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IONIZING RADIATION-INDUCED MUTATION
OF HUMAN CELLS WITH DIFFERENT
DNA REPAIR CAPACITIES

S.A. Amundson and D.J. Chen

Los Alamos National Laboratory, Life Sciences Division, -
Los Alamos, NM 87545, U.S.A.

ABSTRACT

We have observed significant differences in the response to ionizing radiation of two
closely related human cell lines, and now compare the effects on these lines of both
low and intermediate LET radiation. Compared to TK6, WTK1 has an enhanced
X-ray survival, and is also more resistant to cell killing by a-particles. The Aprt locus
is more mutable in WTK1 than in TK6 by both X-rays and a-particles. WTKI1 is also
more mutable by a-particles than by X-rays at the hprt Jocus. X-ray-induced mutation
at the heterozygous tk locus in WTK1 is about 25 fold higher than in TK6, while
a-particle-induced mutation is nearly 50 fold higher at this locus. Also, the slowly
growing tk- mutants, which comprise the majority of spontaneous and X-ray-induced
tk- mutants of TK6, were not induced significantly by o-particles. Previously, we
showed that TK6 has a reduced capacity for recombination compared with WTK1, and
therefore, these results indicate that recombinational repair may contribute to both cell
survival and mutation-induction following exposure to ionizing radiation. Such a
mechanism may aid cell survival, but could also result in increased deleterious effects
such as the unmasking of recessive mutations in cancer suppresser genes.

INTRODUCTION

The study of the biological effects of high LET irradiation is important to the estimates
of risk to those exposed to such radiations either in space or on earth. The initial
damage induced in cells by high LET radiations seems to differ from that induced by
low LET such as X-rays /1,2,3/. The repair of high LET induced cellular damage may
also be less efficient than that of low LET damage /4,5,6,7/. Since there does not
appear to be a simple relationship between LET and the biological endpoints measured
in cultured cells, it is necessary to study specific particles which may have relevance to
human exposures and disease.

Radon, a predominant a-particle emitter, has been definitively linked to the causation
of lung cancers /8,9/ and possibly leukaemias /10,11/. Because relatively high levels
of radon and radon daughters are present in many homes, the mechanisms by which
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o-emitters may pose a danger to human health must be examined more precisely. Our
approach to this problem has been to pursue a better understanding of the cellular and
~ molecular responses of human cells exposed to a-particles. The cytotoxic and
_ mutagenic effects of a-particles have been examined in several hamster cell lines /12,
13,14,15/, mouse lymphoma cells, /16,17/ and human fibroblasts /18/. We now
present a study of a-particle effects on two human lymphoblast cell lines. "

The TK6 cell line is extremely well suited to mutation studies. Many reports on the
chemical and X-ray - induction of mutations at the hypoxanthine-guanine
~ phosphoribosy! transferase (hprt) /19,20/, thymidine kinase (tk) /20,21,22/, adenine
- phosphoribosy! transferase (aprt) /23,24/, and other loci have validated the use of these

~ cells. High LET effects on TK6 previously have been examined by the incorporation
of 125] /25, 26/, bombardment with 28Si and 40Ar ions /27/, neutrons /28/ and chelated
212Bj in solution /29/.

More recently, we have described several cell lines, including WTK1, which are
closely related to TK6. These cell lines are less sensitive to cell killing, but more
" mutable following exposure to X-rays /30/. The observed effects may be due, at least
in part, to a higher capacity of WTKI1 cells to catalyze recombination as assayed in a
plasmid based system, and as evidenced by miolecular analysis of tk- mutants /31/.
 WKTI1 also has a higher repair capacity for X-ray-induced double strand breaks than
has TK6 (unpublished results.) These two cell lines represent a well characterized and
unique system for the comparison of the effects DNA damaging agents on human cells
with different capacities for recombination and dsb repair. We have irradiated these
two cell lines with a-particles and compared the survival and induced mutation at the
hprt and tk loci with that induced by X-irradiation.

WIL2

MATERIALS AND METHODS

Cell Lines

WIL2 is a nonclonal isolate from a human
spleen first described by Levy et al. /32/. WIL2-NS HRH4
This culture was widely distributed and has l
been used in many different laboratories.
~WI-L2-NS (ATCC CRL 8155) is a subclone
of WIL2 which was later deposited at the ﬂ(_/_ k- /_
ATCC. A different unselected clone, HH4,
was used to derive the TK6 cell line, which is
heterozygous for the thymidine kinase (tk)
gene /33/. WTK1, a tk heterozygote derived
from the WIL2-NS cell line, was obtained
from M.B. Benjamin. (Figure 1). A Sacl WIK1 TK6
polymorphism distinguishes the two alleles of 1K+ /-) (tk+/-)

the 7k gene in WILZ'NS and TK6 cells /34/. Fig. 1 Relationship between the cell

lines used in these studies.



Cells were maintained as exponentially growing cultures in RPMI 1640 medium
supplemented with 10% horse serum (heat treated for 2 hours at 56°C). The cultures
were incubated at 37°C in 5% CO; and 100% humidity and maintained at densities of
1-12 x 105 cells/ml.

Irradiations

Prior to the start of mutation experiments, CHAT (deoxycytidine, hypoxanthine,
aminopterin, and thymidine) treatment of cultures was carried out as previously
described /20/. X-ray irradiations were performed with a Philips MG-102 X-ray

- generator operating at 9.6 mA with 1 mm Al added filtration. The dose-rate to the

cells was approximately 76 cGy/min, as determined with a Victoreen ionization
chamber and thermoluminescent dosimetry.

The alpha particle source used for these experiments has been described in detail

~elsewhere /35/, and consists of a thin layer of 238Pu electrodeposited onto a stainless

steel disk. The beam passes through an aluminum collimator, and exposure times are
controlled by means of a photographic shutter. Due to the high elevation of Los
Alamos (7300 feet above sea level) air pressure is approximately 30% lower than that
at sea level. This results in sufficiently low attenuation of the alpha particles to allow

- irradiation in atmosphere, while retaining an acceptable width to the energy spectrum.

At the cell mylar interface,_the dose rate is approximately 3.8 cGy/sec with a mean
energy of 3.5 MeV and LET of 116 keV/um.

Lymphoblasts growing in suspension culture were pelleted by centrifugation and
pipetted directly onto the 1.5 um thick mylar bottomed dishes especially constructed
for use with this alpha source. The cells where then covered with a glass coverslip to
force them into a "monolayer” on the mylar. Microscopic examination indicated that
all cells were in contact with the mylar base of the dish. A similar technique has been
described for irradiating bone marrow cells /36/.

Immediately after irradiation, cultures
were plated for survival in 96-well

microtiter plates at between 1 and 100 01k
cells/well. Following  appropriate 5
expression times, cells were plated in 0.5 g [
pg/ml 6-thioguanine to select for hprt- S 0.01}
mutants, or 2.0 pg/ml trifluorothymidine ) ‘
to select for tk- mutants. Plates were

incubated and scored for colony O'Om§

formation after 11 days, at which time .
fresh trifluorothymidine was added to the (00071 Lu

tk- plates in order to score for late 0 100 200 300 400
appearing colonies. Mutant fractions Fi . Dose (cGy)
were calculated using the method of Furth & 2 Survival of the TK6 (circles) and WTKI

(squares) following X-ray (open) and alpha (closed).
etal. 37/ Error bars are SEM.



RESULTS AND DISCUSSION

Both the cell lines used in this study were more susceptible to killing by a-particles
than by X-rays. This difference was slightly more pronounced in TK6 (RBE 1.7) than
* in WTK1 (RBE 1.3). 212Bi a-particle irradiation of TK6 cells was reported to have a

‘somewhat higher RBE of 3.5./29/. WTK1 (Dg=73 cGy) also has higher survival than
TK6 (Dy=40 cGy) following a-particle irradiation (Figure 2). This result is in

- agreement with other studies using the same alpha source which demonstrated that cell

lines with lower survival following y-ray exposure also had lower survival after a-
* particle irradiations /13/. However, Evans et al., /17/ reported that while mutants of
mouse L5178Y cells with differing DNA repair capacities exhibited a range of X-ray
sensitivities their sensitivity to a-particles was the same. This may imply that these
mutants process X-ray and a-particle damage by different DNA repair pathways.
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Fig. 3 a-particle-induced hprt- mutation: TK6 Fig. 4 a-particle-induced tk- mutation in TK6
(circles) and WTK1 (squares). Lines only for (circles) and WTK 1 (squares). Lines only for
X-ray induced mutants. Error bars are SEM. X-ray-induced mutants. Error bars are SEM.

~ Alpha particles induced mutations at the hprt locus in WTK1 with higher efficiency
than did X-rays (Figure 3). The data for X-rays is fit best by a linear quadratic dose
response while the induction of mutants by o-particles can be fit by a linear regression.
A greater induction of hprt mutants by a-particles compared to X-rays was previously
reported in human fibroblasts /18/ Conversely, the induction of hprt mutants in TK6 by
both X-rays and a-particles was linear and of approximately equal efficiency.
Therefore, the hprt locus is approximately 4-fold more mutable by o-particles in
WTK1 than it is in TK6. In a previous study, TK6 did show a 3.8-fold higher
mutability by 212Bi than X-rays at the hprt locus /29/. This difference may be related
to the higher energy alpha particles emitted by 212Bi, or to the differences in dosimetry
or exposure methods.

The a-particle-induced mutant fractions at the autosomal heterozygous tk locus are
shown compared to the X-ray induced mutant fractions in Figure 4. In all cases, only
total tk- mutant fractions are shown, which are the sum of early and late appearing
mutants previously described /22/. WTKI1 is at least 50-fold more mutable at the tk




locus by a-particles than is TK6. WTK1 is also about 3-fold more mutable per cGy by
a-particles than by X-rays. TK6, however, is about 3-fold less mutable by a-particles

. than by X-rays at the tk locus. This finding is similar to that of Metting et al /29/ with

212Bj which reported an RBE of 0.83 for all tk mutants.

The majority of X-ray and spontaneous tk-
mutants of TK6 have been found to have a
~ stable slow growth rate in culture.
Although around 80% of tk mutants of
WTKI1 also appear only after 18 days of
incubation, less than half of these exhibit a
stable slow growth phenotype. A similar
pattern was seen among a—parucle-mduced
mutants of both TK6 and WTK1. This is
in agreement with the findings of Metting
et al. /29/ with 212Bi in TK6, where 9/9
late arising tk- clones were found to have
normal (<20 hour) doubling times when
tested. The low induction of tk- mutants of
TKS6, and the reduction in the proportion of
these mutants with longer than normal
doubling times may indicate a different

mainly to deletion of the active allele /31/.
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Fig. 5 Induced hprt mutation as a function of
survival for TK6 (circles) and WTK1 (squares)
irradiated with X-rays (open) or a-particles
(filled).

mechanism is responsible for the induction of mutants by a-particles than by X-rays.
X-ray-induced tk- mutants of WTK1 have been associated predominantly with large
scale gene conversion or genetic recombination, while mutants of TK6 were due

T

1500

1000

K- IMF x 10°

05

62 Ot
ing Froction

0 r-—=e=r——39“"’ﬂa .
0.5 0.2 0.1

Surviving Fraction
Fig. 6 Induced tk- mutation as a function of
survival for TK6(circles), and WTK1 (squares)
irradiated with X-rays (open) or a-particles
(closed).

It is possible that gene conversion
events are much more efficient for the
processing of a-particle-induced
damage, and that even in the
recombination deficient cell line TK6,
a higher proportion of the recoverable
events are due to such a mechanism.
This could also account for the
reduced efficiency of mutation
induction by a-particles compared to
X-rays which is seen at the tk locus in

—e_| TK6, but notin WTK1. Also, as such

a mechanism would not be expected
to play a major role at the hemizygous

hprt locus, this is consistent with the
similar efficiencies
radiations at this locus in TK6.

of the two

Comparisons of relative mutation induction versus survival at the same dose have
been used to clarify the relationships between different irradiation conditions or



between DNA repair deficient mutants and their repair proficient parent lines. The
' induced mutant fractions at the hprt and tk loci in the two cell lines used here are
shown in Figures 5 and 6 as a function of survival. For hprt, the mutants per survivor
_ relationship is similar for the two radiations in both the cell lines. However, there is a
 significant difference between the two cell lines. Similarly for the tk locus, the
greatest difference in this parameter is between the cell lines. The relationship is
 similar for X-rays and alpha particles at lower doses in WTK1, but the efficiency of
mutation by o-particles falls off at higher doses. For TK6, however, X-rays are
notably more efficient at inducing tk- mutation at all survival levels than are
o-particles. A similar higher efficiency of a-particles over X-rays has been reported
~ for the hprt locus in Chinese hamster V79 cells /12/ and human fibroblasts /18/. This
" demonstrates that the reduction in the recovery of tk- mutants from o-irradiated TK6
cells can not be explained by the differences in survival, and indicates a real difference
in the mechanisms of mutation which operate efficiently following different types of
radiation damage in these cells.
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