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E. CARTAN MOMENT OF ROTATION
IN CLASSICAL AND QUANTUM GRAVITY

by
Arkady Kheyfets

Abstract

The geometric construction of the E. Cartan moment of rotation associ-
ated to the spacetime curvature provides a geometric interpretation of the gravi-
tational field sources and describes geometrically how the sources are “wired” to
the field in standard geometrodynamics. E. Cartan moment of rotation yields an
alternate way (as opposed to using variational principles) to obtain Einstein equa-
tions. The E. Cartan construction uses in an essential way the soldering structure
of the frame bundle underlying the geometry of the gravitational field of general
relativity. The geometry of Ashtekar’s connection formulation of gravitation the-
ory is based on a complex—valued self-dual connection that is defined not on the
frame bundle of spacetime but, rather, on its complexification. We show how

to transfer the construction of the E. Cartan moment of rotation to Ashtekar’s

theory of gravity and demonstrate that no spurious equations are produced via

this procedure.
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I. Introduction.

The geometric construction of the moment of rotation associated to the
spacetime curvature was introduced originally by E. Cartan. The meaning of
this construction, as well as its importance for clear understanding of the geo-
metric structure of general relativity was further investigated by C. W. Misner
and J. A. Wheeler?. It was Wheeler! that first linked E. Cartan moment of
rotation to the deeper foundational aspects of general relativity. Wheeler has

also conjectured that such a relation can be extended to other basic field the-

ories such as electrodynamics and Yang-Mills theory. His conjecture has been
proven recently®*:5, The difficulties of extending the E. Cartan construction to
the field theories other than general relativity are related to the fact that this
construction in general relativity uses, in an essential way, the soldering structure
of the spacetime geometry. This structure appears to be absent in the geometry
of electrodynamics and Yang—Mills theory. Nevertheless, the geometry of all basic
field theories, when properly understood and reinterpreted, admits the E. Cartan
construction. Furthermore, exactly as in general relativity, such an extension of
the E. Cartan construction to other field theories describes geometrically how the
sources of the fields are “wired” to the fields themselves and provides an alternate
way (as opposed to the variational approach) to deduce the field equations in a

way quite similar to that of obtaining Einstein equations in general relativity.

Ashtekar’s theory of gravity introduces a new set of variables in the

Hamiltonian (ADM) formulation of general relativity. Such a reformulation leads

6,789 of both the evolution equations and con-

to a significant simplification
straints. It provides (1) a revolutionary new look at the whole structure of ge-
ometrodynamics, and (2) an opportunity of achieving considerable progress in
many important problems of classical and quantum geometrodynamics. At this

time Ashtekar’s theory is viewed as a rapidly developing field of classical and



quantum geometrodynamics.

Originally Ashtekar’s theory was introduced in its Hamiltonian formula-
tion. However, a Lagrangian formulation of Ashtekar’s theory also exists®?. This

is fortunate because the results we obtain via an application of the E. Cartan

construction can be compared much easier with the Lagrange formulation than

with the Hamilton formulation.

The geometry of Ashtekar’s formulation (sometimes also called the con-
nection formulation) of general relativity is based on a complex valued self-dual
connection that is, strictly speaking, not defined on the frame bundle of the real
spacetime. The curvature of this connection is complex valued. The solder-
ing form of Ashtekar’s theory is, in general, complex valued (complex vector or
spinor valued), and is defined on the complexified tangent spaces. In its varia-
tional formulation, the action of Ashtekar’s theory is also complex valued. The
usual worry in Ashtekar’s theory is that the imaginary part of the curvature, and
the imaginary part of the action in a variational approach, might lead to spurious
equations; thus, making the theory different from general relativity even when the
reality conditions are imposed. Fortunately, this does not occur when variational

principles are used®°.

In this report we extend the E. Cartan moment of rotation construction
to Ashtekar’s theory and demonstrate that no spurious equation are produced via
this procedure. Although the self-dual Riemann curvature is complex even in the
case of real relativity, the E. Cartan moment of rotation turns out to be real in

this case.

In Sec. II we describe the E. Cartan moment of rotation in standard gen-
eral relativity. Here we introduce the terminology and our notations. Sec. III
contains the translation of this construction in the language of the tetrad for-

mulation, which is used frequently as a transitional step from standard general



relativity to Ashtekar’s theory®. Sec. IV considers the E. Cartan moment of rota-
tion of the self-dual Riemann curvature and demonstrates that in real relativity
it is real. The imaginary part of the E. Cartan moment of rotation vanishes due
to the cyclic symmetries of the Riemann tensor. Sec. V provides a formulation
of the results in the language of two—spinors. It contains the expression of the

spinor components of the E. Cartan moment of rotation in terms of the unprimed

spinor connection curvature.

II. E. Cartan Moment of Rotation in General Relativity.

The geometry underlying the spacetime formulation of general relativity
can be defined on an orthonormal frame bundle with the Lorentz group as its
structure group and spacetime as its base. The structure group is represented
as the group of automorphisms of a four dimensional vector space — the space
of values — isomorphic to the to the tangent space of spacetime at a point. The
space of values at a point of spacetime can be considered as a copy of the tangent

space to spacetime at this point.

The tangent space to spacetime at each point of spacetime is assumed

to be endowed with a basis {ep}f‘:o. In most cases we will assume that this
basis is a coordinate basis (e, = J/0z") with the dual 1-form basis {da:"}i=0.

The space of values, considered as a copy of the tangent space, is assumed to be

3

u=0" Spacetime has a pseudoriemannian metric

spanned by the same basis {e,}

guv(z) dz* @ dz¥ on it such that
guv(z) = eu(z) - e(2). (1)

Although the tangent space and the space of values are described as two
copies of the same space they should be treated quite differently in the description
of the geometric structure of general relativity. Particularly, the Lie algebra of the



structure group can be identified, as a vector space, with the space of bivectors
(or 2-forms) of the space of values. All the geomeric quantities (such as the
connection form, the curvature form, etc.) are defined as linear maps from the

tangent space (or its tensor products with itself and its dual) to the space of

values (or its tensor products with itself and its dual).

The principal bundle of general relativity, being a frame bundle, admits

the canonical soldering structure given by the canonical soldering form
6 = e, 8t dz¥ = e, dzt. 2)

In this formula e, that stands to the left of the component expression 6} is a vector
in the space of values and dz” that stands to the right of the 6% is a 1-form in
the tangent space. From now on we are going to stick with the agreement that
in all the expressions the vectors (multivectors, forms, etc.) standing to the left
of the component expression are those of the space of values whereas the vectors
(multivectors, forms, etc.) standing to the right of the component expression are
those of the tangent space. It is clear that the canonical soldering form, in fact, is

nothing but an isomorphism between the tangent space and the space of values.

The geometry itself is defined by a connection form on the principal
bundle described above . Its pulldown to spacetime (a bivector valued 1-form) is

T'=e, Ae, ") dz>. (3)

Here, just as in expression (2), the bivector e, Ae, standing to the left of the I'*¥
is a bivector of the values space, and the form dz* standing to the right of I'*
acts on the vectors of the tangent space. This connection form determines the
exterior covariant derivative. We use the symbol V for its pulldown to spacetime.
By pulldown to spacetime we mean the pullback of the form via a section of the
frame bundle. When performing practical calculations at a point of spacetime it

is often convenient to pick up a section horizontal at this point (such a choice of

the section implies I'*¥ = 0 at the point).



The curvature form of the geometry determined by (3) is defined as the
exterior covariant derivative of the connection form. The pulldown of this curva-

ture form to spacetime is expressed locally as
R=eq AegR*,, dz* A dz” = VI. (4)

In general relativity physicists call R determined by the expression (4) the cur-

vature of spacetime. This curvature satisfies the Bianchi identities
VR =0. (5)

The connection in general relativity is restricted by the demand that it is com-
patible with the metric structure and the canonical soldering structure

Vg=0

(6)
V6 = 0.

Such a connection is called the Levi—Civita connection.

In the standard formulation of general relativity? that we are considering
here the space of values and the tangent space are closely related in the sense that
the choice of the local coordinate system on spacetime fixes both the coordinate
basis of the tangent space and the local section of the principal bundle (a basis
of the space of values). However, they are treated very differently in operations
involving derivatives which is of a crucial importance in considering the construc-
tion of E. Cartan moment of rotation and, particularly, when the operators of
dualization and exterior covariant derivative are used in the same expression. In-

deed, if we use the notations * for the duality operator on the tangent space and
* for the duality operator on the values space, then?
V* £*V

(7)
V* =*V.



The E. Cartan moment of rotation is defined as the values space dual of

the exterior product of the canonical soldering form and the curvature form
M=*@AR), (8)

which can be rewritten using equations (2) and (4) in the following way
M =* (e, Aea Aeg R*, dz* A dz” Adz?)
= e, € 4ap R*P,x dz* A dz” A dz?
7 (9)
=ey € uap RoB ,, #2733,
=ey, G BT, = eq G°7 erpyr dz Adz” Adz* =G,
where G is the Einstein form (a vector valued 3—form) and G*7 is the Einstein

tensor.

Taking into account equations (7) (compatibility of the connection I' with
the canonical soldering structure), (5) (Bianchi identities), and the fact that the
exterior covariant derivative operation I' commutes with the internal space duality

operator * we can write down the conservation equation for the Einstein form
VG=V[" (8 AR)] =0, (10)
which suggests the standard form of the Einstein equation
G=T, (11)

and provides a geometric interpretation of the source of gravitational field as the

E. Cartan moment of rotation in the tetrad formulation of general relativity.

III. E. Cartan Moment of Rotation in Tetrad Formulation.

The tetrad formalism uses instead of the metric four linearly independent

covariant vector fields ef, related to the metric by the equation

9uv(2) = ey () el(z) mij, (12)



where p, v, . .. are spacetime indices running from 0 to 3 , and ¢, j, ... are internal
indices also running from 0 to 3. The internal indices are raised and lowered with

the Minkowski metric 7;; = diag[-1,1,1,1].

The geometry underlying the tetrad formalism is defined on a SO(3,1)
principal bundle with the Lorentz group as its structure group and spacetime as
its base. The structure group is represented as the group of automorphisms of a
four dimensional vector space (internal space) with a basis {e,-}:;o. The tangent
space to spacetime at each point of spacetime is assumed to be endowed with a

basis {ep}f‘:o. In most cases we will assume that this basis is a coordinate basis
(ey = 8/0x*) with the dual 1-form basis {da:“}:;:o. The described frame bundle

has the canonical soldering structure determined by the canonical soldering form
0 = e;e; dz*. (13)

The form 8 is a vector valued 1-form and defines a one to one map from the

tangent space of spacetime at a point to the internal space.

The geometry itself is defined by a connection form. Its pulldown to

spacetime is a bivector valued 1-form
w=e; Aejw, dzh. (14)

The connection determined by (14) frequently called the spin connection® is de-

fined to be compatible with the canonical soldering structure
V.0 =0, (15)

where V,, denotes the pulldown to spacetime of the exterior covariant derivative

determined by the connection w. In components, equation (15) takes the form

Biueyy + wiuj €y = 0. (16)



The curvature bivector valued 2-form R (more precisely R is the pulldown of
the curvature form to spacetime) is defined in a standard way as the covariant

exterior derivative of the connection form w
R=e;Ne;RY,, dz* Ndz” = V,w, (17)
so that it satisfies the Bianchi identities
V.R=0. (18)

The tetrad components R/, of the curvature are related to the standard space-

time components R*#,, in a simple fashion
RY, =é e, R* (19)
pr = CaCp v

The E. Cartan moment of rotation is defined as the internal space dual

of the exterior product of the canonical soldering form and the curvature form
Mc=*(@AR), . (20)

which can be rewritten using equations (13) and (17) in the following way
Mc="* (e,- AejAeg ef‘ RIk,y dz* Adz? A d:v’\)
=em € ijk ef‘ Ri*, dz* A dz¥ A dz?
= em €™ jx €l ”* ;pukr &3, (21)
=em G™ &, = em G™ €rpa dz* Adz” Adz* =G,
where @ is the Einstein form (a vector valued 3—form) and G™" = e} G*" is the
Einstein tensor expressed a half in internal components and a half in spacetime
components.

Taking into account equations (15) (compatibility of the connection w

with the canonical soldering structure), (18) (Bianchi identities), and the fact



that the exterior covariant derivative operation V., commutes with the internal
space duality operator * we can write down the conservation equation for the

Einstein form

V.G =V,[*(6 AR)] =0, (22)

which suggests the standard form of the Einstein equation
G=T, (23)

and provides a geometric interpretation of the source of gravitational field as the

E. Cartan moment of rotation in the tetrad formulation of general relativity.

IV. E. Cartan Moment of Rotation in Ashtekar’s Theory.

Geometry of Ashtekar’s theory is quite different from that of general
relativity in both spacetime and tetrad formulations. The principal bundle of
Ashtekar’s theory is an SO(3,1; C) bundle over spacetime. Its structure group is
the complex Lorentz group represented as the automorphisms group of a complex
four dimensional vector space (internal space) obtained via a complexification of

the internal space of the tetrad formalism.

Geometry on this principal bundle is determined by Ashtekar connection®
+A = €; A e; +Aijy d:z:“, (24-)
which is fixed to be the self-dual spin connection*

TAY, = w, i€ ppw™ . (25)

* We wish to point out the difference between the Rovelli’s self-dual spin
connection® and the self-dual connection used in some other references®. The
difference is not important for our results. It would cause trivial changes in some

expressions (factors 2 and 1).



The curvature T F of the Ashtekar connection T A is defined in a standard fashion

as the exterior covariant derivative V44 of TA
TP =e¢; A e; +Fij,“, dz* Adz” = Vi, TA. (26)
The components ¥ F*/ ,, are related to the components R pv as follows®

tFi,, = R v 4 €9 nn R™ . (27)

We recall here that in both spacetime and tetrad formulations of general
relativity the E. Cartan moment of rotation M is defined to be the left dual (the
internal space dual in case of the tetrad formulation) of the exterior product of

the canonical soldering form 6 and the curvature form R.

The principal bundle of Ashtekar’s theory is not a frame bundle in the
strict sense of the word and, consequently, does not have the canonical soldering
structure, very much like electrodynamics or Yang-Mills theory (although 6 can
be considered as an isomorphism between the complexified tangent space and the
complex internal space). A more detailed analysis®> has shown that in electro-
dynamics as well as in Yang-Mills fields it is possible to express the source of
any of these fields in terms of E. Cartan moment of rotation, and that the sol-
dering form taking a part in the E. Cartan construction in both cases is just the
canonical soldering form of the frame bundle over spacetime. Following the same
pattern, we form the E. Cartan moment of rotation in Ashtekar’s theory using

the expression (13) for the canonical solderiné form in the tetrad basis
M&=*(6ATF). (28)

From the definition of the Ashtekar connection (25), the compatibility of the
connection with the spacetime soldering, commutativity of the exterior covari-
ant differentiation with the duality operator on the internal space, and Bianchi
identities

ViaTF=0 (29)

10



it is easy to see that the E. Cartan moment of rotation (28) in Ashtekar’s theory

is conserved

ViaMf =Viy [*(6ATF)] =0, (30)

just as in both spacetime and tetrad formulations of general relativity. In expres-
sions (29) and (30) *A stands for the pulldown of the Ashtekar connection to

spacetime and T F for the pulldown of the Ashtekar curvature form to spacetime.

However, the curvature form of Ashtekar’s theory contains, in addition
to the standard tetrad curvature, an imaginary part proportional to the internal
space dual of the tetrad curvature form. The usual worry in Ashtekar’s theory®"*?
is that such an imaginary part might produce spurious equations and in this way

lead to the theory different from general relativity. As it is well known®® this

does not occur when variational principles are used. To see whether it happens
or not in our case we inspect closer the expression (28) for the E. Cartan moment
of rotation via substituting expressions (13) for  and (26), (27) for TF. It is

convenient to rewrite equations (26), (27) in the form
t*F=R+i*R. | (31)
Thus, the expression (28) for M4 yields
ME=*(6AR)+i*(§ A*R). (32)

The first term of this expression yields the standard expression for the Einstein
form (an internal vector valued 3—form) G as we have already shown in Sec. III of
this report (cf. equation (21) and the related discussion). The second term can
be calculated by means of straightforward performing all the operations of dual-
ization and exterior multiplication listed in its expression, and using the standard
identity for ™"

€™ np €jg"F = —2(6T6} — 61 6%). (33)

11
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Using the relations ' _
R™ x=eq €p Raﬂ,‘)\ ,

€y, = €y

between the tetrad and spacetime variables (34) can be reduced to
*(6 A*R) = em €T €y eiy R™ yxdz” A da® A dz?
= €y Jpv Ref aadz? Adzh A dz? (36)
= ey R¥,uxdz” Adz# A dz* = 0.

The last equality in (36) follows from the identity satisfied by the Riemann tensor

RaupA + Ra;u\v + Rakup. = 0. (37)

We can summarize our analysis by the statement that the E. Cartan
moment of rotation in Ashtekar’s theory is real and, just as in standard relativity,

is equal to the Einstein form

*(@A*F)=*(0AR)=G. (38)

V. Two—Component Spinor Language.

As it has been noted above, in Ashtekar’s theory of gravity we deal only
with the self-dual part of of a frame bundle connection. Therefore, in this theory

it is convenient to use a two—component spinor language!?, as it is done in most

of the literature on the subject”®?. In most of this section we use common index

notations that can be interpreted by a reader either as abstract indices or as

12



the components of spinors in a basis. When the two—component spinor language
is used the internal tetrad indices i, §,... are replaced by the pairs of unprimed
and primed indices AA', AB',... referring to the internal two dimensional vector
space (over complex numbers) of spinors and its complex conjugate. The internal
space of spinors is assumed to be endowed with a fixed non-degenerate 2—form
€ 4B, its inverse €42, and the conjugates €4rp and ¢4'B" which are used to raise

and lower the spinor indices!®.

Just as it is the case for all other formulations of generél relativity the
tangent space to spacetime is soldered to the internal space. This time the solder-
ing form oAA'E is an isomorphism (over the field of complex numbers) between
the complexified tangent space and the four dimensional space of (1,1) spinors.
The soldering form o44'# is a vector of the (complexified) tangent space and 2
(1,1) spinor of the internal space. Using the tetrad field we can transform it into

AA

a 1-form on the complexified tetrad internal space o ',- via the relation

gAA's = ik O’AA',‘. (39)

In the case of real relativity aAA'E is required to be such that oA4's = A4k Tn

o o . « o
such a case o44'# ig related to the spacetime metric in a simple way

AA'

gt =" aaa”. , (40)

An SL(2,C) connection Apc, and the related covariant derivative D, is

defined on the unprimed spinors bundle in such a way that
Dueap=0. (41)

The action of the covariant derivative D, on an unprimed spinor Ap is expressed

in terms of the connection 1-form Apc, by
Durp = OprB + ABC” Ac. (42)

13



It follows from (41) that A€, is traceless, or equivalently Apcy = —Acpy. It is
clear that Apc, has 4x 3 = 12 independent complex components. It is equivalent
to a self-dual connection of Sec. IV via the one to one correspondence between
+ A, and Apc,epror When the pair of indices BB’ is identified with the tetrad
index i¢. The identification is given by a fixed map oBB’; between the internal

tetrad space and the internal space of (1, 1) spinors

12 ! 2 .o
aBB i a,CC J ABCu EBICr = +A'Jp- (43)

Likewise, the relation between the curvature Fcy, of the connection Apcy de-

fined by
1
5Fcu = GuApop) + 48" [ AlPN1 (44)

and the self~dual Riemann curvature *F#/,, is given by

!z LN ..
G'BB 'U'CCJFBC“[/ ERBIC! = +F'J#yo (45)

As we already know (cf. equation (38)) the E.Cartan moment of rota-
tion does not change (and, in particular, remains to be real) when the Riemann
curvature R in it is replaced with the self-dual curvature *F

M=Mit="O@AR)=*(ATF)=G
. (46)
=e;G* d®S, =e, G** &%,
where G** and GY*# are the tetrad and spacetime components of the Einstein
tensor respectively. Equivalently, G** and G** can be called the tetrad and
spacetime components of the E. Cartan moment of rotation. It follows from
the expression (46) that the spacetime components of the E. Cartan moment of

rotation can be expressed in terms of the self-dual Riemann curvature as follows

GHY =ty _ %g’“’ +F, (47)

14



where ¥ F#¥ and *F are the Ricci part and the scalar part of the self-dual Rie-

mann curvature + + o
ey — T pos

tFP="1F",. (#8)
In expressions (47) and (48) we have switched from the internal space indices of
the Sec. IV to all spacetime indices. To avoid an ambiguity we should point out
that the self-duality in these expressions means the self-duality with respect to

the first pair of indices of T F#¥*A,

The expressions for the spinor components GAB'E of the E. Cartan mo-

ment of rotation can be obtained easily based on the equation (47)

GAB'p — O.AB'i Git = O'ABI,, GVE = O'AB,,, (+Fuu _ %+F> (49)

via a substitution into it the expressions
+Fa/3‘w —_ a,BB'a O_CC'ﬂ Faouvepicr
+Fau = ogBB# 5CC ﬂFBC;w Epict (50)
+F = O'BB’” O'CC,I’ FBCpu 1>5: el

together with the expression (40) for g#*.

The resulting expression for the spinor components GBé.“ of the E. Cartan

moment of rotation is
I ] 1 ! '
GBC“ = gBBv Fgct, — 3 O'BC“ (O’MM @ aNMIﬁ FMNaﬂ) . (51)

This expression is not manifestly real. However, in the case of real relativity it
is, indeed real, which is clear from the considerations of the Sec. IV and reality
of the c44'#, Comparing the equation (51) with the gravitational field equation

! 1 1 !
oBB'Y Fp b, — 5 aBCu (UMM a UNM,ﬂ FMNozﬂ) =0, (52)

obtained by Jacobson and Smolin® from the Lagrangian variational principle we

conclude that this equation is the statement in spinor language of the fact that

15



in vacuum the E. Cartan moment of rotation is equal to zero, as it is supposed

to be. '

VI. Conclusion.

We have demonstrated that the construction of the E. Cartan moment of
rotation can be extended to the Ashtekar’s theory of gravity. Despite the fact that

the self-dual curvature is complex even in real relativity the E. Cartan moment

of rotation in this case is real. The imaginary part of the E. Cartan moment of
rotation vanishes due to the cyclic symmetries of the Riemann tensor. We have
also shown that the two—spinor components of the E. Cartan moment of rotation
can be expressed in terms of the curvature of the unprimed spinor connection.
Such an expression coincides with the left hand side of the Lagrangian equation
obtained by Jacobson and Smolin from variational principles. This leads us to an

elegant and transparent geometric interpretation of their result.

To put it differently, the E. Cartan moment of rotation and, together
with it the whole structure of classical general relativity appears to be not sen-
sitive to the choice of variables used to describe the gravity field. It can be
described equally well in standard metric variables, in tetrad variables as well
as in Ashtekar’s variables. The present report does not provide any indications
whether an alternate choice of variables (as opposed to standard metric variables)

can provide any advantages in gravity quantization.

The answer to this question can be obtained only via a careful analysis of
the initial value problem in different variables and a study of separation of truly

dynamic gravitational degrees of freedom in different approaches.

16



References.

10

Wheeler J. A.: Physics and Austerity, Anhui Science and Technology
Publications, China, Anhui (1982)

Misner C. W., Thorne K. S., Wheeler J. A.: Gravitation. W. H. Freeman -
and Co., New York (1973)

Kheyfets A.: Foundations of Physics, 16, 463 (1986)
Kheyfets A. & Wheeler J. A.: Int. J. Theor. Phys., 25, 573 (1986)

Kheyfets A. & Miller W. A.: J. Math. Phyg., to appear in November,
1991

Rovelli C.: Ashtekar Formulation of General Relativity and Loop—Space
Non-Perturbative Quantum Gravity: a Report (1991)

Ashtekar A.: Old Problems in the Light of New Variables, to appear in

the Proceedings of the Osgood-Hills conference on Conceptual Problems
of Quantum Gravity (1990)

Ashtekar A.: Phys. Rev. D40, 2572 (1989)
Jacobson T. & Smolin L.: Class. Quantum Grav., 5, 583 (1988)

Penrose R. & Rindler W.: Spinors and Space-Time, V.1, Cambridge
University Press, Cambridge (1984)

17



