

NIPER-727
December 1993

STATUS REPORT

**LITERATURE SURVEY AND DOCUMENTATION
ON ORGANIC SOLID DEPOSITION PROBLEM**

By Ting-Hong Chung

JAN 14 1994

OSTI

Work Performed for
U. S. Department of Energy
Under Cooperative Agreement DE-FC22-83FE60149

National Institute for Petroleum and Energy Research
IIT Research Institute • P. O. Box 2128
Bartlesville, Oklahoma 74005-2128 • (918) 336-2400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

NIPER-727
Distribution Category UC-122
December 1993

Status Report

**LITERATURE SURVEY AND DOCUMENTATION
ON ORGANIC SOLID DEPOSITION PROBLEM**

By Ting-Horng Chung

Task 1 - State-of-the-Art Report, BE5A Project

Work performed for
U.S. Department of Energy
Under Cooperative Agreement
DE-FC22-83FE60149

Jerry F. Casteel, Program Manager
U.S. Department of Energy
Bartlesville Project Office

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

IIT Research Institute
NATIONAL INSTITUTE FOR PETROLEUM AND ENERGY RESEARCH
P.O. Box 2128
Bartlesville, Oklahoma 74005
(918) 336-2400

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

	<u>Page</u>
Summary	1
Bibliography Categorization	2
A. Wax	2
I. Characterization and Physical Properties	2
II. Modeling and Prediction	2
III. Field Problems and Solution Methods	2
References	2
B. Asphaltenes	9
I. Characterization and Properties	9
II. Modeling and Prediction	10
III. Field Problems and Solution Methods	10
References	10
C. Related References	18

LITERATURE SURVEY AND DOCUMENTATION CONCERNING ORGANIC SOLID DEPOSITION

By Ting-Horng Chung

SUMMARY

Organic solid deposition is often a major problem in petroleum production and processing. Recently, this problem has attracted more attention because operating costs have become more critical to the profit of oil production. Also, in miscible gas flooding, asphaltene deposition often occurs in the wellbore region after gas breakthrough and causes plugging. The organic deposition problem is particularly serious in offshore oil production. Cooling of crude oil when it flows through long-distance pipelines under sea water may cause organic deposition in the pipeline and result in plugging. Oil companies must be assured that organic deposition will not cause serious production problems before they invest a huge amount of money in exploration and development in deep-water oil fields. Oil companies are now focusing on the development of deep water oil recovery in the Gulf of Mexico. This area represents one of the best remaining U.S. opportunities accessible to the oil industry, and finding reserves has been good (discoveries announced in 1991 totaled more than 1 billion barrels oil). At least 12 oil and gas companies are considering a common development strategy to exploit reservoirs economically in 2,000 to 6,000 ft of water.

NIPER's Gas EOR Research Project has been devoted to the study of the organic solid deposition problem for three years. We have developed a model to predict wax and asphaltene precipitation at equilibrium condition. A paper on this subject was presented at the SPE 1992 Annual Technical Conference in Washington, D.C. In addition, three topical reports have been published by DOE. NIPER's research effort has attracted industry's attention. We have received many requests for technical support. Recently, the DeepStar project committee on thermo-technology development and standardization has asked us to provide them with NIPER's expertise and experience. It is a good opportunity for NIPER to contribute its technology to help the oil industry to solve their problem and to boost domestic oil production. To assist the oil industry, we are preparing a state-of-the-art review on the technical development for the organic deposition problem. In the first quarter, this project has completed a literature survey and documentation. Total of 258 publications (114 for wax, 124 for asphaltene, and 20 for related subjects) were collected and categorized. This literature survey was focused on the two subjects: wax and asphaltene. The subjects of bitumen, asphalt, and heavy oil are not included. Also, the collected publications are mostly related to production problems; the subjects on refinery processes are not of interest. A thorough review of the collected publications is ongoing, and a topical report will be delivered in FY94.

BIBLIOGRAPHY CATEGORIZATION

A. Wax

I. Characterization and Properties:

1. Wax purification and analysis: 20, 21, 46, 52, 63, 64, 67, 69, 71, 103, 107
2. Crystal morphology, crystallization process, and inhibition: 8, 9, 11, 14, 18, 20, 24, 26, 27, 30, 37, 41, 45, 53, 54, 55, 63, 66, 75, 79, 81, 82, 89, 93, 94, 98, 101, 110
3. Rheological behavior: 2, 3, 6, 36, 43, 51, 59, 88, 94, 99, 102
4. Precipitation temperature and quantity determination: 1, 28, 48, 57, 87, 94
5. Deposition under flow conditions: 57, 61, 73, 109
6. Deposition mechanisms (thermal, solubility, adsorption, wettability, transport property, etc.): 5, 7, 11, 18, 21, 31, 32, 34, 46, 47, 55, 57, 61, 66, 72, 73, 77, 80, 85, 104, 109

II. Modeling and Prediction:

1. Thermodynamic modeling and prediction for wax precipitation: 4, 23, 28, 29, 49, 69, 86, 112, 113, 114
2. Dynamic modeling and prediction for wax deposition: 2, 7, 36, 109

III. Field Problems and Solution Methods:

1. Field problems and experience: 12, 19, 21, 22, 32, 34, 35, 39, 42, 44, 50, 56, 65, 68, 70, 72, 88, 90, 91, 92, 97, 98, 105, 106, 108
2. Solution methods for wax deposition problem
 - (1) Mechanical method: 10, 13, 17, 40, 43, 76, 111
 - (2) Thermal method: 25, 33, 38, 62, 78, 95, 100
 - (3) Chemical method: 11, 14, 15, 16, 38, 45, 55, 58, 59, 60, 66, 74, 75, 80, 83, 84, 89, 96

REFERENCES

1. Affens, W.A., J.M. Hall, S. Holt, and R.N. Hazlett. Effect of Composition on Freezing Points of Model Hydrocarbon Fuels. *Fuel*, V.63, April 1984, pp. 543-547.
2. Agrawal, K.M., H.U. Khan, M. Surianarayanan, and G.C. Joshi. Wax Deposition of Bombay High Crude Oil under Flowing Conditions. *Fuel*, V.69, 1990, pp. 794-796.
3. Agrawal, K.M., R.C. Purohit, M. Surianarayanan, G.C. Joshi and R. Krishna. Influence of Waxes on the Flow Properties of Bombay High Crude. *Fuel*, V.68, July 1989, pp. 937-939.

4. Andriasov, R.S., B.G. Vlyushin and G.V. Panteleev. Two Approaches to Calculation of Growth Rate of Paraffin Deposits. *Izv. Vyssh. Ucheb. Zavedenii, Neft Gaz*, No. 4, 1969, pp. 41-46.
5. Barmby, D.S., L.G. Bostwick, and J.A. Huston, Jr., Some Studies on the Physics of Paraffin Wax and Wax/Polymer System. Sec. VI, Paper 21, Sun Oil Co., 1956.
6. Barry, E.G., Pumping Non-Newtonian Waxy Crude Oils. *J. Inst. Pet. Tech.*, V.57, No. 554, March 1971, pp. 74-85.
7. Bern, P.A., V.R. Withers, and J.R. Cairns. Wax Deposition in Crude Oil Pipelines. Pres. at European Pet. Conf., London, England, Oct. 21-24, 1980, paper EUR 206.
8. Bilderback, C. and L.A. McDougall. Complete Paraffin Control in Petroleum Production. *J. Pet. Tech.*, Sept. 1969, pp. 1151-1156.
9. Birdwell, B.F., Effects of Various Additives on Crystal Habit and Other Properties of Petroleum Wax Solutions. Ph.D. dissertation, The University of Texas, Austin, Sept. 1963.
10. Bleakley, W.B., Peewee Pigs Remove Flowline Paraffin. *Oil & Gas J.*, March 14, 1960, pp. 190-190.
11. Bock, M. and J.C. Spalding, Jr.. Process for Controlling Wax Deposition. U.S. Patent No. 2,836,559, issued May 27, 1958.
12. Bott, T.R. and J.S. Gudmundsson. Deposition of Paraffin Wax from Kerosene in Cooled Heat Exchange Tubes. *Can. J. Chem. Eng.*, v. 55, Aug. 1977, pp. 381-385.
13. Bowers, E.F. and J. Renfro. Paraffin Removal in South Texas. *Oil & Gas J.*, May 31, 1947, p. 134.
14. Briant, J.. Factors Affecting the Formation of Paraffinic and Asphaltic Deposits. *Bull. 8480*, French Pet. Inst., June 1963.
15. Briant, J.. Factors Affecting the Formation of Paraffin Deposits in Production Installations. *Inst. Franc. Pet. Rev.*, v. 18, Suppl. Issue, Dec. 1963, pp. 1-16.
16. Brod, M., B.C. Deane and F. Rossi. Field Experience with the Use of Additives in Pipeline Transportation of Waxy Crudes. *J. Inst. Pet.*, v. 57, No. 554, March 1971, pp. 110-116.
17. Brown, W.Y., Prevention and Removal of Paraffin Accumulations. *Drill. and Prod. Prac.*, API, 1940, p. 85.
18. Bucaram, S.M.. An Improved Paraffin Inhibitor. *J. Pet. Tech.*, v. 19, Feb. 1967, pp. 150-156.
19. Bucaram, S.M.. Method of Inhibiting Paraffin Deposition in Oil Wells. U.S. Patent No. 3,344,859, issued Oct. 3, 1967.
20. Buchler, C.C. and G.D. Graves. The Petroleum Waxes. *Ind. Eng. Chem.*, v. 19, No. 6, 1927, pp. 718-724.
21. Burger, E.D., T.K. Perkins, and J.H. Stiegler. Studies of Wax Deposition in the Trans Alaska Pipeline. *J. Pet. Tech.*, June 1981, pp. 1075-1086.

22. Carnahan, N.F.. Paraffin Deposition in Petroleum Production. *J. Pet. Tech.*, October 1989, pp. 1024-1025.
23. Carnahan, N.F. Solution Theory for High Pour Point Paraffinic Oils. Pres. at AIChE Natl. Meeting, New Orleans, LA, Mar. 6-10, 1988, paper 36b.
24. Carpenter, J.A., The Physical and Chemical Properties of Paraffin Wax, Particularly in the Solid State. *Inst. Pet. Tech.*, V. 12, 1926, p. 288.
25. Chandrasekharan, K.P. and P.K. Sikdar. Here's How Waxy Indian Crude is Prepared for Pipeline Transit. *Oil & Gas Intl.*, v. 10, No. 10, October 1970, pp. 85-95,111.
26. Chichakli, M., X-Ray and Microscopic Studies of Nucleation, Modification, and Growth of Paraffin Crystals in Hydrocarbon Systems. Ph D. dissertation, The University of Texas, Austin, TX, January 1966.
27. Chichakli, M. and F.W. Jessen. Crystal Morphology in Hydrocarbon Systems. *Ind. Eng. Chem.*, v. 59, No. 5, May 1967, pp. 86-98.
28. Chung, T.H. F., P. Sarathi, and R. Jones. Modeling Asphaltene and Wax Precipitation. U.S. Dept. of Energy Report No. NIPER-498 (DE92001016), September 1990.
29. Chung, T.H. Thermodynamic Modeling for Organic Solid Precipitation. Pres. at SPE Annual Tech. Conf. and Exhib., Washington, D.C., October 4-7, 1992, SPE paper 24851. U.S. Dept. of Energy Report No. NIPER-623 (DE93000104), December 1992.
30. Clark, E.W., Crystal Types of Pure Hydrocarbons in the Paraffin Wax Range. *Ind. Eng. Chem.*, v. 43, Nov. 1951, p. 2526-2535.
31. Cole, R.J.. Fundamental Investigation into the Effect of Temperature Gradient and Surface Wettability on Paraffin Deposition. M.S. thesis, Pet. Eng., The University of Texas, Austin, TX, January 1959.
32. Cole, R.J. and F.W. Jessen. Paraffin Deposition. *Oil & Gas J.*, v. 58, No. 38, Sept. 19, 1960, pp. 87-91.
33. Cozzins, F.F. Reconditioning Oil Wells with Steam. *Oil Weekly*, March 1943, p. 32.
34. Davenport, T.C. and V.J. Conti. Heat Transfer Problems Encountered in the Handling of Waxy Crude Oils in Large Pipelines. *J. Inst. Pet.*, V.57, No. 555, May 1971, pp. 147-164.
35. Eaton, P.E. and G.Y. Weeter. Paraffin Deposition in Flow Lines. Pres. at 16th Natl. Heat Transfer Conf., St. Louis, Aug. 8-11, 1976, paper No. 76-CSME/CSChE-22.
36. Economides, M.J. and G.T. Chaney, Jr. The Rheological Properties of Prudhoe Bay Oil and the Effects of a Prolonged Flow Interruption on its Flow Behavior. *SPE J.*, June 1983, pp. 408-416.
37. Edwards, R.T., Crystal Habit of Paraffin Wax. *Ind. Eng. Chem.*, v. 49, No. 4, April 1957, pp. 750-757.
38. Electro-Chem. Corp.. Method and Composition for Removal and Inhibiting Paraffin Deposition. Gr. Br. Patent No. 1,020,679, issued Jan. 15, 1965.

39. Ellis, J.W. and V.R.R. Brown. Design of Pipelines to Handle Waxy Crudes. *J. Inst. Pet.*, v. 57, No. 555, May 1971, pp. 175-183.
40. Fagin, K.M., Automatic Scrapers Used in West Edmond Oil Wells. *Pet. Eng.*, June 1945, p.105.
41. Ferris, S.W. and H.C. Cowles. Crystal Behavior of Paraffin Wax. *Ind. Eng. Chem.*, v. 37, No. 11, 1945, pp. 1054-1062.
42. Ford, P.E., J.W. Ells and R.J. Russell. Pipelining High-Pour-Point Crude - I. What Troubles Can Be Anticipated-How to Meet Them?. *Oil & Gas J.*, April 19, 1965, pp. 88-91.
43. Ford, P.E., J.W. Ells and R.J. Russell. Frequent Pigging Helps Move Waxy Crude Below Its Pour Point. *Oil & Gas J.*, May 10, 1965, pp. 183-189.
44. Garrison, A.D. Prevention of Paraffin Deposition in Petroleum Transportation Lines from Oil Wells. U.S. Patent No. 2,818,079, issued Dec. 31, 1957.
45. Goldman, M.S. and C.C. Nathan. Prevention of Paraffin Deposition and Plugging. U.S. Patent No. 2,817,635, issued Dec. 24, 1957.
46. Handoo, J., S.P. Srivastava, K.M. Agrawal and G.C. Joshi. Thermal Properties of Some Petroleum Waxes in Relation to Their Composition. *Fuel*, v. 68, October 1989, pp. 1346-1348.
47. Hanke, J.J.. An Experimental Study on the Nature of the Film Forming Characteristics of Crude Oil Fractions on Steel Surfaces and Their Influence on Paraffin Deposition. Ph.D. dissertation, Pet. Eng., The University of Texas, Austin, TX, June 1967.
48. Hansen, A.B., E. Larsen, W.B. Pedersen, A.B. Nielsen, and H.P. Ronningsen. Wax Precipitation from North Sea Crude Oils. 3. Precipitation and Dissolution of Wax Studied by Differential Scanning Calorimetry. *Energy & Fuels*, v. 5, No. 6, 1991, pp. 914-923.
49. Hansen, J.H., A. Fredenslund, K.S. Pedersen, and H.P. Ronningsen. A Thermodynamic Model for Predicting Wax Formation in Crude Oils. *AIChE J.*, v. 34, No. 12, December 1988, pp. 1937-1942.
50. Hartly, R. and M. bin Jadid. Use of Laboratory and Field Testing to Identify Potential Production Problems in the Troll Field. Pres. at SPE Eur. Pet. Conf., London, England, Oct. 20-22, 1986, SPE paper 15892.
51. Harvey, A.H., Briller, Richard and M.D. Arnold. Pipelining Oils Below Their Pour Point - Part II. *Oil & Gas J.*, Aug. 30, 1971, pp. 62-70.
52. Herring, J.D. Design Concepts for High Wax Crude Oil Pipelines. *Pipeline and Gas J.*, April 1974, pp. 35-42.
53. Holder, G.A. and J. Winkler. Crystal Growth Poisoning of n-Paraffin Wax by Polymeric Additives and Its Relevance to Polymer Crystallization Mechanism. *Nature*, Aug. 14, 1965, pp. 719-721.
54. Holder, G.A. and J. Winkler. Wax Crystallization from Distillate Fuels, Parts 1,2, and 3. *J. Inst. Pet.*, v. 51, No. 449, July, 1965, pp. 228-252.

55. Howell, J.N.. Fundamental Studies of Paraffin Deposition in the Production of Crude Oil. M.S. thesis, Pet. Eng., The University of Texas, Austin, TX, Feb. 1956.
56. Howes, J. Mobil Overcomes Wax Problem on Ness. *The Oilman*, Jan. 1989.
57. Hunt, E.B. Jr. Laboratory Study of Paraffin Deposition. *J. Pet. Tech.*, Nov. 1962, pp. 1259-1269.
58. Ihrig, H.K., Petroleum Solvents Used to Remove Paraffin Deposits in Flow Strings. *Oil & Gas J.*, Dec. 5, 1935, p. 37.
59. Irani, C. and J. Zajac. Handling of High Pour Point West African Crude Oils. *J. Pet. Tech.*, Feb. 1982, pp. 289-298.
60. Ivanov, G.N.. New Methods of Reducing Paraffin Deposition. *Neft. Khoz.*, V. 44, January 1966, p. 67.
61. Jessen, F.W. and J.N. Howell. Effect of Flow Rate on Paraffin Accumulation in Plastic, Steel, and Coated Pipe. *Trans. AIME*, V.213, 1958. pp. 80-86.
62. Jorda, R.M., Paraffin Deposition and Prevention in Oil Wells. *J. Pet. Tech.*, Dec. 1966, pp. 1605-1612.
63. Katz, J., The Crystallization of Paraffin Wax, Part II. *Inst. Pet. Tech.* v. 18, 1932, pp. 37-52.
64. Knotnerus, J. and C.J. Krom. The Constitution of Wax Isolated from Bitumen. Preprint of ACS Symp. on Asphalt: Composition, Chemistry, and Physics, Philadelphia, PA, April 5-10, 1964, pp. B39-B50.
65. Knox, J., A.B. Waters, and B.B. Arnold. Control of Paraffin and Asphalt Deposition. U.S. Patent No. 3,276,519, issued Oct. 4, 1966.
66. Knox, J., A.B. Waters, and B.B. Arnold. Checking Paraffin Deposition by Crystal Growth Inhibition. Pres. at SPE Annual Fall Meeting, Los Angeles, CA, Oct. 7-10, 1962, SPE paper 443.
67. *Laboratory Test Methods for Petroleum Oils*. Universal Oil Products, Des Plaines, IL, 1969.
68. Lamb, M.J. and W.C. Simpson. Pipeline Transport of the Wax Laden Crude as a Water Suspension. *Proc. of Sixth World Pet. Cong.*, Frankfurt, Germany, 1963, VII-13, pp. 23-33.
69. Majeed A., B. Bringedal, and S. Overa. Model Calculates Wax Deposition for N. Sea Oils. *Oil & Gas J.* June 18, 1990, pp. 63-69.
70. Marshall, G.R. Cleaning of the Valhall Offshore Oil Pipeline. Pres. at 20th Annual OTC Conf., Houston, TX, May 2-5, 1988, OTC paper 5743.
71. Mazee, W.M. Physical and Chemical Properties of Petroleum Waxes. *J. Inst. Pet.*, v. 44, No. 419, Nov. 1958, pp. 401-405.

72. McClaflin, G.G. and D.L. Whitfill. Control of Paraffin Deposition in Production Operations. Pres. at SPE Annual Tech. Conf. and Exhib., San Francisco, CA, October 5-8, 1983, SPE paper 12204.

73. Mendell, J.L. and F.W. Jessen. Paraffin Inhibition and Flow Improvement in Crude Oil System. *J. Can. Pet. Tech.*, April-June 1972, pp. 60-66.

74. Mieulet, P. and M. Peinado. New Way to Control Paraffin - Inject Polyethylene Downhole. *World Oil*, v. 163, Nov. 1966, pp. 95-99.

75. Mieulet, P. and M. Peinado. Prevention of Paraffin Deposits in the Champ DE Chailly-EN-Bierre Field. *Bull. 11804*, French Pet. Inst., June 1965.

76. Mills, B., Paraffin Formation and Removal by Mechanical Methods in Pumping Wells. *Oil Weekly*, Jan. 1940, p. 14.

77. Murav'ev, I.M., R.S. Andrisov, B.G. Vlyushin, and G.V. Panteleev. Movement of Paraffin Crystals in Oil and Conditions for Their Precipitation in Pipe Walls. *Izv. Vyssh. Ucheb. Zavedenii, Neft Gaz*, No. 11, 1969, pp. 31-37.

78. Myers, R.W. An Electrically Heated Buried Gathering System Transfers High-Pour-Point Crude Oil. *J. Pet. Tech.*, June 1978, pp. 890-894.

79. Nathan, C.C. How to Evaluate Paraffin Inhibitors. *Pet. Eng.*, Nov. 1955, pp. B66-B68.

80. Nathen, C.C., Solubility Studies on High Molecular Weight Paraffin Hydrocarbons Obtained from Petroleum Rod Waxes. *Trans., AIME*, V. 204, 1955, pp. 151-155.

81. Nelson W.L. and L.D. Steward. Effect of Oil on Plastic Properties of Petroleum Waxes. *Ind. Eng. Chem.*, v. 41, 1949, p. 2231.

80. Padgett, F.W., D.G. Hefly, and A. Henriksen. Wax Crystallization. *Ind. Eng. Chem.*, v. 18, 1926, pp. 832-835.

83. Parks, C.F.. Chemical Inhibitors Combat Paraffin Deposition. *Oil & Gas J.*, v. 58, April 4, 1960, pp. 97-99.

84. Parks, C.F. and F.W. Burtch. Inhibition of Deposition of Hydrocarbonaceous Solids from Oil. U.S. Patent No. 3,244,188, issued April 5, 1966.

85. Patton, C.C.. Relation of Adsorption of High Molecular Weight Petroleum Fractions to Paraffin Deposition. Ph.D. Dissertation, Pet. Eng., The University of Texas, Austin, TX, Jan. 1964.

86. Pedersen, K.S., P. Skovborg, and H.P. Ronningsen. Wax Precipitation from North Sea Crude Oils. 4. Thermodynamic Modeling. *Energy & Fuels*, v. 5, No. 6, 1991, pp. 924-932.

87. Pedersen, W.B., A.B. Hansen, E. Larsen, A.B. Nielsen, and H.P. Ronningsen. Wax Precipitation from North Sea Crude Oils. 2. Solid-Phase Content as Function of Temperature Determined by Pulsed NMR. *Energy & Fuels*, v. 5, No. 6, 1991, pp. 908-913.

88. Perkins, T.K. and J.B. Turner. Starting Behavior of Gathering Lines and Pipelines Filled with Gelled Prudhoe Bay Oil. *J. Pet. Tech.*, March 1971, pp. 301-308.

89. Polyethylene Stops Paraffin Deposition. *Oil & Gas J.*, Nov. 21, 1966, p. 163.
90. Price, R.C. Flow Improvers for Waxy Crudes. *J. Inst. Pet.*, v. 57, No. 554, March 1971, pp. 106-109.
91. Reistle, C.E. Methods of Dealing with Paraffin Troubles Encountered in Producing Crude Oils. Tech. paper 414, USBM, 1928.
92. Reistle, C.E. Paraffin and Congealing-Oil Problems. Bull. No. 348, USBM, 1932.
93. Rhodes, F.H., C.W. Mason and W.R. Sutton. Crystallization of Paraffin Wax. *Ind. Eng. Chem.*, v. 19, No. 8, Aug. 1927, pp. 935-938.
94. Ronningsen, H.P., B. Bjorndal, A.B. Hansen, and W.B. Pedersen. Wax Precipitation from North Sea Crude Oils. 1. Crystallization and Dissolution Temperatures, and Newtonian and Non-Newtonian Flow Properties. *Energy & Fuels*, v. 5, No. 6, 1991, pp. 895-908.
95. Russel, R.J. and E.D. Chapman. Pumping of 85°F Pour Point Assam (Nahorkatiya) Crude Oil at 65°F. *J. Inst. Pet.*, v. 57, No. 554, March 1971, pp. 117-128.
96. Scott, P.R.. Method of Preventing Hydrocarbonaceous Deposition on Solid Surfaces. Canadian Patent No. 960,597, issued Jan. 7, 1975.
97. Scott, P.R.. Method of Pipeline Transporting of Waxy Crude. Canadian Patent No. 960,726, issued Jan. 7, 1975.
98. Shock, D.A., J.D. Sudbury and J.J. Crockett. Studies of the Mechanism of Paraffin Deposition and Its Control. *J. Pet. Tech.*, Sept. 1955, pp. 23-28.
99. Sifferman, T.R. Flow Properties of Difficult-To-Handle Waxy Crude Oils. *J. Pet. Tech.*, August 1979, pp. 1042-1050.
100. Simkin, E.M., and A.I. Sergeer and A.B. Skeinmann. Experimental Studies of Operating Characteristics of a Downhole Electric Heater. *Neft. Khoz.*, No. 6, June 1967, p. 39.
101. Smith, A.E., The Crystal Structure of the Normal Paraffin Hydrocarbons. *J. Chem. Phys.*, v. 21, No. 12, Dec. 1953, pp. 2229-2231.
102. Smith, P.B., and R.M.J. Ramsden. The Prediction of Oil Gelation in Submarine Pipelines and the Pressure Required for Restarting Flow. Proc. Eur. Offshore Pet. Conf., London, 1978, pp. 283-290.
103. Speigh, J.G. *The Chemistry and Technology of Petroleum*. Marcel Dekker, Inc., New York and Basel, 1980.
104. Templin, P.R., Coefficient of Volume Expansion for Petroleum Waxes and Pure n-Paraffins. *Ind. Eng. Chem.*, v. 48, No. 1, Jan. 1956, pp. 154-161.
105. Tuttle, R.N. High-Pour-Point and Asphaltic Crude Oils and Condensates. *J. Pet. Tech.*, June 1983, pp. 1192-1196.
106. Uhde, A. and G. Kopp. Pipeline Problems Resulting from the Handling of Waxy Crudes. *J. Inst. Pet.* v.57, No. 554, March 1971, pp. 63-73.

107. Van Winkle, T.L.; W.A. Affens, E.J. Beal, G.W. Mushrush, R.N. Hazlett and J. DeGuzman. Determination of Liquid and Solid Phase Composition in Partially Frozen Middle Distillate Fuels. *Fuel*, v. 66, July 1987, pp. 890-896.
108. Waxy Crude Moves in Water Suspension. *Oil & Gas J.*, July 1, 1963, pp. 140-146.
109. Weingarten, J.S. and J.A. Euchner. Methods for Predicting Wax Precipitation and Deposition. *SPE Prod. Eng.*, Feb. 1988, pp. 121-126.
110. Welch, G.E., M.R. Appel, and J.R. Bittle. Method and Apparatus for Measuring Crystal Formation. U.S. Patent No. 4,886,354, issued Dec. 12, 1989.
111. Wright, J.E., Studies and Experiments with Paraffin Prevention and Removal in Wells in Southeastern Ohio. *Drill. and Prod. Prac.*, API, 1951, p. 380.
112. Won, K.W. Continous Thermodynamics for Solid-Liquid Equilibria: Wax Formation from Heavy Hydrocarbon Mixtures. Paper-27A presented at AIChE Spring National Meeting, Houston, TX, March 26, 1985.
113. Won, K.W. Thermodynamics for Solid Solution-Liquid-Vapor Equilibria: Wax Phase Formation from Heavy Hydrocarbon Mixtures. *Fluid Phase Equil.*, v. 30, 1986, pp. 265-279.
114. Won, K. W. Thermodynamic Calculation of Cloud Point Temperatures and Wax Phase Compositions of Refined Hydrocarbon Mixtures. *Fluid Phase Equil.*, v. 53, 1989, pp. 377-396.

B. ASPHALTENES

I. Characterization and Properties:

1. Chemical structure and composition: 1, 5, 10, 14, 26, 27, 30, 33, 34, 48, 50, 52, 67, 70, 76, 82, 83, 91, 98, 103, 119, 120, 121, 122, 124
2. Asphaltene-crude oil components relation and separation: 20, 28, 32, 35, 37, 41, 44, 45, 49, 51, 57, 62, 67, 70, 71, 73, 74, 79, 80, 81, 89, 90, 96, 97, 100, 112, 118, 120, 123
3. Chemical and Physical properties (solubility, thermal and electrical conductivity, reaction, molecular weight, colloidal property, viscosity, diffusivity, etc.): 6, 7, 8, 9, 14, 17, 31, 35, 36, 55, 67, 72, 77, 78, 84, 85, 87, 92, 94, 95, 96, 97, 98, 99, 101, 102, 104, 107, 113, 115
3. Asphaltene and rock mineral interaction (adsorption, wettability): 19, 21, 24, 29, 38, 39, 40, 54, 79, 117
3. Precipitation mechanisms: 4, 11, 12, 13, 22, 23, 37, 46, 47, 55, 64, 66, 68, 73, 74, 75, 81, 87, 112, 114, 116, 118
4. Measurement of asphaltene precipitation quantity: 11, 15, 17, 18, 35, 43, 47, 51, 56, 82, 93, 123

II. Modeling and Prediction

1. Thermodynamic modeling and prediction for asphaltene precipitation: 15, 16, 17, 18, 46, 53, 56, 58, 59, 61, 69, 87, 106
2. Dynamic modeling and precipitation for asphaltene deposition: 59, 61, 69

III. Field Problems and Solution Methods

1. Field problems and experience: 3, 25, 58, 63, 65, 75, 105, 108, 110, 111
2. Solution methods for asphaltic deposition: 2, 42, 60, 66, 105, 109, 114

REFERENCES

1. Acevedo, S., B. Mendez, A. Rojas, I. Layrisse, and H. Rivas. Asphaltenes and Resins from the Orinoco Basin. *Fuel*, V.64, Dec. 1985, pp. 1741-1747.
2. Adalialis, S.. Investigation of Physical and Chemical Criteria as Related to the Prevention of Asphalt Deposition in Oil Well Tubings. M.S. thesis, Pet. Eng. Imperial College of the University of London, London, England, September 1982.
3. Albrecht, V., W.M. Salathiel, and D.E. Nierode. Stimulation of Asphaltic Deep Wells and Shallow Wells in Lake Maracaibo, Venezuela. Advances in Methods of Increasing Well Productivity and Injectivity. *Oil Sands*, June 1977, PD7(1), pp. 55-62.
4. Ali, L.H. and K.A. Al-Ghannam. Investigations into Asphaltenes in Heavy Crude Oils, I. Effect of Temperature on Precipitation by Alkane Solvents. *Fuel*, v. 60, November 1981, pp. 1043-1046.
5. Al-Jarrah, M.M.F. and A.H. Al-Dujaili. Characterization of Some Iraqi Asphalts: II. New Findings on the Physical Nature of Asphaltenes. *Fuel Sci. & Tech. Intl.* V.7(1), 1989, pp. 69-88.
6. Altgelt, K.H. and O.L. Harle. The Effect of Asphaltenes on Asphalt Viscosity. *Ind. Eng. Chem. Prod. Res. Dev.*, v. 14, 1975, pp. 240-246.
7. Baltus, R.E. and J.L. Anderson. Comparison of G.P.C. Elusion Characteristics and Diffusion Coefficients of Asphaltenes. *Fuel*, v. 63, April 1, 1984, pp. 530-535.
8. Baltus, R.E. and J.L. Anderson. Hindered Diffusion of Asphaltenes through Microporous Membranes. *Chem. Eng. Sci.*, v. 38, No. 12, 1983, pp. 1959-1969.
9. Behar, F. and R. Pelet. Hydrogen-Transfer Reactions in the Thermal Cracking of Asphaltenes. *Energy & Fuels*, v. 2, No. 3, 1988, pp. 259-264.
10. Boduszynski, M.M.. Asphaltenes in Petroleum Asphalts: Composition and Formation. in *Chemistry of Asphaltenes*, edt. by Bunger and Li, ACS Washington, D.C., 1981.
11. Bossler, R.B. and P.B. Crawford. Precipitation of Asphalts, Waxes, and Heavy Lubricating Oils during Displacement of Crude Oils by Propane. Proc. of the Texas Petroleum Research Committee, 11th Oil Recovery Conference, Bulletin No. 67, 1958, pp. 210-227.

12. Briant, J.. Factors Affecting the Formation of Paraffinic and Asphaltic Deposits. *Bull. 8480*, French Pet. Inst., June 1963.
13. Briant, J. and G. Hotier. Etude de l'etat des Asphaltenes dans les Melanges d'Hydrocarbons. *Revue Inst. Francais Pet.*, v. 38, 1983, pp. 83-100.
14. Bunger, J.W. and N.C. Li, edit. *Chemistry of Asphaltenes*. Advances in Chemistry Series 195, ACS Washington, D.C., 1981.
15. Burke, N.E., R.E. Hobbs, and S.F. Kashou. Measurement and Modeling of Asphaltene Precipitation. *J. Pet. Tech.*, Nov. 1990, pp. 1440-1446.
16. Chung, T.H. Modeling of Heavy Organic Deposition. U.S. Dept. of Energy Report No. NIPER-555 (DE92001016), January 1992.
17. Chung, T.H. Thermodynamic Modeling for Organic Solid Precipitation. Pres. at SPE Annual Tech. Conf. and Exhib., Washington, D.C., Oct. 4-7, 1992, SPE paper 24851. U.S. Dept. of Energy Report No. NIPER-623(DE93000104), December 1992.
18. Chung, T.H.F., P. Sarathi, and R. Jones. Modeling Asphaltene and Wax Precipitation. U.S. Dept. of Energy Report No. NIPER-498 (DE), September 1990.
19. Collins, S.H. and J.C. Melrose. Adsorption of Asphaltenes and Water on Reservoir Rock Minerals. Pres. at SPE Intl. Symp. on Oilfield and Geothermal Chemistry, Denver, CO, June 1-3, 1983, SPE paper 11800.
20. Corbett, L.W. and U. Petrossi. Differences in Distillation and Solvent Separated Asphalt Residua. *Ind. Eng. Chem. Prod. Res. Dev.*, V.17, No. 4, 1978, pp. 342-346.
21. Crocker, M.E. and L.M. Marchin. Wettability and Adsorption Characteristics of Crude-Oil Asphaltene and Polar Fractions. *J. Pet. Tech.*, April 1988, pp. 470-474.
22. Danesh, A., D. Krinis, G.D. Henderson, and J.M. Peden. Asphaltene Deposition in Miscible Gas Flooding of Oil Reservoirs. *Chem. Eng. Res. Des.*, V. 66, July 1988, pp. 339-344.
23. David, A.. Asphaltene Flocculation during Solvent Stimulation of Heavy Oils. pres. at AIChE Symp. on Transport Phenomena in Porous Media, Dallas, TX, 1972.
24. Denekas, M.O., C.C. Mattax, and G.T. Davis. Effect of Crude Oil Compositions on Rock Wettability. *Trans. AIME*, v. 216, 1959, pp. 426-432.
25. Dickakian, G. and S. Seay. Asphaltene Precipitation Primary Crude Exchanger Fouling Mechanism. *Oil & Gas J. Technology*, March 7, 1988, pp. 47-50.
26. Dickie, J.P., M.N. Haller and T.F. Yen. Electron Microscopic Investigations on the Nature of Petroleum Asphaltenes. *J. Colloid Interface Sci.*, v. 29, 1969, pp. 475-484.
27. Dickie, J.P. and T.F. Yen. Macrostructures of the Asphaltic Fractions by Various Instrumental Methods. *Anal. Chem.* v.39, 1967, pp. 1847-1852.
28. Drushel, H.V.. Analytical Characterization of Residua and Hydrotreated Products. Preprints of ACS Symp. on Advances in Analysis of Petroleum and Its Products, New York, N.Y., Aug. 27-Sept. 1, 1972, pp. F92-F101.

29. Dubey, S.T. and M.H. Waxman. Asphaltene Adsorption and Desorption from Mineral Surfaces. Pres. at SPE Intl. Symp. on Oilfield Chemistry, Houston, TX, Feb. 8-10, 1989, SPE paper 18462.
30. Dwiggins, Jr., C.W. A Small Angle X-Ray Scattering Study of the Colloidal Nature of Petroleum. *J. Phys. Chem.*, V. 69, No. 10, October 1965, pp. 3500-3506.
31. Eldib, L.A.. The Solvation, Ionic and Electrophoretic Properties of Colloidal Asphaltenes in Petroleum. *Preprints of ACS Symp.*, Washington, D.C., March 20-29, 1962, pp. 31-42.
32. Erdman, J.G.. The Molecular Complex Comprising Heavy Petroleum Fractions. *Hydrocarbon Analysis, Special Technical Publ.* No. 389, ASTM, 1965.
33. Erdman, J.G. and P.H. Harju. Capacity of Petroleum Asphaltenes to Complex Heavy Metals. *J. Chem. Eng. Data*, v.3, April, 1963, pp. 252-258.
34. Ferris, S.W., E.P. Black, and J.B. Clelland. Aromatic Structures in Asphalt Fractions. *Preprints of ACS Symp. on Characterization and Processing of Heavy Ends of Petroleum*, Pittsburgh, PA, March 23-26, 1966, pp. B130-B139.
35. Fotland P., H. Anfindsen, and F. H. Fadnes. Detection of Asphaltene Precipitation and Amounts Precipitated by Measurement of Electrical Conductivity. *Fluid Phase Equil.* V. 82, 1993 pp. 157-164.
36. Fuhr, B.J., C. Cathrea, L. Coates, H. Kalra and A.I. Majeed. Properties of Asphaltenes from a Waxy Crude. *Fuel*, v. 70, November 1991, pp. 1293-1297.
37. Fuhr, B.J., L.L. Klein, B.D. Komishke, C. Reichert, and R.K. Ridley. Effects of Diluents and Carbon Dioxide on Asphaltene Flocculation in Heavy Oil Solutions. *Proceedings of the 4th UNITAR/UNDP Inter. Conf. on Heavy Crude & Tar Sands*, Aug. 7-12, 1988, paper No. 75, pp. 637-646.
38. Gonzalez, G. and A. Middea. The Properties of Calcite-Solution Interface in the Presence of Adsorbed Resins or Asphaltenes. *Colloids and Surfaces*, v.33, 1988, pp. 217-229.
39. Gonzalez, G. and A. Middea. Asphaltenes Adsorption by Quartz and Feldspar. *J. Dispersion Sci. and Tech.*, v. 8, Nos. 5 and 6, 1987, pp. 525-548.
40. Gould K.A. Chemical Depolymerization of Petroleum Asphaltenes. *Fuel*, V.57, Dec. 1978, pp. 756-762.
41. Hall, G. and S.P. Harron. Size Characterization of Petroleum Asphaltenes and Maltenes. *Advances in Chemistry Series*, v. 195, 1981, p. 137.
42. Hasket, C.E. and M. Tartera. A Practical Solution to the Problem of Asphaltene Deposits - Hassi-Messaoud Field, Algeria. *J. Pet. Tech.*, v. 17, 1965, pp. 387-391.
43. Heithaus J.J.. Measurement and Significance of Asphaltene Peptization. *Preprints of ACS Symp. on Fundamental Nature of Asphalt*, New York, N.Y., Sept. 11-16, 1960, pp. A23-A37.
44. Hirschberg, A.. The Role of Asphaltenes in Compositional Grading of a Reservoir's Fluid Column. pres. at SPE Annual Tech. Conf. and Exhib., Houston, TX, Sept. 16-19, 1984, SPE paper 13171.

45. Hirschberg, A. and L. Hermans. Asphaltene Phase Behavior: A Molecular Thermodynamic Model. pres. at Intl. Symp. on Characterization of Heavy Crude Oils and Petroleum Residue, Lyon, France, June 15-17, 1984.
46. Hirschberg, A., L.N.J. deJong, B.A. Schipper, and J.G. Meijer. Influence of Temperature and Pressure on Asphaltene Flocculation. *SPE J.*, June 1984, pp. 283-293.
47. Hotier, G. and M. Robin. Effects of Different Diluents on Heavy Oil Products: Measurement, Interpretation and Forecast of Asphaltene Flocculation. *Revue de l'Institut Français du Pétrole*, v. 38, No. 1, 1983, pp. 101-120.
48. Ignasiak, T., O.P. Strauz and D.S. Montgomery. Oxygen Distribution and Hydrogen Bonding in Athabasca Asphaltene. *Fuel*, v.56, 1977, pp. 359-365.
49. Jacobs, F.S. and R.H. Filby. Liquid Chromatographic Fraction of Oil-sand and Crude Oil Asphaltenes. *Fuel*, v. 63, October 1983, pp. 1186-1192.
50. Jacobs, F.S. and R.H. Filby. Nickel and Vanadium in Chromatographic Fractions of Petroleum Asphaltenes. Preprints of ACS Symp. on Advances in Separation Technology, Seattle, WA, March 20-25, 1983, pp. 758-766.
51. Jewell, D.M., E.W. Albaugh, B.E. Davis, and R.G. Ruberto. Combination of Techniques for the Characterization of Residuals. Preprints of ACS Symp. on Advances in Analysis of Petroleum and Its Products, New York, N.Y., Aug. 27-Sept. 1, 1972, pp. F81-F91.
52. Katz, D.H. and K.E. Beu. Nature of Asphaltic Substances. *I&EC*, v. 37, No. 2, February 1945, pp. 195-200.
53. Kawanaka, S., S.J. Park, and G.A. Mansoori. The Role of Asphaltene Deposition in EOR Gas Flooding: A Predictive Technique. Pres. at the SPE/DOE Sym. on EOR, Tulsa, OK, Apr. 17-20, 1988. SPE/DOE paper 17363.
54. Kim, S.T., M-E. Boudh-Hir, and G.A. Mansoori. The Role of Asphaltene in Wettability Reversal. Pres. at SPE Annual Tech. Conf. and Exhib., New Orleans, LA, Sept. 23-26, 1990, SPE paper 20700.
55. Knoblauch, T.S., A. Farouq and M.J. Trevinodiaz. The Role of Acid Additive Mixtures on Asphaltene Precipitation. pres. at SPE Eastern Regional Meeting, Washington, D.C., Nov. 1-3, 1978, SPE paper 7627.
56. Kokal, S.L., J. Najman, S.G. Sayegh, and A.E. George. Measurement and Correlation of Asphaltene Precipitation from Heavy Oils by Gas Injection. *J. Canadian Pet. Tech.*, v. 31, April 1992, pp. 24-30.
57. Koots, J.A. and J.G. Speight. Relation of Petroleum Resins to Asphaltenes. *Fuel*, v. 54, July, 1975, pp. 179-184.
58. Leontaritis, K.J. Asphaltene Deposition: A Comprehensive Description of Problem Manifestations and Modeling Approaches. pres. at SPE Prod. Operation Symp., Okla. City, OK, Mar. 13-14, 1989, SPE paper 18892.
59. Leontaritis, K.J. Asphaltene Deposition: A Thermodynamic-Colloidal Model. Ph.D. Dissertation, Univ. of Illinois at Chicago, 1988.

60. Leontaritis, K.J., J.O. Amaefule, and R.E. Charles. A Systematic Approach for the Prevention and Treatment of Formation Damage Caused by Asphaltene Deposition. Pres. at SPE Intl. Symp. on Formation Damage Control, Lafayette, LA, Feb. 26-27, 1992., SPE paper 23810.
61. Leontaritis, K.J. and G.A. Mansoori. Asphaltene Flocculation During Oil Production and Processing: A Thermodynamic Colloidal Model. Pres. at SPE Intl. Symp. on Oilfield Chemistry, San Antonio, TX, Feb. 4-6, 1987, SPE paper 16258.
62. Leontaritis, K.J. and G.A. Mansoori. Fast Crude-Oil Heavy-Component Characterization Using Combination of ASTM, HPLC, and GPC Methods. *J. Pet. Sci. & Eng.*, v. 2, 1989, pp. 1-12.
63. Leontaritis, K.J., G.A. Mansoori, and T.S. Jiang. Asphaltene Deposition in Oil Recovery: A Survey of Field Experiences and Research Approaches. *J. Pet. Sci. & Eng.*, 1988, pp. 229-239.
64. Lhioreau, C., J. Briant and R. Tindy. Influence de la Pression sur la Flocculation des Asphaltenes. *Inst. Francais du Petrole, Revue*, v. 22, 1967, pp. 797-806.
65. Lichaa, P.M. Asphaltene Deposition Problems in Venezuelan Crudes-Usage of Asphaltenes in Emulsion Stability. CIM Conf. on Oil Sands of Canada and Venezuela, 1977, pp. 609-624.
66. Lichaa, P.M. and L. Herrera. Electrical and Other Effects Related to the Formation and Prevention of Asphaltene Deposition. pres. at SPE Intl. Symp. on Oilfield Chemistry, Dallas, TX, Jan 16-17, 1975, SPE paper 5304.
67. Long, R.B.. The Concept of Asphaltenes. in *Chemistry of Asphaltenes*, Bunger and Li edt., ACE Advances in Chemistry Series 195, 1981.
68. Mansoori, G.A. and T.S. Jiang. Asphaltene Deposition and Its Role in Enhanced Oil Recovery Miscible Gas Flooding. Pres. at the 3rd European Conf. on EOR, Rome, Italy, April 1985.
69. Mansoori, G.A., T.S. Jiang, and S. Kawanaka. Asphaltene Deposition and Its Role in Petroleum Production and Processing. *Arabian J. Sci. & Eng.*, v. 13, No. 1, January 1988, pp. 17-34.
70. McKay, J.F., P.J. Amend, T.E. Cogswell, P.M. Harnsberger, R.B. Erickson, and D.R. Latham. Petroleum Asphaltenes-Chemistry and Composition. Preprints of ACS Symp. on Analytical Chemistry of Tar Sands and Oil Share, New Orleans, LA, Mar. 20-25, 1977, pp. 708-715.
71. McKay, J.F. and D.R. Latham. Composition and Distribution of Classes and Types of Organic Compounds in Petroleum Heavy Ends. Preprint of ACS Symp. on Characterization of Heavy Ends in Petroleum, New York, N.Y., August 23-28, 1981, pp. 831-838.
72. Mitchell, D. and J.G. Speight. The Solubility of Asphaltenes in Hydrocarbon Solvents. *Fuel*, v. 52, April 1973, pp. 149-152.
73. Monger, T.G. and J.C. Fu. The Nature of CO₂-induced Organic Deposition. Pres. at SPE Annual Tech. Conf. and Exhibition, Dallas, TX. Sept. 27-30, 1987. SPE paper 16713.

74. Monger, T.G. and D.E. Trujillo. Organic Deposition During CO₂ and Rich-Gas Flooding. pres. at SPE Annual Conf. and Exhib., Houston, TX, Oct. 2-5, 1988, SPE paper 18063.

75. Moore, E.W., C.W. Growe and A.R. Hendrickson. Formation, Effect, and Prevention of Asphaltene Sludges during Stimulation Treatments. *J. Pet. Tech.*, Sept. 1965, pp. 1023-1028.

76. Moschopedis, S.E., J.F. Fryer, and J.G. Speight. Investigation of Asphaltene Molecular Weights. *Fuel*, v.55, July 1976, pp. 227-232.

77. Moschopedis, S.E., S. Parkash, and J.G. Speight. Thermal Decomposition of Asphaltenes. *Fuel*, v.57, July 1978, pp. 431-434.

78. Moschopedis, S.E. and J.G. Speight. Influence of Certain Metal Salts on the Solubility of Petroleum Asphaltenes. *Fuel*, v.53, July 1974, pp. 222-223.

79. Murrell, L.L., D.C. Grenoble, R.B. Long. Separating Basic Asphaltenes using Transition Metal Oxide Acid Catalysts. U.S. Patent No. 4,424,114, Jan. 3, 1984.

80. Neuman, H.J.. Asphaltenes and Crude Oil Resins. *Erdöl und Kohle, Erdgas, Petrochemie*, v. 23, 1970, p. 496.

81. Nicksic, S.W. and M.J. Jeffries-Harris. Acid Precipitation of Crude Oil Asphaltenes-Structural Implications. Preprints of ACS Symp. on , Chicago meeting, IL, Sept. 11-15, 1967, p. 23.

82. Novosad, Z. and T.G. Costain. Experimental and Modeling Studies of Asphaltene Equilibrium for a Reservoir under CO₂ Injection. Pres. at SPE Annual Tech. Conf. and Exhib., New Orleans, Louisiana, Sept. 23-26, 1990, SPE paper 20530.

83. Ouchi, K. Correlation of Aromaticity and Molecular Weight of Oil, Asphaltene and Preasphaltene. *Fuel*, v. 64, March 1985, pp. 426-427.

84. Overfield, R.E., E.Y. Sheu, S.K. Sinha, and K.S. Liang. SCNS Study of Asphaltene Aggregation. Preprints of ACS Symp. on Characterization and Chemistry of Tar Sand, Toronto, Canada, June 1988, pp. 308-313.

85. Papirer, E., C. Bourgeois, B. Siffert, and H. Balard. Chemical Nature and Water/Oil Emulsifying Properties of Asphaltenes. *Fuel*, v.61, August 1982, pp. 732-734.

86. Park, S.J. and G.A. Mansoori. Aggregation and Deposition of Heavy Organics in Petroleum Crudes. *Energy Sources*, v. 10, 1988, pp. 109-125.

87. Park, S.J. and G.A. Mansoori. Organic Deposition from Heavy Petroleum Crudes—A Fractal Aggregation Theory Approach. Proceedings of the 4th UNITAR/UNDP Intl. Conf. on Heavy Crude, Aug. 7-12, 1988, paper No. 225, pp. 471-483.

88. Parkash, S., S.E. Moschopedis and J.G. Speight. Physical Properties and Surface Characteristics of Asphaltenes. *Fuel*, v.58, December 1979, pp. 877-882.

89. Pitchford, A.C. and W.N. Axe. Component Analysis of Asphalts by Solvent Extraction. Preprints of ACS Symp. General papers, Chicago meeting, Sept. 3-8, 1961, pp. B43-B51.

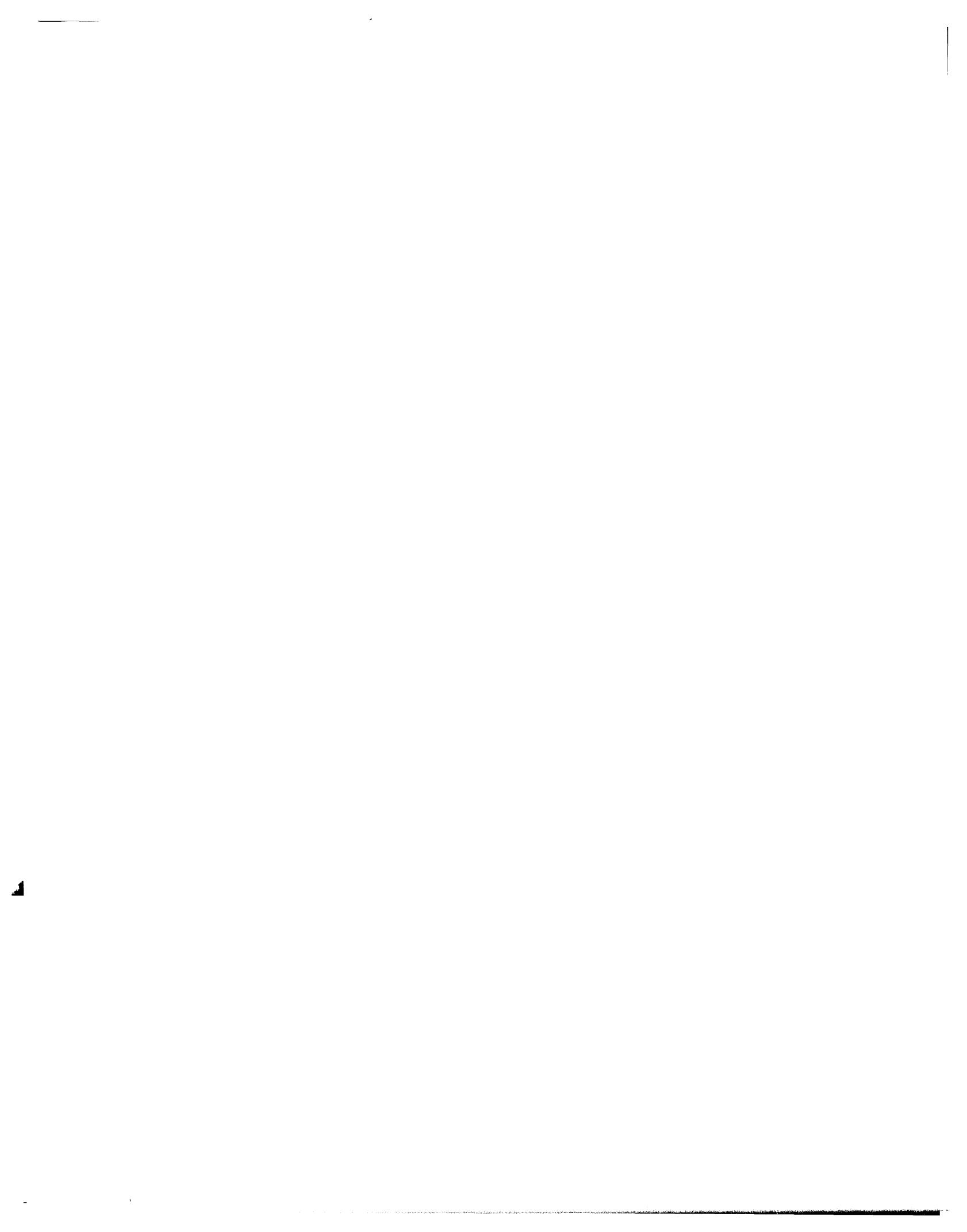
90. Preckshot, G.W., N.G. Delisle, C.E. Cottrell, and D.L. Katz. Asphaltic Substances in Crude Oils. *Trans. AIMME*, V. 151, 1943, pp. 188-194.
91. Ravey, J.C., G. Ducouret, and D. Espinat. Asphaltene Macrostructure by Small Angle Neutron Scattering. *Fuel*, v. 67, November 1988, pp. 1560-1567.
92. Reerink H.. Size and Shape of Asphaltene Particles in Relationship to High-Temperature Viscosity. *Ind. Eng. Chem. Prod. Res. Develop.* v. 12, No. 1, 1973, pp. 82-88.
93. Reichert, C., B.J. Fuhr, and L.L. Klein. Measurement of Asphaltene Flocculation in Bitumen Solutions. *J. Canadian Pet. Tech.*, Sept.-Oct. 1986, pp. 33-37.
94. Rogacheva, O.V., R.N. Rimaev, V.Z. Gubaidullin, and D.K. Khakinov. Investigation of the Surface Activity of the Asphaltenes of Petroleum Residues. *Colloid J.*, v.42, 1980, p. 490.
95. Siffert, B., C. Bourgeois and E. Papiro. Structure and Water-Oil Emulsifying Properties of Asphaltenes. *Fuel*, v.63, June 1984, pp. 834-837.
96. Snape, C.E. and K.D. Bartle. Definition of Fossil Fuel-derived Asphaltenes in terms of Average Structural Properties. *Fuel*, v. 63, July 1984, pp. 883-887. *Fuel*, v. 64, March 1985, pp. 427-429.
97. Speight, J.G. *The Chemistry and Technology of Petroleum*. Marcel Dekker, Inc., New York and Basel, 1980.
98. Speight, J.G. Latest Thoughts on the Molecular Nature of Petroleum Asphaltenes. Preprints of ACS Symp. on Analytical Chemistry of Heavy Oils/Resids, Dallas, TX, April 9-14, 1989.
99. Speight, J.G.. Solvent Effects in the Molecular Weights of Petroleum Asphaltenes. Preprints of ACS Symp. on Characterization of Heavy Ends in Petroleum, New York meeting, N.Y., August 23-28, 1981, pp. 825-830.
100. Speight, J.G., R.B. Long and T.D. Trowbridge. Factors Influencing the Separation of Asphaltenes from Heavy Petroleum Feedstocks. *Fuel*, v. 63, May 1984, pp. 616-620.
101. Speight, J.G. and S.E. Moschopedis. On the 'Polymeric Nature' of Petroleum Asphaltenes. *Fuel*, v. 59, June 1980, pp. 440-442.
102. Speight, J.G. and S.E. Moschopedis. Asphaltene Molecular Weights by a Cryoscopic Method. *Fuel*, v.56, July 1977, pp. 344-345.
103. Speight, J.G. and R.J. Pancirov. Some Aspects of the Structure of Petroleum Asphaltenes. Preprints of ACS Symp. on Avg. Structure Determinations, Washington, D.C. meeting, August 28-Sept. 2, 1983, pp. 1319-1332.
104. Speight, J.G., D.L. Wernick, K.A. Gould, R.E. Overfield, B.M.L. Rao, and D.W. Savage. Molecular Weight and Association of Asphaltenes: A Critical Review. *Revue de L'Institute Francais du Petrole*, v. 40, No. 1, Jan.-Feb. 1985, pp. 51-61.
105. Stephenson, W.K.. Producing Asphaltenic Crude Oils: Problems and Solutions. *Petroleum Eng. Intl.*, June 1990, pp. 24-31.

106. Sutherland, J.. A Proposed Model of Asphaltene Solution Behavior. M.S. thesis, Imperial College, University of London, London, England, 1982.
107. Swanson, J. A Contribution to the Physical Chemistry of the Asphalts. *J. Phy. Chem.*, v. 46, 1942, p. 141.
108. Thaver, R. and D.C. Nicoll. Asphaltene Deposition in Production Facilities. Pres. at SPE Intl. Symp. on Oilfield Chemistry, Houston, TX, Feb. 8-10, 1989, SPE paper 18473.
109. Trbovich, M.G. and G.E. King. Asphaltene Deposit Removal: Long-Lasting Treatment with a Co-solvent. pres. at SPE Int. Symp. on Oilfield Chem., Anaheim, CA, Feb. 20-22, 1991, SPE paper 21038.
110. Tuttle, R.N. High-Pour-Point and Asphaltic Crude Oils and Condensates. *J. Pet. Tech.*, June 1983, pp. 1192-1196.
111. Von Albrecht, C., W.M. Salathiel, and D.E. Nierode. Stimulation of Asphaltic Deep Wells and Shallow Wells in Lake Maracaibo, Venezuela. Advances in Methods of Increasing Well Productivity and Injectivity, Oil Sand, June 1977, PD7(1), pp. 55-62.
112. Vuong, L.T.. Asphaltene Deposition and its Role in Enhanced Oil Recovery (EOR) Miscible Gas Flooding Processes. M.S. thesis, Chem. Eng. Dept., University of Illinois at Chicago, IL, October 1985.
113. Wales, M. and M. van der Waarden. Molecular Weights of Asphaltenes by Ultracentrifugation. Preprints of ACS Symp. on Asphalt: Composition, Chemistry, and Physics, Philadelphia meeting, PA, April 5-10, 1964.
114. Waxman, M.H., C.T. Deeds and P.J. Closmann. Thermal Alternations of Asphaltenes in Peace River Tars. pres. at SPE Annual Tech. Conf. and Exhib., Dallas, TX, Sept. 21-24, 1980, SPE paper 9510.
115. Weeks, R.W.J. and W.L. McBride. The Chemistry and Processability of Crude Oil Asphaltenes as Studied by Ultracentrifugation. Preprints ACS, Div. Petrol. Chem., v. 14, 1979, pp. 990-1000.
116. Winniford, R.S.. The Evidence for Association of Asphaltenes in Dilute Solutions. Preprints of ACS Symp. on Fundamental Nature of Asphalt, New York Meeting, Sept. 11-16, 1960.
117. Witherspoon, P.A. and R.S. Winniford. The Asphaltic Compounds of Petroleum. in Fundamental Aspects of Petroleum Geochemistry, (Eds) Nagy, B. and U. Columbo, Elsevier, New York, 1967, pp. 264-297.
118. Welcott, J.M., T.G. Monger, R. Sassen, and E.W. Chinn. The Effects of CO₂ Flooding on Reservoir Mineral Properties. Pres. at SPE Intl. Symp. on Oilfield Chemistry, Houston, TX, Feb. 8-10, 1989, SPE paper 18467.
119. Yen, T.F.. Present Status of the Structure of Petroleum Heavy Ends and Its Significance to Various Technical Applications. Preprints of ACS Symp. on Advances in Analysis of Petroleum and its Products, New York meeting, N.Y., Aug. 27-Sept. 1, 1972, pp. F102-F114.

120. Yen, T.F.. The Nature of Asphaltenes in Heavy Oils. Pan Pacific Synfuels Conference, v. 2, 1982, p. 547.
121. Yen, T.F., J.G. Erdman, and S.S. Pollack. Investigation of the Structure of Petroleum Asphaltenes by X-ray Diffusion. *Anal. Chem.*, v. 33, No. 11, October 1961, pp. 1587-1594.
122. Yen, T.F., J.W. Burger and N.C. Li. Chemistry of Asphaltenes. v. 195, ACS, Washington, D.C., 1981, pp. 37-51.
123. Zerlia, T. and G. Pinelli. Asphaltenes Determination in Heavy Petroleum Products by Partial Least Squares Analysis of U.V. Data.
124. Zhang, Y., C. Liu, and W. Liang. Study of Asphaltenes in Two Chinese Asphalts by X-Ray Diffraction. *Fuel Sci. & Tech. Intl.* V. 7(7), 1989, pp. 919-929.

C. RELATED REFERENCES

1. Abramowitz, M. and I.A. Stegun. *Handbook of Mathematical Functions*. Dover Publications, New York, 1972.
2. Barton, A.F.M. *Handbook of Solubility Parameters and Other Cohesion Parameters*, CRC Press, Boca Raton, Florida, 1983.
3. Chorn, L.G. and G.A. Mansoori, edt., *C₇+ Fraction Characterization*. Advances in Thermodynamics, V.1, Taylor & Francis, New York, 1989.
4. Cines, M.R., Solid-Liquid Equilibria of Hydrocarbons. Chapter 8 in *Physical Chemistry of the Hydrocarbons*, Edit. A. Farkas, Academic Press, New York, 1950, pp. 315-362.
5. Cotterman, R.L., R. Bender, and J.M. Prausnitz. Phase Equilibria for Mixtures Containing Very Many Components. Development and Application of Continuous Thermodynamics for Chemical Process Design. *Ind. Eng. Chem. Process Des. Dev.*, v. 24, No. 1, 1985, pp. 194-203.
6. Cotterman, R.L. and J.M. Prausnitz. Flash Calculations for Continuous or Semicontinuous Mixtures Using an Equation of State. *Ind. Eng. Chem. Process Des. Dev.*, v. 24, No. 2, 1985, pp. 434-443.
7. Hildebrand, J.H. and R.L. Scott. *The Solubility of Nonelectrolytes*. Dover Publications, New York, 1964.
8. Huang, S.H. and M. Radosz. Phase Behavior of Reservoir Fluids IV: Molecular Weight Distributions for Thermodynamic Modeling. *Fluid Phase Equil.*, v. 66, 1991, pp. 23-40.
9. Pedersen, K.S., A.L. Blilie, and K.K. Meisingset. PVT Calculations on Petroleum Reservoir Fluids Using Measured and Estimated Compositional Data for the Plus Fraction. *Ind. Eng. Chem. Res.*, v. 31, No. 5, 1992, pp. 1378-1384.
10. *Physical Properties of Chemical Compounds, Vol. I and II*. Am. Chem. Soc., Adv. Chem. Ser., No. 15, 1955, and No. 22, 1959.


11. Prausnitz, J.M., Lichtenthaler, R.N., Azevedo, G.G. *Molecular Thermodynamics of Fluid-Phase Equilibria*. Prentice-Hall Inc., Englewood Cliffs, N. J., 1986.
12. Reid, R.C., J.M. Prausnitz, and B.E. Poling. *The Properties of Gases & Liquids*. 4th ed., McGraw-Hill Book Co., New York, 1987.
13. Rodgers, P.A., A.L. Creagh, M.M. Prange, and J.M. Prausnitz. Molecular Weight Distributions for Heavy Fossil Fuels from Gel-Permeation Chromatography and Characterization Data. *Ind. Eng. Chem. Res.*, v. 26, No. 11, 1987, pp. 2312-2318.
14. Rossini, F., K.S. Pitzer, R.L. Arnett, R.M. Braun, and G.C. Pimentel. Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds. Am. Pet. Inst. Research Project 44, Carnegie Inst. of Technol., Pittsburgh, PA, 1953.
15. Skau, E.L. and H. Wakeham. Determination of Melting and Freezing Temperatures. Chap. III in *Physical Methods of Organic Chemistry, Techniques of Organic Chemistry* (Ed., A. Weissberger) Vol. I, Part I, Interscience, New York, 1949, pp. 49-105.
16. Scott, R.L. and M. Magat. The Thermodynamics of High-Polymer Solutions: I. The Free Energy of Mixing of Solvents and Polymers of Heterogeneous Distribution. *J. Chem. Phys.*, 13(5), May 1945, pp. 172-177.
17. Scott, R.L. The Thermodynamics of High-Polymer Solutions: II. The Solubility and Fractionation of a Polymer of Heterogeneous Distribution. *J. Chem. Phys.*, 13(5), May 1945, pp. 178-187.
18. Shibuya H., Y. Suzuki, K. Yamaguchi, K. Arai, and S. Saito. Measurement and Prediction of Solid-Liquid Phase Equilibria of Organic Compound Mixtures. *Fluid Phase Equil.*, v. 82, 1993, pp. 397-405.
19. Walas, S.M. *Phase Equilibria in Chemical Engineering*. Butterworth Publ. Stoneham, MA, 1985.
20. Whitson, C.H., T.F. Anderson, and I. Soreide. C₇+ Characterization of Related Equilibrium Fluids Using the Gamma Distribution. in *C₇+ Fraction Characterization*. Ed. by L.G. Chon and G.A. Mansoori, Taylor & Francis, New York, 1989, pp. 35-56.

111
7
5

2/16/94

FILED
MAY 11 1994

DATE

