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ARITHMETIC AVERAGING — A VERSATILE TECHNIQUE
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ABSTRACT

Arithmetic averaging is simple, stable, and can be very effective in attenuating the undesirable compo-
nents in a complex signal, thereby providing smoothing or trend removal. An arithmetic average is easy
to calculate. However, the resulting modifications to the data, in both the time and frequency domains, are
not well understood by many experimentalists. This paper discusses the following aspects of averaging:

(1) types of averages—simple, cumulative, and moving; and (2) time and frequency domain effects of the
averaging process.

INTRODUCTION

By far the most common measure of ccntral tendency for a set of data uprcsentmg a finite sample of
size n is the sample mean, x. It can be shown! that the expected value of x is the population mean, p.
Thus, we can expect x to provide a good approximation to the population mean.

This statistic is so common—it is usually the first to be encountered in a college statistics course and,
indeed, we were aware of it long before then—that we may have forgotten what a powerful tool it can be
for experimentalists. In this paper, it will be assumed that the data sets of interest are time series consist-
ing of two components, denoted as signal and noise. The signal portion is deterministic, that is, it is re-
peatable and can be defined by a mathematical function. The signal may be constant, periodic, or
transient. Usually, it is the signal that we desire to enhance. The noise portion may be periodic or random.
Although we are usually trying to eliminate the noise, in some cases, such as determination of the fre-
quency content of periodic noise, it is the noise component that we want to recover.

Arithmetic averaging techniques will be defined which allow the user to: (1) define the signal mean
within a specified accuracy; (2) smooth the data, that is, attenuate undesired noise to emphasize the trend;
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and (3) eliminate the trend for enhanced spectral analysis of the noise. The first application will employ
operations called simple and cumulative averaging. The second and third applications will use moving
averages. In most cases, it will be assumed that the time series samples are uniformly spaced with a sam-
pling interval, T. However, for many of the results, uniform sampling is not required, and of course, the
simple average is not restricted to time series. Of particular interest will be the effects of the averaging
processes in both the time and frequency domains. The principal effects in the time domain are variance
reduction and sample correlation. In the frequency domain, attenuation of selected frequency components
is the main effect.

Simple and cumulative averages are unique and do not require justification for their use. However, the
moving average is one of two types of digital filters and it is necessary to explain why the moving aver-
age is the best choice for the present applications. Digital filters are computational algorithms which ac-
complish desired modifications to selected frequency components of a time series. They may be divided
into two categories—nonrecursive and recursive. A nonrecursive filter uses only the input data set in com-
puting the output set. It is also called a finite impulse response (FIR) filter because the effect of an im-
pulse function (also call a delta function) in the input data has only a limited influence on the output data.
A weighted moving average is a nonrecursive filter. In filter notation, the weights are called coefficients.
A recursive filter uses both the input dat: set and previous values of the output set in computing the cur-
rent output, therefore it has feedback. It is also called an infinite impulse response (IIR) filter because an
impulse function in the input data set will influence the entire output data set for times greater than that at
which the impulse occurred. Both filter types can be equally effective and both have advantages and dis-
advantages. There are three primary advantages of nonrecursive filters. First, they are simple to imple-
ment and the filter coefficients can be easily determined without use of a design code. Recursive filters
require fairly complex design codes. Second, they are always stable because there is no feedback from
the output series. Therefore, the output series cannot diverge from the input series as may happen with re-
cursive filters. Third, nonrecursive filters can be easily designed to provide zero phase (no time delay) or
linear phase (constant time delay). A zero phase filter allows direct comparison of the input and output
data to insure that the desired smoothing occurs. Zero or linear phase is also desirable to avoid distortion
of the signal in the passband, i.e., for the frequencies between zero and the cutoff frequency (defined as
the frequency at which some specified attenuation, usually 30% or -3 db, of the signal occurs). Most re-
cursive filters either distort the signal (nonlinear phase) or tend to be unstable if designed for linear phase.
Although there are techniques to achieve zero phase with any recursive filter by direct and then reverse
filtering of the data?, this approach changes the frequency response function (to be defined later) of the
filter (it is squared) and can significantly distort the signal at each end of the series. It has been the au-
thor’s experience that, although recursive filters such as a Butterworth design, are very useful with peri-
odic signals which have a relatively large signal-to-noise ratio (SNR) and many cycles of data, a
nonrecursive filter is far superior with very noisy (small SNR) transient data. Additional advantages of
nonrecursive filters include that the time and frequency domain characteristics (effects) of the filters can
be easily determined and the filters are less sensitive to computational inaccuracy. The disadvantages of
nonrecursive filters include the need for higher order filters, i.e., more filter coefficients, to accomplish
the same rolloff characteristics in the transition region between the passband and stopband. This results in
increased computation time and larger memory requirements. If there is not a requirement to filter the
data in real time, for example, if it can be filtered post-test, the increased time is not usually a significant
problem. Also, because the nonrecursive filter equation is a discrete convolution of the coefficients and
data, fast Fourier transforms (FFT) can be used to greatly reduce computation time although at the cost of
added coding complexity. Probably the major disadvantage of the zero phase nonrecursive filter is that




the first and last output samples are offset from the ends of the input series by T(n-1)/2 seconds, where n
is the number of coefficients in the filter. In other words, (n-1)/2 samples at each end of the time series
cannot be filtered. Finally, although recursive digital filters can be matched to analog filters for system
simulation, this is not true for nonrecursive filters. To summarize the advantages of arithmetic averaging
(nonrecursive filtering) for data smoothing and trend removal, it is a simple, low-risk procedure. With the
few easy rules to be defined in the following sections, the experimentalist can perform the smoothing op-
eration, based on desired variance reduction and/or frequency component attenuation, without recourse to
handbooks and complicated design and implementation codes.

Before the various averaging operations and their effects are described, a warning is necessary. Aver-
aging is a very powerful technique for reducing the precision error present in a set of data. However, av-
eraging of poor data should never be substituted for an improved process which will provide better data.
“It always pays more to make a better measurement than to repeat an old one3”. Aside from the obvious
ethical requirement for an experimentalist to obtain the best measurements possible, many time series
measurements of physical processes are correlated, that is, the samples are not independent. This correla-
tion may occur from the physical process (turbulence, periodic phenomena, etc.) or the data acquisition
(analog filters, pneumatic lag in pressure systems, etc.). It cannot be emphasized enough that the reduc-
tion in precision error that occurs when measurements are averaged, will be far less for correlated data
than for independent data.

SIMPLE AND CUMULATIVE AVERAGES

Simple and cumulative averages are used to determine a single value which defines the zero frequen-
cy (dc) level of the signal. The simple average is used when the mean of the data set is not varying signif-
icantly with time. Equations are developed for this process which allow the user to estimate the number
of samples required to define the mean within a specified uncertainty. This feature is valuable when mul-
tiple sets of data, having similar mean and variance, are to be acquired, since it will allow the user to
avoid the expense of acquiring unneeded samples. The cumulative average is used when the short-term
mean of the data is varying. It provides a graphical indication of the time at which a satisfactory mean
value can be obtained.

SIMPLE AVERAGE

The simple average is used to reduce the noise so that the signal level is defined within specified error
limits. A typical application would be to estimate the mean pressure or velocity from measurements at a
fixed point in a turbulent flow. As will be shown later, a simple average can also be used effectively to

eliminate a single frequency and its harmonics, for example, to remove 60 Hz noise from a constant sig-
nal. The basic equation for the simple average is,

R= oYK M

where X is the average value, x; is the set of data samples, and n is the number of samples. For large n
and/or large values of x;, Eq. (1) may present numerical problems (lack of precision) unless the summa-
tion is performed with double precision arithmetic. An algorithm which is widely recommended is,
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where X is given by Eq. (1). This is a “two-pass” algorithm requiring two passes through the data to get
x. Thus, the increased accuracy is achieved with increased code complexity and computation time. For
large values of n, computation time for Eq. (2) can be reduced with little sacrifice in accuracy by using a
subset of x;, say 100 samples, to calculate x .

If the variance of the data set is constant as well as the mean, it can be shown* that the variance of X
is given by

Var [x]

Var[x] = -

©)

where the samples are assumed to be independent, that is, not correlated. Since the standard deviation, o,
is equal to the square root of the variance, Eq. (3) can be written as,

O; = 4

X

5.9

The goal in performing the simple average is to obtain a good estimate of the population mean, y. The

standard deviation, Oy, is not known, but we can estimate it with the sample standard deviation, s,, de-
fined by

S§=n_12(x-—X)2 ®)

i=1

where X can be the value obtained with Eq. (1), requiring two passes through the data to calculate s,, or

with Eq. (2), requiring three passes. Some texts recommend a single-pass version of Eq. (5), frequently
called the “computational form,” which is,

©)

2__1 i
___T;

This equation is generally considered to be a very poor numerical algorithm and should be avoided.

When only the sample standard deviation is known, the t distribution is used to define the uncertainty
in the estimate of . Thus,

(‘_:X-_}J:x“lhl (7)

Sz s /Jn

For the large number of samples usually averaged in a time series application, the t distribution approach-




es the normal distribution. If the sample set has a normal distribution, the means of subsets from this set
will also have a normal distribution. Even if the sample set does not have a normal distribution, the cen-
tral limit theorem? states: “Regardless of the distribution of the parent population (as long as it has a finite
mean, W, and variance, 02), the distribution of the means of random samples will approach a normal dis-
tribution (with mean [ and variance 6%/n) as the sample size n goes to infinity.” In fact, for most sample
distributions encountered in experimental measurements, the distribution of X closely approximates a
normal distribution for values of n 25, From Eq.(7), for 100(1-0)% confidence in p, the number of sam-

ples to average is given by,
2
t s
_ (af2,n-1) °x

T ( X— ) ®
Although s, and t are not known until n is defined, s, can be adequately estimated from the current or pre-

vious data sets and for large n, t is insensitive to n (within 1% of the normal distribution value for
n> 120). For example, for a 95% confidence level that the relative error in p, defined as (X — p)/ x does

not exceed some level, s
1.965,\2
nz ( ) )

EMX

It must be emphasized that Eq. (9) is valid only when the data samples are independent, i.e., uncorrelated.

As an example, consider the data set shown in Figure 1 which was generated with the function
x; = 10.0+R (0.0, 1.0)

where R is a set of normally distributed pseudo-random numbers with a mean of 0.0 and a standard devi-
ation of 1.0. It is desired to estimate p with no more than a 1% error, i.e., €, =0.01. Estimates from the

first 100 samples give X =10.122 and s, = 1.0733. Assuming large n, and a 95% confidence level, Eq. (9)
gives

5 I: (1.96) (1.0733)

2
(0.01) (10.122)] = 432

The average of the first 432 samples is 9.989 which is well within 1% of the input mean value.

CUMULATIVE AVERAGE

The cumulative, or running, average is less often used than the simple or moving average. It is most
valuable when the data mean is needed, but the variance cannot be defined. This occurs when there is an
initial transient in the data, or the data includes a periodic component. In these cases, the sample standard
deviation calculated with Eq. (5) does not accurately represent the standard deviation of the noise (ran-
dom) component and Eq. (9) cannot be used to estimate the number of samples to average because the




data are not independent. The cumulative average provides a graphical method of estimating the mean of
the data set. Unlike the simple average which produces a single output value, X, the cumulative average
produces an output time series, y, which has the same time interval, T, as the input series, x. The average
is given by, '

1 .
Yo = Hin ;n=1,N {10

To avoid calculating the sum at each time, a recursion equation can be used,

1
Yo = ﬁsn

S, =S, _,+x, ; S,=00

o]

(11)
As an example of this type of average, data were generated with the model,
x; = 10.0 + sin (27t) + R (0.0, 1.0)

where t=(i-1) T and T=0.010 sec. The data are shown in Figure 2 with the cumulative average. It is seen
that the cumulative average predicts the mean with reasonable accuracy (1%) for t>2.5 sec.

MOVING AVERAGE

Although the simple and cumulative averages smooth the data in the sense that they reduce the vari-
ance in a noisy dc signal, they cannot be used to reduce the noise which is compromising a time-varying
signal. To achieve this, a moving average is used. The moving average is accomplished by averaging a
subset of the series, n samples in length, advancing j samples and repeating the operation until the series
is exhausted. Althougi: n and j can be any integers, for experimental data n is usually taken to be odd with
j=1. To avoid a phase shift (time delay) in the averaging operation, the average value is assigned to the
time corresponding to the middle of the subset. Finally, for purposes of the frequency response analysis in
the next section, it is assumed that the time interval, T, between consecutive samples is a constant. It
should be noted that if j> 1, the smoothed time series may be aliased. An example calculation for n=5 and
j=11is given below, where x; is the input series and yj; is the output (filtered) series.

¥, =¥, = undefined
1.
1
Y4 = g(x2+x3+x4+x5+x6) : (12)
_1
Y5 = §(x3+x4+x5+x6+x7)

Ye= -




The algorithm for a general moving average is,

m

yi = z kai_k ;i=l+m,N-m (13)

k=-m

where

n-1

m= 3

(14)

Equation (13) is the basic equation for a nonrecursive digital filter®. The weights, wy, are usually called
coefficients in filtering applications. For the present applications, the weighting function will be subject
to a number of constraints. First, to insure that a time series consisting of constant values is not modified
by the smoothing operation, it is necessary that,

Yy, w, =10 (15)

W, =W, (16)

Finally, we will always use an odd number of weights, as indicated in Eq. (14), so that the output value,
y;» can assume the same time value as the corresponding input value, x;. This gives a zero-phase filter.

Weighted moving averages will be discussed in a later section. For a simple moving average, the
weights are constant and equal to 1/n as shown in the n=5 example above. These weights satisfy the con-
straints given above. From Eq. (13) and the example, it is seen that the first and last m values from the se-
ries are lost in the averaging process. Since moving averages are most often used with large data sets, this
is not usually a problem. If it is, the data set can be extended with m points at each end. Schemes for ex-
tending the data at the start of the series include: (1) cdd symmetry [x; - X{ =- (X; - X1)]; (2) constant val-
ues (x.;=x1); and (3) even symmetry (x_;=X;). A similar extension is performed at the end of the series.
All are artificial and should be avoided if possible.

The moving average is excellent for removing a specific frequency component and its harmonics
from a complex signal. Thus, it behaves as a notch filter. It can also be used to smooth data, that is, as a
lowpass filter with noise variance reduction given by Eq. (3). Finally, it can be used as a highpass filter to
remove the low frequency trend in a signal. Examples of the second and third applications are shown in
Figure 3. The input signal was a smooth trend line with superimposed random noise (6 =0.2) and a sam-
pling interval of 0.001 sec. Figure 3a shows a composite of the original signal (x) and the smoothed out-
put (y) of a simple moving average with n=51. Although the original trend can never be perfectly
recovered after random noise is added, the moving average did greatly reduce the noise with only minor
distortion of the input signal. The input series was generated for t=0 to 1.0, note that 25 samples are lost




at each end of the output series.

Low frequency trends such as the one in this example cause problems with low-frequency resolution
in power spectral density (PSD) calculations. The moving average can be used as a highpass filter to re-
move the trend. The highpass filtering operation is accomplished simply by subtracting the average from
the original data, that is,

’

Y, XY (17)

where y,’ is the highpass filter output. The results are shown in Figure 3b and would permit a much better
PSD calculation of the frequency content of the noise than the original series shown in Figure 3a.

TIME DOMAIN EFFECTS

Averaging has a number of effects on the data set in the time domain. First, the data are smoothed,
that is, the variance is reduced. Assuming that the noise component is random, the reduction in variance
of the noise is given by 7

Viyrl = Vixgl Y wi (18)

k=-m

where xR and yg are the noise components in the input and output series, respectively. That is, the vari-
ance is reduced by the sum of the weights squared. For a simple moving average, wy =1/n and Eq. (18)
reduces to Eq. (3).

Second, averaging can cause a time delay in the output. For the simple and cumulative averages, it is
assumed that the desired output of the averaging process is a constant and time delay is not a concern. For
the moving average, a time delay makes it difficult to compare the input and output signals, but the delay

is eliminated by placing the average value at the time corresponding to the midpoint of the averaged sub-
set as in Eq. (13).

Finally, when a moving average is applied to a time series, the output series is correlated by the aver-
aging process. Examination of Eq. (12) shows that y3 and y,4 have four common input samples in the two
subsets which are averaged. Outputs y3 and ys5 have three common input samples, and so on. Thus, for a
simple moving average, there is a linear correlation in the output series which extends for n samples. Cor-
relation of the output series has three consequences. First, the appearance of the output series is modified.
The random component, when smoothed, may appear as an oscillatory component. This effect is known
as the Slutsky-Yule effect® and produces what appears to be a periodic signal. However, the oscillations
have random period and amplitude. The experimentalist should be aware of this phenomenon and not at-
tribute significance to the oscillations. Second, the autocorrelation function of the output series will be
modified. Third, the correlation reduces the effect of any subsequent smoothing operations. Equation (18)
applies only for independent data, and if the output series is smoothed a second time, the reduction in
variance is much less than that given by the equation.




FREQUENCY DOMAIN EFFECTS

Frequency domain effects are of most interest for moving averages. However, an understanding of the
filter characteristics is valuable even for the simple average since they define how frequency components
in the input series are altered by the smoothing operation. It is beyond the scope of the present work to
develop the theory necessary to understand filtering theory. However, the definition of a frequency re-
sponse function (also called a transfer function) is essential to understanding the effects of averaging on a
time series. The equation for a moving average, Eq. (13), is also the definition of a discrete convolution of
the two time functions, w(t) and x(t), and is written symbolically as,

y(t = w(t) *x(t) 19)

By the convolution theorem,

Y (f) = W(f) - X(f) (20)

where Y(f), W(f), and X(f) are the Fourier transforms of y(t), w(t), and x(t), respectively. The transform
W(f) is called the frequency response function and defines how the averaging operation effects the signal
component at a specific frequency. That is,

XM @
In general, W(f) is a complex function. However, for real, symmetrical weights, W(f) is also real. The fil-

tering operation described by Eq. (13) is linear and does not change the frequency of an input sinusoidal
wave. However, the amplitude and phase are changed. For example, if the input signal is defined by,

X = Asin (2rnft+ @) (22)

the output signal is,
y = A’sin (2nft+ ¢’) (23)

The magnitude, IW(f)l, of the frequency response function is called the amplitude response function or,
gain factor, and defines the output-to-input amplitude ratio, A’/ A,

’

= = WD) (24)

For simple or weighted moving averages, the phase difference, ¢’ — ¢, is equal to 0 or 180 deg, depend-

ing upon frequency.The frequency range over which these relations apply is defined by sampling theory
and is f =0 to fy, the Nyquist frequency, which is defined by,




=L

fN = 57 25)

where T is the sampling interval of the time series. For arithmetic averaging with real, symmetrical
weights, wy, the frequency response function is given bylo,

W(f) = w,+2 Y wecos (2nkfT) (26)
k=1

For the simple moving average, wy=1/n, and Eq. (26) can be evaluated!! to give,

sin (nnfT)

W (f)| = |Sn(nril)
WD nsin (RfT)

; f=0tofy 27

where IW(0)I=1.0. A plot of W(f) for a simple moving average with selected values of n is shown in Fig-
ure 4. Several features of moving averages are apparent in the figure. First, the average acts as a lowpass
filter and passes dc (f =0) signals unchanged. Also, the gain is zero at frequency f, so averaging provides
a notch filter. This frequency, f,,, is also called the mainlobe wid:h, and subsequent regions between zeros
are called sidelobes. The mainlobe and even-numbered sidelobes have positive gain and zero phase. The
odd-numbered sidelobes have negative gain or 180 deg phase shift. Obviously, the phase shift will distort
the output waveform relative to the input waveform. However, the series at frequencies greater than f; is
considered to be noise and the phase shift is not significant. As is the case with all digital filters, the fre-
quency response function is periodic and W(f) =1 at f = 2fjy = 1/T and multiples of this frequency.There-
fore, any signal component which has a frequency of 1/T will not be altered by the averaging process.
This problem is avoided by using an analog anti-aliasing filter during data acquisition to attenuate fre-
quency components at f 2 fj.

Examination of Eq. (27) shows that for IW(f)l to equal zero at the notch frequency, f,, then,
fnT =1 (28)

Equation (28) is fundamental to moving average smoothing and provides a means of collapsing the gain
curves for arbitrary n into a single curve by using the frequency parameter fnT as the independent vari-
able instead of f. This is shown in Figure 5. Note that for a given value of n, this curve is valid only to
f=fy or for fnT <n/2. For n> 5, the curves are nearly coincident for f=0 to f, (fnT =0 to 1). Rearranging
Eq. (28) gives

1

n=;.071.,

(29)

This equation permits easy selection of the number of samples to be used in a simple moving average to
eliminate a particular frequency and its harmonics. It should be noted that the amplitude response func-
tion given by Eq. (27) also applies to the simple average. For the example of Figure 3, with n=432, the
notch frequency is f,T=0.0023 which is very low (fNT=0.5). This is typical for simple averages. The




author has found that a simple average with n=10 and T = 0.00167 sec (f,= 60 Hz) is very effective at re-
moving residual ac noise which enters the data acquisition system after the analog filter section.

Although the simple moving average is a very effective notch filter and does attenuate high frequency
(noise) components in a signal, it is not a “great” lowpass filter for two reasons. First, it attenuates all sig-
nal components at frequencies above zero. This means that any nonconstant signal will be modified by
the moving average. Typical values of the amplitude ratio for a simple moving average are given in the
table below.

W ()l fnT
0.99 0.078
0.95 0.176
0.90 0.250

0.71 (-3db) 0.442

Second, the sidelobes have a higher gain than is desired and, therefore, the moving average does not re-
duce high frequency components as much as the user may desire. The first problem is best addressed by
using a weighted moving average which has been designed using digital filter techniques. This is beyond
the scope of this paper, but can be found in many digital filter texts, including Ref. 12. The problem of re-
ducing sidelobes can be handled by two approaches. First, the output series can be smoothed a second
time using the same or a different value of n. For the same value of n, this operation gives an effective
frequency response function which is equal to the square of the basic function. Thus, the first sidelobe
amplitude, which is equal to 0.217 for large n, will be reduced to 0.047 after the second average. Unfortu-
nately, frequencies in the passband will also be attenuated. A better approach is to use a weighted average
as will be discussed in the next section.

WEIGHTED MOVING AVERAGES

A general weighted moving average is defined by Eq. (13). The constant weights of the simple mov-
ing average give a weight function which is discontinuous at each end, that is, the function is a rectangle.
To improve the frequency response function, it is necessary to replace this weight function with one
which decreases smoothly from k=0 to k =tm. These weight functions are called windows in filtering
and spectral analysis applications and are widely discussed in the literature!3-14, The relative merits of
various windows is beyond the scope of this paper. A suggested window, which combines simplicity with
effectiveness, is the Hann or cosine-squared window. The weight function for this window is,

14

1 nk nk
w,/ = i[1+cos(Fn—)] = cos” (5-) (30)

Equation (30) is the form of the window function as it is usually given and the sum of the weights is not
equal to unity. The proper form to use with a moving average is,

1

W, = ;ﬁwk’ 3D




The Hann weights for n=51 are plotted in Figure 6 with the rectangular weights used for a simple mov-
ing average. When implementing a weighted moving average in a data analysis code, the symmetry of the
weights, that is, w_ = wy, should be used to reduce storage and computation time.

The amplitude response function for this weighted moving average is compared in Figure 7 to that for
a simple moving average with n=>51 in both cases. The sidelobes are greatly diminished for the weighted
average, but the notch frequency has doubled. Equation (29) provided a means for estirating n for a sim-
ple moving average when f, and T are given. An equivalent equation for the Hann weighting function is

2
n—1+?:1: (32)

Therefore, for the same f,;, smoothing with the Hann window will require approximately twice the num-
ber of weights that the simple moving average requires. By increasing n to 101 for the Hann window, the
amplitude response functions shown in Figure 8 are obtained. This figure shows the greatly reduced side-
lobe amplitudes for the Hann window and emphasizes that the improved filter is obtained at the expense
of increased computation time since n is doubled. Also, twice as many samples are lost at each end of the
series. The reduction in variance achieved by each of these moving averages is defined by Eq. (18) as the
sum of the weights squared. For these three averages, the reduction was: simple average (n=51), V[yl/
V[x] =0.0196; Hann-weighted average (n=51), V[y}/V[x]=0.0300; and Hann-weighted average
(n=101), V[y)/V[x] =0.0150. For n=51, even thought the Hann average reduced the sidelobe ampli-
tudes, it greatly widened the mainlobe width resulting in less reduction in variance. As would be expect-
ed, for a given f, the Hann-weighted average resulted in a greater variance reduction than the simple
average. It was mentioned earlier that the simple moving average eliminates data components at the
notch frequency and its harmonics. The Hann average also has this characteristic, although many other
window functions do not. Returning to the example of Figure 3, the input series is filtered with a Hann
weighted moving average (n=101) and the results are shown in Figure 9. Note that 50 samples are lost at
each end of the output series in this case. The improvement in the smoothed trend is obvious.

CONCLUSIONS

The simple arithmetic average can be used to define a signal level, in the presence of uncorrelated
noise, within specified error limits if the signal is not varying with time. An equation was provided which
allows the user to easily estimate the number of samples to be averaged for a given error level and proba-
bility. For a varying signal, the cumulative average provides a graphical solution to estimating the mean.
Moving averages, both simple and weighted, provide a versatile technique for smoothing and trend re-
moval. These averages, which are nonrecursive digital filters, are simple to use and do not require the
elaborate design and implementation software associated with recursive filters. Furthermore, they can be
more stable than recursive filters, since they do not require feedback. A basic equation was developed
that allows the user to accurately define the number of samples to be averaged for a specified filter pass-
band. Finally, a weighting function was suggested which greatly improves frequency rejection in the filter
stopband without complicating the averaging operation.
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Figure 2. Example of cumulative average
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Figure 3. Smoothing and trend removal with a simple moving average, n=51
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Figure 4. Frequency response functions for simple moving averages
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Figure 5. Amplitude response function for simple moving averages with frequency parameter, fnT
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Figure 7. Amplitude response functions for simple and weighted averages, n=51




a \ e | - ¥ —

simple ]
S R welghted (Hann) | |
I VR OSSO TU PRI SUUUURPRON SRR e 4

W)l

0.00 0.02 0.04 0.06 0.08 0.10
fT, Hz—sec

Figure 8. Amplitude response functions for simple (ri =51) and weighted averages (n=101)

3

0.0 0.2 0.4 0.6 0.8 1.0
t, sec
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