ConF=q004)59.

Appendix C.

-10

To be published in Proceedings of the Sth Distributed Memory Computing Conference, Aprit 9-12, 19950

A 2D Electrostatic PIC Code for the Mark III Hypercube

R.D.Ferraro
P.C.Liewer
Jet Propulsion Laboratory | California Instituie of
Technology :
4800 Oak Grove Dr.
Pasadena, CA 91109

Abstract

We have implemented a 2D electrostatic plasma particle in
cell (PIC) simulation code on the Caltech!JPL Mark Ilifp
* Hypercube. The code simulates plasma effects by
evolving in time the trajectories of thousands to millions
of charged particles subject to their self-consistent fields.
Each particle’s position and velocity is advanced in time
using a leap frog method for integrating Newton's
equations of motion in electric and magneric fields. The
electric field due to these moving charged particles is
calculated on a spatial grid at each time step by solving
Poisson’s equation in Fourier space. These two tasks
represent the largest part of the computation. To obtain
efficient operation on a distributed memory parallel
computer, we are using the General Concurrent PIC
(GCPIC) algorithm [1] previously developed for a 1D
parallel PIC code.

Introduction

In previous work we have demonstrated the efficiency of a
1D PIC code on the JPL/Caltech Mark III Hypercube [1]
We have now extended our work to a 2D implementation
of an electrostatic PIC code for plasma simulations, using
the General Concurrent PIC (GCPIC) algorithm {2]. The
GCPIC algorithm is a generalization of the techniques
employed in the 1D parallel PIC code which is applicable
10 many different parallel architectures. In this paper we
describe its application to the implementation of the well
benchmarked 2D electrostatic PIC code BEPSI [3] on the
Mark I Hypercube.

A plasma PIC code simulates the self consistent
interactions of thousands to millions of electrons and ions
in a computational box. There are two essential elements
10 an electrostatic PIC code. The first is the particle push,
in which the positions and velocities of all of the particles
are advanced in time subject to any external magnetic field
and the self consistent electric, and their charges are
interpolated onto the field grid. The second is the field

V.K.Decyk FGCB —?‘—}Eﬂga /73

Department of Physics
University of California, Los Angeles
405 Hilgard Ave.

Los Angeles, CA 90024

solve, in which the electric field is updated based upon the

new particle positions. These two code sections represent

the vast majority of the computation. Additional
computation is required for diagnostics which are done
periodically throughout the simulation, but represent an
ignorable fraction of the total compatation time. Thus an
efficient implementation of a PIC code requires an
efficient implementation of the particle push and field
solve. Since the particle push represents the major
fraction of the computation time, it is essential on a
distributed memory machine to have approximately equal
numbers of particles in each processor. The field grid
must be distributed as well for the purpose of solving for
the new fields, and in a manner which is not necessarily
the same as that needed to push the particles. We refer to
these two decompositions as the primary (particle) and
secondary (field) decompositions.

Our 2D PIC code is periodic in one dimension and may be
periodic or bounded in the other dimension. As the
particles are advanced in time, some may traverse the

‘entire grid space-during the course of the simulaton. The

simplest primary (particle) decomposition which handles
this problem is the static decomposition, in which each
processor keeps a copy of the entire field grid and the

~ particles are partitioned at the beginning of the simulation

among processors. This technique guarantees that load
balance is maintained throughout the simulation, at the
expense of redundant copies of the fields in every
processor. Using the static decomposition, we have
obuined efficiencies for the push in excess of 80%. The
major inefficiency of this method results from the need to
duplicate the charge array initialization in each processor
and do a sum over processors when the charge array is

updated.

The next level of sophistication is to partition the field
grid as well as particles, so that each processor has a
unique piece of the simulation space. Because of
inhomogeneity in the particle density, this partition may
in general be irregular in order to maintain load balance
among the processors. However, there is a large class of

Bs T80 Lo UE frds DUCURENT IS UNL

MATED

e

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for

the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

=D problems which has the property of being relatively
uniform along one coordinate direction, especially if the
problem is periodic in that coordinaie. In this case, a
regular decomposition of the field grid among processors
along the coordinate of uniformity (as shown in Fig. 1)
will also result in a load balanced decomposition of
particles. As the simulation progresses, some particles
will traverse the entire simulation space. Since each
processor now has only a part of the entire field grid, it is
necessary to migrate particles from one processor to
another as they evolve. This can result in particle load

imbalance if the net flux of particles out of each processor -

is not zero. A particle load imbalance could develop
during the course of the simulation, even though there is
perfect load balance to begin with. Fortunately, for the
class of problems for which this decomposition is
appropriate, significant load imbalance does not develop
due to the physics.

n(x,y)

\\,__y = .\

EAZEAPD DA SAMPOEAIEA N /\/‘v‘r] Proc 1

Figure 1. A regular pamcle partition for 4 processors.
The y direction is the coordinate of relative
uniformity in this case. Space is subdivided evenly
among processors, leading to a load balanced partition
of particles as well.

If the regular decomposition cannot be used effectively
(some device physics problems can have large
nonuniformities along all coordinate directions), a free
form decomposition of the field grid may be necessary.
These pieces can be of different size in general, since
nonuniformities may develop during the course of a
simulation. To maintain load balance, the distribution of
particles and field grid must also evolve during the course
of the simulation. We are in the process of implementing
the same algorithm for dynamic load balancing as has
been used for the 1D PIC code [4). The grid space is
partitioned as shown in Fig. 2 inio slices so that each
processor handles all of the x domain for a particular range
of the y domain. Particles migrate between processors as
they traverse the computational space. The grid space

may be repartitioned as the density in the simulation
evolves so that load balance is maintained.

X A

3 Procl

Proc 2

Proc 3

: A: Proc 4

'] dx n(x.y)
Figure 2. Field grid partition based on particle
density distribution. Load balance requires that
particles be distributed evenly among the processors.
Thus each processor may have a different number of

grid points.

The secondary (field) decomposition is made 1o update the
field values at each time siep. We calculate the new fields
by solving Poisson's equation in Fourier space. For best
performance in parallel, we compute the 2D FFT as two
sets of 1D FFTs along each coordinate direction. For this
solution method, the decomposition is a straightforward
assignment of slices of the grid along one coordinate
direction to each processor, as shown in Fig. 3. The

X

Figure 3. Field grid decomposition for the 2D FFT.
Each processor has a strip of the field grid initially,
such that it can do 1D FFTs in x for its subset of the
y dimension. The results are then redistributed so
that each processor now has a strip oriented along the
y coordinate direction. 1D FFTs in y may now be
performed for each processor’s subset of kx.

FFTs in the coordinate direction parallel to the long edge
of the slice are performed. Then the grid is repartitioned
into slices along the other coordinate direction, so that the
second set of FFTs may be done.

Diagnostics are done in parallel, including graphics, by
using one of the field decompositions described above.
Phase space plots, for example, are parallelized using the
primary decomposition, while contour plots of potential
are done using the secondary field decomposition. The
graphics software operates in parallel, with each processor
drawing a separate portion of the graph corresponding to
its part of the diagnostic.

Code Operation with the Regular Particle
Decomposition

The main loop of the 2D code proceeds as follows. The
field solver takes the real space charge distribution which
has been interpolated onto the field grid and transforms it
into k space using the 2D FFT algorithm mentioned
above. Poisson's equation is solved in k space, and the x
and y components of the electric field are computed from
its solution. Then the two electric field components are
transformed back to real space. Since the x space field
grid decomposition is the same as the particle
decomposition when using the regular grid primary

dccompositjod. no addition grid rearrangement is required
10 begin the push. However, interpolating the field from
the grid for all of the particles in the regular
decomposition requires guard rows on both sides of the
grid, since particles at a decomposition boundary require
ficld information which is contained in a neighboring
processor. This guard row information is exchanged
between processor neighbors before the push phase
begins. By mapping the processors into a Jogical ring,
only nearest neighbor communication is required for the

~exchanges. The push phase of the simulation involves

advancing the particles’ positions and velocities one time
step, then interpolating each particle's charge back onto
the field grid using its updated position. Since some
particle charge will be interpolated onto the guard rows,
these rows must be combined with their counterparts in
adjacent processors before the charge deposition is
complete. Again, only nearest neighbor communication
is required.

Results

In-Table 1, we present timings for the two major code
section which are executed at each time step of a
simulation run. Two test problems of different size were
timed. In each test case, the physics problem being
modeled was the same (a lower hybrid plasma wave

Timings for Critical Code Sections
Mark IIIfp Hypercube

32 x 128 Field Grid
. 16,128 Particles
Number of Processors | 1 2 4 8 16 32
Solver (sec) 742 A27 275 205 .183 Note 1
Push (sec) 1.74 861 421 207 108 Note 1
r particle (msec) 107.9 53.6 26.1 12.8 6.7
64 x 256 Field Grid
235,136 Panicles _

Number of Processors 1 2 4 8 16 32
Solver (sec) Note 2 1.70 996 652 498 449
Push (sec) Note 2 13.2 6.66 3.34 1.68 849
per particle (msec) Note 2 56.1 28.3 14.2 7.1 3.6

Note 1 - The FFT requires that ny , the number of grid points in the x direction, be at least twice the number of

Processors.

Note 2 - The problem was too large to fit on one processor alone.

Table 1. Measured times for the two main code sections in BEPS. Solver and Push times are elapsed times,
including communication. Per particle time is push time divided by the number of particles.

traveling along the periodic coordinate was excited by an
antenna). The push phase in each case shows practically
linear speedup as the number of processors are increased.
The solver phase, which is dominated by three 2D FFTs,
rapidly saturates in speedup. This is caused by an increase
in the amount of communication required by the grid
redistribution between 1D FFTs while the number of 1D
FFTs done in each processor decreases. This is a problem
with FFT based solvers in general, since information from
each grid point must ultimately be combined with
information from every other grid point in order to
compute the transform.

In Fig. 4 we have plotied the efficiency of each code
section for the two test cases as a function of the number
of processors employed. We define efficiency E as

E =N TN/T)

where N is the number of processors, Ty is the
execution time on N processors, and T is the execution
time on 1 processor. The solver efficiency drops
dramatically as the number of processors is increased, due
to the increasing communication to computation ratio
mentioned above. The push efficiency remains very near

BEPS Performance on the Mark ILIfp

Weasures EHcancres tor Sower (FFTs) ene Pusn

¥30%

Eificiency

’ -

z“ :o'a'-‘t'a'aa

T o PrCHTTY e Buan - 235,136 Porticwes
%= Pugn - 16.128 Perticies

® Sower - 66+ 356 FFTy
8 Solver = 325 128 FFTs

Figure 4. Measured code efficiencies. The push
section of the code always runs close to 100%. The
solver, which is dominated by 2D FFTs, suffers rapid
efficiency degradation as the number of processors is
increased.

100%, independent of the number of processors. This
demonstrates that the communication time required for
migrating particles between processors and exchanging
guard row information is negligible compared to the

computation involved in updating the particle positions
and velocities. The efficiencies in excess of 100%
achieved for the smaller test case by the push phase
simply indicate that the algorithm being used in the push
is not optimal for one processor. The Mark IIfp has cash
memory associated with the Weitek Floating Point
Processors. As more processors are used, the number of
particles and the size of the field grid each processor
handles decreases, resulting in a lower probability of cash
misses. The increase in performance of the hardware when
using the cash memory more than makes up for the
addition of commanication overhead. The larger test case
never gets subdivided sufficiently for this hardware effect
1o be noticed.

Since the primary (particle) decomposition remains fixed
throughout the simulation, the possibility of particle load
imbalance exists. In Fig. 5 we plot the percentage of load
imbalance (%LI) observed in the smaller test case running
on 16 processors. The physics of the problem was
changed from a heating simulation to a current drive
simulation, where particles are accelerated along the
periodic coordinate. This number is defined as

%LI = (Dmax - Dave)/Dave

where np,y is the maximum number of particles in any
processor and By, is the average number of particles per
processor. Even though particles are moving (rather

- BEPS Measured Load Imbalance .
Fised Porticte Pociitiomng in Penodic Direction

0%
0%
5oz 4 ’
4.0% 4

4

/
30 4
20% - _
1.0%
00%

-] «© &0 [
Time Step

Figure 5. Measured particle load imbalance with the
regular particle partition. The imbalance is defined as
the largest percentage deviation of any processor's
particle load from ideal at a given time step.

rapidly) between processors, the largest load imbalance
. observed during the first 100 time steps is about 6.2%.
The load imbalance continues to oscillate around 3.5% for
the rest of the simulation. This is clearly a simulation
from the class where the fixed particle partition works
very well. We believe, however, that the performance of
the fixed particle partition on this problem is
representative. Since, from a physics standpoint, it is
quite difficult to develop and maintain large
inhomogeneities in all coordinate directions in a plasma
simulation, we also believe that the fixed particle partition
is applicable to a wide variety of problems of interest to
the fusion plasma and space plasma communities.

Dynamic Load Balancing

Of course not all simulation problems of interest are
amenable to the fixed particle partitioning scheme. For
these problems, some kind of irregular partition is
necessary, and with it, the ability 1o dynamically balance
the particle load among the processors. Fig. 6 illustrates

<%

. x
1 2 3 4

Figure 6. Dynamic load balancing without particle
sorting. The charge density interpolated onto the grid
is used to construct a density function. Panitioning
is done based on this function.

a load balancing scheme which does not require particle
sorting, per se. Assume that an irregular partition already
exists which is load balanced. Afier the particles are
advanced in fifie and passed among processors, some load
imbalance may have developed. Rather than sorting the
particles by coordinate to determine the new (load
balanced) partition, the particles are interpolated onto the
charge grid in the current partition. Before the field solve
proceeds, the charge density is used to determine the new
partition positions. The actal method of determining the
new partition locations is not important, since it will
scale with the grid size, rather than the number of
particles. A parallel recursive bisection on the charge

density appears to be an attractive choice. We are in the
process of implementing a dynamic load balancing scheme
for the 2D code. ’

Conclusions

We have implemented a 2D electrostatic PIC code for
plasma simulation on the Mark IIIfp Hypercube
Concurrent Computer. The code is completely
parallelized, including diagnostics and graphics. We are
currently using a regular primary (particle) partition,

* which is fixed throughout the entire simulation run. This

decomposition exhibits very good particle load balance for
a large class of plasma problems. Particle push
efficiencies remain close to 100% with up to 32
processors. Solver performance, which is based upon
FFT performance, degrades rapidly as the number of
processors is increased.

Acknowledgements
This work is supported by DARPA, contract # NAS7-918
References

{1] VXK Decyk, Supercomputer 27, 33 (1988).

{2] P.CLiewer and V.X.Decyk, J. Comp. Phys., 85,302
(1989)

(3] V.K.Decyk and J.M.Dawson, J. Comp. Phys. 30,

-407 (1979) .

[4] P.ClLiewer, E.W.Leaver, V.K.Decyk, and
J.M.Dawson, "Concurrent PIC Codes and Dynamic
Load Balancing on the JPL/Caltech Mark HI
Hypercube”, in Proceedings of the 13th Conference
on the Numerical Simulation of Plasmas

