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Abstract

The effectsofplasma deformabilityon thefeedbackstabilizationof axisymmetric

modes oftokamakplasmasarestudied,ltisseenthatplasmaswithstronglyshapedcross

sectionshaveunstablemotiondifferentfroma rigidshift.Furthermore,theplacementof i

passiveconductorsisshown tomodifythenon-rigidcomponentsoftheeigenfunctionin

a way thatreducesthestabilizingeddy currentsintheseConductors.Passivefeedback

resultsusingseveralequilibriaofvaryingshapearepresented.The eigenfunctionisalso

modifiedundertheeffectsofactivefeedback.Thisdeformationisseentodependstrongly

on the positionofthefluxloopswhich areused todetermineplasmaverticalposition

forthe activefeedbacksystem. The variationsof thesenon-rigidcomponents ofthe

eigcnfunctionalwaysservetoreducethestabilizingeffectoftheactivefeedbacksystem

by reducingthe measurablepoloidalfluxat the flux,looplocations.Activefeedback

resuJ.tsarepresentedforthePBX-M tokamakconfiguration.

@

1. Introduction

It is well known that shaping the tokamak cross section allows increasing the total

plasma current, which implies both increased maximum stable/_ values and increased

energy confinement time. This has been demonstrated both theoretically and e×peri-
c,

mentally [1-5]. However, tokamak plasmas with any significant cross-sectional shaping

are subject to troublesome axisymmetric instabilities which must be stabilized by a con-

ducting wall near the plasma and by an active feedback system to compensate for the

resistive losses in these conductors [6].

The axisymmetric instability has been studied in great detail with regard to stabi-

lization with passive conductors [7-15] and an active feedback system [14-20]. However,

most studies have been limited in one way or another. Linear MHD stability codes j

[21,22], which can accurately treat the plasma motion, have mostly been limited to ideal
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configurations in which there is an ideally conducting wall and no active feedback sys-

tem (or one which is limited to special, unrealistic symmetry constraints [16,23]). Most

other models which include realistic circuit equations for the passive conductors treat the
w

plasma in some simplified fashion which does not account for the true plasma motion.

This usually involves modeling the plasma as a collection of current filaments and/or
,b

prescribing some simplified (usually rigid) plasma motion. Even the sophisticated active

feedback system [19,20] used for the optimization of plasma shape and fl in DIII-D [5]

is based upon an assumed rigid motion of the .plasma. Transport time-scale simulation

codes such as the Tokamak Simulation Code (TSC) [18] can accurately compute the full

nonlinear axisymmetric motion with ali the realistic control aspects such as an active

feedback system, resistive conductors, circuit and power supply dynamics. However, it is

computationally exper_sive and di_cult to obtain linear growth rates and very di_cult

to resolve the details of the plasma motion with these comprehensive nonlinear codes.

It is known that the true unstable motion of highly shaped tokamak plasmas involves

non-rigid deformations [24]. The non-rigid components of the motion can be affected,

and even enhanced, by certain aspects of a feedback system. It has been shown [23]

that for certain locations of the detectors which control the active feedback system, even

though able to detect a rigid plasma motion, the detectors are ineffective in detecting

the motion of a deformable plasma, and the feedback system is unable to stabilize the

plasma regardless of the feedback gain. :this was found to be due to a deformation in the

motion dictated by the details of the active feedback system itself. Experimentally it has

been reported that the further optimization of plasma shape in DIII-D may be limited

by the difficulties in detecting and controlling a significant nonrigid component to the

plasma motion [20].

In this paper we study the linear MHD stability of the axisymmetric mode in tokamak

plasmas with realistic passive conductors and active feedback systems. We focus on the

effects of passive conductors and active feedback on the eigenfunction of the instability. It4

is shown that the eigenfunction is modified in each case in such a way that the stabilizing
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effects of the particular feedback system are reduced.

To perform this study we use the N OVA-W stability code [25]. This linear MHD sta-

bility code includes the effects due to realistic resistive conductors and an active feedback

system in the vacuum region. The following section gives a brief overview of the NOVA-W

calculation, outlining the calculation of the vacuum boundary condition. However, the

reader ix rel%rred to Ref. [25] for a complete description of the formulation, numerical

calculation, convergence studies, and the code comparisons to analytic and numerical

models demonstrating its accuracy and utility.

Section 3 focuses on a study of the effect of the position of discrete passive conductors

on the instability eigenfunction and growth rate. We examine three equilibria of differing

shape and aspect ratio. For a particular position of a pair of discrete passive conductors,

we show that the plasma eigenfunction is modified to reduce the stabilizing effects of the

conductors.

It is important to understand and to be able to predict the most effective location

for placement of discrete conductors for passive stabilization. In a reactor design, for

example, the space near the plasma is valuable, and it would be desirable to reduce the

volume of passive conductors that must lie close to the plasma. It is therefore of interest

to understand how different passive conductor configurations affect the eigenfunction and

the growth rate. This analysis is not only important for the case of individual discrete

conducting plates, but also for the case of a complete conducting shell. The analysis

provides insight on where one might increase the wall thickness to significantly improve

the passive stabilization without everywhere increasing the thickness which might have

otherwise detrimental effects.

In Section 4 we study the effects of an active feedback system on the PBX-M equilib-

rium. Varying the position of the flux-loop detectors which measure the plasma vertical

position is shown to chazlge the deformation that the eigenfunction experiences due to

the feedback system. These deformations are such that the measurable signal at the

a¢
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flux loops, and thus the ability of the feedback system to detect vertical displacement, is

reduced. This confirms the conclusion of Ref. [23] for a similar PBX-M equilibrium, but

here we explicitly show the eigenfunction deformation and how it affects the effectiveness

of the feedback system.

k

2. Numerical Formulation

The NOVA-W stability code solves the linear ideal MHD stability eigenvalue equations

_'= vp_+_×(v ×g) + g ×(v ×_) (1)

P't + (' VR + 7RV. _'= 0, (2)

where

_= v x ((× g) (3)

is the perturbed magnetic field in the plasma, /_ is the equilibrium magnetic field, Pl

t and P are the perturbed and equilibrium particle pressures, respectively, p is the plasma

mass densit;y, _, = g is the ratio of specific heats, ( is the displacement vector, and a_ is
I

the eigenvalue (normalized growth rate). The equilibrium magnetic field is represented

by

g = v_ x v¢ + q(¢)v¢ x ve (4)

or

g = v¢x v¢ + g(¢)v¢, (5)

where 27r_.,is the poloidal flux contained within a surface, 19 is the generalized poloidal

angle, ( is the generalized toroidal angle, ¢ is the standard toroidal angle from (X, ¢, Z)

cylindrical coordinates, q(¢) is the safety factor, and g(¢) is the toroidal field function.

The second definition for /_, Eq. (5), follows for an ,'_xisymmetric equilibrium. The

, generalized angle coordinates (19,_) are chosen to make the magnetic field lines appear

straight in this coordinate system.

'v,

5
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We use an axisymmetric flux formulation for the perturbed vacuum magnetic field.

This is the natural representation for the axisymmetric mode and allows the existence

of perturbed axisymmetric (feedback) currents in the vacuum. The perturbed flux also
a

allows simple boundary conditions for a thin wall approximation of the resistive wall, and

allows the use of flux difference measurements as the measurement of perturbed position.

Therefore the perturbed magnetic field in the vacuum is represented by

" iv
b = 2_r ¢ x V X + atrC, (6)

where X is the perturbed poloidal flux in the vacuum and at is the perturbed toroidal

component.

One can relate the perturbed flux _ to the sum of all the perturbed currents in the

'vacuum region and Green's integrals over the boundary surfaces of the vacuum region:

N 1 _dls
X(_)=_°r'a(_;r_) +_'_ Is -X7 [Xv_G(_;_)-a(_;_)v_X]" (7)i=1 S

Here, G(_';r"s) is the toroidal Green's function for this problem. The three boundary J

surfaces consist of the plasma-vacuum interface, the inside surface of the resistive wall,

and the outside surface of the resistive wall. Here Vm = ft. V where _ is the unit vector

normal to the surface, and the feedback currents are defined as linear combinations of

the perturbed flux and the corresponding time-derivative terms at prescribed observation

points. Perturbed magnetic field measurements (magnetic probe measurements) can also

be included in the feedback law. As an example we can consider a simple feedback law

in which the desired current for a given feedback coil is proportional to the difference in

the perturbed flux (and its time derivative) at two observation points symmetric about

the midplane. This flux difference serves as a measure of the vertical displacement of the

plasma, and can be very accurate in the case of rigid plasma motion. In this case the

feedback currents are defined as

ta

= X(Xo ,Zo )]+Z [X(Xo,,zo,)- 2(Xo , (s)
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The boundary condition at the resistive wall is found by using the thin-wall approx-

imation. This leads to an expression relating the jump in the normal derivative of the

flux at the resistive wall to the perturbed flux at the wall:

[[(_.rx)]] =2,_x_0_J .v¢ = _0_ 0X,7 &_ = -i_0 77X_, (9)

. where [[...]] denotes the jump across the thin resistive wall, 6w is the thickness, and 77is

the resistivity of the wall.

The boundary condition required by NOVA to solve the eigenvalue equations is to

relate the Fourier components Ptm of the total perturbed pressure to the components _,m

of the radial displacement _, at the plasma-vacuum interface. The perturbed pressure

Pt at .the P-V interface is found in terms of the normal derivative of the flux at the

boundary:

vx
P, = _., _= (rc x rc). (rc x ,5-_--)+ g(¢,d_o)v¢,a_V¢, (10)

IV¢l 1
- 27rX 2V,, x + atg(O,dg,)_/.-"_

where ¢,ag, is the value of ¢ at the plasma-vacuum boundary. Similarly, the normal com-

ponent of the displacement of the plasma boundary is related to the perturbed poloidal

z flux at the boundary by

_¢ = (. v¢ = _ _¢, exp(imO) = 1 (11)

The goal of the vacuum calculation is to find V_ in terms of _ at the plasma-vacuum

boundary. This then gives the required relationship between Pt and _¢ through Eqs. (10)

and (11). The reader is referred to Ref. [25] for details on this calculation including

specifics on the passive conductors and the feedback system in the calculation.

3. Non-rigid effects on passive stabilization

In this section we will examine how variations in the passive conductor configuration
4

alters the form of the eigenfunction and how this affects overall stability. We consider



first a very large aspect ratio (A = 100) elliptical equilibrium with elongation _ = 2.0

and with a nearly flat current profile. This equilibrium was used [25] for comparison of

NOVA-W calculations to a simplified analytic model [12]. With this equilibrium we can

consider the effects of the deformability of the eigenfunction with respect to variations

in the passive Conductors without the effects of toroidicity or triangularity. Next we will

consider toroidal effects with an elliptical equilibrium at lower aspect-ratio, and finally the

CIT design equilibrium which has significant triangularity in addition to toroidicity. The

wall contour for both of the elliptical equilibria is a concentric ellipse with the distance

between the wall and the plasma on tLe midplane equal to one half the plasma minor

radius. The wall contour for the CIT equilibrium corresponds to the design vacuum vessel

contour, as was used in previous studies [25,26], but with a uniform thickness. "

The NOVA-W code calculates the linear eigenfunction of the instability as a sum over

poloidal harmonics: _¢ = _,_ _,_ exp(im®). For configurations completely symmetric

about the midplane (the only configurations considered here) this sum can be reduced

to a sum over sin(me). For an infinite-aspect-ratio plasma with a circular cross-section,

a rigid shift would be represented by a pure m = 1 component in the eigenfunction.

However, for the more complicated cross-sectional shapes at finite aspect ratio that we 1

consider here, a rigid shift, when decomposed into Fourier poloidal harmonics of the

equal-arc-length magnetic coordinate system, is not a pure m = 1 mode. This rigid shift

is still dominated by the m = 1 component, but there are higher m contributions as well.

3.1. A very large aspect-ratio ellipse

We demonstrate here that when only a small conducting segment of the wall is present,

there is a strong dependence of the normalized magnitude of the m > 1 components on

the poloidal position of the plate. There is also a drastic variation in the growth rate

with respect to the poloidal position. In order to study this phenomenon in detail, we 0

performed a series of calculations in which there is only a single pair of up-down symmetz_c

t0

8



conducting sections of the wall. The length of each of these conducting "plates" is

approximately 1/8 of the circumference of the complete wall contour, and has a resistance

equal to a 1 cm thickness of aluminum. The ratio 6/77 is reduced over a few grid points

from the value of the conducting plate to the value of the "vacuum." This helps to avoid

numerical difficulties. In each calculation the plates are centered at a different poloidal
e

location [O[, where O is measured with respect to the outboard midplane. The value

of [®[ is changed, between calculations, in increments from IO[ = 0 at the outboard

midplane to [O[ = zr at the inboard midplane. We are particularly interested in how the

non-rigid components of the motion change with regard to the variation of the passive

conductor position. To characterize these variations we show the changes in the ratios of

the m # 1 components to the m = 1 component of the eigenfunction, (e,_/_l, measured

at the plasma edge.

The very large aspect-ratio ellipse results are shown in Fig. 1. The figure shows the

computed values of _¢2/_¢1 and _¢3/_¢1 as a function of I®1. Also shown is the growth

rate 7 as a function of I®[. The values of 7, _2/_¢1, and _,3/_,1 for a uniform, continuous

wall (at left; solid) and with no wall (at right; solid) are also shown, as are the (_2/_¢1

and _¢3/_1 ratios for the Fourier representation of the uniform "_ertical rigid shift (onI

the axis) for comparison.

The results show that the most effective stabilizing position for the plates is directly

above and below the plasma at IOI = zr/2. The growth rate rises rapidly as the conductors

are moved away from this center position. It is interesting to note that the highest growth

rate, corresponding to the case in which the plates are adjacent at the inboard midplane,

is nearly as large as the growth rate with no passive stabilization whatsoever. In fact,

this point and the neighboring positions are ideally unstable, ire., unstable with ideal

conductors. The vertical lines mark the ideal stability boundaries. The points outside

the region bounded by these lines re ideally unstable. It is clear that conductors located

. on the far outboard or inboard sides provide very little stabilization. There is, however,

a well defined minimum in the growth rate for the plates located at I®1 = zr/2, where

9



thegrowthrateisonlyabout 3.5timesthatfora completelyenclosingwall.Therefore,

optimallyplacedconductorscan providemuch stabilization.

The form of f_ for the purely vertical rigid shift is essentially identical to the true

eigenfunction with no wall. This is also very similar to the eigenfunction with a completely

enclosing resistive wall. But when discrete passive conductors are present, and are moved

in poloidal position, the resulting eigenfunctions vary significantly from a rigid shift.

The relative contribution of the m = 2, 3 components to the eigenfunction is seen to

vary considerably as the plate position is varied, with the m = 2 contribution dominating

the ra = 3 contribution by as much as a factor of 4. lt is interesting that for the cases with

either a completely surrounding resistive wall, or no wall at all, the rn = 2 contribution

is nearly zero, and the rn= 3 component is the only significant higher m contribution

to the eigenfunction. Also, the ra = 2 contribution is zero when the plates are placed at
k

®1 = rr/2. Therefore it is only for off-center placement of the discrete conductors that

we see any m = 2 contribution. It is also seen that the variations in the eigenfunction

and growth rate are almost completely symmetric (or antisymmetric) with respect to

IGI = 7r/2. We show in the following sections that the curves for _,, _2/f¢1, and _¢3/¢:¢1

exhibit less symmetry with respect to I®1 = lr/2 for equilibria with lower aspect ratio z .

and especially for those with triangularity.

Let us now consider the variations in the relative magnitudes of the m = 2 and m = 3

components of the eigenfunction. The induced currents in a resistive conductor that pas-

sively stabilizes the plasma are proportional to the magnitude of the perturbed poloidal

flux that diffuses through the conductor. In the thin-wall approximation this is reflected

in the Jump condition [25] at the resistive wall, Eq. 9. Figure 2a,b shows the perturbed

flux, for the large aspect ratio elliptical equilibrium surrounded by a uniform, continuous

resistive wall, due only to the rn = 2 and rn = 3 components of the eigenfunction, respec-

tively. The signs of these components of the perturbed flux with respect to the dominant

ra = 1 component are also shown.
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The m -- I component of the eigenfunction always dominates and therefore accounts

for the largest part of the stabilizing wall currents. In certain regions the perturbed flux

due to one of the m > 1 components of the eigenfunction is of the opposite sign to the

• flux from the dominant m = 1 component. Therefore, the eddy currents induced by these

higher m components of the flux subtract from the overall stabilizing eddy currents for

conductors in those regions. In other regions these components of the flux are of the

same sign as the dominant m = 1 component to the flux and therefore they add to the

stabilizing effect. Clearly an increase in one of the rn > 1 components would enhance

the stabilizing effect of a conductor which is present in the region where this component

of the flux has the same sign at the m - 1 component, but would detract from the

stabiiizing effect when it is in a region of the opposite sign flux. For.this simple case the

m _h poloidal harmonic component of the flux divides each half plane into m regions of

roughly equal extent in ® and of alternating sign.

If we examine the variation in _¢_/_¢1 in Fig. 1 and compare to Fig. 2a we see that

when the conductor is in the region where a positive _¢2/_¢, would induce positive wall

currents the ratio _2/_,, is, in fact, negative. Conversely, when the conductor is in the

other region of the half-plane (where a positive _¢2/_¢1 induces a negative contribution

to the wall currents) the ratio _2/_1 is positive. So we see that the m = 2 contribution
{

to the induced currents in the conductor always reduces the total induced current and

is thereby destabilizing. Only when the conductors are directly above and below the

plasma, centered at I®] = _r/2 where the rn = 2 component would cancel itself anyway,

is this component zero, as it is in the case with no wall or a complete continuous wall.

The variation in _3/_e, shows similar behavior. This curve changes sign twice ms I®1

is varied and this is such that the m = 3 component induces destabilizing eddy currents

when the discrete conductor is any region. The curve is weighted towards the negative

side since the rigid shift, eigenfunction has a small, negative m = 3 component, but it

does become small and positive in the region centered about (91 = _'/2 which induces

destabilizing currents in a conductor in that region.

• 11



Therefore the growth rate is smallest and the plasma is effectively stabilized on the

ideal time scale when the conductors are centered at [®1 = r/2. Here the m = 2

contribution is zero, and the m = 3 component is destabilizing, but small. As the
I

conductors are moved away from I®1 = 7r/2 the m = 2 component increases rapidly in

magnitude and is always destabilizing. These modifications of the eigenfunction lead to

vast changes ill the growth rate as the conductors are moved in O.

The form of the eigenfunction with a uniform surrounding resistive wall reflects the

sum of the effects of the conductors at all the poloidal positions along the wall contour.

The values for _¢2/_¢1 and for _¢3/_¢1 with the complete wall are roughly in the middle

of the range of the different points in Fig. 1.

Next we consider toroidal effects by studying a lower aspect-ratio ellipse with A = 4.5,

and _ = 1.6. The effect of toroidicity is clearly seen in Fig. 3. These curves show the

normalized stabilizing radial field at the magnetic axis, b'_(0), due to a unit current at

every poloidal position ® on the wall contour. This is shown for both the low aspect ratio

ellipse of Section 3.2 (solid)and for the very large aspect ratio ellipse (dotted). Clearly

the currents on the outboard side provide a much more stabilizing effect than those on

the inboard side for the low aspect ratio case. We expect, therefore, significantly higher

growth rates for conductors on the inboard side compared to outboard conductors for

this case. It is interesting to note, however, the dcminating effect of the modification

of the eigenfunction. For the very large aspect-ratio case, if the conducting plates are
..,¢

centered at either of the two maxima of b_(0) on either side of ®l = 7r/2 the growth rate

is much higher (by over a factor of 200--i.e., ideally unstable) than for the conductor at

]®] = _r/2. This is true even though the stabilizing effect of a unit current is highest at

those points. This is due to the large destabilizing contributions from the m = 2 and

m = 3 components of the modified eigen.function which significantly reduce the overall

indtlced current. These modifications reduce the stabilizing currents to such an extent

that passive conductors at these positions are ineffective in spite of the slight advantage
..,¢

in b,(0).
W
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3.2. A lower aspect-ratio elliptical equilibrium

We perform this study again with an elliptical plasma at lower aspect ratio (A = 4.5).

• The equilibrium parameters such as physical dimension, elongation, and toroidal field are

the same as the for AR.IES-I equilibrium [27-29] but the triangularity is zero. We can

" compare the results of this case to the previous case in order to see how toroidal effects

come into play.

Shown in Fig. 4 are the Fourier components for the true eigenfunction for the case

of a completely surrounding conducting wall (Fig. 4a) and for the uniform vertical rigid

shift (Fig. 4b). The form of the components for the actual eigen.function and the rigid

shift are very similar, indicating that the most unstable displacement when a full wall

is present is, in fact, very nearly a uniform rigid shift. Nevertheless, we see from Fig. 5

that the form of the eigenfunction changes significantly with respect to the position of

the plates, and thus shows some deformability and variance from the rigid shift. Figure 5

also shows how the growth rate 7 varies with respect to poloidal plate position.

The form of the curves in Fig. 5 is noticeably different from the very large aspect-

ratio case, Fig. 1. The curves in this case are less symmetric about [®[ = _'/2, which is

a consequence of toroidal effects. The optimal plate position for passive stability is now

slightly towards the outboard side at about [®[ = 0.4487r. The points on the outboard

side (® < 7r/2) have significantly lower growth rates than their corresponding points on

the inboard side. The _2/_¢1 , urve is no longer symmetric about _¢2/_¢1 = 0. The

value of _,2/_¢_ at [®[ = 7r/2 is approximately 0.1, which is very close to the values both

for the case with a complete resistive wall and for the case with no wall. Thus we see

that the _¢2/_,1 values are shifted towards the positive. It is interesting to note that the

point where _2/_¢1 crosses zero has roughly the lowest growth rate (this was also true in

the large aspect ratio case) indicating that a nonzero m = 2 component is destabilizing.

The _¢3/_¢1 curve is also shifted far to the positive side, and is no longer symmetric
w

with respect to [®[ = _r/2. The v_rtical lines in Fig. 5 again show the ideal stability

• 13



boundaries. This region is no longer symmetric with respect to ®[ = 7r/2, but is shifted

slightly to the outboard side which reflects the toroidal effects.

We again see that the eigenfunction is modified by the position of the conductor in o

such a way that the m = 2, 3 components change to reduce their contribution to the

stabilizing eddy currents for each configuration of passive plates. When the poloidal

plates are in the outboard region the eigen.function is such that the m - 2 component is

negative and therefore destabilizing. As the plates are positioned in the inboard region

the m = 2 component becomes positive, which is strongly destabilizing for conductors

in this region. Also, while the m 3 component never becomes negative, it does vary

greatly in magnitude with respect to the plate position in order to weaken the stabilizing

influence of the plates.

An explicit demonstration of the plasma deformation is presented in Figs. 6 and 7. The

figures show the Fourier decomposition of the radial eigenfunction _ and the projection
...¢

of the displacement _ onto the poloidal plane for the case of the plates on the i_board

side [®[ _ 37r/4 (Fig. 6) and on the outboard side at [®[ _ 7r/4 (Fig. 7). It is seen that

the unstable plasma displacement adjusts as the plates are moved so that the stabilizing

effect of the plates is reduced, r

Figure 6a shows the eigenfunetion _¢ for the case with the passive plates on the

inboard side at [® _-, 3w/4 (second point from the right on the curves in Fig. 5). The

eigenfunction _ is noticeably different from the eigenfunction for the case with a full wall

and also from the rigid displacement. The differences result in the plasma displacement

shown in Fig. 6b in which the displacement is seen to be small on the inboard side near

the plates, and is such that the displacement normal to the conducting plates is reduced

near the plates. In this way the plasma appears to "slip" around the plates in a way to

reduce the resistance to the motion.

Figure 7 shows the eigenfunction of the instability with the passive plates on the

outboard side at [®[ _ 7r/4 (second point from the left on the curves in Fig. 5). The

14 *



Plasma Current Ip 12.30 MA

Major Radius Ro 2.182 m

• Minor Radius a 0.660 m

Elongation _(95%) 1.996

• Triangularity 6(95%) 0.258

Toroidal Field BT(0) 11.0 T

q(95%) 4.5

Z 0.0092

n_(0) 1.08 x 1021 m -3

Table 1' Equilibrium parameters of CIT plasma used in the passive stabilization study.

deformation of the eigenfunction is clearly different from that of Fig. 6, and it is again

quite different from the rigid shift. This difference can be traced to a change in magnitude

of the m = 3 component and a change in sign_and magnitude of the m = 2 component.

The displacement vector plot shows the plasma is again displaced in such a way that the

stabilizing effect of the plates is reduced. The magnitude of the displacement is seen to

be very small on the outboard side near the plates, and the displacement normal to the

conductors is reduced which causes reduced stabilization from the plates.

3.3. The CIT equilibrium

We now perform the same study using the CIT design equilibrium. This equilibrium

has been studied in depth using the NOVA-W code with regard to convergence studies and

active feedback stabilization [125].The equilibrium parameters axe shown in Table 1. This

equilibrium has significant triangularity (* = 0.26) as well as elongation (_ = 2.0). We

" study the variations in the growth rate and the relative non-rigid component contributions

" 15



to the eigenfunction with respect to the position of the symmetric poloidal plates as was

done in the previous sections. The results are shown in Fig. 8, in the same fashion as the

results of previous two cases.
0

The same reasoning can be applied to the variations in the relative contributions

_,_/_¢1 for this equilibrium. Figure 9 shows the contributions of the m = 2 and m = 3

components to the perturbed flux in the vacuum. We note that the _2/_¢1 ratio in

Fig. 8 changes slga as the conducting plates are moved from the outboard region to the

inboard region, so that the m = 2 contribution to the eddy currents in the conductors is

always of opposite sign to the overall stabilizing currents. However, the maximum positive

magnitude is over twice as large as the maximum negative magnitude. This reflects the

significant m = 2 component to the eigenfunction in the case with no conductors. The

m - 3 component to the eigenfunction doesn't change sign like the m - 2 component,

however its magnitude is much higher when the conductors are in the region in which the

m = 3 component adds negatively to the overall eddy currents. It varies with respect to

the position of the conductors to increase its destabilizing contribution and decrease its

stabilizing contribution.

The eigen.function for this equilibrium with significant triangularity (both with a

complete wall and with no wall) is quite different from the uniform vertical rigid shift.

The displacement has a prominent inward motion towards the x-point region [25]. For

the configurations with the conductors on the outboard side this effect is enhanced and

the eigenfunction differs even further from a rigid shift. However, when the conductors

are on the inboard side this effect is reduced and the most unstable motion for this case

is, in fact, nearly a uniform, vertical shift. Both cases show the effect of the placement

of the passive conductors to modify the eigenfunction such that the motion towards the

conductors is reduced.

The effect of triangularity in this equilibrium makes the curves in Fig. 8 even less

symmetric with respect to I®1 = 7r/2 than the previous case. The most effective plate
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position is further to the outboard side at about I®l = 0.403_. The vertical lines show the

ideal stability boundaries, and it is seen tha_,:all configurations with the plates centered

on the inboard side are ideally unstable. The region in which passive conductors give

ideal stability is narrower than the previous cases and is exclusively on the outboard side,

. basically limited to 7r/4 <_"[®1 <- 7r/2

This analysis has also been perfoImed for the ARIES-I design equilibrium [26]. This

equilibrium has a smaller elongation (_ = 1.61), but larger triangularity (6 = 0.43),

than the CIT design equilibrium. The eigenfunction is much further from a ur.iform,

vertical shift than the previous case, again even more so when the conductors are on the

outboard side, but again to a lesser extent when the conductors are on the inboard side.

The greater triangularity of this equilibrium eliminates even further any symmetry about

I®I = lr/2, and the most effective conductor position is slightly further to the outboard

side at about ]®[ = 0.3947r. This is true even though the ARIES-I equilibrium has a

larger aspect ratio than the CIT equilibrium. This indicates that triangularity leads to

; preferred outboard positions of the conductors to an even greater extent than toroidal

effects.

A similar analysis, but one which used a rigid plasma motion assumption, has been

carried out for the ITER configuration [13]. In this case a comparison was made between

growth rates with a full wall and a partial wall covering about half the area on the

outboard side. It was shown that an optimally placed partial wall would stabilize the

plasma almost as well as a complete wallmthe partial wall growth time being higher by an

average factor of only 1.6 times the full wall growth rate. Another study for the ARIES-I

reactor design [29] gave similar results with this rigid plasma model. It was also shown

that the growth rate for ARIES-I with a full wall using the rigid plasma model was 20%

lower than the result from NOVA-W. In general, we see that stabilization by a partial

wall will be much less effective because of deformations in the plasma eigenfunction.

- Clearly plasma deformations can play a significant role in the passive stabilization of

highly shaped tokamak plasmas.
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Plasma Current/p 567.4 kA

Major Radius Ro 1.635 m B

, Minor Radius a 0.308 m

Elongation _(95%) 1.951

Toroidal Field BT(0) 1.20 T

q(95%) 2.51 t

0.02

he(0) 3.35 X 1019 m -3

i

Table 2: Equilibrium parameters of PBX-M plasma used in the active feedback sta-

bilization study. This equilibrium corresponds to a modification of the equilibrium of

experimental shot #226879.

4. Non-rigid effects on the active feedback stabilization of PBX-M

In this section we consider the effects of an active feedback system on the form of •

the eigenfunction and how this affects the overall stability. In Ref. [23] a numerical

calculatiop, using the Tokamak Simulation Code [18] of the active feedback stabilization of

the axisymmetric instability in the PBX-M tokamak was described. It was demonstrated

that different flux-loop locations which measure equally well the plasma displacement in

the passive sense do not work equally well in stabilizing the axisymmetric motion given

the same active feedback coils and gain law. In particular, it was shown that the flux loop

pair on the inboard side was ineffective in stabilizing the vertical instability regardless of

the value of the gain. The outboard pair, however, could be used successfully to stabilize

the plasma.
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" suggested thatThese results were demonstrated using Nyquist techm_ues, and it was

if the plasma were unstable enough, it would be able to deform under the influence of

the active feedback (i.e., the eigenfunction would be modit}ed) which in such a way that
the flux difference measurement at the flux loops could be made so close to zero that .

the active feedback system would be rendered ineffective!. The feedback system would

operate normally, but the flux-loop measurements would be worthless owing to the plasma

_ demonstrate this conjecture usingdeformation. It was impossible, however, to explicitly I

TSC and the other analysis methods used. The NOVA-W code, on the other hand, is

ideally suited for examining this problem, and we will show how the active feedback

system can inI_luce a modification of the PBX-M eigenfunction in such a way as to make
/

the active feedback system ineffective for certain flux-loop locations, and how it will

minimize the stabilizing effect of the feedback system for any flux-loop configuration.

For this we consider a PBX-M equilibrium similar to that used !ln Ref. [23].

4.1. Active feedback stabilization of PBX-M using the inboard flux loops

' , I

We use a PBX-M equilibrium corresponding to expenmenl!al shot #226879. The

listed in Table 2. The equilibrium u_ed here was taken fromequilibrium parameters are
!

a time-dependent TSC simulation in which the actual experimental coil currents from

this _shot were used for the simulation, and the TSC results compared well with the ex-

perimental magnetics data [30]. This was done in the same fashion as an earlier study

of '_he PBX tokamak [17]. To produce the modified equilibrium used in these calcula-

tions, the vertical field was increased in order to move the plasma inward, away from

the outboard stabilizing plates and toward higher negative field index. This makes the

equilibrium more vertically unstable than the original experimental equilibrium. Such

an inward radial shift could be caused in an experiment by a loss of thermal energy or

redistribution of current [17].
m

Figure 10 shows the equilibrium plasma boundary, the PBX-M wall contour (the
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wall contour is composed of sections of high conductivity which represent the passive
q

stabilizing plates used in the PBX-M device and includes connecting regions of very high

' resistivity representing the axisymmetric gaps between the passive stabilizers), the active
b

feedback coils, and the three sets of flux loops to be used. We consider first the case

of the inboard flux loops, (Xo, Zo) = (1.255, 4-0.10), which were found previously [23] to

be ineffective for active feedback stabilization. A proportional gain law was used in this

calculation. The normalized feedback gain is equal to #o/2 times the gain given in units
i

of Amps/Weber-radian.

Figure 11 shows the instability growth rate vs. normalized feedback gain, and selected

component ratios (_2/_¢,1 and _¢4/_1) vs. gain. As the feedback gain is increased from

zero, the growth rate drops rapidly, indicating that the feedback system is operating

properly. The components of the eigenfunction remain fairly constant with respect to

the gain. At higher gain (approximately a >_ 1.5), however, we see that the m = 2

component of the eigenfunction changes significantly. It becomes less negative, then

positive, and then rapidly increases in magnitude with increasing gain. In the same

region of gain space where we see the sudden rapid increase of _¢2/_¢1 we also notice that

the growth rate 3' starts to level off. The growth rate approaches marginal stability and

does not appear to become more stable at high values of feedback gain. At % = 6.0,

double the maximum gain shown in Fig. 11, the growth rate is still at marginal stability.

It is virtually unchanged (only very slightly smaller) from the gain at c_g = 3.0. At

these high values of gain the active feedback is no longer effective in providing additional

stabilization to the plasma. Instead, the eigenfunction is changing in form, thereby

maintaining the instability. The ratio _¢4/(¢1 also changes significantly as the feedback

gain is increased--it roughly quadruples in magnitude in this range of the feedback gain.

Figures 12-14 show the perturbed flux contour plots at three different values of nor-

malized gain (ag = 1.0, 2.0, 3.0) spanning the range of Fig. 11. Examining these perturbed

flux plots allows us to see how the eigenfunction modification changes the effectiveness

of the feedback system which uses the inboard flux loops.

¢
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Figure 12 shows the perturbed flux contours with normalized gain % = 1.0. Referring

to Fig. il we see that the eigenfunction is nearly identical to the form it takes with no

, active feedback--the ratio _¢2/_1 is virtually unchanged, and _,4/_;1 is only slightly

more negative. Therefore Fig. 12 shows, in effect, a plot of the perturbed flux contours of

the feedback system interacting with essentially the original unstable eigenfunction. We

see that the perturbed flux contours from the plasma are fairly equ"Mly weighted on both

sides of the plasma. The zero contour, shown as a dotted line on this diagram, is distant

from the flux loops, and the value of the perturbed flux at the flux loops (measurable

signal) is relatively large.

Figure 13 shows the perturbed flux contours for ag = 2.0. Referring to Fig. 11 we see

that the eigenfunction has undergone considerable modification at this value of gain. In

particular, the m = 2 component is quite different and has even changed sign. One can

see from the plot of the perturbed flux contours that the contours of plasma flux have

become shifted toward the outboard side, and the value of perturbed flux on the inboard

side near the flux loops has been greatly reduced. The null contour has moved closer

to the flux loops. We see from Fig. 11 that at this point the growth rate has already

begun to level off with respect to increasing feedback gain. The change in the form of the

perturbed flux contours from the plasma indicates a shift in the unstable plasma motion

toward the outboard side.

Figure 14 shows the perturbed flux contours when the normalized gain ag = 3.0,

the highest gain value shown in Fig. 11. The plasma deformation is quite large at this

point, especially with regard to the m = 2 component. The perturbed flux contours

also reflect the considerable deformation of the plasma. The contours from the plasma

are heavily weighted toward the outboard side. The perturbed flux indicates that the

unstable motion is now more of a purely vertical motion instead of the motion towards the

x-point (in the direction of the tip of the bean) which is characteristic of the instability

- with little or no active feedback--see Fig. 12. Notice also that the perturbed flux on the

inboard side, near the flux loops, is almost zero. There are no contours of plasma flux
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seen on the inboard side, and the deformation of the eigenfunction has allowed the null

contour to move very close to the flux loops. The measured flux difference at the flux

loops is now very small. The feedback system is rendered ineffective because it can no
P

longer measure and feed-back on the deformed vertical motion.

It should be noted that although the case we examined in this section had zero

derivative gain, an increase in the derivative gain was found to have no real effect on

the stabilization. The growth rate at large gain ag is still at the marginal stabi!ity

limit with increased derivative gain. This is not surprising, since the results show the

oscillation frequency wT to be zero. Therefore there is no overshoot and no oscillation.

The ineffectiveness of the feedback using these flux loops is due solely to the eigenfunction

deformation.

4.2. Active feedback stabilization usi_.2gthe centered-outboard flux loops

We next consider feedback stabilization using the centered-outboard pair of flux loops x

of Fig. 10, (Xo, Zo) = (1.64, :k.56). This flux-loop pair location corresponds most closely

to the actual flux loops used for vertical control in the PBX-M experiment. Figure 1ha z

shows the growth rates "_. proportional gain ag for three different values of derivative gain

_g. Figure 1hb shows the growth rate _, vs. oscillation frequency wr for the same three

values of derivative gain. It can be seen that with zero derivative gain the axisymmetric

mode cannot be stabilized. The growth rate can be reduced to about 20 s-1 at ag = 1.5,

but further increases in gain do not appreciably lower the growth rate while they do

however, significantly increase the oscillation frequency w_. Large proportional gain is

driving a large overshoot that leads these to oscillations. Clearly some derivative gain

is necessary. By increasing the derivative gain to flg/_g = 0.0hs -1 the plasma can be

stabilized and the oscillations significantly reduced. A further increase in derivative gain

to/_g/ag = 0.10s -1 decreases the oscillation frequency even more and allows stabilization

to occur at a lower value of proportional feedback. Unlike the inboard flux-loop pair,

4
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this pair of flux loops does allow for adequate stabilization of the plasma provided the

derivative gain is large enough. This agrees lt,: results obtained with TSC for this

same equilibrium [30]. Figure 16 shows the variation of the m - 2, 4 components of the
1

eigenfunction, as well as the growth rate 0' and oscillation frequency _, with respect to

feedback gain ag for the three values of derivative gain.

Figure 16a shows these results for the case with no derivative gain. We see a strong

reduction in the growth rate 7 with increasing gain ag until the gain reaches ag _ 1.5. At

this point the "y curve levels off and does not stabilize much more with further increase

in gain. Fhrthermore, we see _, increase rapidly from zero beginning at ag _ 1.25.

The oscillation frequency _ increases steadily with increasing gain, while "r no longer

decreases by any significant amount. This demonstrates that the restoring force from

the feedback system is driving the oscillations instead of stabilizing the plasma. We also

see some modification of the m - 2, 4 components of the eigenfunction inl Fig. 16a This
I

deformation, while noticeable, is not strong at this point. ,'

Figure 16b shows the results for the case using the centered-outboar d flux loops with

figag = 0.0hs -1 derivative gain. In this case the plasma can be stabilized :zith sufficiently

large feedback gain. The oscillation frequency here is less than that in the zero derivative

gain case, although it is still a significant fraction of that case and cor,tiiaues to increase

with increasing gain. We also see a larger change in _¢2/_1 with respect tO increasing gain

ag than in the zero derivative gain case. After a small decrease in negl_tive magnitude

at ag _ 0.75, the value of _¢2/_1 begins to get more negative with increasing gain.

This change in _¢2/_¢1 corresponds to a change in the slope of the 7 vs. c_g curve. As

_2/_._1 begins to become more negative, the reduction in 7 with respect to c_gdecreases.

Thus, there appears to be a plasma deformation that is reducing the effectiveness of the

feedback syc_,-'ro with the flux loops at this location. This modification is not enough to

keep the feedback system from stabilizing the vertical instability, but it does reduce the

. effectiveness as shown by the change in slope of the 7 vs. ag curve.
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Finally, Fig. 16c shows the results for the case with _g/% = 0.10s -1 derivative gain.

In this case the oscillations have been much reduced, and the plasma is stabilized at a

lower value of %. Here also, we see a large change in (¢2/_¢1 with respect to the gain.

There is a rapid decrease in _2/(_1 with respect to ag starting at ag _ 0.75. This is

strongly correlated with the sudden change in the slope of the At vs. ag curve. The hf

vs. c_g curve levels off in the region where the eigenfunction is significantly deformed.

This corresponds to about the point where the axisymmetric mode becomes stable, so

the deformation is not enough to keep the plasma unstable when these flux loops are

used, but it does keep the feedback system from stabilizing the motion any further, as

witnessed by the sudden change in slope of the _, vs. ag curve.

The m = 2 component ratio _2/_1 begins to decrease (increase in negative mag-

nitude) as the gain is increased above ag _ 1.0-1.5. Note that this change is opposite

to the change in _¢2/(_1 from Fig. 11 for the inboard flux loopJ. In that case we found

that (¢2/(_1 changed sign and grew to a large (positive) value with increasing feedback

gain. This caused the perturbed flux contours from the plasma to be shifted toward the

outboard Side away from the flux loops. This left a relatively small value of perturbed

plasma flux at the inboard flux loops. In the present case, when the centered-outboard '

flux loops are used to control the feedback system, we see the opposite effect. This im-

plies that the perturbed ftux on the outboard region near these flux loops is somewhat

reduced.

Figure 17 shows the perturbed ftux contours for the active feedback at gain ag = 2.25

using the centered-outboard flux loops. Careful examination and comparison with Fig. 12

shows that the perturbed flux near the flux loops is slightly reduced from the case with

little or no feedback gain. This is most clear by noticing how much closer the zero-flux

contour has moved to the controlling pair of flux loops. The plasma eigenfunction is

again deformed in such a way to reduce the effectiveness of the feedback system using

this particular pair of flux loops. However, _.he deformation is clearly very different from

the inboard flux-loop case as one can see by the difference in (¢2/(¢1 vs. ag in Figs. 11 and
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16. This results in a quite different modification of the perturbed fl!_ contours between

Figs. 14 and 17. The only difference between these two cases is the location of the flux

loops, and this difference leads to vastly different plasma deformations.
e

" It is interesting that the deformation is weak when the feedback system is ineffective

. due to insufficient derivative gain. However, as the derivative gain is increased, thereby

reducing the unwanted oscillations, the feedback is more effective in reducing the growth

rate, but it is also more effective at inducing a deformation in the eigenfunction. This

deformation becomes larger with increasing gain, and the effectiveness of the feedback

system is reduced.

4.3. Active feedback stabilization using the far-outboard flux loops

Next we consider active feedback using the far-outboard flux loops shown in Fig. i0.

Figure 18 shows the results using this pair of flux loops with a gain law that includes

derivative gain of _g/ag = 0.10s -1. We see that even with this large derivative gain and

the correspondingly low values of _v_shown in Fig. 18, the plasma cannot be stabilized

• beyond a certain point (_, _ 4 s-l). Figure 18 shows a large initial drop in _, with

increasing gain. This stabilization begins to level off, however, at ag _ 1.75.

The component ratios _e2/_¢1 and _¢4/_,1 show a significant and varied deformation of

the eigenfunction with respect to increasing gain. Initially there is a sharp rise in _2/_1 "

toward less negative values. This mimics the rapid rise in _¢2/_¢1 shown in Fig. 11 for

the case using the inboard flux loops. In that case, however, _¢2/(_1 moves to positive

values and continues to increase in magnitude. In Fig. 18 we see such an initial rise in

_¢2/_¢1, but then a sharp reversal occurs at ag _ 1.75, followed by a rapid decrease of

_¢2/_¢1 (toward more negative values) at higher gain. This is paralleled by a similar, but

much less dramatic, change in _¢4/_¢1 at about the same point. The _' vs. ag curve levels

• off at ag _ 1.75, near the point where we see the sudden changes in the eigenfunction.

i,
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Figure 19 shows the perturbed flux contours for this case with the gain ag = 2.0 and

the derivative gain _g/% = 0.10s -1. We see from this figure that the null contour lies

almost directly on the flux loops. This seems to be a natural consequence of the geometry o

of the feedback system and this particular inward-shifted equilibrium. Note from Fig. 12

(inboard flux loops, gain C_g= 1.0) that the null contour on the outboard side is in

about the same place even when the flux loops are on the inboard side. However, in the

case using the inboard flux loops, we see that at higher values of gain the eigenfunction

deformation is such that the perturbed flux contours are shifted strongly toward the

outboard side. This, in turn, pushes the null contour away from the plasma.

If this same deformation of the eigenfunction were to occur when the flux loops are on

the outboard side of the plasma, then the feedback system would be more effective owing

to the large measurable perturbed plasma flux at the flux-loop locations (see Figs. 13-

14). What we do see when the flux loops are on the outboard side is a deformation

initially similar to the previous case, but then there is a sudden reversal in the plasma

deformation at the point where continued deformation would move the null contour away

from the flux loops. Instead, the eigenfunction is modified so as to keep the null contour

on the flux loops and thereby reduce the stabilizing effect of the feedback system. ,*

5. Summary

For the case of passive stabihzation, we have seen that different m-components of

the eigenfunction induce different poloidal current distributions in a surrounding wall.

Conducting elements at different locations around the plasma will induce differing modifi-

cations of these non-rigid components of the eigenfunction. The eigenfunction is modified

to either increase the relative magnitude of the m > 1 components if they induce desta-

bilizing currents for a particular conductor, or to decrease them if they are stabilizing.

Therefore the plasma motion is modified in such a way that it can "slip" around the

passive conductors in order to reduce the resistance to its motion. A more precise way
,p
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to state this is to say that the plasma eigenfunction is modified in such a way that the

stabilizing eddy currents in the surrounding conductors are reduced as much as possible.

Toroidal effects remove the symmetry with respect to ®1 _r/2 and push the most ef-

fective position for.passive conductors to the outboard side. Triangularity removes the

. symmetry even further and gives even greater advantage to outboard positioning of con-

ductors. In general, effects due to plasma shaping and deformability of the eigenfunction

are over and above the relative advautage of placing conductors on the outboard side due

to toroidal effects. Therefore, the optimal placement of the discrete conducting plates

can be of critical importance for a shaped tokamak plasma.

We have also seen in Section 4 that the eigenfunction of the axisymmetric mode for

the P BX-M plasma will modify itself under the influence of an active feedback system to

provide a much weaker signal to the flux loops that measure the plasma displacement.

This compromises the stabilizing effect of the active feedback system, and can in some

cases leave the feedback system so ineffective that stability cannot be achieved regardless

of the strength of the feedback gain. We examined, in particular, three possible locations

for placement of the flux loops that control the feedback, and in each case we see a

different plasma deformation that leads to a reduced flux signal for each particular pair

of flux loops. These eigenfunction deformations do not leave the plasma unstable in

every case, but they always do reduce the stabilizing effect of the particular feedback

configuration.

Note that for all three active feedback cases, the perturbed flux contour plots show

that the eigenfunction is modified in such a way that the zero-flux contour is pushed

toward the particular set of controlling flux loops. This reflects the reduction in the

measurable signal at the flux loops, and thereby the reduction in the effectiveness of a

feedback system to control the unstable motion.

We have shown that effects due to the deformability of the plasma can therefore play

• an important role in determining the properties of passive and active feedback stabiliza-
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tion of highly shaped tokamak plasmas. This should be an important consideration in

the future design and operation of such tokamaks.
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Figures

Fig. 1. Effect of poloidal position I®l of conducting plates on the eigenfunction and
F

growth rate of the very large aspect-ratio elliptical equilibrium. The ratios of the

m = 2 (circles) and m = 3 (triangles) components of the eigenfunction to the m = 1
,,t

component at the plasma edge are plotted as a function of the poloidal position of

the conducting plates. Also shown is the growth rate 7 (squares) as a function of the

plate position. The corresponding values for a continuous complete wall are shown in

solid on the left, and the values for the case with no w_ll are shown in solid on the

right. The values of the ratio fCm/f¢l for the Fourier representation of the rigid shift

are shown on the left axis. The vertical lines show the ideal stability boundaries, i.e.,

the configuration is ideally stable when the conductors are located at [O I values in

the region between the lines.

Fig. 2. (a) Perturbed flux contour plots for the large aspect ratio ellipse corresponding to

the m = 2 component of the motion only. The sign of the flux is shown and changes

through the midplane and across the zero-flux contours positioned at [®[ = 7r/2. The

midplane itself is also a zero-flux contour.

(b) Perturbed flux contour plots for the large aspect ratio ellipse corresponding to the
t

m = 3 component of the motion only. There are two additional zero-flux contours (in

addition to the midplane contour, which is always present for antisymmetric modes).

The additional zero-flux contours are shown along with the signs (shown in the circles)

of the flux contours.

Fig. 3. Magnitude of the perturbed radial magnetic field at the magnetic axis_ b'_(0), due

to a unit (positive) current at every point along the wall contour used in the lower

aspect ratio elliptical equilibrium calculation (solid line) and in the very large aspect

ratio elliptical equilibrium calculation (dotted line).

Fig. 4. (a) Fourier components of the radial displacement _ vs. _ for the elliptical

,p
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equilibrium with a complete continuous resistive wall,

(b) Fourier components of _ for a uniform vertical rigid shift displacement of the

elliptic_l plasma.

Fig. 5. Effect of poloidal position of conducting plates on eigenfunction and growth rate

of the lower aspect-ratio elliptical cross-section equilibrium. The ratios of the non-

rigid components of the eigenfunction to the rigid component at the plasma edge are

graphed as a function of the poloidal position of the conductiI.lg plates. In particular

the m - 2 (circles) and the m = 3 (triangles) contributions are shown here, Also

shown is the growth rate _, (squares) as a function of the plate position. The cor-

responding values for a continuous complete wall are shown in solid on the left, and
Q

the values for the case with no wall whatsoever are shown in solid on the right. The

values of _¢_/_el for the Fourier decomposition of the uniform vertical rigid shift are

shown on the left axis. The vertical lines show the ideal stability boundaries.

Fig. 6. (a) Fourier components of the radial displacement (_ vs. _ for the elliptical

equilibrium with conducting plates at about 45° off the midplane on the inboard side.

(b) Displacement vectors showing the plasma instability. The plasma is partially sta-

bihzed by conducting plates on the inboard side of the plasma. Note the deformation

of the plasma motion as it tries to move around the plates.

Fig. 7. (a) Fourier components of the radial displacement _¢ vs. _ for the elliptical

plasma with conducting plates at about 45° off the midplane on the outboard side.

(b) Displacement vectors showing the plasma instability. The plasma is partially sta-

bihzed by conducting plates on the outboard side of the plasma. Note the deformation

of the plasma motion as it tries to move around the plates. Note also the difference

in the deformation compared with that of Fig. 6.

Fig. 8. Effect of poloidal position of conducting plates on eigenfunction and growth rate

for CIT equilibrium. The ratios of the m = 2 (circles) and m = 3 (triangles) com-

ponents of the eigenfunction to the m - 1 component at the plasma edge are plotted
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as a function of the poloidal position of the conducting plates. Also shown is the

growth rate _ (squares) as a function of the plate position. The corresponding values

for a continuous complete wall are shown in solid on the left, and the values for the

case with no wall are shown in solid on the right. The values of _¢m/_1 for the

Fourier representation of the uniform vertical rigid shift are shown on the left axis.

The vertical lines show the ideal stability boundaries. ,,

't, 1

Fig. 9. (a) Perturbed flux contour plots for the CIT equilibrium for the m_= 2 component

of the motion. The sign of the flux in each region shown. The midplaae is itself a

zero-flux (nuU)contour. This is a Cr_ = 0.99 equilibrium.

(b) Perturbed flux contours for CIT due to the m = 3 component of the eigenfunction

only. Note the 3-part structure of the contours in each half-plane. The zero-flux

contours are indicated with arrows.

Fig. 10. The PBX-M plasma boundary, resistive wall contour, active feedback coils, and

three sets of flux observation loops (inboard pair, centered-outboard pair, and far-

outboard pair) to be used in these calculations.

Fig. 11. Growth rate _, and variation in m > 1 components vs. normalized feedback gain i

._g for flux loops on the inboard side. The ratios of the m = 2 (circles) and m = 4

(triangles) components of the eigen.function to the m = 1 component at the plasma

edge are graphed as a function of the feedback gain. Also shown is the growth rate _,

(squares) as a function of the gain.

Fig. 12. Perturbed flux contour plots for PBX-M with active feedback using the inboard

flux loops, and normalized feedback gain ag = 1.0. The zero-flux contours are shown

as dashed lines. The flux loops are shown by'x' symbols.

Fig. 13. Perturbed flux contour plots for PBX-M with active feedback using the inboard

flux loops, and normalized feedback gain c_g= 2.0. The zero-flux contours are shown

as dashed lines. The flux loops are shown by'x' symbols.

,p
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Fig. 14. Perturbed flux contour plots for PBX-M with active feedback using the inboard

flux loops, and normalized feedback gain ag = 3.0. The zero-flux contours are shown

as dashed lines. The flux loops are shown by'x' symbols.

Fig. 15. (a) Growth rate vs. gain ag for _g/ag = 0. (squares), _g/ag = 0.0hs -l (circles),

. fig/ag = 0.10s -_ (triangles).

(b) Growth rate vs. wr[ for the same three values of/3g.

Fig. 16. Growth rate 7, oscillation frequency w_, and the variation in m > 1 components

vs. feedback gain for centered-outboard flux loops. The ratios of the m = 2 (circles)

and m = 4 (triangles)components of the eigenfunction to the m - 1 component at

the plasma edge axe graphed as a function of the feedback gain. Also shown is the

growth rate 7 (squares) and oscillation frequency w_ (diamonds) as a function of the

proportional gain for:
t

(,,.) = o.

, = 0.105-' '

Fig. 17. Perturbed flux contour plots for PBX-M with active feedback using the centered-

outboard flux loops, and normalized feedback gain r._g= 2.25. The zero-flux contours

are shown as dashed lines. The flux loops are shown by'×' symbols.

Fig. 18. G_-owth rate 7, oscillation frequency wr, and variation in m > 1 components

vs. feedback gain for far-outboard flux loops. The ratios of the rn = 2 and rn = 4

components of the eigenfunction to the m = 1 component at the plasma edge are

graphed as a function of the feedback gain. Also shown is the growth rate 7 and

oscillation frequency wr as a function of the proportional gain for _g/ag = 0.10s -1.

Fig. 19. Perturbed flux contour plots for PBX-M with active feedback using the far-

outboard flux loops, and normalized feedback gain ag = 2. The zero-flux contours

" are shown as dashed lines. The flux loops are shown by'x' symbols.
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