

ornl

OAK RIDGE
NATIONAL
LABORATORY

LOCKHEED MARTIN

ORNL
Master Copy

C/ORNL94-0285

CRADA Final Report
for
CRADA Number ORNL94-0285

DEVELOPMENT OF A THIN-FILM BATTERY
POWERED HAZARD CARD AND OTHER
MICROELECTRONIC DEVICES

John B. Bates
Oak Ridge National Laboratory

Elric Saaski
Research International

Prepared by the
Oak Ridge National Laboratory
Oak Ridge Tennessee 37831
managed by
Lockheed Martin Energy Research
Corporation
for the
U.S. Department of Energy
under contract DE-AC05-96OR22464

This document has been reviewed and is determined to be APPROVED FOR PUBLIC RELEASE.	
Name/Title:	<i>Leesa Laymon / TFD</i>
Date:	<i>Sept. 29, 2014</i>

MANAGED AND OPERATED BY
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CRADA No. ORNL 94-0285
with
Research International
for

**Development of a Thin-Film Battery Powered Hazard Card and Other Microelectronic
Devices**
Final Report

J. B. Bates
Solid State Division

Abstract

The objective of this project is to develop several types of microelectronic devices including a personal hazardous monitor, that could be powered by thin-film rechargeable lithium batteries developed at the Oak Ridge National Laboratory. Work performed at ORNL included designing and fabricating thin film lithium cells with amorphous V_2O_5 cathodes that could meet or exceed the requirements of Research International's devices. Work performed at Research International included designing prototype devices and testing them with the batteries made at ORNL.

Objective

This project was aimed at the development of microelectronic devices including a personal hazardous monitor, that could be powered by thin-film rechargeable lithium batteries developed at the Oak Ridge National Laboratory.

Benefits to DOE Missions

This project aided in the advancement of ORNL's thin-film rechargeable lithium batteries and enhanced the prospects the commercialization of this technology. The primary device developed, a personal hazard gas sensor or "Hazard Card", was designed to detect low levels of specific, toxic organic molecules and to sound an alert when the concentration reached dangerous levels. The card could be used, for example, by workers involved in decontamination and decommissioning of DOE facilities.

Work Performed

Hazard Card

Two designs for the hazardous gas sensor, the "Hazard Card", were considered (Appendix 1). For both designs, the minimum operating voltage is 2.5 V. In the preliminary design, the quiescent operating current was about 10 μ A, and the liquid crystal display and the alarm required pulses of 29 μ A and 49 μ A, respectively. For 24 h of operation, the battery is required to deliver 248 μ Ah of capacity above 2.5 V. In the final design, the quiescent current drain for continuous operation of the sensor and flickering LED display is 20 μ A, and the audible alarm requires 68 μ A. For continuous operation of the sensor and display for 8 h and for 5 soundings of the audible alarm for 60 s each, the battery is required to deliver 166 μ Ah above 2.5 V. The requirements for both designs were to be met after 1000 cycles.

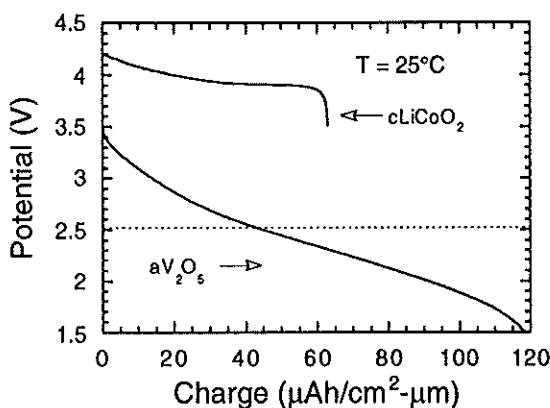


Fig. 1. Low current ($1 \mu\text{A}/\text{cm}^2$) discharge curves for thin-film lithium batteries with amorphous V_2O_5 and crystalline LiCoO_2 cathodes.

At the time this project began, our experience with thin-film cathode materials was limited to amorphous vanadium oxide. We deposited the V_2O_5 films by reactive dc magnetron sputtering of V in Ar + 15 % to 20 % O_2 . The as-deposited films had an O/V ratio of 2.5 (± 0.1) as determined by Rutherford backscattering and Auger electron spectroscopy, and they were observed to be amorphous in electron diffraction measurements. A graph of specific capacity vs. voltage for a Li-a V_2O_5 cell discharged at a low current shown in Fig. 1. Although Li-a V_2O_5 batteries have a high specific capacity of $\sim 120 \mu\text{Ah}/\text{cm}^2\text{-}\mu\text{m}$ between 3.5 V and 1.5 V, less than

half of this capacity is available at potentials above 2.5 V. Recently, a new battery designed for the Hazard Battery that is based on LiCoO_2 cathodes will have much higher specific capacity above 2.5 V (Fig. 1) than the Li-a V_2O_5 cell developed in the early stages of this project.

As a consequence of internal cell resistance, which is due mainly to the cathode, the capacity delivered depends on the thickness and area of the cathode, the current density, and the temperature. Examples of the effect of current density and temperature are shown in Fig. 2. In order to obtain a data base for design of the Hazard Card battery, work at ORNL during the early months of the project focused on the behavior of 1 cm^2 sized cells with cathodes of different thicknesses under different loads and cycling conditions.

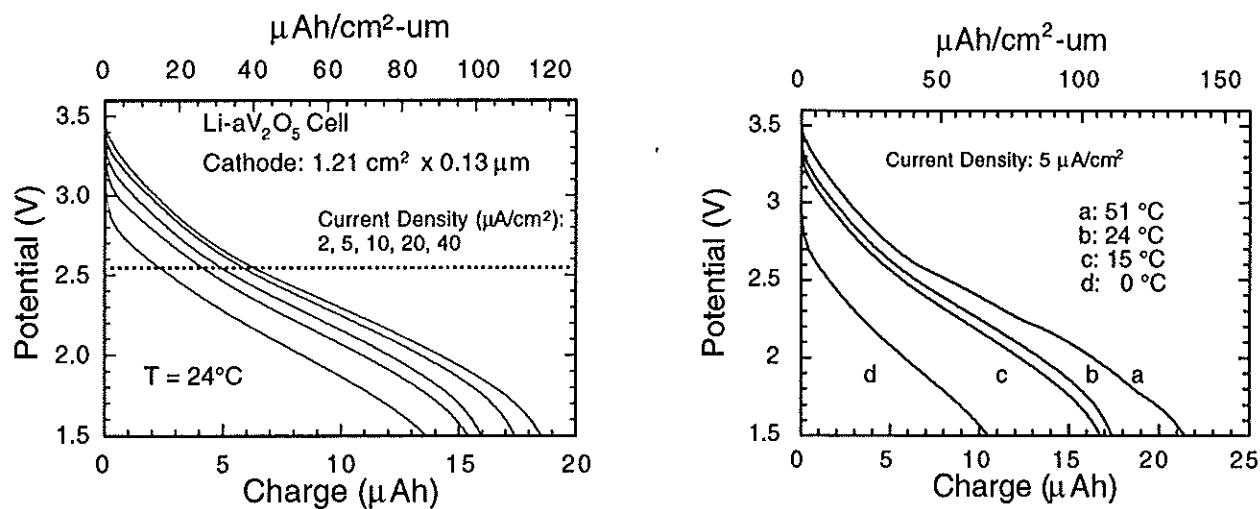


Fig. 2. Discharge of a Li-aV₂O₅ battery at different current densities at 24°C and at different temperatures for a current density of 5 $\mu\text{A}/\text{cm}^2$.

The space allocated to the Hazard Card battery was one side of a 2" x 4" substrate; the reverse side was to be occupied by the sensor and circuitry in the final product. From the results of the experiments with small cells, we expected that a battery with a cathode of 9 cm² and about 1 μm thick should deliver the energy and power required by the device after 1000 cycles. The layout of the prototype battery is shown in Fig. 3. Because the area of the battery is large relative to the flux from our the 2" diameter magnetron sputter guns, the thickness of the current collector, cathode, and electrolyte films varied by about 20% from the edge to the center of the films. However, this non uniformity had no evident effect on battery performance. Based on a specific capacity of 120 $\mu\text{Ah}/\text{cm}^2\text{-}\mu\text{m}$, the average cathode thickness was about 1 μm .

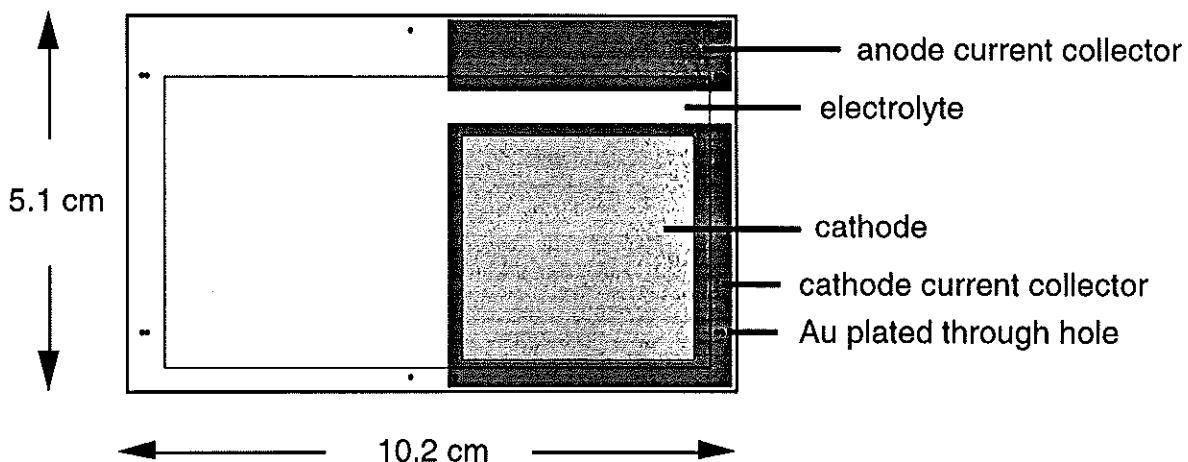


Fig. 3. Layout of the Hazard Card Battery. Lithium anode and protective coating not shown.

A complete duty cycle of one of the prototype batteries operating under quiescent conditions of the final Hazard Card design is shown in Fig. 4. As can be seen, this battery could supply 20 μ A for 8 h for operation of the sensor and display, and there remained sufficient capacity to supply 68 μ A for about 2.5 h of operation of the alarm, far longer than specified (Appendix 1). The charging circuit of the Hazard Card

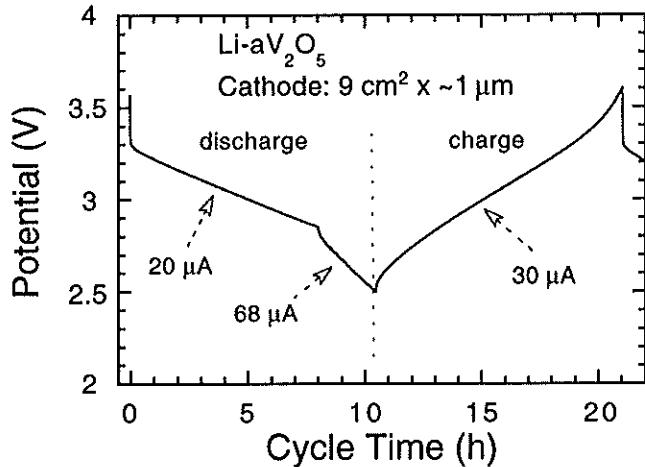


Fig. 4. One duty cycle of the Li-aV₂O₅ Hazard Card battery.

to provide a more comfortable margin of extra capacity, the cathode thickness could be increased by at least 50% without compromising performance. There is also ample room on the substrate for increasing the active area of the battery.

SRAM Backup

Research International has proposed several potential applications such as a personal identification badge in which a thin-film battery is used to retain memory in SRAM chips. A study to demonstrate memory backup was recently completed using 1 MB and 2 MB PCMCIA cards. When removed from the computer, the current loss corresponds to a drain through a constant load of 1–2 M Ω , and we observed that memory is retained at voltages as low as 1.5 V.

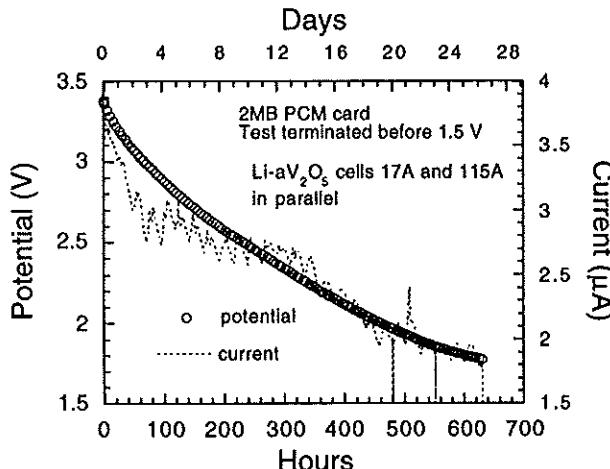


Fig. 5. Voltage and current supplied by the Li-aV₂O₅ battery to a 2MB PCMCIA card.

The result of one experiment is shown in Fig. 5. The battery, consisting of two Li-aV₂O₅ cells connected in parallel had a capacity of about 1.6 mAh between 3.5 V and 1.8 V. At the 1.8 V cutoff, the battery could hold memory in the 2 MB card for about 25 days.

Conclusions

It was demonstrated in this project that thin-film rechargeable lithium batteries can meet the power requirements of a variety of microelectronic devices. During the course of this research, thin-film batteries with crystalline LiCoO₂ cathodes have been developed. A new design for a Hazard Card battery that is based on four Li-LiCoO₂ cells is illustrated in Fig. 5. As shown in Fig. 1, crystalline LiCoO₂ has a significantly larger specific capacity than aV₂O₅ for operation above 2.5 V. The battery illustrated occupies just over one-half

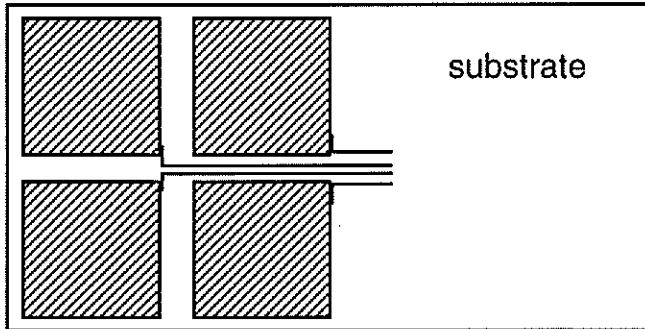


Fig. 5. Proposed four-cell Li-LiCoO₂ battery for the Hazard Card.

of one side of the substrate. Each battery with a 4 cm² × 1 µm thick LiCoO₂ cathode can deliver about 240 µAh of charge between 4.2 V and 3.8 V. The voltage range and capacities that could be achieved with different combinations of parallel and series connections are given in Table 1. With the capability of 4 V, 8 V, or 16 V operation, the battery offers possibilities for new circuit designs with different types of sensors.

Table 1. Future Prototype Battery for Hazard Card

Connection	Voltage Range	Capacity (µAh)
4 cells in parallel	4.2–3.0	960
Series combination of 2 cells in parallel	8.4–6	480
4 cells in series	16.8–12	240

Future Work and Commercialization Possibilities

Research International has not revealed any plans to pursue development of the Hazard Card and no future work has been planned. However, the prospects for commercialization of ORNL's thin film rechargeable battery technology are good. A prototype manufacturing project is currently under way at a large U. S. company, and an in-line system for high volume production of thin film batteries is being designed.

Inventions

Listed below are issued patents and one invention disclosure that resulted totally or in part from this CRADA project.

“Protective Lithium Ion Conducting Ceramic Coating for Lithium Metal Anodes and Associate Method,” J. B. Bates, U.S. Patent No. 5,314,765 (May 24, 1994).

“Thin-Film Battery and Method for Making Same,” J. B. Bates, N. J. Dudney, G. R. Gruzalski, and C. F. Luck, U.S. Patent No. 5,338,625 (Aug. 16, 1994).

“Method for Making an Electrolyte for an Electrochemical Cell”, J. B. Bates and N. J. Dudney, U. S. Patent No. 5,512,147 (Apr. 30, 1996).

“Packaging Material for Thin-Film Lithium Batteries,” J. B. Bates, N. J. Dudney, and K. A. Weatherspoon, U.S. Patent No. 5,561,004 (Oct. 1, 1996).

“Rechargeable Lithium Battery for Use in Applications Requiring a Low to High Power Output”, J. B. Bates, U. S. Patent No. 5,569,520 (Oct. 29, 1996).

“Method for Making an Electrochemical Cell”, J. B. Bates and N. J. Dudney, U. S. Patent No. 5,567,210 (Oct. 22, 1996).

“Rechargeable Lithium Battery for Use in Applications Requiring a Low to High Power Output,” , J. B. Bates, U. S. Patent No. 5,569,520 (Oct. 29, 1996).

“An Electrolyte for an Electrochemical Cell,” J. B. Bates and N. J. Dudney, U.S. Patent No. 5,597,660 (Jan. 28, 1997)..

“Rechargeable Lithium Battery for Use in Applications Requiring a Low to High Power Output,” U. S. Patent No. 5,612,152 (Mar. 18, 1997).

Patent on new inorganic anode material for thin-film rechargeable lithium-ion batteries is in preparation for U. S. and foreign filing.

APPENDIX 1

Power Specifications and Battery Characteristics for the Hazard Card

Battery Design Specifications	Preliminary Design	Final Design
Voltage		
Nominal, V	3	3
Max, V	6	6
Min, V	2.5	2.5
Load (Discharge)		
Quiescent, μ A	10.3	20
Total Pulse-1, μ A	28.5	
Pulse-1 time, s	90	
Total Pulse-2, μ A	48.6	68
Pulse-2 time, s	10	60
Total pulses/cycle	1	5
Discharge cycle time, h	24	8
Number of cycles	1000	1000
Battery Life		
Nominal, years	3	3
Capacity		
Quiescent, μ Ah/cycle	247	166
Pulse-1, μ Ah/cycle	0.71	
Pulse-2, μ Ah/cycle	0.14	
Total Capacity, μ Ah/cycle	248	235
Dimensions		
(Dia. or) Width, cm	2.00	3.00
Length, cm	4.00	3.00
Area (foot print), cm^2	8.00	9.00
Active film thickness, μ m, max	10	10
Substrate thickness, typ.	100–500	100–500
Temperature		
Nominal, $^{\circ}$ C	25	25
Max, $^{\circ}$ C	55	55
Min, $^{\circ}$ C	0	0

Appendix 2

Tasks and milestones from the CRADA statement of work:

Laboratory Tasks

1. Fabricate Li-V₂O₅ thin-film batteries onto substrates supplied by RI.
2. Characterize the structure of each cathode in the early stages of the project.
3. Cycle each battery several times under conditions that mimic the application.
4. Investigate the cause of any battery failure experienced by RI.

Research International Tasks

1. Design and fabricate prototypes of the “Hazard Card”.
2. Supply substrates for the thin-film batteries and sufficient technical information to allow realistic battery testing to be performed at ORNL.
3. Integrate batteries into devices.
4. Test the performance of devices powered by thin-film batteries.

Deliverables

The following reports and abstracts are required to be delivered under Article XI of the CRADA:

1. an initial nonproprietary abstract suitable for public release;
2. other abstracts (final when work is complete, and others as substantial changes in scope and dollars occur);
3. an annual progress report containing no Proprietary Information or Protected CRADA Information so the report can be openly distributed;
4. a final report; and
5. other topical/periodic reports where the nature of the research and magnitude of dollars justify.

Major Milestones

- Design and fabricate prototype devices (RI).
- Fabricate and test thin-film Li-V₂O₅ batteries to meet device requirements (ORNL).
- Test and evaluate battery-powered devices.
- Prepare quarterly reports.
- Prepare a final report.

INTERNAL DISTRIBUTION

1. A. J. Luffmann
2. C. A. Valentine
3. J. B. Bates
4. L. A. Boatner
5. W. P. Painter
6. J. B. Roberto
7. Laboartory Records - RC
- 8-9. Laboratory Records (2) - for transmittal to OSTI

EXTERNAL DISTRIBUTION

10. W. M. Polansky, ER-13/GTN, Department of Energy, 19901 Germantown Road, Germantown, Maryland 20874-1290
11. P. L. Gorman, Department of Energy, Oak Ridge Operations Office, P.O. Box 2008, Oak Ridge, Tennessee 37831-6269
12. Dr. Elric Saaski, President, Research International, 18706 142nd Avenue Northeast, Woodinville, Washington 98072
13. DOE Work for Others Office, MS G209

