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Abstract

The PANDA code is used to construct tabular equations of state (EOS) for the detonation
products of 24 explosives having CHNO compositions. These EOS, together with a reac-
tive burn model, are used in numerical hydrocode calculations of cylinder tests. The pre-
dicted detonation properties and cylinder wall velocities are found to give very good
agreement with experimental data. Calculations of flat plate acceleration tests for the
HMX-based explosive LX14 are also made and shown to agree well with the measure-
ments. The effects of the reaction zone on both the cylinder and flat plate tests are dis-
cussed. For TATB-based explosives, the differences between experiment and theory are
consistently larger than for other compositions and may be due to nonideal (finite diame-

ter) behavior.
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1. Introduction

1.1 Background

The accurate a priori prediction of equations of state (EOS) for the detonation products of
high explosives (HE) has been one of the principal aims of explosives research for many
years. The empirical JWL (Jones-Wilkins-Lee) EOS formula {1], although very popular
and useful, does not provide this predictive capability because it must be fit to experimen-
tal data for each new explosive composition. Theoretical “chemical” EOS models, on the
other hand, have been shown to give reasonable predictions of explosive detonation prop-
erties [2]-[9]. Until recently, however, the chemical models did not offer enough accuracy
to be satisfactory alternatives to JWL, even after the model parameters had been adjusted
to fit experimental data [10].

To be truly viable as a predictive tool, a theoretical model should give accurate results for
the following properties:

1. The steady-state detonation velocity, including its dependence upon loading
density and systematic variations in chemical composition of the explosive.

2. The pressure and temperature at the Chapman-Jouguet (CJ) state, i.e. the point
of complete decomposition at the end of the reaction zone. (These quantities
usually cannot be determined as accurately as the detonation velocity [10].)

3. The expansion behavior of the detonation products behind the detonation front,
normally studied using cylinder tests and other hydrodynamic experiments [1].

4. The overdriven Hugoniot, i.e. the shock properties of the detonation products
compressed above the CJ point [11].

In this report we will consider a chemical model for calculating the EOS of explosive det-
onation products that was first presented at the Eighth Detonation Symposium {7]. This
model is available in the PANDA code [12] and will be referred to here as “the PANDA
model.” References {7] and [§] showed that the PANDA model gives very good predic-
tions of the detonation properties and the overdriven Hugoniots for explosives having
CHNO compositions. We will show that it also gives good predictions for the expansion
behavior by comparing it with cylinder test data for 24 explosives.

1.2 The Cylinder Test - a Review

A cylinder test measures the radial expansion of a stick of explosive that is enclosed in a
metal tube and detonated at one end. The most common configuration used at Lawrence
Livermore National Laboratory [1][10] employs a 30 cm length of explosive with a 1-in
diameter, enclosed in a copper tube of thickness 0.26 cm. The radius of the tube as a func-
tion of time is recorded at a distance 21 cm from the point of detonation, using a streak
camera. The velocity history of the expanding tube is especially important, because the
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velocity is closely related to the energy of the expanding gases. Until recently, the velocity
history was determined by differentiation of the radius vs. time curve. The velocity can
now be determined more precisely using Fabry-Perot interferometers [10)].

Experiments oa larger diameter sticks have also been carried out to investigate time-de-
pendent effects [1]. The results for most explosives satisfy hydrodynamic scaling, at least
to within experimental error, showing that the 1-in test approximates infinite diameter be-
havior. In such cases, it is reasonable to conclude that the cylinder test results depend only
on the detonation product EOS, i.e., that they are insensitive to reaction rate effects. How-
ever, some explosives with long reaction zones do exhibit diameter effects that are indica-
tive of time-dependent behavior.

JWL EOS fits for explosive detonation products are usually determined by making hydro-
code calculations of the cylinder test and adjusting the parameters until satisfactory agree-
ment with measured velocity vs. radius curve is obtained [1][10]. The fit parameters are
usually also constrained to match the experimental detonation velocity and pressure. The
test data are normally obtained to 2.5-fold expansion of the cylinder, thereby defining the
EOS to about 7-fold volume expansion. Since the products expand adiabatically, a single
cylinder test only measures the adiabat through the CJ point for a single initial density. In
principle, the detonation product EOS should be be capable of predicting the cylinder test
results for any initial density. In practice, however, separate JWL fits have to be made for
each case. This fact shows that the JWL formula, which assumes a constant specific heat
and Griineisen parameter, gives only an approximate representation of states off the CJ
adiabat.

The importance of the cylinder test as a diagnostic tool is illustrated by the fact that theo-
retical EOS models frequently fail to give satisfactory predictions of the results. Souers
and Kury [10] recently compared finite element calculations made using different EOS
models with cylinder test data for 19 homogeneous explosives. All three theoretical mod-
els considered exhibited significant discrepancies (as high as 20-30% in some cases) with
the cylinder test data. The predicted detonation velocities were much better. Hence the
ability of a model to predict the CJ detonation properties does not guarantee its abililty to
predict the detonation product expansion.

1.3 Theoretical EOS Model

In the PANDA model, separate EOS tables are first constructed for each of the chemical
species that are to be allowed in the detonation products. For CHNO compositions, the
principal species are: CO,, Ny, H,O, CO, NO, NH3, CHy, Hp, Oy, HCOOH (formic acid),
atomic N, O, and H, and three forms of condensed carbon - graphite, diamond, and liquid
carbon. Fluid perturbation theory [13] is used for all species except for solid carbon. Next,
the ideal mixing model is used to compute the thermodynamic functions for a mixture of
these species, and the composition of the system is determined from assumption of chem-
ical equilibrium. The same library of EOS tables for the chemical species is used for all
explosive compositions. Hence the only input parameters required by PANDA are the
chemical formula CWHXNyOZ and the heat of formation for the unreacted explosive. (The
model has not yet been extended to allow elements other than C,H,N,and O.)
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The principal conclusions of previous work are as follows.

* The ideal mixing approximation gives surprisingly accurate results, not only for
detonation products, but also when compared with Monte Carlo simulations of
mixtures [8][14]. As a result, more realistic EOS can be used for complicated
chemical species than would be possible with mixture theories based upon sim-

ple intermolecular pair potentials.

» Formic acid is a very important reaction product for explosives having a nega-
tive oxygen balance, especially for HMX and RDX. The atomic forms of nitro-
gen and oxygen are are also important in some cases.

* A three-phase model of condensed carbon (graphite, diamond, and liquid) is
necessary for explaining variations in detonation properties with changes in
composition and loading density. In particular, the transition from graphite to
diamond in TNT at high densities was first predicted in Ref. [7].

* In addition to giving good a priori predictions of detonation velocities, pres-
sures, and temperatures, the model gives very good agreement with Hugoniots
for explosives in the overdriven shock region and Hugoniots of non-explosive
CHNO compounds at pressures high enough to create dissociation.

1.4 Scope of Report

Hydrocode calculations of cylinder tests were made for 24 explosives for which experi-
mental data were available. Calculations were also made for plate impact tests of LX 14,

Various features of the computational model are discussed in Sec. 2 - the EOS tables for
the detonation products (Sec. 2.1), the hydrocode input (Sec. 2.2), and the burn model
used to propagate the detonation wave along the cylinder (Sec. 2.3).

The results are discussed in Sec. 3. The calculated detonation properties, presented in Sec.
3.1, are shown to agree very well with experimental data for all of the explosives consid-
ered. For the detonation velocities, which are the most accurately known detonation prop-
erties, the predictions are within ~1.5% of the measurements, on the average. The cylinder
test results are presented in Sec 3.2. The calculated cylinder wall velocities are shown to
agree with the experimental data to within ~2.6%, on the average. In Sec. 3.3, it is shown
that the model also gives good predictions of the flat plate impact tests for LX14.
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2. Calculational Model

2.1 EOS Tables for Detonation Products

EOS tables for the detonation products of the 24 explosives studied were made using the
mixture/chemical equilibrium model in the PANDA code (version 2.06) [12]. The explo-
sive compositions and heats of formation, obtained from Refs. [10], [15], and [16], are
listed in Table 1. For composites and mixtures, the chemical fonmula was defined in terms
of an arbitrary mass of explosive [15], since only the relative CHNO ratios affect the EOS.
Three of the explosives considered (LX-09, PBX9404, and PBX9502) contain small
amounts of elements other than C, H, N, and O These additional elements were ignored in
the present work.

TABLE 1: Compositions and heats of formation of explosives.

Explosive? FormulaP AH{°(298K)
(MJ/kg)

BTF C[6]IN[6]O[6] +2.387
Comp B, Grade A (63% RDX/36% TNT) C[2.03]H[2.64]N[2.18]0[2.67] +0.0538
Cyclotol, 77/23 (77% RDX/23% TNT) C[1.75]H[2.59]N{2.3810(2.69] +0.145
HMX C[41H[8IN[8]O[8] +0.2531
HNB Cl[6]N[6]O[12] +0.1887
HNO3#1 (60% HNO3/40% DNB) C[1.2]JH[1.6]N[1.2]0{3.2] -1.711
HNO,#2 (60% HNO,/30% DNB/10% RDX) C[1.0]JH[1.6]N[1.3]0[3.3} -1.676
HNS C[141H[6]IN[6]O[12] +0.174
LX09 (93% HMX/4.6% pDNPA/2.4% FEFO) C[1.43]1H([2.74]N[2.59]0[2.72]F[.02] +0.0838
LX 14 (95.5%HMX/4.5% Es) Cl[1.52]H{2.92]N[2.59]0[2.66] +0.0628
NM C{IH[3IN([1]0(2] -1.849
NNE (39% NM/56% NP/5% ED) C[2.0]1H[5.2IN[1.1]0[1.9] -1.908
PBX9011 (90% HMX/10% Es) C[1.73]H[3.18]N[2.45]0[2.61] -0.170
PBX9404 (94% HMX/3% NC/3% CEF) C{1.401H{2.75IN[2.57]0[2.69]1CI[.03]P[.01}]  +0.00331
PBX9501 (95% HMX/2.5% Es/2.5% BDNP) C[1.47]1H[2.86]N[2.60}0[2.69] +0.0954
PBX9502 (95% TATB/5% Kel-F) C[2.30JH[2.23IN[2.21]0(2.21]C1{.038]F[.13] -0.8715
PETN C[5]H[8]N[4]0[12] -1.7031
RX-23-AA (79% HyN/21% Hy) H[4.6]N[2.6]0[1.7] -1.824
RX-23-AB (69% HyN/5% Hy/26% H,0) H{3.2]N{1.2]0}1.6] -5.415
RX-23-AC (32% HyN/68% Hy) H[4.11N[2.1]0{0.4] +0.1635
TATB CJ6]H[6]N[6]OI[6] -0.5971
TNGU C[4]H[2]N[8]10(10] +0.1559
TNM C[1]N[4]0[8} +0.276
TNT CI[7TTH[S5]IN{3]O]6] -0.295

2 The following abbreviations were used in specifying the compositions for the mixtures:
Es=Estane; Hy=hydrazine; HyN = hydrazine nitrate.
b Elements other than C, H, N, and O were not included in making the EOS tables.
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The PANDA input file for PBX9404, which is typical of that used in all cases, is shown in
Appendix A. The detonation products were treated as a mixture of 16 chemical species as
described in Sec 1.3. EOS tables for these species had previously been constructed and
saved on a data file, as described in Ref. [8]. This same file was used for all explosives, so
that only the chemical formula Cy,HyNyO, and the heat of formation of the unreacted ex-
plosive differed from case to case.

The detonation product EOS were tabulated on a rectan%ular density-temperature grid
covering the range from 0.01<p<5.0 g/cm3 and from 10°<T<10%K, equally spaced in
log(p) and log(T), along with points at p=0 and T=298K. For some explosives, extra den-
sities and temperatures were added in the vicinity of the CJ point to improve resolution
and give better results for the detonation properties.

2.2 CTH Calculations

Numerical calculations of the cylinder tests were made using the Eulerian code CTH [17]-
[20]. The CTH input file for PBX9404, listed in Appendix B, is typical of those used for
tests with a 1-in (2.54 cm) diameter and 0.26 cm wall thickness. A 15-cm length of explo-
sive was used in calculations of the 1-in diameter tests. The radial velocity of the cylinder
wall was recorded using tracer particles located near the outside of the copper tube at 7.0,
8.0, and 9.0 cm along the axis from the initiation surface. In order to simulate the experi-
mental conditions, the tracers were only allowed to move in the radial direction; their axial
positions were held constant using the “FIXED=Y"” option. The fact that the tracers gave
nearly identical results for the cylinder wall velocity history showed that steady state con-
ditions had been reached at these positions. For calculations of 2-in cylinder tests, an addi-
tional length of 2-5 cm was needed to obtain steady state conditions.

Good resolution of the copper cylinder wall motion was obtained using (0.02-cm zones in
the radial direction (13 zones across the tube wall). To minimize computing time, 0.05-cm
thick zones were used in the axial direction from 5.0 to 10.0 cm (the region encompassing
the tracers), with graded zones at the beginning and end of the stick. Note that this zoning
scheme leads to cells with a 2.5:1 aspect ratio in the central part of the problem, a condi-
tion which can give poor results in Eulerian calculations and is not recommended for gen-
eral use. Nevertheless, the results were found to be satisfactory in this work because of the
fact that the axial and radial flows are nearly independent in cylinder tests. To test the zon-
ing approximations, calculations also were made using 1:1 aspect ratios, using both 0.02-
cm and 0.05-cm zone sizes. These tests showed that the use of non-square zoning did not
cause any appreciable error. The zone size studies show that the zoning used here is more
than adeguate to match the precision of most of the experimental measurents. However,
much finer zoning would be needed to resolve the ringing behavior in the early time mo-
tion with the precision that can be obtained using Fabry-Perot interferometry [21].

The CTH calculations of the flat plate experiments [21], which are discussed in Sec. 3.3,
required much finer zoning than did the cylinder tests because the copper thicknesses were
much smaller. A sample CTH input file for one of the plate tests is listed in Appendix C,
and further details are given in Sec. 3.3.
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The copper, in both the cylinder and flat plate tests, was treated using the Mie-Griineisen
EOS and the elastic-perfectly plastic model with a yield strength of 0.35 GPa and Pois-
son’s ratio of 0.35. To test this approximation, a few calculations were also made with
more sophisticated constitutive models [43][44]; the results did not differ appreciably
from those obtained with the simpler model.

2.3 Burn Model

Although the cylinder expansion behavior is determined primarily by the detonation prod-
uct EOS, reaction rate properties, such as the structure of the reaction zone and curvature
of the wave front, can also influence the results. In this work, the explosives were initiated
by a 1.3-cm long “booster” and burned using the history variable reactive burn model
(HVRB) [20]. The detonation of the booster was modeled using the JWL EOS and the
CTH programmed burn option [19].

In the HVRB model, the EOS for the partially reacted explosive is given by the expres-
sions [20]

P(p,T,\) (1=-M)P,(p,T) +7fo(p,T) (N

and

E(p.T ) = (1-ME(p.T) +AE/(p, T). @
Here P, and E, describe the detonation products and are calculated from the tabular EOS
discussed in Sec. 2.1. P; and E; describe the unreacted explosive and are calculated from
the Mie-Griineisen formula. The extent of reaction A is given as a function of time ¢ by

A(t) = min(1,0M), 3)

It

and

¢ ()

P-P,
r

11 Z
1]
— 4
To‘[( i )dT, 4)
0

where the integrand in Eq. (4) is set to zero for P < P;. The constants P, z, M, and P; for
each explosive are calibrated from experimental data, and Ty=1.0 psec. Where possible,
the HVRB parameters used in the cylinder tests calculations were determined by calibrat-
ing the model to wedge test data [15]{16], as described in Ref. [20]. For explosives where
no wedge tests were available, the parameters were estimated from other initiation data.
These calibrations will be discussed in separate reports.

In order to evaluate the importance of reaction rate effects on the numerical results, calcu-
lations of a 1-in cylinder test of PBX9404 were made using the JWL EOS with three dif-
ferent burn models. The results are compared with one another and with experimental data
[16] [22] in Fig. 1. During the early part of the expansion, the calculation using the HVRB
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model (solid line) gives higher expansion velocities than the one using programmed burn
(dotted line). The difference between the two models decreases at later times, although the
HVRB velocity continues to be about 1% higher out to an expansion of 2.0 cm.

The differences are due, at least in part, to reaction zone effects. The von Neumann spike,
which appears only in the HVRB calculation, gives a somewhat higher initial push to the
copper tube. A calculation using the CJ volume burn (CJVB) model [20] is also shown in
Fig. 1 (dashed line). The CJVB parameters used here were selected so that the detonation
wave had no reaction zone; consequently, the results are close to those for programmed

burn.

The above results tend to support the usual assumption that the principal features of the
cylinder wall motion are determined by the detonation product EOS. However, they show
that reaction rate effects do influence the early time behavior and can increase the overall
velocity by as much as 1%, even at later times. The reactive burn model was much more
important in calculations of the flat plate experiments than in the cylinder tests, because
the copper thicknesses were so much smaller. This problem is discussed in Sec. 3.3.

2.0 T Al Al Al ‘ A L] ¥ Vﬁ T T T T
ITRLDA
1.5
@ i
N
£
< |
10 H —— JWL/HVRB
>
'}g- - - -JWL/CJVB
)
R JWL/PB
05 | /
+ Ref. 16
- o Ref. 22
008——u o . 1
0.0 1.0

Radial Distance  (cm)

Fig. 1. RCSUILS" for a 1-in cylinder test of PBX9404. The JWL EOS was used for the
detonation products, and the detonation wave was propagated using programmed
bum'(PB),‘CJ volume burn (CJVB), and history variable reactive burn (HVRB).
The inset ﬁgure gives an enlarged view of the region marked by the square. The
discrete points are experimental data, as marked.
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3. Results

3.1 Detonation Properties

Table 2 gives the experimental and calculated detonation velocities, pressures, and tem-
peratures for the 24 explosives considered in this work. The model gives especially good
agreement with the experimental detonation velocities, the most accurately measured
quantities. When the results for TATB and PBX9502 are excluded, the average difference
between the calculated and experimental values is only -0.1%, with a standard deviation
of 1.4%, which is comparable to the scatter observed in the experimental measurements.

As previously noted in Ref. [7], the calculated detonation velocities for TATB-based ex-
plosives are higher than the experimental values by about 5%. In Sec. 3.2 it is shown that
a comparable discrepancy is also obtained for the cylinder wall expansion velocities.
These differences are well outside those obtained for the other explosives and are not yet
fully understood. However, some of the discrepancy is undoubtedly due to nonideal be-
havior. The measured detonation velocity for 95% TATB/5% Kel-F [23]{24] is shown as a
function of the reciprocal charge radius in Fig. 2. The curve is concave upward at large ra-
dii, and the ideal (infinite diameter) value has not been attained even for charge diameters
as large as 13 cm. This behavior is different from that seen in other explosives [23], and
the infinite diameter value cannot be obtained accurately by the usual extrapolation meth-
ods. Therefore, the ideal detonation velocities of TATB and for PBX9502 must be higher
than the values given in Table 2, i.e. closer to the model predictions.

8.0
o~ O PBX9502, 24°C
Em - + PBX9502, 75°C -
~ 3 A 4
- O PBX9502, -55°C -
.g L o O EDC35, 20°C
o077 .
2t ' A EDC35,-40°C |
5 #
"5 6o
576 -} i
° - i
o [ 3 [s] E’
7.4 AR SRS N S NN NN VNEY SR WA N T VN W U | A]___L .o_gd
0.0 0.5 1.0 1.5 2.0

1/Radius  (cm™")

Fig. 2. Detonation velocity of TATB-based explosives as a function of reciprocal charge
radius; PBX9502 - [23], EDC35 - [24].
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TABLE 2: Experimental and calculated detonation properties.

Initial =~ ---m-memeeeeeee Detonation Properties----------------

Explosive Density Dc;j (knv/s) Pcj (GPa) Tey (K) Refs.
(g/cm3) expt. calc. expt. calc. expt. calc.

BTF 1.860 849 8.54 36.0 314 - 4480. [15]
Comp B (Gr. A) 1.720 799 17.85 295 274 - 3620. [15]
Cyclotol (77/23)  1.743 8.25 8.18 313 290 - 3740. [16]
HMX 1.891 9.11 9.10 39.0 38.6 - 3660. [16][26]
HMX 1.630 8.08 8.06 275 277 4300. 3950. [16][26][35]
HMX 1.200 6.59 6.73 150 153 - 4330. [16][26]
HNB 1.965 9.34  9.26 425 385 - 5080. (10]
HNO;#1 1.542 723 1744 21.0 204 - 4620. [10]
HNO;#2 1.560 726 7.37 205 195 - 4160. - [10]
HNS 1.681 708 700 230 235 - 3700. [10}{27]
HNS 1.402 6.34 6.23 16.0 16.2 - 3960. [10}[27]
HNS 1.001 510 5.18 72 7.18 - 3830. [101[27]
LX09 1.840 8.81 8.81 377 350 - 3680. [15]
LX14 1.835 g.83 875 370 338 - 3580. [15]
NM 1.130 621 6.22 134 118 3470. 3570. [28]{29](35]
NNE 1.034 531 5.38 9.0 7.57 - 2720. [10]
PBX9011 1.770 8.50 8.33 29.8 294 3420. [16]
PBX9404 1.846 8.78 8.84 356 352 - 3630. [28]1(29]
PBX9501 1.832 8.80 8.77 - 34.0 3640. (28]
PBX9502 1.890 >7.73* 8.10 289 264 - 2730. [23](29]
PETN 1.763 8.27 8.29 315  30.1  4200. 4200. [30](33]
PETN 1.620 785 7.8 260 254  4400. 4380. [301(351]
PETN 1.510 747 740 219 215 - 4480. (30]
PETN 1.230 646 6.37 13.8 128 - 4670. [30]
RX-23-AA 1.424 8.64 8.5 21.0 230  2900. 2800. [10](34]
RX-23-AB 1.356 748 7.39 170 15.8  4000. 2360. (10]{34]
RX-23-AC 1.136 7.88 7.80 18.1 15.1 2180. 2230. [10](34]
TATB 1.860 >7.75% 8.07 259 269 - 2940. [16]
TNGU 1.885 - 9.09 37.0 357 - 4250. [10]
TNM 1.650 645 6.67 155 15.6  2840. 2450. [10]{34]
TNT 1.632 694 6.94 216  26.1 - 3660. [10]{31]
TNT 1.400 6.33  6.28 16.0 13.8  3520. 3690. [31][32][37]
average difference (calc./expt.-1) -0.1%" -3.9% -6.3%
standard. deviation 1.4%° 8.1% 15.8%

2 See discussion in the text and Refs. [23] and [24]

b values computed excluding detonation velocities of PBX9502 and TATB
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The average difference between the calculated and experimental detonation pressures is
-3.99%. with a standard deviation of 8.1%, all within typical experimental uncertainties. It
has been shown that measurements of the detonation pressure are less accurate than those
of the detonation velocity and that there are significant variations in the results obtained by
different methods [10][25]. The difficulties are due in part to the fact that the CJ state,
which is preceded by the von Neumann spike and immediately followed by the Taylor (re-
Jease) wave, is not easy to pinpoint, even in numerical simulations. In fact, many of the
“experimental” values given in Table 2 are only estimates based upon cylinder tests [10],
which are not particularly sensitive to the detonation pressure [21]. These matters are dis-
cussed further in Sec. 3.3, where it is shown that the detonation pressure for LX 14 is prob-
ably lower than the value given in Table 2.

Measurements of the detonation temperature are fewer and much less accurate than those
of either the velocity or the pressure. The data for transparent liquids, especially ones hav-
ing a small reaction zone, are the most reliable; measurements for solid explosives have
additional complications due to being opaque and having hot spots [10]. For liquid NM,
Refs. [35] and [36] report 13 experiments giving an average of 3470K, with a standard de-
viation of 190K and a total spread of 780K. Temperature measurements have also been re-
ported for the liquids TNM, RX-23-AA, RX-23-AB, and RX-23-AC [34]. The reported
measurements for solid PETN [33]1(351{361(38] show a spread of about 600K and appear
to be reasonable and consistent for initial densities in the range 1.6<pp<1.77. However,
there is a larger spread in the reported data for the solids TNT and HMX [35][36)[371{38].
Moreover, the measurements of Huisheng, et al. [38], for TNT and HMX at high initial
densities, are inconsistent with the data for lower densities and need to be checked. The
calculated detonation temperatures are well within the experimental uncertainties for all
but one of the explosives shown in Table 2 - the experimental value for RX-23-AB, which
is inconsistent with those for RX-23-AA and RX-23-AC, is likely to be erroneous 13].

32 Cylinder Tests

The calculated results for a 1-in cylinder test on PBX9404 [16][22] are shown in Figs. 3
and 4. Figure 3 compares the velocity vs. radius curves obtained using both the PANDA
EOS and the JWL EOS with the experimental data. The two calculations are almost indis-
tinguishable from one another and in excellent agreement with the measurements at early
times. For radial expansions greater than 1.8 cm, the PANDA EOS predicts slightly higher
velocities and gives better agreement with the data than JWL. For completeness, the ve-
locity vs. time and radius vs. time curves for the PANDA calculation are shown in Figs. 4a
and 4b, respectively. As expected, the agreement here is also excellent.

Calculations for LX 14, another HMX-based explosive having a composition and proper-
ties similar to those of PBX9404, are shown in Fig. 5. Velocity vs. radius curves forboth a
1-in test [16][21]and also a 2-in test [22] are shown in Fig. Su. (The wall thickness was
0.26 cm in both cases.) Once again, the calculated results are in excellent agreement with
the experimental data. Figure 5b compares the calculated velocity vs. ime for the 2-in test
with high precision measurements obtained using 2 Fabry-Perot interferometer [21]. Re-
sults obtained with both standard zoning (Ax=0.02 cm, Ay=0.05 ¢m) and finer zoning
(Ax=0.01 cm, Ay=0.02 ¢cm) are shown. The agreement with experiment is good, although
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The cylinder test results for PETN and NM are displayed in Fig. 9. The calculations are
also in very good agreement with the measurements [1] for these two cases.

Figure 10 shows the velocity vs. radius curves for both 1-in [16] and 2-in [39] cylinder
tests of the TATB-based explosive, PBX-9502. (The wall thickness was 0.26 cm in both
cases.) The calculated curves have the correct shape but lie above the experimenta! ones
by ~6% and ~3% for the 1-in and 2-in tests, respectively. These discrepancies are consis-
tent with the results for the detonation velocity and are larger than those obtained for the
other explosives studied.
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Fig. 10. 1-in and 2-in cylinder test results for PBX9502.

As noted in Sec. 3.1, TATB-based explosives exhibit nonideal behavior in that the infinite
diameter detonation velocity is not attained for charge diameters as large as 13 cm
[23][24]. Nonideal behavior has also been seen in interface velocity and plate-push exper-
iments on TATB explosives [40][41][42]. The velocity (or energy) imparted to the target
by the explosive is observed to increase with the length of the charge. Tang [42] has
shown that these data can be reproduced using a two-step reactive burn model; about 85%
f’f the energy is released by a fast reaction, which takes 20 ns, while the rest of the energy
is relegsed by a slow reaction that requires an additional 240 ns. The total reaction zone
1ength in Tang’s model is about .2 cm, which is comparable to the wall thickness in the
cylinder tests. The slow reaction must also play a role in determining the effect of diame-
ter on the detonation velocity and cylinder wall velocity.

In principle, the effects of nonideal behavior can be treated through the reactive burn mod-
el. However, the HVRB model used here was calibrated using shock initiation data and
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does not include any slow reaction. Therefore it gives only a rough description of the reac-
tion zone. Preliminary calculations show that adding a slow reaction to the HVRB model
does improve the cylinder test predictions. However, a complete study of this problem is
beyond the scope of the present work.

A summary of all the cylinder test calculations is given in Table 3. The wall velocities are
tabulated at radial displacements of 0.6, 1.25, and 1.9 cm, corresponding tc volumetric ex-
pansions of ~2, ~4, and ~7, respectively. In addition to the explosives shown in Figs. 2
through 10, the table gives results for 11 explosives considered in Ref. [10], for which de-
tailed velocity histories were not available to the present authors. Five of these - TATB,
TNGU, NNE, HNO3#1, and HNO3#2 - are CHNO compositions. Three of them - BTF,
HNB, and TNM - are CNO compositions. The other three - RX-23-AA, RX-23-AB, and
RX-23-AC - are HNO compositions.

As shown in Table 3, the average difference between the calculated and experimental cyl-
inder wall velocities at 0.6-cm expansion is only 0.2%, with a standard deviation of 2.8%.
The results are essentially the same for the 1.25- and 1.90-cm expansions, showing that
the shapes of the velocity vs. radius curves are predicted correctly. As noted above, the
TATB-based explosives show larger deviations than the others, probably because of non-
ideal behavior. HNB, low density HNS, and RX-23-AA also show deviations of ~4%,
somewhat larger than average.

3.3 Plate Acceleration Tests

Lee, et al. [21] studied the motion of metal walls driven by the HMX-based explosive
LX14 in flat plate geometries as well as in cylinder tests. They found that the JWL EOS
parameters previously derived from cylinder tests did not give satisfactory results when
used to calculate the flat plate tests. They concluded that the cylinder test measurements
sample the detonation product EOS at densities p<pq (where pg is the initial explosive
density), while the flat plate tests are also sensitive to the EOS at higher compressions,
Po<p<pcy- They also found that higher plate velocities were obtained for thinner plates,
indicating the influence of the reaction zone. By reducing the CJ pressure from 37 GPa to
36 GPa, they derived a new set of JWL parameters that fit both the cylinder test data and
the plate data for thicknesses greater than 0.05 cm. However, they were not able to fit all
of the thin plate data, even using a reactive burn model.

Figure 11 compares the velocity history calculated using the PANDA EOS with two Fab-
ry-Perot records for a copper plate of thickness 0.0526 cm, driven by a 1.995-cm thickness
of explosive. The predictions agree very well with the measurements, even though the
PANDA EOS has a CJ pressure of only 33.8 GPa, in contrast to the value of 36 GPa ob-
tained in Ref. [21]. The CTH input file for this problem is given in Appendix C. As dis-
cussed below, the results for this test are much less sensitive to the reactive burn model
than for the tests using thinner plates. This problem was found to be rather sensitive to
zoning; in order to obtain good resolution, a zone size of 0.001 cm was used in the vicinity
of the copper plate, while graded zoning was used in the outer parts of the computational
mesh.
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TABLE 3: Summary of copper cylinder w .1 velocity calculations. All calculations were
for 1-in diameter, 0.26-cm wall thickness, except where indicated. R-Ry is
the cylinder radius minus the initial radius.

FYIT:) E—— Wall Velocity (KIM/§)----n-=----===--

Explosive Density  R-Rg=0.6 cm R-Rp=125cm  R-Rp=19cm Refs.

(g/em®)  expt. calc.  expt. calc. expt. calc.

BTF 1.852 1.605 1.634 1.755 1.770 1.835 1.839 [10]

Comp B (Gr. A) 1.717 1.439 1.447 1.556 1.588 1.640 1.648 (1]

Cyclotol (77/23)  1.754 1.516 1519 1.640 1.652 1.695 1.714 (1]

HMX 1.894 1.650 1.649 1.820 1.800 1.883 1.860 [1][10]

HMX 1.188 1.173 1.149 1314 1.287 1.384 1.348 [10]

HNB*? 1.965 1.700 1.600 1.880 1.808 1.955 1.885 [10]

HNO.#1 1.542 1.295 1.279 - 1.452 - 1.531 [10]

HNO;#2 1.560 1.210 1.245 1.370  1.400 - 1.470 {10]

HNS 1.681 1.255 1.283 1.385 1416 1.458 1.476 [27]

HNS 1.402 1.081 1.116 1.207 1.239 1.266 1.294 [27]

HNS 1.001 0.817 0.861 0.931 0.967 0.981 1.013 [27]

LX09 1.840 1.649 1.595 1.758 1.743 1.828 1.804 [22]

LX14 (X-0282) 1.835 1.587 1.584 1.713  1.726 1.777  1.787 [16](22]

LX14 (2-in) 1.835 1.963 10911 2,152 2.140 2.260 2.249 [21]

NMP® 1.13 1.045 1.047 1.180 1.165 1.230 1.219 [1](10]

NNEP 1.034 0.836 0.859 0.935 0.960 0.990 1.010 [10]

PBX9011 1.770 1.504 1508 1.633  1.637 1.681 1.697 i1]

PBX9404 1.840 1.603 1.588 1.734  1.737 1.793 1.796 {16}122]

PBX9501 1.834 1.570 1.590 1.707 1.734 1.776  1.795 (16}

PBX9502 1.894 1.301 1.364 1.398 1475 1.435 1.520 [16]

PBX9502 (2-in) 1.880 1.565 1.624 1.759 1.809 1.827 1.885 [39]

PETN 1.765 1.560 1.524 1.705 1.670  1.790 1.739 [1]{10]
PETN 1.498 1.355 1.306 1.510 1465 1.590 1.538 [10]
PETN 1.266 1.156 1.145 1.304 1.295 1.382 1.364 [10]
RX-23-AAP 1424 1.320 1.299 1.473 1401 1.520 1.446 {10]
RX-23-AB 1.356 1.080 1.052 1.180 1.145 1.210 1.184 [10]
RX-23-AC 1.136 1.075 1.072 1.170  1.162 1.220 1.195 [10]
TATB® 1.83 1.300 1.362 1.403 1480 1453 1.530 [10]
TNGU 1.885 1.600 1.558 1.750 1.703 1.825 1.775 [10]
TNM 1.650 1.000 1.019 1.095 1.103 1.130 1.135 [10]
TNT® 1.632 1.210 1.231 1.355 1.362 1410 1.420 [11{10]
average difference (calc./expt.-1) +0.2% +0.3% 0.0%

standard. deviation 2.8% 2.6% 2.6%

2 Experimental data are for 3/4-in diameter, scaled to 1-in [10].
b Experimental data are for 2-in diameter, scaled to 1-in [10].
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Fig. 11. LX14 flat plate tests #9633 and 9634 of Ref. [21]. HE thickness - 1.995 cm,
copper thickness - 0.0526 cm, zone size - 0.001 cm in vicinity of copper plate.

Analysis of the flat plate experiments illustrates the difficulty of obtaining the CJ pressure
from experimental data. The plate motion at early times is determined primarily by the
leading part of the detonation wave {including the reaction zone), while the motion at later
times depends upon the detonation product expansion and also the thickness of the explo-
sive. Figure 12 shows the initial acceleration of the copper plate (the first plateau in the ve-
locity time history), for the 19 experiments reported in Ref. [21]. It can be seen that the
initial velocity is ~2.120.1 km/s, independent of thickness, for thicknesses greater than
0.01 cm, indicating that the reaction zone has a relatively small effect. However, the high-
er velocity obtained for a thickness of 0.0025 cm suggests the presence of a von Neumann
spike. The ratio R of the copper thickness to the explosive thickness is also indicated.
There is no correlation with explosive thickness within the scatter in the data.

The initial plate velocity can be estiraated by impedance matching, using the diagram
shown in Fig. 13. The Hugoniot for the explosive detonation products is shown by the sol-
id line, with the CJ state denoted as point A. The initial shock state in the copper plate,
point B, corresponds to the intersection of the copper Hugoniot with the second shock
Hugoniot for the detonation products. The free surface velocity of the copper plate corre-
sponds to zero pressure on the copper release curve, point C. Using the PANDA EOS for
the detonation products and the Mie-Griineisen EOS for copper, the velocity obtained is
2.14 km/s, in good agreement with the experimental data, as shown by the dotted line in
Fig. 12. This calculation is only approximate because it ignores the effects of the Taylor
wave and the reaction zone. However, it shows that the plate motion is determined not
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Fig. 12. Initial acceleration of copper plate for experiments reported in Ref. [21]. R is the
ratio of the copper plate thickness to the thickness of the explosive. The dotted
line shows a velocity of 2.14 km/s, computed as described in the text.
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only by the CJ state, but also by the reshock behavior of the detonation products. That fact
explains why two EOS having quite different CJ pressures can give similar results for the
plate motion.

A reasonable description of the reaction zone is needed for the experiments involving very
thin plates. In the HVRB model, the parameters that have the greatest effect on the reac-
tion zone are the EOS for the unreacted explosive (which determines the von Neumann
spike pressure) and the constant P, in Eq. (4) (which determines the overall zone length).
However, the HVRB model was developed primarily for modeling shock initiation phe-
nomena, and Egs. (1)-(4) were not derived to give an accurate description of the reaction
zone. The values obtained by calibrating the model to shock initiation data, as described in
Sec. 2.3, do not give satisfactory results when extrapolated into the present regime, over-
estimating the effects of the reaction zone on the plate velocity. Since there are no inde-
pendent measurements that can be used to determine the necessary parameters, the value
of P, was adjusted to match the initial velocity of a (0.00254 cm copper plate, while the
other burn parameters were unchanged from their original values. The adjusted value of P,
(about 1/5 of the original value) was used in the calculation shown in Fig. 11; the veloci-
ties obtained using the original value of P, were ~3% higher.

Figure 14 compares the calculated curves with experimental data for a 0.00254 cm copper
plate, using the adjusted value of P, The theoretical results agree with measurements at
both early times, as expected, and also at late times, where the velocity depends on the det-
onation product expansion and the explosive thickness. The results for an intermediate
copper thickness of 0.0126 cm are shown in Fig. 15. The calculated velocities are in satis-
factory agreement with experiment, given the scatter in the data (data for the other tests at
this thickness show variations of ~4% [21]).

The fact that the PANDA model gives good agreement with both flat plate and cylinder
tests, which sample different regions of the EOS surface, is further evidence of its general-
ity. It may be possible to improve the calculations for thin plates by refining the reactive
burn model.
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Fig. 14. LX14 flat plate test #9643 of Ref. [21]. HE thickness - 2.558 cm, copper
thickness - 0.00254 cm, zone size - 0.0002 cm in vicinity of copper plate.
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Fig. 15. LX14 flat plate test #9526 of Ref. [21]. HE thickness - 1.997 cm, copper
thickness - 0.0126 cm, zone size - 0.0005 cm in vicinity of copper plate.
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4. Summary and Conclusions

Accurate EOS for explosive detor ation products, and the means for using these EOS in
hydrocode calculations, are needed in many practical applications which involve the mod-
eling of explosives and other energetic materials. Until recently, analysts have often had to
rely on simple analytical EOS formulas for the study of complicated problems. A sophisti-
cated tabular EOS package and reactive burn model [20], which was recently devgloped
for the CTH hydrocode, offers a more realistic treatment of explosives than was previous-
ly available. This capability has been used in the present study.

The present work and previous studies [7][8] have demonstrated that the PANDA code
can be used to construct accurate a priori EOS for the detonation products of CHNO ex-
plosives. The PANDA EOS are in very good agreement with experimental detonation
properties, overdriven shock data, cylinder test expansion meaurements and plate push
tests. Hence one advantage of the PANDA code is that it provides a way to predict the
EOS for new compositions. By contrast, the analytic JWL formula must be fit to experi-
mental data for each explosive.

It is equally important to recognize that the PANDA code predicts a very different EOS
surface from the one obtained with the JWL formula, even though the two models may
give comparable results for cylinder tests. Because the PANDA model incorporates the
fundamental physics and chemistry of the problem, it is reliable over a wide range of con-
ditions. By contrast, it is well known that JWL parameters obtained from cylinder tests of-
ten give poor results in plate push tests, in overdriven shock experiments, and in other
problems outside the region of calibration [11][21]. These difficulties arise because of the
simplicity of the JWL expression, i.e. the use of a constant specific heat and Griineisen pa-
rameter. The availability of a tabular EOS package eliminates the need to fit the EOS to an
analytic function.

Reactive burn phenomena have been relegated to a secondary role in the present study, but
certain points should be noted. First, the predicted detonation properties and cylinder wall
velocities for TATB-based explosives show larger discrepancies with experiment than do
the other explosives. Some of these discrepancies are clearly due to nonideal behavior,
which has been observed in the effect of diameter on detonation velocity [{23][24] and the
effect of charge length on the energy imparted to a target [40]-[42]. Second, the velocity
histories of thin plates accelerated by LX 14 also show effects due to the reaction zone
[21]. These problems show that the detonation product EOS can be separated from reac-
tive burn phenomena only to a first approximation. However, a full analysis of reactive ef-
fects would have required more time than could be devoted to the present study.
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Appendix A

PANDA Input File for PBX9404

I AR R A IA AR RAR R AR R KRR KRR KRR AR AR AR ARRANRRA AR A A AR AR AR A AR A AR R A A ARk ke kh K

06/18/93 - EOS for detonation products of PBX-9404.

PBX-9404 is 94% HMX, 3% NC, 3% CEF by weight.

Formula - c¢[1.40]h{2.75]n[2.5710(2.69)c1[.03]p[.01] (100 g of
explosive) - the cl and p are ignored in this setup.
heat of formation (298K) = 0.00331 (Dobratz and Crawford)

Energy zero of EOS tables is assumed to give zero enthalpy for
elements in their standard states at 1 atm and 298K. Energy zero
for table is unreacted explosive at 298K.

!
Y
|
.
{
]
H
i
|
!
1
|
]
|
|
[}
|
|
i

mc, mh2, mn2,

I R R R R R R R R R R 22X RS R RS RIS SRR SRR R RS R SR X R R E SRR R R AR AR R R SRR EEE RS

htf is (-) heat of formation,
and mo2 are moles of ¢,

h2, n2, and o2.

sym htf=-.00331 mc=1.40 mh2=1.375 mn2=1.285 mo2=1.345

]

mod mix ezro=htf
clllol2] ! carbon dioxide
matid=201 name=co2 filezhesps eshift=-9.1552
ni(2]) ! molecular nitrogen
matid=202 name=n2 filezhesps eshift=-.30900 moles=mn2
h{2]jo(1] ! water
matid=203 name=h2o file=hesps eshift=-13.971
clllofl} ! carbon monoxide
matid=204 name=co filezhesps eshift=-4.2551
c{1l]lh([4)] ! methane
matid=205 name=ch4 file=zhesps eshift=-5.2897
n{1l]h{3] ! ammonia
matid=206 name=nh3 file=zhesps eshift=-3.2789
h(2] ! molecular hydrogen
matid=207 name=h2 filezhesps eshift=-4.1866 moles=mh2
o[2] ! molecular oxygen
matid=208 name=o2 filezhesps eshift=-.27085 moles=mo2
n{lloll} ! nitric oxide
matid=209 name=no filezhesps eshift=2.7206
hi{2]cl{l)o(2] ! formic acid
matid=301 name=hcooh filezhesps eshift=-8.4598 .
c[1] ! graphite
matid=213 name=grp bptyp=.01 file=zhesps eshift=59.157 moles=mc
cl1] ! fluid carbon !
matid=210 name=clg ptyp=.01 file=hesps eshift=59.157
c[11} ! diamond
matid=214 name=dia ptyp=.01 file=hesps eshift=60.057
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nl] ! atomic nitrogen
matid=102 name=nl filezhesps eshift=33.294
o(1l] | atomic oxygen
matid=108 name=ol filezhesps eshift=15.172
hil) ! atomic hydrogen

matid=107 name=hl filezhesps eshift=210.19

]

! Compute CJ state
]

cj mix

1.84

{

! Make EOS table - use set bas command to find FZ and FW
i

set bas

c[1.40)h[2.75]In[2.57]0([2.69] ! ¢1[.03]p[.01) - ignored

isot mix 3.1635 3.1647 20 1 298 0 1 1
slib mix

201

51.320 99.996 67.280 298 3.16

301

0011

.01 .1 52

.1 545 2

298 1000 2 1
l1.e3 1.e4 24 2

Y
298 .29

8211 061893 b8211 a8211

! Read table back in and compute CJ properties
]

mod sol tab=1

8211 b8211
cj sol
1.84 0 O
end
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Appendix B

CTH Input File for PBX9404 Cylinder Test

IR A EXEEE RS RS R R EE AR RS2 R R R R R R RS AR R R R R R AR R R R REEs SRSt R RREEREREEE]

15

* Ok A F % ok F * X * * * * * * *

*

CTH Calculation of PBX9404 Cylinder Test
07/28/93

1 in diameter stick of explosive enclosed in 0.26 cm thick Cu tube.

cm length of explosive, cylinder expansion studied near 8 cm.
X-Mesh: uniform 0.02 cm zones out to 4.0 cm (13 zones in Cu),
then graded region out to 6.0 cm.

Y-Mesh: uniform 0.05 cm zones from 5.0 to 10.0 cm, graded zones
at beginning and end of stick.

Histories for recording cylinder expansion at 7, 8, and 9 cm, at
surface of Cu wall. Histories for recording of arrival times at
7, 8, and 9 cm, along cylinder axis.

Uses tabular EOS for detonation products of explosive.

Uses HVRB model to propagate detonation wave. Explosive is
initiated by a 1.3 cm booster.

IR R R R T E R R R R R R R R R R R R R RS R RS SRR R R RS R R RS S R E SR EEEE RS

*eor*

genin - CTHGEN input

* Title record
PBX9404 Cylinder Test - Panda EOS, HVRB burn
*  Contrel block

CONTROL
MMP
ENDCONTROL
* Set up geometry and mesh
MESH
BLOCK 1 GEOM=2DC TYPE=E
X0 0.0
X1 W=4.0 DXF=0.02 DXL=0.02
X2 W=2.0 DXF=0.02 DXL=0.07
ENDX
Yo -1.3
Yl W=1.3 DYF=0.25 DYL=0.20
Y2 W=5.0 DYF=0.20 DYL=0.05
Y3 W=5.0 DYF=0.05 DYL=0.05
Y4 W=5.0 DYF=0.05 DYL=0.20
ENDY
XACT 0.0 1.5
YACT -1.3 0.0
ENDB "
ENDMESH

* Material insertion inputs
INSERTION of MATERIAL
BLOCK 1
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PACKAGE BOOSTER
MATERIAL 3
INSERT BOX
X1 0.0 X2 1.27
Yi -15.0 Y2 0.0
ENDINSERT
ENDPACKAGE
PACKAGE HE
MATERIAL 2
INSERT BOX
X1 0.0 X2 1.27
Yl -15.0 Y2 25.0
ENDINSERT
ENDPACKAGE
PACKAGE COPPER CASE
MATERIAL 1
INSERT BOX
X1 1.27 X2 1.53
Yl -15.0 Y2 25.0
ENDINSERT
ENDPACKAGE
ENDBLOCK
ENDINSERTION
* EOS input set - new interface
EOS
* Copper - Mie-Gruneisen
MAT1 MGRUN
RO=8.94 CS=3.94E5 S5=1.489 G0=1.99 CV=4.56E10
* PBX9404 Explosive - Panda EOS with HVRB model
MAT2 SESAME EO0S=8211 FEOS='sesame'
RP=1.84 R0=1.873 CS=2.9E5 S=2.0 G0=1.0 Cv=1.35E11
TYP=2.0 PR=5.9E10 ZR=2.36 MR=1.5 PI=0.5E10
RMAX=5.0 RMIN=0.1 TMAX=5.0 PT=1.0E13
* pBX9404 Explosive - JWL
MAT3 JWL
RO=1.84 AG=8.524 BG=0.1802 CG=0.01207
R1=4.60 R2=1.30 WG=0.38 PCJ=0.370 DCJ=0.880
ENDEOS
* HEBURN input set
HEBURN
MAT 3 D=8.80E5
pL 0.0,-1.3 TO 1.5,-1.3 R=100.0 TIME=0.0
ENDHE
* FElastic-plastic Input set
EPDATA
MATEP 1 YIELD=3.5E9 POISSON=0.35
MIX 3
ENDE
********************************************'A'***************************
*eor* cthin - CTH input
* Title record
PBX9404 Cylinder Test - Panda EOS, HVRB burn
* Control block
CONTROL
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TSTOP = 29.0E-6
RDUMPF = 3600.
CPSHIFT = 999.
NTBAD 100000
ENDC
* Choose fluxing and interface options
CONVCT
CON=1
INT=HIGH
NOFRAGMENT 1
NOFRAGMENT 2
ENDC
* First 3 tracers are near to OD of copper tube
* gecond 3 tracers are near to cylinder axis
TRACER
ADD 1.48,7.0 to 1.48,9.
ADD 0.08,7.0 to 0.08,9.
ENDT
* Edit specifications
EDIT
SHORTT
TIME=0.0 DT=5.0E-4
ENDS
LONGT
TIME=0.0 DT=5.0E-4
ENDL
PLOTT
TIME=0.0 DT=5.0E-6
ENDP
HISTT
TIME=0.0 DT=5.0E-8
HTRACER1
HTRACER2
HTRACER3
HTRACER4
HTRACERS
HTRACER6
ENDH
ENDE
pDefine boundary conditions
BOUNDARY
BHY
BL 1
BXB , BXT
BYB = 1 , BYT =
ENDB
ENDH
ENDB
*  Set minimum and maximum time steps
MINDT
TIME
ENDN
MAXDT
TIME

0 N=3 FIXED=Y
0 3

*

i
o
1]

fusey

|
-

t

0. DT

i

1.E-11

1
o

DT = .01
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*  Fracture input set

ENDX

FRACTS
PRESSURE
PFRAC1 -0
PFRAC2 -5.
PFRAC3 -5.
PFMIX -0
PFVOID -0

ENDF

.3E10

0E6
0E6

.3E10
.3E10
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Appendix C

CTH Input File for LX14 Plate Acceleration Test

LA RS EES RS ERR SR RS R RRERRR R ARt Rt R ARt SRR AR RE R RS S

CTH Calculation of LX-14 Plate Experiment #9634
08/30/93
Test dats reported by Lee, et. al., 8th Det. Sym., pp 613-624.
1.995 cm thickness of LX-14 accelerates (0.0526 cm Cu plate.
Explosive initiated by using JWL/programmed burn in first 0.2 cm.
- Mesh: Zones graded from 0.03 cm down to 0.001 cm for first 1.90
cm, then 0.001 cm zones (53 zones in Cu) for 0.6 cm,
then graded zones on outer part of mesh.
- Panda EOS with HVRB for explosive.

* o * * 0 * * * * *

*

hhhkhhkhkbhkhhhkhhkdkArAhhAhhhkhkrhhhhkhhhhkhkhdhrhkhhkhkhkhhhkhhrrhhhkhkrhhhhhhhkdbhhrhdrhhhxk

*eor* genin - CTHGEN input
* Title record
PL9634 - /2.0 LX-14/-:/.053 Cu/ Panda/HVRE
*  Control block
CONTROL
MMP
* CHECKMESH
ENDCONTROL
*  Set up geometry and mesh
MESH
BLOCK 1
X0 0.
X1
X2
X3
ENDX
XACT -2.0 0.20
ENDB
ENDMESH
* Material insertion inputs
INSERTION of MATERIAL
BLOCK 1
PACKAGE BOOSTER
MATERIAL 3
INSERT BOX
X1 0.0 X2 0.2
ENDINSERT
ENDPACKAGE
PACKAGE HE
MATERIAL 2
INSERT BOX
X1 0.2 X2 1.9954
ENDINSERT

GEOM=1DR TYPE=E

0 DXF=0.030 DXL=0.001
0 DXF=0.001 DXL=0.001
0 DXF=0.001 DXL=0.010

TEEc
O O e

"

[Sa e RN
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ENDPACKAGE
PACKAGE COPPER PLATE
MATERIAL 1
INSERT BOX
X1 1.9954 X2 2.048
ENDINSERT
ENDPACKAGE
ENDBLOCK
ENDINSERTION
* EOS input set - new interface
EOS
* Copper - Mie-Gruneisen
MAT1 MGRUN
R0=8.94 (CS=3.94E5 S=1.489 G0=1.99 C(CV=4.56E10
* 1,X14 Explosive - Panda EOS with HVRB model
MAT2 SESAME EO0S=8231 FEOS='sesame'
RP=1.835 RO0=1.850 CS=2.9E5 S=2.0 G0=1.0 <CV=1.35El1
TYP=2.0 PR=1.7E10 ZR=2.36 MR=1.5 PI=0.5E10
RMAX=5.0 RMIN=0.01 TMAX=5.0 PT=1.0El3
* LX-14 Explosive - JWL
MAT3 JWL
R0=1.835 AG=8.261 BG=0.1724 CG=0.01296
R1=4.55 R2=1.32 WG=0.38 PCJ=0.370 DCJ=0.880
ENDEOS
*  HEBURN input set
HEBURN
MAT 3 D=8.80E5
DP 0.0 R=100.0 TIME=0.0
ENDHE
* Elastic-plastic Input set
EPDATA
MATEP 1 VYIELD=3.5E9 POISSON=0.35
MIX 3
ENDE

Ak kA kA k kAR AR AR KA AR A AR A KRR IR R AR AR AT AR R AR Ak kA A kA kA AR Ak kbk b Ak k ko k ok hk & &

*eor* cthin - CTH input

* Title record

PL9634 - /2.0 LX-14/->/.053 Cu/ Panda/HVRB
* Restart instructions

* RESTART
* TIME=2.0E-6
* ENDR
* Control block
CONTROL
TSTOP = 5.0E-6
RDUMPF = 3600.
CPSHIFT = 999.
NTBAD 100000
ENDC
* Choose fluxing and interface options
CONVCT
CON=1
ENDC

* Edit specifications
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TRACER
ADD 2.0455 to 2.0475 N=3
ENDT
EDIT
SHORTT
TIME=0.0 DT=5.0e-4
ENDS
LONGT
TIME=0.0 DT=5.0e-4
ENDL
PLOTT
TIME=0.0 DT=0.5e-6
ENDP
HISTT
TIME=0.0 DT=5.E-8
TIME=2.0E-6 DT=5.E-10
HTRACER1
HTRACER2
HTRACER3
ENDH
ENDE
* Define boundary conditions
BOUNDARY
BHY
BL 1
BXB =1, BXT =1
ENDB
ENDH
ENDB
* Set minimum and maximum time steps
MINDT

TIME = 0. DT = 1.E-11
ENDN
MAXDT

TIME = 0. DT = .01
ENDX
* Fracture input set
FRACTS

PRESSURE

PFRAC1 -0.3E10

PFRAC2 -0.3E10

PFMIX -0.3El0

PFVOID -0.3E10
ENDF
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