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Chapter 1
INTRODUCTION

Parallelism or redundancy is routinely used to achieve high reliability in systems
where high levels of safety must be assured (e.g., aircraft, nuclear reactors,
space and defense systems). Other factors that might drive the use of
redundancy are unacceptability of down time (e.g., defense radar systems) or
high down time cost. For example, fault tolerant computers have been used for
several years. However, ordinary microcomputers are commonly used to control
manufacturing equipment and processes. Because down time can be quite
expensive for manufacturing equipment, microcomputers that achieve high
reliability using redundancy are increasingly available.

The typical treatment of redundancy in reliability analysis of mission-oriented
applications is, in most cases, relatively straightforward [3]. In such applications,
one is concerned with the probability of successful operation over some defined
mission time. The probability of successful operation of the parallel system is
just the probability that at least one of the parallel components does not fail. In
analysis of repairable systems, treatment of redundancy becomes more complex
[4]. In this case, system performance measures such as mean time between
failures, availability, and system mean time to repair are of interest. The
analysis is further complicated by the possibility that failed components can be
repaired while the system conrtinues to operate on other parallel components.

In this report, we develop equations for several redundancy options for both
repairable and non-repairable systems. For all configurations in this report, we
will assume that individual components have a constant failure rate. For
repairable systems, we consider the following six redundancy treatments:

Active with Repair All parallel components are active with only one needed
for success. A failed component can be repaired while the system continues
to operate on other parallel components.



Active_without Repair All parallel components are active with only one
needed for success. Failed components are not repaired until all parallel
components have failed. Then all are repaired.

Standby with Repair Only one of the redundant components is active with
others held in standby. In case the active component fails, a standby
component can be switched on either manually or automatically. The failed
component is repaired while the system operates using a standby
component.

Standby without Repair Only one of the redundant components is active
with others held in standby. In case the active component fails, a standby
component can be switched on either manually or automatically. The failed
component is not repaired until all redundant components have failed.

R of N with Repair The system consists of N components of which R (1 <R
< N) are required for success. Failed components are repaired while the
system operates.

R of N without Repair The system consists of N components of which R (1 <
R < N) are required for success. Failed components are not repaired until
more than N - R have failed and the system cannot operate. For an
example of R of N redundancy without repair, consider a car wheel with 5
lug nuts. If 4 are considered necessary for safe operation, the lug nuts
provide 4 of 5 redundancy.

While there are a multitude of ways to design redundancy, the six options
treated in this document provide good coverage of the range of effectiveness of
redundancy in repairable systems. In each case, the intent is to find an
equivalent failure rate and repair time for the redundant components. Even
though we assume that failure rates of individual components are constant, the
equivalent failure rates for parallel components are generally not constant for
any of the redundancy options. The possible exceptions are the standby
redundancy options which have at least piece-wise constant failure rates since
only one component is active at any time. For the redundancy options that
involve repair while the parallel system remains active, we calculate the mean
time between failures (MTBF). For redundancy options that do not involve repair



of failed components until the parallel system fails, we calculate the mean time
to fail (MTTF). In both cases, we treat the reciprocal (1/MTBF or 1/MTTF) as the
average failure rate of the parallel components that are part of a larger
repairable system.

Chapters 2 through 7 develop equations and algorithms for the above six
redundancy options in repairable systems.

For non-repairable systems, we consider three redundancy treatments:

Active All parallel components are active with only one needed for success.
The redundant system fails only when all parallel components fail.

Standby Only one of the redundant components is active with others held in
standby. In case the active component fails, a standby component can be
switched on either manually or automatically. The redundant system fails
only when all parallel components fail.

R of N The system consists of N components of which R (1 < R < N) are
required for success. The redundant system fails only when less than R
components are operable (i.e., when N - R + 1 components have failed).

For redundancy in non-repairable systems, our interest is in calculating the
reliability of the redundant arrangement. The reliability of the above three
redundancy treatments in non-repairable systems is addressed in Chapters 3, 5,
and 7.

All redundancy options listed are being implemented in the Reliability Analysis
and Modeling (RAMP) software. Version 1 of RAMP ([1], [2]) treated active with
repair for uniform repair times for all components in the system. Version 2 of
RAMP incorporates all of the options listed above with component-specific repair
times and failure rates, and will be released in 1993.






Chapter 2
ACTIVE WITH REPAIR

In the active with repair redundancy option, we assume that two or more
components are active and only one component is necessary for successful
operation. !n case a component fails, it is repaired while another active
component performs the required function. The parallel system fails only if all
parallel components are down at the same time. In the following discussion, we
take the mean time to repair as the total down time, that is, the time period
beginning when a component or the system fails and ending when the
component or system returns to operation.

Two Parallel Components - Active with Repair

Consider two components in parallel as shown in Figure 2.1 below. The mean
time between failures and the mean time to repair (MTTR) are

1

MTBF, =T, MTTR, = Tou =2 (2.1)
1

MTBF, =T, MTTR, =T, = o

Implicit in Equations (2.1) is that times to feilure and times to repair follow an
exponential distribution. That is

QFA=1" e—lITFA QRA -1- e-|/TM (2.2)

where Q,, is the probability that component A fails during time t. Similarly, Q., is
the probability that component A, having failed, is repaired during time t.



1=k

Figure 2.1 Two Components in Paralilei

If either component A or B fails, the system does not fail unless the second
component fails before the first can be repaired. Then the fraciion of time that
component A is down is

T
= RA (2.3)
TFA +TRA

Similarly, the down time fraction for component B is

T
F,=—t (2.4)
° TFB +TRB

The system is down only if both A and B fail. Since both components are
assumed to have a constant failure rate and failures occur randomly, the down
time fraction for the system is

TRA TRB

F. =F,F, =
® e Tea + Tra TFB+TRB_

(2.5)

We now need to calculate the average down time when the system fails. For the
system to fail, both A and B must fail. The average time to repair the system is
the average time before either A or B is repaired. Recalling Equation (2.2) and
setting pa=1/Tra, the probability that A is not repaired during time t is eHal.
Similarly, the probability that B is not repaired during time t is eHst . The
average time over which neither A nor B are repaired can be found from

Tes = Ite‘“'e'“ﬂ‘dt / f g MalgHelgt (2.6)
o 0 .



Performing the integrals we get

o0

e-(MAﬂla)t
Tes = (NA + ua) — 3 {‘(NA + P«s)t - 1}
(ka + 1) 0

1 _ TeaTre
Mo+ Mg Tra + Tig

TRS =

(2.7)

Trs is the average down time when the system (both A and B) fails. Then, the
expected number of failures per hour of the system is the system down time

fraction divided by the mean time to repair the system. That is

F (Tea + Teg)

s

T (T +T AT +T.)

RS

and the system MTBF is

{1 _ TRATRB
T = (TFA +TRA)(TFB +TRB)

1-F,
(4) el

(TFA + TRA)(TFB + TRB) ~ Tra Tre

T. =
e Tra + Tra
Availability is given by
Availability= A = _Tes
Tes + Trs
As a numerical example, let
TFA =50 hr TRA =3 hr
TFB =100 hr TRB =5hr

(2.8)

(2.9)

(2.10)

(2.11)



This problem was analyzed by Markov analysis and using the equations
developed above. Comparison of Markov analysis results with results obtained
- using Equations (2.7), (2.10), and (2.11) is shown in Table 2.1.

Calculuted Markov Analysis
Availability 0.9973 0.9973
MTBF (Trs) 694 hr 694 hr
MTTR (Trs) 1.88 hr 1.88 hr

Table 2.1 Comparison for Two Components in Parallel, Active with Repair

The results in Table 2.1 show excellent agreement between the equations
developed above and the Markov analysis.

Three Parallel Components - Active with Repair

Consider 3 components in parallel as shown in Figure 2.2.

A

o

Figure 2.2 Three Components in Parallel

As before,
- TRA
AT, Tea
T
- RB
° TFB+TRB (2.12)
F = TRC
¢ TFC + TRC



TeaTra T;
F =FFF - RA "RB "RC (2.13)
SR T (Tea + Tra N(Teg + Tra AT + Tre).
We have shown earlier (Eq. 2.7) that the average down time for components A
and B is

Tea T
T - RA 'RB .
e Toa + Tre (2.14)
By a similar argument, we can show that the average down time overlap
between AB and C is

T T, 1
T -—_‘raslrRc _ .
B T4 Te 1 1 (2.15)

TRAB TRC .
Therefore, the average system down time (MTTR) is

Toe = L =
RS = =
Tra + Tre 1 1 1 1
+ + + (2.16)
TeaTee  Tre Tra Tre  Tre .

The average system down time per failure is

FS - (TRATRB + TRATRC + TRBTRC ) . (2 17)
TRS (TFA M TRA )( TFB + TRB )( TFC + TRC )

Then, the system MTBF is the fraction of time the system is operating divided by
the number of system failures per hour. That is

(1 _ TRATRBTRC )
T = _ (TFA +TRA )(TFB+TRB)(TFC +TRC) (2.18)
=

1-F
° (F% ) TRATRB + TRATRC + TRBTRC
RS (TFA + TRA )( TFB + TRB )( TFC + TRC )




(Tea + Tra)l(Ten + Tre M Tec + Tre) = TraTre Tre
TeaTre + TraTre + Tre Tre

Tes = (2.19)

Results obtained using Equations (2.16) and (2.19) were compared with a
Markov calculation for three components in parallel having the following MTBF's
and MTTR's:

TFA= 100 hr TRA=5hr
Teg =50 hr Teg =3 hr
TFC =25 hr TRC =2hr

The comparisons are shown in Table 2.2.

Calculated Markov Analysis
Availability 0.9998 0.9998
System MTBF (Trs) 4846 hr 4846 hr
System MTTR(Tss) 0.968 hr 0.968 hr

Table 2.2 Comparison for Three Components in Parallel, Active with Repair

N Parallel Components - Active with Repair

The key results from the previous sections can now be generalized. Assume n
components in parallel (active with repair). Let their MTBFs and MTTRs be

MTBF for component i = Tri (hr) MTTR for component i = Tri (hr)
MTBF for the system = Trs (hr) MTTR for the system = Tk (hr)

Then for N components in parallel,

[T(Te + Tgy) H
T _-l1N

Fs ik ' (2.20)
Z [ nTm]

k=tIN\i=1N

and

10



1

RS Y (2.21)
()
=N TRI

Equations (2.20) and (2.21) were compared with Markov analysis results for the
following case of 5 components in parallel.

Tr=10hr Try=2hr
T2 =15 hr Tr2=3hr
Tez=12hr Trz=4hr
Teg=8 hr Tra=2hr
Tes =20 hr Trs=5hr

The results of this comparison for 5 parallel components are shown in Table 2.3.

Calculated Markov Analysis
Availability 0.99972 0.99972 '
System MTBF (Txs) 2018 hr 2018 hr
System MTTR(Tks) 0.56 hr 0.56 hr

Table 2.3 Comparison for Five Components in Parallel, Active with Repair

As before, the comparisons between the equations developed above and
Markov analysis are excellent.

The results given by Equation (2.20) can be used to calculate an average failure
rate as

11






Chapter 3
ACTiVE WITHOUT REPAIR

With this redundancy option, as in the active with repair option, all parallel
components are active but only one component is needed for success.
However, in a repairable system, failed components are repaired only after all
parallel components have failed. This is one of the least effective uses of
redundancy in terms of improving system reliability.

Two Parallel Components - Active without Repair

We begin again with two components in parallel as shown in Figure 2.1.
Suppose both A and B are active but the system requires only one of them for
successful operation. Let W, (Wg) be the event that A (B) fails. Then the failure
probability for the simple parallel system of Figure 2.1 is

P(Ws) = P(WA M We) (3.1)

That is, the combination of A and B in parallel fails if both A and B fail. If these
events are independent, that is, if the failure or success of either component
does not influence the failure or success of the other, then

Q, = Q,Q, 3.2

Recall that Q is used to denote probability of failure (unreliability). If R, and Rg
are the reliabilities of A and B, then the probability of system failure is

Q; = (1-R,)(1-Ry) (3.3
The system reliability is given by

Rs=1“Qs=1‘(1‘RA)(1"RB) (3.4)

13



That is, the probability of successful operation of the parallel system over time t
is 1 minus the probability that both components fail during t. We will calculate
the mean life of the system (mean time to system failure). For a repairable
system where the repaired system is as good as new, the mean life is the same
as the MTBF. The mean life of the system is given by

Tes = [Re (1) dt = [[1- Qe (1) Qpg (1)] it (3.5)
0 0 .

If we assume that components A and B have a constant failure rate given by Aa
and As, then

Tes = [[1- {(1-e™)1-e™ )}] dt (3.6)
0
and
1 1 1 1 1)
Te = —+—— =T +Too =| — + — (3.7)
s >"A+}“B Aa+Ag it lre (TFA+TFB)

To calculate the mean time to repair for the two parallel components, first
recognize that both must be repaired before the parallel system is considered
repaired. Thus, in analogy to Equation (3.5), the mean time to repair is given by

Tos = [[1- Qra (1) Qrg (1)] it (3.8)

Oty 8

where Qga(t) is the probability that A is repaired in time interval t and Qgg(t) is
defined similarly. In words, the mean time to repair the parallel components is
the integral over time of the probability that at least one component is not
repaired. Assuming a constant repair rate (let p be the repair rate), then

TRS _ T[1 _ {(1 _ e"“Al )(1 _ e—uat )}] dt (3.9)

14



-1
1 1 1 1 1
Tos=— +—-————=Toa+Tgg - | =— +=— (3.10)
T Ha Mg Mathg T (TRA TRB).

Given MTTR and MTTF, availability can be calculated as

Availability= A = -T—-TF—S—~ (3.11)

ks + Trs

Comparison of results calculated using Equations (3.7) and (3.10) with
numerical simulation results are shown in Table 3.1 for the following case:

Tea =50 hr Tra=1 hr
Teg =50 hr Trg =2 hr
Calculated Markov Analysis
Availability 0.9698 0.9698
System MTTF (Tes) 75 hr 75 hr
System MTTR (T«s) 2.3 hr 23 hr
Table 3.1 Comparison for Two Components in Parallel, Active without
Repair

Three Parallel Components - Active without Repair

For three components in parallel (Figure 2.2),

o

Tes = J.RS(t) dt = “1‘ Qpa (1) Qg (1) Qg (1)] dt (3.12)
0 0 .
Again assuming constant failure rates,

TFS =

© ey 8

[1-{(1-e™)(1-e™)(1-e?)}] (3.13)

15



Expanding the integrand,

-Agt + e—hci _ e—(lAH\..)t _ e—(1A+kc)1 _ e—(k’+hc)l + e—(l~+7«..+l¢)l)dt

1 1 1 1 1 1
XA 7»9 A )"A +}\.9 }‘A +7\,c Ay +)“C Aa +)‘B+7"c (3.14)

In terms of component MTBF's,

1 1 -1
1 1 1 1 1 1
Teg =Tea+Teg + Tee | m—+—| - + - + +
RO BT [TFA TFB] [TFA TFC] [Tra Trc] (3.15)

[ 1 1 1 ]"
+—+
Tea Tee Tee

Calculation of system MTTR follows the same steps. That is,

1 1 1 1 1 1 1
Teg =— +—+—- ' + (3.16)

Ba Hs Hc Hat+tHg Ha+tHc Hag+tHe HatHg +Hc

In terms of component MTTR's,

1 1 -1
1 1 1 1 1 1
Tos = +Teg+ T = | =—+=—| - + - + +
RS~ RA T TRR T RE [TRA TRB] [TRA TRc:I [TRB TRC] (3.17)

[ 11 1 }"
+ +
TRA TRB TRC
Comparison of results calculated using Equations (3.15) and (3.17) with Markov
analysis results are shown in Table 3.2 for the following case:

TFA =50 hr TRA =3 hr
TFB =100 hr TRB =5hr
TFC =200 hr TRC =4 hr

16



Calculated Markov Analysis
Availability 0.9697 0.9697
System MTTF (Tes) 238.6 hr 238.6 hr
System MTTR(Trs) 7.47 hr 7.47 hr
Table 3.2 Comparison for Three Components in Parallel, Active without
Repair.

N Parallel Components - Active without Repair

Equations (3.15) and (3.17) can be generalized to N components in parallel as
follows:

Let CS be the set of all components in the parallel arrangement. Subsets
of CS are indicated as K ¢ CS. For example, if A, B, and C are in
parallel, CS is {A,B,C} and subsets are {A}, {B}, {C}, {A,B}, {A,C}, {B,C},
and {A,B,C}. Of course, the null set ¢ is also a subset. The number of
elements in a set is called its order and is indicated by |K|. We generalize
the equations for MTTF and MTTR in terms of failure rates and repair
rates as in Equations (3.14) and (3.16).

(k- 1
T = (-1)" —— (3.18)
KcCS Z)"
K=¢ ieK
and
(k-9 1
Tgs = Z (-1) ~ (3.19)
KeCS 2 M
K#¢ ieK

Comparison of results calculated using Equations (3.18) and (3.19) with Markov
analysis are shown in Table 3.3 for the following case:

17
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TF1 =50 hr TR1 =3 hr

Te2 =100 hr Trp=5hr
Tga =200 hr Trz=4hr
T4 =40hr Tra=2hr
Tes=30hr Trg =3 hr
Calculated Markov Analysis
Availability 0.9674 0.9674
System MTTF (Tes) 242 hr 242 hr
System MTTR(Trs) 8.2hr 8.2 hr
Table 3.3 Comparison for Five Components in Parallel, Active without
Repair

Active Redundancy in Non-Repairable Systems

In this case, we are interested in the reliability of active, parallel components
when the system cannot be repaired. From Equation (3.4) for two parallel active
components,

Ry =1-Qg =1-(1-R,)(1-R,) (3.20)

For the general case of N components in parallel, we can easily write an
equation for the reliability of the parallel assembly. That is

N
R, =1-[](1-R) (3.21)

The implicit assumption in Equation (3.21) is that all parallel components are
active with only one required for success. It is clear that parallel system
reliability increases as the number of parallel components increases. However,
the incremental increase in reliability diminishes with each additional parallel
component. Figure 3.1 shows the reliability of parallel systems as a function of
the number of identical components for several fixed component reliabilities.

18
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System Reliability

1 2 3 . 6
Number of Parallel Components

Figure 3.1 Reliability of a Parallel System as a Function of the Number of
Components

The number of components needed to achieve high reliability depends on the
reliability of the individual components.
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Chapter 4
STANDBY WITH REPAIR

Standby redundancy can be designed in a virtually endless variety of forms.
The following discussion describes the assumptions used in the treatment
presented here.

For standby redundancy, only one component will be active at any time. When
that component fails, a standby component can be switched on, either manually
or automatically. This standby component will begin working if its switch works.
Switch failures are treated as discrete events with known probability of failure
(p). In the event of a switch failure, the system will go to the next standby
component. Components which are not operable can be repaired at any time. If
all of the components are operable at some point, then the first component will
begin working again, and the component which was working will resume its role
as a standby component. In the event of a system failure, we assume the
system remains down until all of the components are operable and the system
can return to its initial state.

As an example of this treatment, consider a system with four components. Once
the first component fails, we will try to switch to the second component. If the
second component's switch fails, then we will try to switch to the third
component. If its switch works, then the third component will be working. If the
third component fails before the first component is repaired, then the system will
try to switch to the fourth component. If its switch works, the fourth component
will be working, the second will be operable, and the first and third will both be
inoperable. If the first and third components are both repaired before the fourth
component fails, then the first component will be the active component again. If
the fourth component fails before both the first and the third components are
repaired, then the system will fail.

For this redundancy treatment, we have not derived closed form equations.
Rather, we will describe an algorithm that can be programmed to produce

21




accurate results for the assumptions described above. The algorithm presented
here traces the system through all of the possible paths by which it can fail. We
will first go through the algorithm on systems with 2 and 3 components to show
how it works.

Notation

We will let Tr; denote the MTBF for component i, Tg; denote the mean time to
repair component i, and p; be the probability that the switch to component i fails.
Assume that Tg; and Tg; are expressed in hours.

To describe a state, we will put a one in the location of components that are
operable, and underline the component that is working, e.g., 011 corresponds to
the first component being down, the second and third components being
operable, and the third component working. If no component is underlined (or
working) then the system is down, i.e., 01 corresponds to the second component
being operable and the system being down. For the discussion of three
components in parallel, we will use superscripts to denote which step or iteration
we have just finished.

Two Components in Parallel - Standby with Repair

The system will start with both components operable and the first working (this
state is written as 11). When the first component fails, the second component
will still be operable but the system may or may not stay up. Thus, the system
will go to either 01 or 01 depending on whether the switch for the second
component works. Thus, for each of the states we have the transition
probabilities in Table 4.1.

State Probability Expected hours to
reach that state
01 1-p2 Tk
01 P2 Tk

Table 4.1. States and Transition Probabilities for a 2 Component System
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At state 01, the system has already failed. Thus, we are interested in where the
system can go from 01. From 01, the system can go to either 00 or 11
depending on which occurs first - failure of the second component or repair of
the first. The probability that the second component fails before the first is
repaired is:

o0
j'P(1 is notrepairedby time t) P(2 fails at time t)=

t=0
o0 [o o]
-t TR A
fte "xe Tadh=fre P dt=—=2
u1+7»2
t=0 t:o
A
(T..) T, (4.1)

(T 1)~1 +(T 2)—1 i TR1+TF2'

Similarly, the probability that the first component is repaired before the second
fails is

Tes
- (4.2)
USRATS
The expected time until either the second component fails or the first component
is repaired is

S L (4.3)
x'Z-*-u1 TR1+TF2

J te e dt/ J'e_k"exu"dt
0

0

This gives us the states and transition probabilities in Table 4.2. Since reaching
the state 11 means that the system is reset to the state where it started, the
probability of being in state 01 when the system fails is qg¢/(qgp + 9g1) and the
probability of being in state 00 when the system fails is quo/(qgg + o1)-
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State Probability Hours to Reach that State

01 Qo1 =P2 tor = Tey
00 L T.T

Qoo = 1- P )""'-"__' t =T + _R1F2

" ( 2 Tar + Trz o TR1 + TF2

11 Te, T.T
- =(1- L - R1F2

A ( P2 ) Tre + Tez tl' Tt Tt TFZ

Table 4.2 States and Transition Probabilities for a 2 Component System

The system will return to 11 some number of times before it fails. We will expect
it to take a certain amount of time each time the system goes from 11 to 01 and
then returns to 11. The more times that the system goes through this cycle, the
more time will elapse before the system fails. So, if we let B, be the event that
system goes back to the state 11 i times (we do not count the system's starting
there as a time that it goes there) and then fails to state 01, then all of the B|'s
are disjoint, and their union is the event that the system fails to state 01. Then
the expected time for the system to fail via state 01 is

>P(B,)P(01B, )E(time until 018, )
E(time to fail | failto 01) = =2

iP(Bi)P(o1|Bi)

i(qipqm)(ity + t01)

=0

[}

Z(q‘pQM)

i=0

Qo1 ! 777 ! ty +q°1lrl—]t01
(1—q11) —Qu | - ~Qq

Qo1
1-q,

E(time to fail| failto 01) =
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E(time tofail | failto 01) = (1-—1——~—1)t,, + 1t (4.4)

M1

Similarly, if the system is in state 00 when it fails, then the expected time until it
fails is

5P(8,)P(00|B E(time until 00| B,)
E(time to fail | failto 00) = =2

>P(8)P(00[B)

g(qipql)o )(itp + too)
i(q=1%0)

Qoo 777 t11‘*'%0':11 ]tm
(1-q,) 1= | ~

1'q11

1

E(time tofail |fail to 00) = (1-—1-—— 1)t1, + o (4.5)

Now, since we know the probability of being in each state when the system fails,
and the expected time for the system to fail conditioned on it failing to each
state, we can find the expected time until the system fails. In this case, it would

be
Yoo ! =1 |ty +too |+ 0 “‘l“‘“1 tyy +to
1_q11 - 1—q1_1 -

Qoo t oy

TFS =
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1 Qootoo + dortes (4.6)
Tee =| — -1t +—2 210 .
s [1‘“%1 ] nt Qoo * Qo1

We stated earlier that the ratios qg¢/(qgg + Qg1) @nd Qge/(Qpg + Qpq) are the
probabilities of being in state 01 and 00, respectively, when the system fails.
These are conditional probabilities: given the system fails, these are the
probabilities of being in state 01 and 00. The conditional probabilities were used
in Equation (4.6) to find the expected time to system failure. They are also used
to find the expected time to repair the system.

If the system fails to 01, then only the first component requires repair. If it fails to
00, then both components must be repaired. Thus, the expected repair time is

Toy Qoo
Tae = T., + T (4.7)
RS oo + T R1 Tos + Qo R(12)

where Tg(12) can be found from Equation (3.10), or in its more general form,
Equation (3.19).

Comparison of results calculated using Equations (4.6) and (4.7) with Markov
analysis resuits are shown in Table 4.3 for the following case:

Tea =200 hr Tra=10 hr
Teg =500 hr Trg =20 hr pg = 0.01
Calculated Markov Analysis
Availability 0.9974 0.9974
System MTBF (Tes) 7130 hr 7130 hr
System MTTR (Trs) 18.8 hr 18.8 hr
Table 4.3 Comparison for Two Components in Parallel, Standby with
Repair.

For the case of two parallel components shown in Table 4.3, the comparison of
Equations (4.6) and (4.7) with Markov analysis is excellent,
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Three Components in Parallel - Standby with Repair

The approach for three components is similar to that presented in the previous
section for two components. When the first component fails, the system can go
to any of three states: 011, 011, or 011. For these states, we have the resuits
shown in Table 4.4.

State Probability Hours to Reach that State
011 Qo =1-P, tor = Tey
011 Qon =p2(1"p3) ton = Tes
011 Qon =P2P; tor = Tey

Table 4.4 States and Transition Probabilities for a 3 Component System

If the system is in state 011, and the first component is repaired before the
second component fails, then the system is reset to 111. If we consider
Equation 4.2, then we see that the probability of this is:

H, T

= (4.8)
“‘1+)"2 TR1+TF2

if the second component fails before the first component is repaired (see
Equation (4.1), then the system will go to state 001 or state 001, with
probabilities

T
P =—"_(1-p ) (4.9)
00! TR'|+TF2 ?
T
P =—FR__ .
01 =T TP (4.10)

If we consider Equation (4.3), then we realize that the time required to reach one
of these three states from 011 is
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TriTea (4.11)
TR1+TF2

Thus if we wait until the first component has failed, and either the first
component has been repaired or the second component is not working (because
it has failed or its switch failed) then the possible states are shown in Table 4.5.

State Probability Hours to Reach that State
111 T, TT
- q?n :q;!1-_'—:——:-—2-:l_—— t:11-_—_TF1+__._.R;1..E..
R1 T TF2 ; Tat Te,
T ®or =% (1-py) |ty =T, 4RI
001 ~ Mot Ter + Tp, 3 001~ 'F1 T+ T,
001 2 . Tr 2 T.T
Qoo1 = o1y =—=—P t =T +—tFf2
o TN T 4T, o T FTT 4T
011 ng = qzm_ t?n] = Te,
011 Q11 = Aonq 11 = Tey

Table 4.5 States and Transition Probabilities for a 3 Component System

We are interested in the system failing, so we want to know whether the system
will get to 001, 001, 011, or 011 first, and how long it will take to get there.
Recall our assumption that when the system fails, we require that all failed
components be repaired before the system is placed back in operation. Since
going to 111 means that the system is reset to the state which it started in, it is
possible to find both the probabilities and expected time to reach these states.
To find the probabilities that the system hits one of those states before the other
three, we will divide the probability of that state by the sum of the probabilities of
all four states. To find the expected time to reach that state, we will do
calculations analogous to those leading to Equation 4.4. This will give us the
results in Table 4.6.
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001 and 011 are the only states in the table where the system has not already
failed. Thus, we are interested in where the system can go from those two

states. From 001, the system can go to 111, 100, 010, 000, with probabilities:

State Probability Hours to Reach that State
2 i h
- Gy = g, = | s 1|t2, + 2
1T qC q;fv" 001 = |1 g2, 1+ Loos
001 Qe = —-S?l'l'—— 3 [ 1 - 2 2
oor = 37 Q§u toor = ey = 1t3 + too,
2 [ i
011 Qoyy = %112 ton = ! - 1|t + 3,
- 1-djy S| 1-adly ; -
011 92 [ ]
3 _ 011 1
Qo1 = . q§” tg,, = -y -1 t;f’" +t2,,

Table 4.6 States and Transition Probabilities for a 3 Component System

Py loo1 = P11 through 011 001 + P11 through 101/ 001

_ TR1TF3 TF3
TarTea + Tre Tea + TriTre Tro + T (4.12a)
N TraTes Tes
TriTes + Tro Tea + TryTre Tro + Tes
T T T
P - Rz F3 R2 (4.12b)
100/001 TarTes + TraTea + TriTrz Tra + Tea
Tai T, T
P _ RilF3 R1 (4.12c)

O10|001 B TR1TF3 +TR2TF3 +TR1TR2 TR1 + TF3
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TR1 TRZ

P = )
0001001 = T Tes + Tra Tea + Ta Trz . (4124
From 011 the system can go to 111 or 010 with probabilities:
Tes
P!"I°‘! = m (4.13)
and
T
P =" (4.14)

010|011 ~|-F3 + Tm

Thus, if we wait until the either the third component has failed or its switch has
failed, then the possible states are as shown in Table 4.7.

When the system fails, it can be in 000, 001, 010, 011, or 100. For these five
possible states, we have the transition probabilities shown in Table 4.8.

Now, the expected time until the system fails will be

Tes = Qoootooo + Toortoor + Aarotore + Aaratars + Grootioo (4.15)

From each of these 5 states we can calculate the average repair time to go from
the failed state to state 111 using Equation (3.19). Given that the system fails,
the probability of being in each of these 5 states is the conditional probability for
the state. For example, g5, is the probability of being in state 000 when the
system fails, given that it fails. The expected time to repair the system is then
the sum of the five products of conditional probability and average repair time.

Comparison of results calculated using the approach above with Markov
analysis results are shown in Table 4.9 for the following case:

TFA =300 hr TRA =15 hr
TFB =1000 hr TRB =20 hr Pg = 0.01
Tee = 700 hr Tec=5 hr P = 0.05
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State

Probability

Hours to Reach that State

4 - 3
qDOO - pooo |001 q001_

TR1TR2TF3

4 43
tooo-too1_+

000 TaiTrz + TraTes + Tro Tey
4 3 4 3
001 Qoo1 = oor toor = toor
“ _ 3 3 3
Qoo = po1o{o11q°11 ‘ po1o|o11q011_ ) TriTrs po1o|oo1q0°1
010 ) too = ——| tos T . +7T + T X
*Poro 0019001 010 T et e Q010
2y Tri Trz Tes + TriTea
004
= TaiTre * TriTea + TraTea Ty + Tea
4 3 4 3
011 Qo011 = Qo1s tonr = tou
4 3
Q100 =p1oo|w1q°01 th, =3, + TaiTra Tes
100 © TriTre + TraTes + TroTes
Tre Tes
Trz + Tes
q 3 3
q111 = p!"lm‘!q001 t,‘" - p_111|o:3%11 g" + TR1TF3 +
11 +p q3 . 111 - Tr+Tey
110117101
- l - - P]chroughoﬂlOOj qgt)] [tém TR1TR2TF3 + Tri Tea }
Q;n T TriTes + TooTea + TryTre Tre+ Ty
P!“thwuohw.'lw! qg°! l:ttsm + Tar Tre T + TraTes }
q;n T TriTes + TooTey + Try Ty Trp + Ty

Table 4.7 States and Transition Probabilities for a 3 Component System
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State Probability Hours to Reach that State
000 4 i T
— Y00 1
q" = 5 _ _ 4 4
001 4 i i
s _ _ Yoo 1
010 4 [ 1
s _ Yo 1
011 ‘ i 7
qgﬂ = q—°114 ts., = 1 —1t4, +té
1- q111 ot 1_ q;" m o1
100 4 [
. 1
C]5 = — 5 _ _ 4 4

Table 4.8 States and Transition Probabilities for a 3 Component System

Calculated Markov Analysis
Availability 0.99987 0.99987
System MTBF (Trs) 162406 hr 162406 hr
System MTTR (Tks) 21.2 hr 21.2 hr
Table 4.9 Comparison for Three Components in Parallel, Standby with
Repair.

As in the case of two components, standby with repair, the case of 3
components shows excellent comparison with Markov analysis.

We have only presented the algorithm for standby with repair for the cases of
two and three components in parallel. However, a general algorithm for standby
with repair has been developed and is described in Appendix A.
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Chapter 6
STANDBY WITHOUT REPAIR

In this treatment of redundancy, only one of the redundant components is
assumed to be active with others held in standby. In case the active component
fails, a standby component can be switched on either manually or automatically.
Failed components are not repaired until all have failed and the system is down.

The MTTF of the system of 1 component active with N -1 standby without repair
is just the sum of the individual MTBF's of the components accounting for the
probability of switch failure. That is

T =T, + > (1-p)Tx
FS 1 ‘g pl)F (5.1)

No repairs are performed until all standby components or their switches have
failed. Therefore, the MTTR for the system is calculated similarly as for N active
without repair. Let P4(t) be the probability that component 1 is repaired (not
failed) at time t and P,(t) is defined similarly. Then from Equation (3.8),

Tes =T[1—QR,0)QR2(1)] dt. (5.2)
0

In words, the mean time to repair the parallel components is the integral over
time of the probability that at least one component is not repaired. Recall that if
a component is not operable, it could be because the component itself failed or
its switch failed. If the component is unavailable because of switch failure, then
the component doesn't need to be repaired. Assuming a constant repair rate (let
u denote repair rate), then

Toe = 2{1-{;), +(1- p,)(1— e’"")][pz +(1—p2)(1- e_uzt)]}d‘ 5.3
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where p, and p, are the probabilities of switch failure to components 1 and 2.
Note that (p4 = 0). Equation 5.3 can be rewritten as

@ -t -t

Tos = 1[1—{[1—(1—p1)e “1-0-p)e™ ]H dt. (5.4)
0

From Equation (3.10), we see that the solution to Equation (5.4) is

T =(1—-p1)+(1—p2)_(1—p1)(1—p2) (5.5)
RS Ky H, Myt Ry

By the same arguments that lead to Equation (3.19), we can show that

1_[(1_pi)

(k-1) ieK
Trs = Z (‘1) —_— (5.6)
KcCS z“'
K=¢ ieK

where py = 0.

The comparison calculations that were performed earlier for standby with repair
are repeated here for standby without repair. The case for two components
follows.

Tea =200 hr Tra=10 hr
Teg =500 hr Tre =20 hr pg = 0.01
Calculated | Markov Analysis
Availability 0.9677 0.9677
System MTBF (Tes) 695 hr 695 hr
System MTTR (Tks) 23.2 hr 23.2 hr
Table 5.1 Comparison for Two Components in Parallel, Standby without
Repair.

Table 5.2 shows comparison results for 3 in parallel, standby without repair, with
the following properties
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TFA = 300 hr TRA =15 hr

Teg = 1000 hr Trg =20 hr pg = 0.01

Tec =700 hr Tre=5 hr pc =0.05

Calculated Markov Analysis
Availability 0.9865 0.9865
System MTBF (Trs) 1955 hr 1955 hr
System MTTR (Trs) 26.7 hr 26.7 hr

Table 5.2 Comparison for Three Components in Parallel, Standby without
Repair.

For both cases, the Equations (5.1) and (5.6) provide excellent agreement with
Markov analysis results.

Standby Redundancy in Non-Repairable Systems

With standby redundancy, we consider a single active component with 1 or more
(not necessarily identical) components available in standby. In case the active
component fails, the system switches either manually or automatically to a
standby component. In general, there is a non-zero probability that the
switching mechanism will not be successful in activating the standby component.
If there is more than one standby component available, component failure (either
the component itself or its activation mechanism) will cause the system to switch
to the next available standby component. Standby redundancy is fairly common
in electrical and electronic systems. For example, many home security systems
have a standby battery available in case of failure of the external power supply.

One Active and One Standby Component

We begin by considering a system consisting of one active component with one
component in standby ready to be activated if the active component fails. Let p,
be the probability that the standby component fails to activate on demand.
Assume that the two components have constant failure rates A, and A,. The
probability of successful operation over some mission time T for the system is
the sum of the probabilities of two mutually exclusive events. That is

35



Rs = Probability that component 1 operates successfully over
time T

+ Probability that component 1 fails before T and
component 2 operates successfully for the remainder of T

;
Rs =R, +[e™,(1- p,)e "Vt (5.7)
0

where

R, is the probability of successful operation of component 1 over the
mission time T,

e™'\ dt is the probability that component 1 survives to time t (e ™) then
fails during interval dt (A,dt),

1 - p, is the probability that component 2 is successfully activated, and

e ™™ is the probability that component 2 operates successfully from t
until T.
Then
- T -
R, =R, +)‘(1—p2)e A’Tje(k’ ot
0 (5.8)

Performing the integral in Equation (5.8) gives

Rs =R, + 2 (1-p, )*2'34‘”(8(1’_;"‘)T - 1)
A, — A,

2 ™M (5.9)
For the case of perfect switching (p, = 0),

A
Rs =R1+‘i 1;\' (1—p2)(R1—R2), Ay # A

RS — x'2R1 + }\'1R2

= VA #E A, =0
7‘2"7"1 }‘1'7‘2 1 2 P

(5.10)

36



where R, = e™T,

Equation (5.10) is clearly only valid if A4 # A,. Using Equation (3.5), we can
calculate the mean time to failure as

R(

-
1]
© Sy §
—
hoil
e

A
I
© tmy 8
N,
(1]
z
.+.
>
[
I N
_‘>"
—
-
|
©
~
~—
—_—
(0]
=
m.
Rt
Nl
—

T, =

1
Mook (5.11)
Equation (5.11) is the same as Equation (5.1) applied to two components and is
easily interpreted. The mean time to first failure of the redundant system
consisting of component 1 with component 2 in standby is the MTTF of
component 1 plus the MTTF of component 2 weighted by the probability of
component 2 being successfully activated.

In case the two components have the same failure rates, we need to return to
Equation (5.8) to determine the reliability. LetA,; =X, =A. Then

.
Rg = e™ +A(1- pz)J dt

0

Ry =e™[1+AT(1-p,)] Ay =2, =2

(5.12)
In this case the mean time to failure is
T, = j e [1+at(1- p,)]at
0 (5.13)
1 1
T :"i+}"(1“pz)‘)\? (5.14)
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T, = . A=A, =2 (5.15)

One Active and Two Standby Components

We now consider the case of one active component with two in standby. If
component 1 fails, component 2 is switched on. If component 2 fails, component
3 is switched on. The probabilities of failing to successfully activate components
2 and 3 are p, and p3. We begin with the case A4 # A, # A3. The reliability of the
system is the sum of the probabilities of the following 4 mutually exclusive
events:

1. Component 1 operates successfully for the entire mission time T.

2. Component 1 fails at t < T, component 2 is successfully activated and
operates for the remainder of the mission time.

3. Component 1 fails at t < T, component 2 fails to activate, component 3 is
successfully activated and operates for the remainder of the mission time.

4. Component 1 fails at t' < T, component 2 is successfully activated and
operates until time t (t' <t < T), component 3 is successfully activated and
operates for the remainder of the mission time.

In equation form,
T
R, = e MT J‘e.mM“ _ pz)e‘“(T"']dt
0

.
+ [e™ap,(1-p;)e ™ (5.16)

o

+

O ey

T
J.e l,l}\' 1 _ p2 A, l']}“z(‘l R p3 )e AT ”dtdt'
t'
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Rearranging terms and performing integrals, we get

-(Ag-A)T
Rg=e™ +2,(1- pz)e“’T{—————m—e 1)

)"2 - 7‘1
"t e—(x,—;.‘)\‘ -1
+ a0, (1-py)e™| 20—
P2(1-p,) ( Y ) (5.17)
. “(Rg-2)T _ e~(13"12)")
+ (1= p, A, (1= pye ™" [e et dt
1( p,) 2( Ps) _([ Ay - A,

Finally,

Rs = R1 + )"1(1‘p2)(R1 —Rz)

A, - A,
R, -R
+)~1pz(1"‘P3)(k; _}:) (5.18)
A, (1- 1- - -
Gk (1-R)-Rs) (R =Ry R-Ry) o,y
Ay =X, e O LY
For perfect switching (p, = p3 = 0), Equation (5.18) becomes
A’27“3R1 )'17\'3R2
Rs = +
(7\2 - )‘-1)(7"3 - 11) (}‘-1 - )vz )(7\3 - 7\'2)
N AALR, DA E, %A, (5.19)

(M - Xs)()"z - A'3)
where R, = e 7.

In case two or more of the parallel components have the same failure rates, we
can readily derive equations for the system reliability beginning with Equation
(5.16). Equations Yor the various combinations of equal failure rates are given
below.
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R,, - R
Rs =Ry, + ;”1,2TR1,2(1 = Py) + MyaPa(1- Py) ———
Ay = Ay

L Ma(1-p,)01- pa)[R 7 Ri- Ra] (5.20)
R1 = R2 = R1.2 7\‘3 - )"1,2 "2 XJ - A’t?

M=hp=Mo# Ay

R1,3 - Rz

lz - M3

Rs =Rys + 11,3(1 - P2 )|: ] + Mspz“ - Pa )RtaT

N )'1312(1‘92)(1—93)[R\3 -R ] (5.21)
Ri=R3=Ry3 hia = Ay

X1 =7\.3 = 7\.1.3 # 7\.2

2
-R,.T
My —hyy

M#Eh=h3=2g3

x'za - M A'?.:1 - 3\-1

R, -R R, -R
Rs =R, + )‘1(1 ‘pz)‘: 1 ;;3}+ 7‘-1p2(1 - pa)[_L—ﬁ}
R2 = R3 = R2'3

N Mu(hpz)ﬁ—Ioa)kmxT (5.22)
A'2.3 - ;"1

AM=A=k3=r | R =R+ A(1-p,)RT + Ap,(1- p,)RT
2 2 3

- ATT?
Ri=Rz=R;=R + =5 (1-p)(1-py)

(56.23)

One Active and N - 1 Standby Components

We can now develop the general case (1 active component and N-1 in standby)
for unequal failure rates. Initially component 1 (C,) is active and C,, Cs, ..., Cy
are on sequential standby. Let

p; = probability that the switch to component C,fails, p1 =0
Ai = the (constant) failure rate for component C;, and
T = the mission time.

Find the reliability over time T.

There are several ways the configuration can survive over T. For example, C,
can survive the entire mission time. Or C, can fail prior to T, the switch to the C,
can fail, the switch to C5 can operate, and C; survives the remainder of the

40




mission time T. We will determine all possible ways the configuration can
survive, find the probability of each, and find the sum of all the probabilities.

Let S be the union of the set {C4} and any subset of {C,, Cj, ... Cy} and let L be
the index of the last component in S (the component with the largest index).
Given the following interpretation of S, S represents a combination of
occurrences that enables the configuration to survive to time T,

« Each component C,- in S, j <L, is sequentially accessed and then fails
during time T
o Component C is accessed last and survives the time remaining to T.

A natural outcome of this formulation is that the switch to component C; operates
for each Cj in S, j > 1. Ifthere are components with index less than L that are

not in the set S, they were not accessed, so we conclude that their switches
failed.

The probability (Pg) that the configuration survives to time T through the path
defined by set S, is found for each possible set S. Since all paths defined by
the sets S are mutually exclusive, the reliability of the configuration, R, is then
found by summing over all possible sets S.

R= EPS (5.24)
The remaining problem is to find Pg. Define any sequence of times

O=tyg<ty <..<t, =T

where n is the number of components in S. Suppose that component S,
survived from tj to t;, S, survived from ty to t,, ..., and S survived from t, 4 to t,,
where S, is used to denote component k of set S. Since the failure rate for each
component is assumed to be constant, the probability that component k survives
over time interval t, - t,_; and then fails during infinitesimal time dt, about t, is

e Aty - ‘))"kdtk (525)
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Note that for k = n, the factor A, dt, does not appear since the last component
does not fail prior to time T. The probability of S can be found by summing over
all possible time sequences. That is, form the nested integral of the product of
the above factors and integrate sequentially over (0, t,), (0, t3), ... ,(0, T).

From the integrand we can factor out the failure rates and combine their product
with the appropriate product of switch failure probabilities. The resulting factor
appears outside the integral and has the form

[T~ 110G -p)[ TP (5.26)

133 jeS k¢S
<L k<L

The first product is over all components in S except that i < L (the largest
component index in S). The second product is over all components in S
indicating that, by definition, there is no switch failure for components in the set.
The third product is over all components not in S with index < L indicating that
these components are assumed not in S because of switch failure.

The integral can be solved analytically. The only complication is the potential for
singularities. Factoringout e™" =R _, we are left with the product

“("1 Aty -(Az-Ag)ty L |
dt,e dt,- dt, (5.27)

If all the A, are distinct, then integrating the above expression over (0, t;), (0, t3),
., (0, T) yields

R;

jes ]—I(k *’»)

keS
kzj

(56.28)

Finally,

P. = [Tx.
I mLS
mz|
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From Equations (5.24) and (5.29), we can now write the equation for the
reliability of a system consisting of 1 active component with N - 1 in standby.
That is

R = A 1-
g l]:s[( p])!:!pk 'GZS I"l (5.30)
< meS
mzl

For the case of different failure rates and perfect switching we can write the
qeneral equation beginning with Equations (5.10) and (5.19),

ﬂl.

N
Z H M #EALP =0 (5.31)
=1 (x —A,)

:]z

=1
i

!"l‘

z

Finally, we consider the case of perfect switching with all failure rates equal for
one active component and N-1 components in standby. In this case, the
probability of successful operation over a mission time T is the sum of the
probability of N mutually exclusive events.

1. Component 1 operates successfully for the entire mission time T.

2. Component 1 fails at t < T, component 2 operates for the remainder of the
mission time.

3. Component 1 fails at t' < T, component 2 operates from t' until t then fails (0 <
t <t<T) component3 is activated and operates for the remainder of the
mission time.
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We can write the equation for these events as follows

T TT
R = @™ + [eae™™Vdt+ [ [eae™ ae™ dtdt' +
0 ot

j } e ae M e M e M Vatdt'dt ' +..
[ g

where 0! = 1.
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Chapter 6
R OF N REDUNDANCY WITH REPAIR

In this redundancy treatment, the system has N components in parallel with R (1
< R < N) required for success. If a component fails, we assume it is repaired
while the remaining N - 1 continue to operate. First, consider a simple example
of 3 of 4 redundancy (Figure 6.1 ).

— A =
{ B 4
— C M 3 of 4 Required
for Success
e D S

Figure 6.1 4 Components in Parallel, 3 Required for Success

Since three components are required for success, failure of any two components
will cause the system to fail. Therefore, the cut sets are

AB, AC, AD, BC, BD, CD.

Thus, the system can be treated as shown in Figure 6.2.

{A A A BHBHC
B C D C D D}_

Figure 6.2 3 of 4 Redundancy as a Series Arrangement

In effect, 3 of 4 redundancy becomes a series system consisting of all possible
combinations of 2 components in parallel. Failure of any 2 components causes
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the system to fail. In general, R of N redundancy (active with repair) can be
treated as NI/{(N-R+1)!(R-1)!} cut sets representing all possible combinations of
(N-R+1) terms. The failure rate (1/MTBF) for each cut set can be calculated
using Equation (2.23). Failure rates can then be added for all cut sets to get a
total failure rate for the parallel system. The MTBF for the parallel system is
then the inverse of the system failure rate. MTTR for each cut set can be
calculated using Equation (2.24). The MTTR for the parallel system is
calculated using the following equation

ZXCITRQ
T = B
RS Z)‘C. (6.1)
1N

where N¢ is the number of cut sets, A, is the failure rate for the ith cut set, and
Trei is the MTTR for cut set i. Whereas the other redundancy treatments are
exact when compared to Markoy. analysis for comparable assumptions, the
approach presented here for R of N with repair is an approximation. It can be
shown that this approximation is accurate so long as the repair time is small
compared to the MTBF for individual components in the parallel arrangement.
Specifically, if Tg; < 0.1 x T, the results predicted Equation (6.1) for R of N
redundancy with repair should be accurate to 10% or better.

Comparisons between Equation (6.1) for R of N redundancy with repair and
Markov analysis were performed for 2 of 3 and 2 of 4 redundancy. The 2 of 3
case had the following component properties:

Tea =500 hr Tra=20 hr

Teg = 1500 hr Trg =10 hr

Tec = 1000 hr Tre=15 hr

Results of the comparison are shown in Table 6.1.
Calculated Markov Analysis

Availability .9991 .9991
System MTBF (Tes) 8273 hr 8382 hr
System MTTR (Trs) 7.62 hr 7.63 hr

Table 6.1 Comparison for Two of Three Redundancy with Repair
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For both the MTBF and MTTR, the accuracy of the approximation is quite

acceptable.

The 3 of 4 case used the following component properties:

Tea = 500 hr Tra =20 hr
Teg = 1500 hr Trg =10 hr
Tec = 1000 hr Tre =15 hr
Tep = 2000 hr Trp =30 hr

Results of the comparison are shown in Table 6.2.

Calculated Markov Analysis
Availability .99998 .99998
System MTBF (T«s) 3.27E5 hr 3.32E5 hr
System MTTR (Trs) 5.7 hr 5.7 hr

Table 6.2 Comparison for Three of Four Redundancy with Repair

The calculated MTBF for 3 of 4 redundancy is accurate to 1.5% and the MTTR is

accurate to two significant digits.
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Chapter 7

R OF N REDUNDANCY WITHOUT
REPAIR

For this case, the system will have N components. R of those components must
be working for the system to be operable. Once there are less than R
components working, the system will no longer be operable. Then it will be
turned off until all of the components have been repaired.

Three Parallel Components, Two Required, without Repair

Since the case R = 1 has been accounted for in Chapter 3, two of three
redundancy is the simplest example of R of N redundancy. The approach to
finding mean time to failure is comprised of two steps. First, develop an
expression for the probability that the system survives to an arbitrary time t.
Second, since that expression is equivalent to the cumulative probability that the
time to fail the system (Tg) exceeds t, integrate the expression from zero to
infinity to find the mean time to fail the system (MTTF or Tg).

For this example, the system survives to time t if at least two components are
operable at time t. There are four possible combinations of components working
and not working that have at least two operating components. It is helpful to
represent these combinations as subsets of the set {A, B, C}. If a component is
in the subset, the component is working. Thus, of the eight possible subsets,
subsets {A, B}, {A, C}, {B, C}, and {A, B, C} represent the system working.

The probabilities for each subset are found from
P{A,B}=e™e™ (1 - e““')

P{A.C}= e"‘ﬂe—*c'(1 N e"*"')

49



P{B, C} = e-lale—Kd (1 _ e—l,l )

P{AB,C}=e™e™g™!

Combining terms gives

P(T, >t) =e™e™ ye e ygle ! _2e g lg™e!, (7.1)

Integrating P(Tg > t) on t from zero to infinity gives the mean time to fail the
system.

1 1 1 2
F= + <+ —_
AptAg AptAc Ag+Ac Ap+Ag+Ac

(7.2)

The mean time to repair the system (Tg) depends on which components require
repair and their repair times. If we know the combination of component failures
that caused the system to fail, the resulting average repair time for the
combination can be found using Equation (3.19). Suppose that the redundant
arrangement fails because A and B fail. Then, let J = {C} be the subset of
components that operated successfully. The complement of J (J¢ = {A, B}) is the
failed subset. Denote Trg of Equation (3.19) as E(Tg|J¢), the expected repair
time of the components that have failed. We find Tr as the expected time to
repair the system:

T.= X E(TR Jc)P(J)
«{ac) (7.3)
=1

where the sum is over all subsets J of {A, B, C} such that failure of Jc causes the
system to fail and |J| is the number of components in the subset. For two of
three redundancy, the subsets of interest are those having one component, i. e.,
cases where two components have failed. Note that we do not include the case
where all three fail since the system goes down as soon as two fail and the
probability of two or three failing simultaneously is vanishingly small.
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The subset {A} represents the event where A is operating but both B and C have
failed at time t. P({A}) is found as the sum of probabilities of two mutually
exclusive events determined from which component failed last:

1. Ais operating at t, B failed prior to t, C fails att, and
2. Ais operating at t, B fails at t, C failed prior to t.

The first event has probability
J'e""*' (1-e™')e 't
° .

The second event has probability

o _ At) Agt
[e lAt(1-9 ho )e *a Agdt.
0

Integrating and adding the probabilities yields,

A A Ao +A
P({A))=—28 +_——~c __Te'% (7.4)
XA+AB XA+7"C xA+xB+xC
By similar arguments, we get
A A A, +A
P({B})=—t 4_c a7 (7.5)
XB+XA XB+7LC xB+xA+xC
A A A, +A
p({c}) = —2A—+ 8 A"y (7.6)

lC+KA )“c”"a XC+XA+kB

Note that in Equations (7.4) - (7.6) the failure rate for the surviving component
appears in each term in the denominator. The numerators, and the other failure
rates in the denominators, are represented by all nonempty subsets of the set of
failed components. The sign of each term depends on the size of the subset; if
the size is odd, the sign is positive and vice versa.
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Comparisons between the above treatment of R of N redundancy without repair
(Equations 7.2 and 7.3) and Markov analysis were performed for 2 of 3
redundancy. The 2 of 3 case had the following component properties:

Tea = 500 hr Tea=20 hr
TFB = 1500 hr TRB =10 hr
TFC = 1000 hr TRC =15 hr

Results of the comparison are shown in Table 7.1.

Calculated Markov Analysis
Availability .9690 .9690
System MTBF (Tks) 763 hr 763 hr
System MTTR (Tks) 24.4 hr 24.4 hr

Table 7.1 Comparison for Two of Three Redundancy without Repair

Four Parallel Components, Two Required, without Repair

Before generalizing the treatment of R of N redundancy, it is useful to do another
special case. Consider a parallel system consisting of the four active
components {A, B, C, D} with two required for successful operation. Then the
probability that the configuration operates successfully to time t (the reliability of
the system over time t) is the sum of the probabilities of the following 11 mutually
exclusive events:

1. Components A and B fail before t and components C and D operate
successfully for the entire time t.

?
2. Components A and C fail before t and components B and D operate
successfully for the entire time t.

3. Components A and D fail before t and components B and C operate
successfully for the entire time t.

4. Components B and C fail before t and components A and D operate
successfully for the entire time t.
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5. Components B and D fail before t and components A and C operate
successfully for the entire time t.

6. Components C and D fail before t and components A and B operate
successfully for the entire time t.

7. Component A fails before t and components B, C and D operate successfully
for the entire time t.

8. Componer: B fails before t and components A, C, and D operate successfully
for the entire time t.

9. Component C fails before t and components A, B, and D operate successfully
for the entire time t.

10. Component D fails before t and components A, B, and C operate successfully
for the entire time t.

11. All four components operate successfully over time t.

Thus, the equation for the reliability over time t of the redundant system, Rg, can
be written in terms of the reliabilities (R; = e-Mt) and unreliabilities (1 - R;) over
time t for each component i € {A, B, C, D}.

Rg =(1-R, )J(1-R, R R, +(1-R, Ry (1-R_)R,
+(1-R, )RR (1-R,) +R, (1-R, )1-R_ )R,

(7.7)
+R,(1-R R, (1-R,)+R,R;(1-R_)(1-R,)
+(1-R,RRR, +R, (1-R JR.R, +R,R.(1-R R,
+R,RR (1-R,)+R,R.R R,
Expanding the products and combining terms yields,
Rs =RARB+RARC+RARD+RBRC+RBRD+RCRD (7.8)

~-2R,RR,-2R,RR, -2R,RR -2R.R R,

+3R,R.R R,
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Integrating Rg on t from zero to infinity gives the mean time to fail the system.

1 1 1 1 1 1
U T S T W ST UL W U YTy
AtAg Apthc ApthAp AgthAg Agtip Agthg (7.9)
2222
Ay +hg+he A +hg+hg Ay +ho Ay Ag+A +Ag
3

+
xA+xB+xC+xD

Failure rates are added for each subset of {A, B, C, D} of size k > R = 2 in the
denominators of Equation (7.9) and the sign of each term depends on k; if k is
even, the sign is positive and vice versa. The coefficient of each term is the
combination of k - 1 taken k - R at a time.

The mean time to repair the system (Tg) depends on which components require
repair and their repair times. For each combination of component failures that
cause the system to fail, we use Equation (3.19) to find the resulting average
repair time. We need only to weight the repair times by the probability that the
combination causes the system to fail. Consider the event {D}. In the
terminology used in the 2 of 3 case, {D} is the event that component D survives
to time t, whereas the components in the complement of {D} ({A, B, C}) all fail,
causing the system to fail. Recalling the approach to Equations (7.4) - (7.6), we
find the probability for the three cases in which components A, B, and C are the
last to fail, and combine results. We can write:

A A A
PD}=— 2 4y —B__,__C (7.10)
JLA+7&D 7‘3”‘0 kc+ko
kA+kB ?\.A+7\.c xemc

kA+kB+kD )”A”‘c”‘o AB+XC+XD
. kA+kB+AC
)‘A”‘e*)‘c”“o

Note that in Equation (7.10) the failure rate for the surviving component {D}
appears in each term in the denominator. The numerators, and the other failure
rates in the denominators, are represented by all nonempty subsets of the set of
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failed components {A, B, C}. The sign of each term depends on the size of the
subset; if the size is odd, the sign is positive and vice versa.

Each of the other 3 events where three components fail and the other survives
have probabilities identical in form to that of Equation (7.10). Moreover, those
are the only events that need be considered when finding repair times. That is,
as soon as three fail, the system is shut down. The probability that two or more
components fail simultaneously is vanishingly small and need not be treated.

N Parallel Components, R Required, without Repair

For the general case, the probability that the system is operable at time t is the
sum of the probabilities of each state which has at least R components working
attimet. Thatis

N c

P(t)=3 ZP(JP(J ) (7.11)

k=R =k

where |J| is the number of components in the set J (thus the second summation
is over all sets of k components), P(J) is the probability that the k components of
J are all operable at time t, and P(J¢) probability that the N - k components not in
J have all failed by time t.

P(J) is the product of the reliabilities over time t (e-*t) of components i in set J
and P(J¢) is the product of the unreliabilities over time t (1 - eMt) for the
components i not in J. Thus, Equation (7.11) can be easily implemented in its
current form to calculate the reliability of the R of N configuration over time t.
However, Equation (7.11) must be integrated on t to find the mean time to fail.
To do the integration, the product defining P(J¢) in the integrand must be
expanded. As in the 2 of 3 and 2 of 4 cases above, we do the expansion and
collect like terms a priori. The collected terms can be counted using a simple
combination, and Equation (7.11) can be written in the form:
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Kk
“3At
N - {
P()=P(T.>t)= ¥ 2(—1)‘”’(: ;)e W (7.12)
k=R Jij=k -

Proof of the form for Equation (7.12) for general R and N can be found in
Appendix B. Since Tg is non-negative, the mean time to fail is found by
integrating over all non-negative t.

Q0
MTTF = [P(T, 2 t)dt

t=0

k
o N i K- —Z).Jt
MITF= [ |2 5 () "’( 1)9 =t
t=0 | k=R 4=k k~R
N -1
MTTF = Z(-1)‘”"(k ) 1 (7.13)
k=R A=k k-R

L3
A
2
The system is repaired as soon as it fails, as soon as there are less than R
components working. If we let D = N - R + 1, this is equivalent to waiting until D
components are down, and then repairing those D components. Let E; be the
event that the components in J are the first D components to fail, then

MTTR = SE(T,IE,P(E,). (7.14)
JA=D

E(Tr|Ey) can be calculated using the appropriate form of Equation (3.19) since
all failed components are repaired. P(E;) is the probability that the components
in J are the first D components to fail. To find P(E;) take the sum as i goes
through the components in J of the probability that i is the last component in J to
fail and that i fails before any component which is not in J. This is
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Dl=®l D At At A
P(EJ):Z [1T11-e J")r]e e *ledt (7.15)
=1 [ =0 ::: med

The first product in the integrand is the probability that all components in J
(except i) have failed prior to time t. The second product is the probability that
those components not in J are still operable at time t. The last factor is the
probability that component i fails at time t. Once the first product is expanded,
the integration is straightforward.

We expand the first product and integrate, then sum over all components i of J.
In doing so, several terms that have the same denominator are combined. To
write down the final result, we introduce the following notation. Let a bte a
nonempty subset of J of size |a| and let A, denote the failure rate for component
k in subset a. Then

jal

[a}-1 k}i)‘ak (7.16)

P(EJ) = Z("1) il

acJ

az¢ [E}ak +mZ¢J)‘m)
Equation (7.116) follows the pattern established in the 2 of 3 case and in the 2 of
4 case, see Equations (7.4)-(7.6) and (7.10) above. That is, failure rates for the
surviving components appear in each denominator. Each numerator and the
rest of each denominator are represented by the nonempty subsets of the set of
failed components. The sign of each ratio depends on the size of the subset; if
|a| is odd, the sign is positive, and vice versa.

Comparisons between the RAMP treatment of R of N redundancy without repair
(Equations (7.13) and (7.14)) and Markov analysis were performed for 2 of 4
redundancy. This case used the following component properties:

Tea = 500 hr Tra =20 hr
Teg = 1500 hr Trg =10 hr
Tec = 1000 hr Tre =15 hr
Tep = 2000 hr Trp =30 hr

Results of the comparison are shown in Table 7.2.
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Calculated Markov Analysis
Availability .9735 .9735
System MTBF (Tes) 1280 hr 1280 hr
System MTTR (Tks) 348 hr 34.8 hr

Table 7.2 Comparison for Three of Four Redundancy without Repair

The agreement between the RAMP treatment and Markov analysis is exact.

R of N Redundancy in Non-Repairable Systems

‘The reliability over some mission time T of an R of N redundancy configuration
in a non-repairable system is found by substituting T for t in Equation (7.12)
above. We also note that the exponential term in Equation (7.12) is the product
of component reliabilities over time T. We therefore write:

R =% Z(_1)(R—R)(k—1)ﬁRJ | 7.17)
K
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Chapter 8
CONCLUSIONS

In this report, we have developed equations for the equivalent (average) failure
rates and repair times of the following six redundancy treatments:

Active with Repair All parallel components are active with only one needed
for success. A failed component can be repaired while the system continues
to operate on other parallel components.

Active without Repair All parallel components are active with only one
needed for success. Failed components are not repaired until all parallel
components have failed. Then all are repaired.

Standby with Repair Only one of the redundant components is active with
others held in standby. In case the active component fails, a standby
component can be switched on either manually or automatically. The failed
component is repaired while the system operates using a standby
component.

Standby without Repair Only one of the redundant components is active
with others held in standby. In case the active component fails, a standby
component can be switched on either manually or automatically. The failed
component is not repaired until all redundant components have failed.

R of N with Repair The system consists of N components of which R (1 <R
< N) are required for success. For example, if a car wheel has 5 lug nuts
and 4 are considered necessary for safe operation, the lug nuts provide 4 of
5 redundancy. Failed components are repaired while the system operates.
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R of N without Repair The system consists of N components of which R (1 <
R < N) are required for success. Failed components are not repaired until
more than N - R have failed and the system cannot operate.

These options are currently being implemented in RAMP 2.0 which will be
released in 1993.

A Markov analysis program was developed for the above redundancy options
prior to development of the equations presented in Chapters 2 through 7. While
the Markov code proved too expensive for use in RAMP in terms of computer
memory and processing time, it did provide an independent basis for evaluating
the accuracy of the redundancy equations. A few comparison calculations have
been presented in this report. For active with and without repair, standby with
and without repair, and R of N without repair, the comparisons between the
equations developed here and Markov analysis was exact. The treatment of R
of N with repair is an approximation that compares with Markov analysis to 10%
or better so long as component repair times are no larger than about one tenth
of component mean times between failures. In addition, an extensive suite of
test calculations has been performed with similar results to those presented in
this document.

While the purpose of this document is to present the theoretical basis for the
redundancy analysis in RAMP 2.0 rather than offering design guidance on
appropriate redundancy treatments, it is interesting to compare active and
standby redundancy options. To generate these, we considered two
components in parallel with equal MTBFs and repair times. In each case, the
repair time for each component was assumed to be 10 hours while the MTBF
was varied from O to 400 hours. Figure 8.1 shows that standby redundancy with
repair is most effective for this simple case in terms of the MTBF of the parallel
system whereas active without repair is the least effective. The results shown
graphically in Figure 8.1 are also presented in Table 8.1.
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System ;5000 |
MTBF 10000 1

8000 Active with Repair
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E/Standby without Repair

E?
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™ Active without Repair
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Figure 8.1 MTBF for Parallel Components with Different Redundancy

Treatments
Component Active Active Standby Standby
MTBF With Without With Without
Repair Repair Repair Repair
100 600 1650 1200 200
200 2200 300 4400 400
300 4800 450 9600 600
400 8400 600 16800 800
Table 8.1 MTBF of Parallel Components with Different Redundancy
Treatments

It is clear that redundancy can, in some circumstances, provide considerable
improvements in system reliability, particularly if the equipment can be designed
to allow repair of a failed redundant component while the system remains
operable. With RAMP 2.0, the design engineer will be able to evaluate such
options easily.

61






References

Campbell, R.L. Iman, D.E. Longsine, and B.M. Thompson, "A Tutorial on
Reliability Modeling Using RAMP," SETEC Report, SETEC91-030,
December,1991.

Campbell, B.M. Thompson, D.E. Longsine, P.A. O'Connell, and R.L. Iman,
"RAMP User's Reference Manual," SETEC Report, SETEC91-031,
December,1991.

Doty, Leonard A., "Reliability for the Technologies, Second Edition,"
Industrial Press, Inc., New York, 1989.

RADC-TR-77-287, "A Redundancy Notebook," Systems Reliability and
Engineering Division, Rome Air Development Center, Griffiss Air Force
Base, New York.

Ryser, Herbert John, "Combinatorial Mathematics," Mathematical
Association of America, 1963.

63



64



Appendix A

ALGORITHM FOR STANDBY WITH
REPAIR

A state of the standby-with-repair parallel system is determined by the following:

e Which components are operable. Note that a component can be operable
but not actually operating.

o Whether the system is up or down.

« If the system is up, which component is working.

We will refer to the state where all of the components are operable, the system
is up, and the first component is working as the beginning state.

We will order the states so that from any state, the system can only go to later
states or the beginning state. This can be done by making sure that the ordering
satisfies the following two conditions:

1. If i <j, then any state in which component i is working will come before any
state in which component j is working.

2. If the same component is working in two states, and a different number of
components are operable in each of the two states, then the state with fewer
operable components will come first.

Any order which satisfies both of these conditions will serve our purposes.
Thus, in the flowchart and the psuedo-code, we do not specify one. In the actual
code, we use a convenient, but otherwise arbitrary order which satisfies both
conditions.

The system will start in the beginning state. Once the first component fails, the
system will go to one of the states where all of the other components are
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operable. We will calculate the probability of the system going to each of these
states and the expected amount of time that will transpire before the first
component fails and the system makes the transition. We will then work our way
through all of the other possible states. As we go through each state, we will
consider where the system can go from that state and how long it will take to get
there. Eventually, we will go through all of the sets where the system is up, and
we will know the probability of being in each down state when the system fails
and how long we would expect it to take for the system to get there.

Let i go from 2 to the number of components in the parallel system. Then, for
each value of i, we will go let j go from O to (i-2). We will consider all of the
states in which component i is working and j of the components before
component | are operable.

We will look at where the system can go from these states and how long it will
take for the system to go to these places. Once we have done this for one value
of j, we will have exhausted all of the ways that the system can go to a state in
which (j+1) of the components before component | are operable. Thus, we can
now consider the next value of j, and consider where those states will go.

The last value of j was (i-2). From the corresponding states, the system could go
to the beginning state. Thus, when we have exhausted all of the states in which
component i was working, there will be some probability that the system returned
to the beginning state. (We will let p refer to 1 - the probability of the system
returning to the beginning state.) If this had happened, the system would have
started over and continued starting over until it found some other state at this
point. Thus, we will divide the probability of being in each other possible state
by p. Since going to the beginning state and starting over will take time, we will
add (1/p - 1) £\ the time to reach the beginning state to the times to reach each
of the other states.

We will now have, conditioned on the event that the systein is in the first state
where none of the first i components are working, the probability of being in each
possible state and the expected time for the system to reach that state. We will
now use the next value of i, and consider all of the states where that component
is working.
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After we have gone through all of the possible states where the system is up, we
will have, conditioned on the system being in the first state where the system is
down, the probabilities of the system being in each possible (down) state. We
also know the expected time for the system to reach each of these down states,
conditioned on that state being the first down state which the system has
reached.

We can use this information to find the expected time until the system is in its
first down state (or fails). We can also calculate the time to repair the system
from each down state, and thus find the expected time to repair the system once

it fails.

Flow charts for this algorithm follow.
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Find each state that the system can go to when the first
component fails. Find the probability of going to each of these
states, and the expected time to reach each state.

1

[ i = 2 (i will be the component working) |

j=0

Let k go through all of the states in which j of
the first (i -1) components are operable, all of o
the components after (i -1) are operable, and
component i is working,

Go to next
such state

Are Yes
there more

such states?

Let k go through all of the states in which j+ 1

of the first (i -1) components are operable, all [i=i+1]

of the components after (i -1) are operable,
and component i is working,

|

Go to next
such state

Are
there more
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Figure A.1 Flowchart of the Algorithm




Let m go through the
states which the system can go to if
component i fails.

Let the probability of being in m be the
product of the probability of being in

state k and the probability of going from
state k to state m.

Let the time to reach state m be the time
to reach state k + the time to go from
state k to state m.

Are
there more

states the system can Yes

Go to the next
state which the
the system can
go to if
component

i fails.

go to if component
i fails?

Done

Figure A.2 Subchart A
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Let one be the probability
of being in state k

Let two be the product of one and the expec
time to reach state k

T

Let m go through all of the
components which are operable in state k

Let h be the same as state k, except that in
state h, component m is not operable

Let q be the product of the probability of bei
in state h and the probability of going from
state h to state k

L

g

Let two = two + the product of q and (the
expected time to reach state h + the
expected time to go from state h to state k

Let one = one + q

Are
there more

components that Yes

Go to the next
component which
is operable

in state k.

are operable in
state k?

The probability of béing in state k is one

The expected time to reach state k is two/or

Done

Figure A.3 Subchart B




Let p be 1 - the probability tha
the system returns to the beginning state
after having been in some state where
component i was working.

Let tim be the product of (1/p - 1) and the
expected time for all of the inoperable

components to be repaired, if that
happens before component
i fails.

Let g go through all of the other
states which the system can be in.

l
Multiply the probability that the
system is in state g by 1/p.

Add tim to the expected time for
the system to reach state i.

Go to the next state
which the system
could be in.

Are
there other

Yes /N

states which the
system could
be in?

Done

Figure A.4 SubchartC
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SysTTF =0
SysTTR=0

Let i go through all of the states

‘he system can be in when it fails.

SysTTF = SysTTF + the product of the probability
of being in state i when the system fails and the
expected time to reach state i, conditioned on the
the event that the system fails to state i.

SysTTR = SysTTR + the product of the probability
of being in state i when the system fails and the
expected time that it would take to repair the
system if it is in state i. This can be calculated
from Equation 3.16.

Are there
any more states

Yes

‘ Go to the next
state which the
ystem can fail to

which the system
could have
failed
to?

No

Done

Figure A.5 Subchart D




Appendix B

In Chapter 7 there are two formulas presented for finding reliability over time t,
P¢(t), for a general R of N configuration. The first formula is derived in the text
and takes the form:

P()=3 zP(J)P(J“) (8.1)

k=R Jd=k

where J is a subset of the N components of size |J| and J¢ is the complement of
J. The second form is inferred from the 2 of 3 and 2 of 4 examples,

P.(t)= z<-1>"““’(k'1)P(J).
k=R Jpi=k

k-R (B.2)
To show they are the same, first note that [5]
N N N (s
> ¥ PWP(S)=T T(-1° “’(k) ZP().
k=R JjJ=k k=R s=k J =8
Thus, we want to prove that
N N N E k-R)[ k-1
> S(-)° “’( ) SPW=Y (- ’( )P(J).
k=R s=k k Jl|=s k=R JJj=k k-R (B.3)

Using s as the index on the right, instead of k, and changing the order of
summation on the left, gives us:

5 z(—ﬂ‘*‘*’[s) SPW)= Y <~1>“’R’[s‘1]P<J>.
s=R JM|=s

s=R k=R K))ks s-R (B.4)

From inspection, Equation (B.4) is true if:

B (o) =

Thus the formulations for Pg(t) are the same if Equation (B-5) is valid. We
prove Equation (B-5) using the formula [5],
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ny _ n-1 N n-1

r] L r-1)° (B-6)
Start with the left hand side of Equation (B-5); split off the k = s term (which
equals +1) and use Equation (B-6) to write

Note that the + 1 term can be treated as the k = s term for the second summation
on the right. We incorporate that term to run the sum to s and change the index
of summation (j = k - 1). Factor out (-1) from the first summation on the right and
rewrite Equation (B-7) as,

i <~1>:=>i‘<—1)<s-”(s“)+]iz“‘ ) B9

k=R k R k =R-1 J

We see that the two summations cancel in Equation (B-8) except forthe j=R - 1

term. Thus,
(s-k)(S)_, ,ys-RS—1
R MaE o S

The combinations on the right hand sides of Equations (B-5) and (B-9) are the
same by definition, and we are done.
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