, there is a
noticeable difference between the adaptive grid
predictions and the fine grid solution with the
Velocity(2) adaptive grid solution differing the most. In
Figure 11a, the adaptive grid solutions capture the
velocity maximum near the inner and outer walls, but
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none capture the velocity maximum near y/H=0.35. In
Figure 11b, the adaptive grids yield similar results; near
the walls they capture the flow features, but in the
interior of the duct they do not produce accurate
solutions.

Overall, the grids adapted to the total magnitude of
either velocity or vorticity produced the best results but
they still failed to capture all of the features shown in
the fine grid solution. In general, it did not appear to
make a big difference in the solution whether the grids
were adapted to the first or second derivatives of
velocity. The grid adapted to vorticity using two
components produced results that were similar to those
using three components. The grid adapted to velocity
using two components produced results which were in
poorest agreement with the fine grid results.

Recall that the objective for using adaptive grids was
to reduce the number of grid points necessary to obtain
an accurate solution. As discussed above, the numerical
predictions using adaptive grids failed to produce the
same accuracy as the fine grid solution with a four times
more grid points. A much less demanding question was
also asked: Did the adaptive grids produce better results
than the non-adaptive medium grid? Figure 12
compares the adaptive grid solution with the non-
adaptive medium and fine grid solutions at the 90°
station. In this figure, the Voriticity(3) adaptive grid
solution is used as representative of all adaptive grid
solutions. From comparing the non-adaptive medium
grid solution to the adaptive medium grid solution, there
was essentially no improvement in solution quality
obtained from grid adaption. Possibly a better set of
adaption variables could be found which would produce
improved results from those given here. However, our
investigation argues that adaptive gridding for this
incompressible, low Reynolds number flow is of
minimal value added for the effort expended.

Flow Physi
Figure 13 shows cross-secuons of the duct at four

spanwise locations of © = 0°,30° 60°,90°. The left
side of Figure 13 shows the veloc1ty magmtude contours
and the right side shows velocity vectors from the fine
grid results. The velocity contour plots show how the
high-velocity fluid accumulates very close to the outside
wall at the end of the 90° turn. These plots also shows
the formation of the vortices that bring some of this
high-velocity fluid toward the inner wall, forming the
second maximum in the velocity near the inside wall at
about the 60° location. At the 90° location, the induced
vortical flow has wrapped the region of higher velocity
fluid toward the middle, which causes the third
maximum in velocity as seen in Figure 8.

The cross-stream velocity vectors also shown in
Figure 13 clearly show the vortical motion caused by
the bend. At the 0° location, it is clear that the mean
flow has already been influenced by the downstream
flow. By the 30° location, one pair of vortices has been
generated on the outside wall. The center of the vortices
moves towards the inside wall between the 30° and 60°
locations. At the 90° location, the vortices appear to
have moved somewhat away from the inner wall, and at
the same time another pair of vortices have developed
near the outside wall. These results qualitatively agree
w1th the observations in the experiment of Humphrey et
al.? and the numerical results of Rogers et al®.

Figure 14 shows contours of wall static pressure in
the duct. It is seen that the peak pressure occurs on the
outer wall near the end of the turn. This curvature-
induced pressure gradient causes secondary motion to
develop and longitudinal vortices to form. In addition,
the unfavorable pressure gradient along the outer wall is
large enough to produce a region of separated flow near
the outer wall.

Figure 15 shows streamline patterns along the
symmetry plane. These patterns show the fluid moving
from the inner wall to the outer wall. Whereas, in Figure
16, the streamline patterns along a side wall show the
fluid moving from the outer wall to the inner wall. The
direction of flow along the walls depends almost
entirely on pressure; whereas, the direction of flow in
the plane of symmetry depends on a combination of
both pressure and momentum. Also shown in Figure 16
is the reverse flow region which develops along the
outer wall. It appears, from this figure, that the reverse
flow region starts just ahead of the 0° location. In the
Humphrey et al. expenmem5 the separated flow region
was observed between 0° and 25°. However, it is
1mposs1ble to quantitatively determme from the dye
traces in the detailed report'> exactly where the
separated flow region begins and ends. In the current
study, the range of flow reversal was from x/H = -0.25
to 6 = 40.5°.

Figure 17 shows streamline patterns along the outer
wall of the duct. In the bend, the streamlines clearly
show the secondary motion which moves fluid away
from the symmetry plane towards the side walls. This
figure also shows the region of flow reversal extending
inward from the side walls a small distance. Figure 18
shows streamline patterns along the inner wall. The
patterns shown in this figure are the result of two sets of
vortices. In the bend, the pattern is due to the largest
vortices pulling fluid toward the plane of symmetry.
After the bend, the pattern is a combination of this
feature and that due to smaller vortices near the wall
moving fluid away from the plane of symmetry. Refer to
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Figure 13d for a better understanding of the flow pattern
near the inner wall.

Figure 19 shows streamtubes which follow the center
of the primary vortices as they move through the duct.
Three cross-sectional velocity planes are included to
better visualize the position of the vortices at each
station, This figure clearly shows the movement of the
vortices from the outer wall to the inner wall. It also
shows how they move from near the side walls toward
the plane of symmetry. They persist and are seen to exit
the view of this figure at x/H=+5.0.

Figure 20 shows both the radial (y/H) and the
spanwise (z/(H/2)) locations of the center of vortices as
a function of the streamwise (0 ) coordinate through the
bend. The vortices start to develop after the 0° location
but it is difficult to determine the center of the vortices
before the 7.5° location. In the radial direction, the
center of the vortices are closer to the outer wall near the
start of the bend and move towards the inside wall
between the 30° and 60° location as seen in Figure 13.
In the spanwise direction, the center of the vortices are
closer to the side wall and eventually move to a location
midway between the symmetry plane and the side wall.
The radial and spanwise locations of the primary
vortices provides quantitative results from the present
computational results so that other CFD validation
results can be compared to ours.

Conclusions

Computational predictions were compared w1th
experimental data obtained by Humphrey et al’ for
fully-developed laminar flow at a Reynolds number of
790. Moderate agreement with the experimental data
was found, but troublesome differences were identified.
The present results were in good agreement with
previous computational results of Rogers et al.3 Good

agreement between two completely independent
numerical formulations and computer codes lends
significant credence to the accuracy of these predictions.
Difficulties associated with the experimental data would
only be speculation at this time.

From numerical experiments with various grid
adaption variables, it was determined that it is best to
adapt to scalar quantities rather than vector components
when using a series of one-dimensional adaptions. Grids
adapted to the total magnitude of either velocity or
vorticity produced the best results but they still failed to
capture all of the features shown in the fine grid
solution. In general, it did not appear to make a
noticeable difference in the solution whether the grids
were adapted to the first or second derivatives of
velocity. Thus, it was concluded that for this low
Reynolds number problem, the gradients produced by
the secondary vortical flow were not very large and so

adaption did not significantly improve the accuracy of
the results. Possibly a better set of adaption variables
could be found which would produce improved results
from those given here.

Finally, flow visualization from the fine grid
solutions helped to better understand the flow physics of
this complex problem. Viewing the center of the
vortices with streamtubes provided a better perspective
to the characteristics of the flow. In addition, the
locations of the primary vortices was provided so that
other CFD results could be compared to our quantitative
data. Other CFD researchers are encouraged to compute
this flow in order to determine the correct flow field to
this validation test case. The flow generated in the duct
is rich in fluid physics with the development of
secondary flow, longitudinal vortices, and reverse flow.
For this reason, the curved duct problem appears to be a
good CFD validation case of three-dimensional, laminar
flow. It is recommended that experimental
measurements with the laser-Doppler anemometer
should be carefully redone to provide detailed
experimental data for CFD validation.
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Figure 15: Streamline Patterns Along Symmetry Plane

Figure 17: Streamline Patterns Along Outer Wall
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Figure 14: Surface Pressure Contours for Curved Duct

Figure 19: Streamtube Pattern of Vortex Centers in Curved Duct
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