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We describe parallel extensions of sequential programming languages for writing pro-
grams that integrate different programming paradigms and that execute in heterogeneous
environments comprising both distributed and shared memory. The extensions can be
used to write programs with dynamic process and communication structures. Programs
can use shared-memory, message passing, and data parallel programming paradigms, and
can be written in a way that permits the compiler and run-time system to verify that
they are deterministic. The extensions also provide the programmer with control over how
data and processes are mapped to processors, and hence how computational resources are
allocated to different parts of a program. A subset of these ideas has been incorporated

in an extension to Fortran called Fortran M. However, the underlying sequential notation
is not central to the ideas.

1. INTRODUCTION

This paper provides an overview of research at Argonne and Caltech on language
extensions for parallel programming. This goal of this work is to develop programming
language constructs that support dynamic process/communication structures and multi-
paradigm programming but which nevertheless permit programs to be written in a way
that allows the compiler and run-time system to verify that they are deterministic.

Parallel programs with dynamic process structures have computations in which pro-
cesses can be created and terminate execution; communication channels can be created,
reconnected, and deleted; and shared variables can be created and deleted. Programs for
reactive systems, programs that use sophisticated load-balancing schemes, and programs
for irregular scientific problems often have dynamic process structures. The language ex-
tensions considered in this paper are intended to support parallel programs with dynamic
process structures. The extensions can also be used for computations with static process
structures in which there are fixed sets of processes, channels, and shared variables. or r
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Multiparadigm programs may combine both message passing and shared memory,
and task parallelism and data parallelism. The integratic . of message passing and shared
memory allows the use of heterogeneous networks of couiputers, where some nodes can
be shared-memory multiprocessors. The integration of task and data parallelism is useful
in multidisciplinary simulation, for example, where several disciplinary simulation models
(which may be data parallel programs) must be integrated into a task parallel program.
The language extensions described in this paper provide a simple mechanism for coupling
multiple data-parallel programs.

Determinism is valuable for several reasons. Reasoning about deterministic programs
is often simpler than reasoning about nondeterministic programs. Also, compiler support
for verifying determinacy is helpful in debugging because debugging nondeterministic pro-
grams is even more intractable than debugging deterministic programs. A deterministic
program will produce the same results on a single workstation or a multicomputer; this
feature allows a programmer to develop a program on a workstation and later execute the
program on a network of workstations or parallel computer, knowing that the output (for
a given input) will remain unchanged.

Many of the ideas presented have been incorporated in an extension of Fortran called
Fortran M. We chose Fortran because many people developing scientific applications
use Fortran; we could equally have chosen some other sequential imperative language.
An implementation of Fortran M that supports message passing and task parallelism,
but not shared memory or data parallelism, is available from anonymous ftp server
info.mecs.anl.gov (directory /pub/fortran-m) at Argonne National Laboratory. This
compiler has been used to develop libraries of parallel programs in linear algebra, spectral
methods, mesh computations, computational chemistry, and computational biology, and
to explore the integration of task and data parallelism.

2. DETERMINISM

Our approach to achieving determinism is based on the diamond property and the
Church-Rosser theorem [5, 13], well-known in functional programming.

2.1 Theory

Let G be a labeled directed graph, where each edge of the graph has a single label,
and for each vertex v and each label [ there is at most one edge directed from v with label
I. A path in the graph is defined by the initial vertex at which the path originates, and
a sequence of labels; the path is traversed by traversing the edge from the initial vertex
with the first label in the sequence, then the edge with the second label, then the edge
with the third label, and so on.

A terminal vertex is a vertex without outgoing edges. A mazimal path is either a finite
path that ends in a terminal vertex or an infinite path (i.e., a path that has an infinite
number of edges).

The Diamond Property We restrict attention to graphs G with the following diamond
property. If there are edges from a vertex v with distinct labels [ and r, then there are
paths I,r and r,{ from v, and both paths end at the same vertex; see Figure 1. The




following theorem is proved in (5, 13].

Theorem Either all maximal paths from a vertex v are finite and end in the same
terminal vertex, or all maximal paths from v are infinite.

Figure 1: The Diamond Property

2.2 Application

A vertex represents a state in a parallel program, and an edge labeled r represents
a state transition resulting from process r taking a step. If there is an edge labeled r
from a vertex v then process r is executable in state v, and if there is no edge labeled r
from vertex v then process r is suspended in state v. There is at most one edge labeled
r from a vertex v because processes are deterministic, and a process does not choose
nondeterministically from two or more transitions.

In terms of state transitions, the diamond property is as follows. If distinct processes
[ and r are both executable in a state v, and a step by process ! takes the program from
state v to a state u, and a step by process r takes the program from state v to a state
t, then process r is executable in state u and process [ is executable in state ¢, and the
state that obtains after process r takes a step from state u is the same as the state that
obtains after process [ takes a step from state ¢.

3. PARADIGM INTEGRATION

We now explore mechanisms by which processes can communicate so that parallel
programs have the diamond property, thus guaranteeing that the final state is independent
of the interleaving of process computations.

3.1 Message Passing
The first communication mechanism we explore is message passing on single-writer,
single-reader channels. Associated with each channel are two tokens: a sender token and

a receiver token. An invariant of the program is: for each channel there exists at most
one sender token and one receiver token.




A process can send a message on a channel if and only if it holds the sender token
for that channel. Likewise, a process can receive a message from a channel if and only
if it holds the receiver token for the channel. Thus the sender and receiver tokens are
capabilities that confer certain rights to the holder of the tokens [7, 6].

The send command is nonblocking, and the receive command is blocking. The state
of a channel is a queue of messages. Sending a message m on a channel appends m to the
tail of the queue of messages in the channel. Receiving a message from a channel into a
variable v waits until the queue of messages in the channel is nonempty, makes v become
the message at the head of the queue, and then deletes the message from the queue.

Processes can communicate sender tokens and receiver tokens to other processes.
Therefore different processes can send or receive messages on the same channel at dif-
ferent points in a computation. To ensure that the single token invariant is maintained,
a token that is communicated is no longer accessible to the sending process.

The proof that parallel programs that use this (and only this) communication mech-
anism have the diamond property is straightforward. See Figure 2.

channel ¢ is nonempty

send message w on
channel ¢

receive from channel ¢
into variable v

receive from channel ¢
into variable v

send message w on
channel ¢

Figure 2: Channels with the Diamond Property

3.2 Shared Memory

Next we describe constructs that allow concurrent processes in parallel programs to
share variables while maintaining the diamond property.

We associate with each deterministic shared variable a number of identical tokens. A
process can write a shared variable at a point in a computation only if at that point it
holds all tokens associated with the variable. A process can read a shared variable at a
point in a computation only if at that point it holds at least one token associated with
the variable. If a process p can write a shared variable v at a point in the computation
then no other process can read or write v at that point because p holds all the tokens
associated with v.

Processes can send tokens to each other. Therefore, at different points in a compu-
tation, different processes can read or write a shared variable. A process can modify the
number of tokens associated with a shared variable at points in the computation at which
the process holds all the tokens associated with the variable.

Programs in which processes share deterministic shared variables (and do not share
any other type of variable) satisfy the diamond property because concurrent reads can




occur in arbitrary order, and no operation on a shared variable can occur concurrently
with a write to the variable.

An attractive property of this restricted form of shared variable is that it can be
implemented efficiently on even weakly coherent shared-memory architectures, and on
distributed-memory architectures via message-passing.

3.3 Data Parallelism

In a data-parallel programming paradigm, the program consists of a series of operations
that are applied identically to all or most elements of a data structure. Data parallel
programming languages often allow the programmer to specify (a) how data is distributed
over processors, and (b) the computation that is to be performed on each data item; the
compiler then determines what computation and communication should be performed at
each processor (135, 10].

We allow individual processes to execute programs written in a data-parallel notation.
These programs may create distributed data structures which are local to that process.
They may interact with other (data or task parallel) computations by operating on arrays
of channels or deterministic shared variables. If the data parallel notation is deterministic
and prevents replication of tokens among its threads of control (hence ensuring that the
token invariant is maintained), then data-parallel processes are indistinguishable from
sequential processes, and the diamond property is satisfied.

4. FORTRAN M

For concreteness, we outline how channels, deterministic shared variables, and data
parallelism are incorporated into a sequential programming language (Fortran). The
presentation is necessarily somewhat simplified; for details, see [8, 3].

A process declaration is syntactically identical to a subroutine except that (i) the
keyword process replaces the keyword subroutine, (ii) the arguments of a process can be
tokens, (iii) all process parameters other than tokens are passed by value, and (iv) the
body of a process can include statements and data types, described later, that are not in
the sequential language.

Processes are created by executing a parallel block which has the form

PROCESSES
list_of_process._calls
ENDPROCESSES

where list_of_process_calls is a list of process_calls with end_of line as the separator between
successive elements of the list, where a process.call has the same syntax as a subroutine
call except that the keyword PROCESSCALL is used in place of the keyword CALL. An
example of a parallel block is:

PROCESSES
PROCESSCALL P(V, W)
PROCESSCALL Q(A, B, C)

ENDPROCESSES




where P, and Q, are process names; V, W are the arguments of P; and A, B, C are the
arguments of Q.

The execution of a parallel block causes all the processes in its list of process calls
to be created; the states of the newly created processes are their initial states. The
processes created within the parallel block in a process t are called the children of process
t. Execution of process t is suspended while any of its children are in execution, and
execution of t is resumed when all its children terminate. A computation of a parallel
block is a fair interleaving of the computations of its constituent processes.

All variables of a process are either local variables of the process or arguments of the
process. An argument of a process can be a variable passed by value or it can be a token.
A runtime error occurs if the same token is passed to more than one child process in a
parallel block. The initial value of an uninitialized local variable is a specified default
value to ensure that initial states are deterministic.

A Fortran M program is initiated as a single process executing the main program; the
program terminates when this process terminates execution.

4.1 Channels

A type in the extended language is a type in the underlying sequential language or is
of the form outport(T) or inport(T), where T is a type in the extended language. The
value of a variable of type outport(T) is either a special symbol NULL or a sender token
for a channel of type T. Likewise, the value of a variable of type inport(T) is NULL or a
receiver token for a channel of type T.

Channels are typed. A message in a channel of type T is a value of type T or a special
message end_of _channel.

Four statements are provided in the extended language for message-passing. These
statements are designed to be similar to statements in Fortran for operations on files. In
the following, keywords are capitalized, variable names are italicized, oport is variable of

type outport(T) and iport is a variable of type inport(T) for some T, v is a variable,
and Is is a statement label.

1. CHANNEL (OUT=oport, IN = iport)
This statement creates a channel of type T, and makes oport become the sender

token associated with the channel and iport become the receiver token associated
with the channel.

2. SEND(PORT = oport) v
The value of oport is a sender token or NULL. If oport = NULL when the send is
executed, an error occurs. If oport is a sender token, a message with value v is sent
on the channel corresponding to the token. If the message itself is a token, (i.e., if
the value of v is a token), then after the message is sent, v becomes NULL because
the sender no longer holds the token after the token is sent.

3. ENDCHANNEL (PORT = oport)
If oport = NULL when the statement is executed, an error occurs. If the oport is a
sender token, then an end_of_channel message is sent on the channel corresponding
to oport and then oport becomes NULL. Making oport NULL destroys the sender token
corresponding to the channel; thus, no further messages can be sent on the channel.




4. RECEIVE(PORT = iport, END = Is) v
If dport = NULL an error occurs. If iport is a receiver token, then a message is
received into variable v from the channel corresponding to the token if the message
is not end_of _channel. If the next message is end_of_channel, then v remains
unchanged, iport becomes NULL (which destroys the receiver token for the channel),
and execution continues from the statement labeled Is.

4.2 Shared variables

The syntax for declaring and using deterministic shared variables is similar to that for
pointers in Fortran 90.

REAL, POINTER nX
REAL, DETERMINISTIC_SHARED VARIABLE: y

In Fortran 90, x is of type pointer to a real value. Likewise, y is of type deterministic
shared real variable.

A variable y of type T, DETERMINISTIC_SHARED_VARIABLE is a reference to a data
structure of type T or a special symbol NULL. The inquiry functions TOTAL_TOKENS (y) and
TOKENS HELD(y) give the total number of tokens associated with deterministic shared
variable y, and the number of tokens associated with y held by the process in which the
function is called, respectively.

All operations on a deterministic shared variable y other than SEND, RECEIVE, and
ALLOCATE, and parameter passing to processes, are operations on y itself, and not on the
tokens associated with y. The operations SEND, RECEIVE, and ALLOCATE are operations
on the tokens associated with y and do not modify the value of y.

Statements for dynamic storage allocation are similar to allocation statements in For-
tran 90.

c declare variables
REAL, POINTER b 4
REAL, DETERMINISTIC_SHARED _VARIABLE :: y

c allocate variables
ALLOCATE(x)
ALLOCATE(y)

The first allocate statement is standard Fortran 90; it allocates storage for a new data item
of type REAL and makes x become a pointer to it. Likewise, the second allocate statement
allocates storage for a new data item y of type REAL DETERMINISTIC SHARED VARIABLE.
Exactly one token is associated with a deterministic shared variable immediately af-
ter it is created. Hence TOTAL_TOKENS(y) = 1 immediately after y is allocated, and
TOKENS HELD(y) = 1 in the process in which the allocate statement is executed, immedi-
ately after execution of the statement. A statement is provided for increasing the number
of tokens associated with a shared variable; this can only be executed by a process that
holds all current tokens.

Tokens can be transferred between processes by message-passing on channels. Execu-
tion of




SEND(PORT = op) y(COUNT=k)
sends k tokens associated with variable y. Similarly, the execution of
RECEIVE(PORT = ip) y

suspends until a message arrives and receives a message from the channel corresponding
to input port ip into y in the following way. Let the message received be MSG.

1. An error is posted if y is nonnull, and y and MSG reference different data items
because all the tokens associated with y must reference the same data item.

o

If y is nonnull, and y and MSG reference the same data item, then the number of

tokens held by the receiver corresponding to y is increased by the number of tokens
in the message.

3. If y is NULL before the receive, then after the receive y references the same data

item as MSG, and the number of tokens corresponding to y held by the receiver is
the number of tokens in the message.

4.3 Data parallelism

Programs can use data distribution statements [10] to create distributed arrays. Se-
mantically, distributed arrays are indistinguishable from nondistributed arrays. That is,
they are accessible only to the process in which they are declared and are passed by value
to subprocesses. Operationally, elements of a distributed array are distributed over the
nodes of the virtual computer in which the process is executing. Hence, operations on
a distributed array may require communication. Data-distribution statements allow FM
programs to specify certain classes of data-parallel computations.

A complimentary approach to the integration of data parallelism is to allow Fortran M
programs to call data parallel programs, written for example in Fortran D [4].

4.4. Resource management

Resource management constructs allow the programmer to specify how processes and
distributed data are to be mapped to processors and hence how computational resources
are to be allocated to different parts of a program [9]. These constructs influence perfor-
mance but not the result computed. Hence, a program can be developed on a uniprocessor
and then tuned on a parallel computer by changing only mapping constructs. For exam-
ple, a programmer can specify that different components of a program are either to be
executed in disjoint partitions of a multicomputer, or multiprocessed in a single partition,
without changing program logic.

In Fortran M. these constructs are based on the concept of a virtual computer: a col-
lection of virtual processors, which may or may not have the same shape as the physical
computer on which a program executes. A virtual computer is an N-dimensional array,
and mapping constructs are modeled on array manipulation constructs. The PROCESSORS
declaration specifies the shape and dimension of a processor array, the LOCATION anno-
tation maps processes to specified elements of this array and the SUBMACHINE annotation
specifies that a process should execute in a subset of the array [8].




5. EARLIER WORK

The work described in this paper integrates well-known ideas about the Church-Rosser
theorem [5, 13], capabilities [7, 6], channels [11], and distributed shared memory [12].
An implementation in a widely-used sequential language (Fortran) provides a parallel
notation that supports (i) dynamic process structures, (ii) paradigm integration and
(iii) compiler verification of determinism, and that runs on multicomputer networks or
(weakly-coherent) shared-memory systems. Nondeterministic constructs can be included,
if required.

A comparison of Fortran M with data-parallel languages {15, 10] and high-level lan-
guages [2] highlights some of the weaknesses and strengths of our approach. Fortran M
employs processes explicitly, and uses explicit exchange of tokens between processes. Care
must be taken by the Fortran M programmer to avoid starvation: processes waiting for
tokens that never arrive. Our experiments with writing libraries suggest that avoiding
starvation is not difficult in Fortran M because if there exists any computation in which
processes do not starve, then processes do not starve in all computations; so, we merely
need to demonstrate one correct computation, and that is often easy to do by showing
that the communication of tokens and messages in the Fortran M program corresponds to
data flow in the sequential program. Some of this work could be handled automatically
by a compiler using data-flow technology. Data-parallel languages [15, 10] and applicative
languages [2] do not require the programmer to deal with processes, messages or tokens.

A weakness of Fortran M is that it is a small extension of Fortran, a sequential im-
perative language, whereas high-level languages such as Id and Sisal are designed from
the outset to be functional. On the other hand, Fortran M uses theory from functional
languages to provide a deterministic parallel extension to a language that is widely used
by scien.ific application programmers. Since Fortran M compiles to Fortran, powerful
Fortran optimizing compilers available on most platforms can be used to advantage. Fur-
thermore, the central ideas of this paper can be used with other sequential imperative
languages.

A comparison of Fortran M with parallel programs using message-passing libraries
such as P4 [1] or PVM [14] is also instructive. A focus of Fortran M is the development
of reliable programs by (i) separating deterministic and nondeterministic components
(and allowing simpler reasoning and debugging for the deterministic parts) and (ii) type-
checking messages (since channels are typed). Also, Fortran M allows dynamic process
structures, and can be used to integrate shared-memory, distributed-memory and data-
parallel paradigms. Libraries, by their very nature, provide no compile-time type checking
and are not guaranteed to be deterministic. Also, libraries do not (generally) support
dynamic process structures. Users of libraries can, however, continue to use the sequential
language and compiler with which they are familiar, whereas Fortran M users have to learn
the extensions to Fortran and use the Fortran M compiler. The extensions are simple,
and the time required to learn the extensions is of the same order as the time required to
learn a message-passing library.




References

[1] Boyle, J., R. Butler, T. Disz, B. Glickfield, E. Lusk, R. Overbeek, J. Patterson, and
R. Stevens, Portable Programs for Parallel Processors, Holt, Rinehart and Winston,

1987.

[2] Cann, D. C., J. T. Feo, and T. M. DeBoni, Sisal 1,2: High Performance Applicative

Computing, Proc. Symp. Parallel and Distributed Processing, IEEE CS Press, Los
Alamitos, Calif., 1990, 612-616.

[3] Chandy, K. M. and I. Foster, A Deterministic Notation for Cooperating Processes,
Preprint MCS-P346-0193, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Ill. 60439, 1993.

[4] Chandy, K. M., I. Foster, K. Kennedy, C. Koelbel, and C.-W. Tseng, Integrated Sup-
port for Task and Data Parallelism, Intl J. Supercomputer Applications (to appear).

[5] Church, A. and J. B. Rosser, Some Properties of Conversion, Trans. American Math.
Soc., 39, 1936, 472-482.

[6] Cohen, E. and D. Jefferson, Protection in the Hydra Operating System, Proc. 5th
Symp. Operating Systems Principles, ACM, 1975, 141-150.

[7] Dennis, J. B., and E. C. Van Horn, Programming Semantics for Multiprogrammed
Computations, Comm. ACM, 9, 1966, 143-155.

[8] Foster, I. and K. M. Chandy, Fortran M: A Language for Modular Parallel Program-

ming, Preprint MCS-P327-0992, Argonne National Laboratory, Argonne Ill. 60439,
1992.

[9] Foster, I., R. Olson, and S. Tuecke, Productive Parallel Programming: The PCN
Approach, Scientific Programming, 1(1), 1992.

[10] Fox, G., S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, M.Wu,

Fortran D Language Specification, Technical Report TR90-141, Computer Science,
Rice Univ., Houston, TX, 1990.

[11] Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM, 21(8), 1969,
666-677.

[12] Li, K., and P. Hudak, Memory Coherence in Shared Virtual Memory Systems, ACM
Trans. Comp. Systems, 7(4), 1989, 321-359.

[13] McLennan, B. J., Functional Programming: Practice and Theory, Addison-Wesley,
Reading, Mass. 1990

[14] Sunderam, V., PVM: A Framework for Parallel Distributed Computing, Concurrency
Practice and Ezperience, 2, 1990, 315-339.

[15] Thinking Machines Corporation, CM Fortran Reference Manual, Thinkin 7 Machines,
Cambridge, Mass., 1989.




DATE
FILMED

2 /23/94




