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THE HARD TRUTH

Kenneth M. Hanson and Gregory S. Cunningham*
Los Alamos National Laboratory, MS P940
Los Alamos, New Mexico 87545 USA

kmh@lanl.gov cunning@lanl.gov

ABSTRACT. In the Bayesian methodology, the posterior probability combines uncertainty about
prior knowledge, and available data about alternative models of reality. The posterior quantifies
the degree of certainty one has in inferring the truth in terms of those models. We propose a
method to determine the reliability of a specific feature of a Bayesian solution. Our approach is
based on an analogy between the negative logarithm of the posterior and a physical potential. This
analogy leads to the interpretation of gradient of this potential as a force that acts on the model.
As model parameters are perturbed from their maximum a posteriori (MAP) values, thestrength of
the restoring force that drives them back to the MAP solution is directly related to the reliability of
those parameter estimates. The correlations between the uncertainties of parameter estimates can
be elucidated. -

1. Introduction

Bayesian analysis provides the foundation for a rich environment in which to explore infer-
ences about models from both data and prior knowledge through the posterior probability.
In an attempt to reduce an analysis problem to a manageable size, the usual approach is
to present a single instantiation of the object model as “the answer”, typically that which
maximizes the posterior (the MAP solution). However, because of uncertainties in the
measurements and/or because of a lack of sufficient data to define an unambiguous answer
(in the absence of regularizing priors) [1], there is no unique answer to many real analysis
problems. Rather, innumerable solutions are possible. Of course, some solutions are more
probable than others. The beauty of the Bayesian approach is that it provides the proba-
bility of every possible solution, which, in a sense, ranks various solutions. The estimation
of the uncertainty or reliability of the answer remains a pressing issue, particularly when
the number of parameters in the model is large. Although there is a mathematically cor-
rect way to specify the covariance in the parameters, including the correlation between the
uncertainties in any two parameters, it does not provide much insight.

One appealing way to get a feeling for the uncertainty in a Bayesian solution is to
display a sequence of distinct solutions drawn from the posterior probability distribution.
This approach was suggested by Skilling et al. [2], who produced a video display of a random
walk through the posterior distribution. However, the calculational method used in that
work was based on a Gaussian approximation of the posterior probability distribution in
the neighborhood of the MAP solution. Later Skilling made some progress in dealing with
non-Gaussian distributions [3]. While the probabilistic display of Skilling et al. provides
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2 K. M. Hanson and G. S. Cunningham

a general impression of the overall degree of possible variation in the solution, we desire a
means to probe the @ncertainty in the solution in a more directed manner.

We propose a tectinique to test hypotheses regarding perturbations of the MAP solution
in a fashion that allows one to ask questions of particular interest. The approach we suggest
makes use of an analogy between the negative logarithm of the posterior and a physical
potential. The uncertainty of a particular change of the MAP solution is revealed in a tactile
way as a force that tends to pull the solution back toward the MAP solution. Correlations
between the perturbed set of parameters and the remaining parameters in the model are
also brought to light. This innovative Bayesian tool is tangibly demonstrated within the
context of geometrically-defined object models used for tomographic reconstruction from
very limited projection data.

2. Traditional approach to uncertainty

Bayesian analysis revolves around the posterior probability of a model, where the model
parameters are represented by the vector a. The posterior p(a|d) incorporates data through
the likelihood p(d|a) and prior information through a prior probability on the parameters
p(a). Bayes’s law gives the posterior as p(ald) « p(d|a)p(a). The most typical use of
Bayesian analysis is to find the parameter values that maximize the posterior, called the
‘MAP solution.

It is convenient to deal with the negative logarithm of the posterior, ¥ = — log{p(ald)}.
In the traditional approach to the estimation of uncertainty [4, 5], which we only summarize
here, one calculates the curvature matrix of ¥,

82y
6a.-6aj )

Cij=

The error matrix V, which gives the expected covariances between all the parameters, is
the inverse of the curvature matrix,

V=1,

Although this result is mathematically rigorous, it only provides the second moment of the
parameter estimates and their correlations. It also suffers from not being very illuminating
in terms of its consequences for the parametric model. Futhermore, for 106 parameters
the full error matrix contains 10!2 elements and can neither be practically calculated nor
stored. We propose another approach to provide a more tangible indication of the degree
of uncertainty in the inferred model as well as the ability to directly probe the uncertainty
of specific features of the model.

3. Bayesian mechanics

If one draws an analogy between ¥ and a physical potential, then the gradient of ¢ is
analogous to a force, just as in physics. The force F(a;) = —g‘% is in the direction of
the local minimum of ¢, under suitable assumptions concerning the smoothness of the
dependence of ¥ on the parameters. The condition for the MAP solution is Va? = 0,
when there are no side constraints on the parameters. Therefore, the MAP solution can be
interpreted as the situation in which the forces on all the variables in the problem balance
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so that the net force on each variable is zero. Further, when the variable q; is perturbed
slightly from the MAP solution, the force F(a;) pulls a; back towards the MAP solution.
The phrase “force of the data” takes on real meaning in this context.

A quadratic approximation to ¥ in the neighborhood of the MAP solution implies a
linear force law, i.e. the restoring force is proportional to the displacement from equilibrium,
as in a simple spring. In this quadratic approximation the curvature of ¥ is proportional
to the covariance of the MAP estimate. A high curvature is analogous to a stiff spring and
therefore represents a “rigid”, reliable solution.

An interesting aspect of this approach is the possibility of decomposing the forces acting
on the MAP solution into their various components. For example, the force derived from all
data (through the likelihood), or even a selected set of data, may be compared to the force
derived from the prior. In this way it is possible to examine the influence of the priors on
the solution as well as determine which data have the largest effect on a particular feature
of the solution.

We note that the notion of applying forces to model parameters in the preceding discus-
sion must ultimately be stated in terms of pressures, that is, forces applied over finite-sized
regions, acting on physically meaningful variables. The reason is that the physical world,
which we usually model, exists as a continuum: the typical physical quantities of inter-
est are a function of continuous spatial coordinates. Thus physically meaningful questions
about reality should really be stated in terms of regions, not points. Furthermore, phys-
ically feasible measurements can only sample physical quantities over finite-sized regions.
Point sampling is fundamentally impossible. As an example, a radiographic measurement
in which the attenuation of an x-ray beam is measured always is lsubject to the effects of
a blurring process that arises from a finite spot size for the source of x rays and the finite
resolution of the x-ray detector. Thus the measured attenutation is necessarily an average
over a cylinder in space. In truth, radiographic measurements can not provide line integrals
of an attentuation coefficient through an object, as is often assumed as an approximation
to the real process. As a result, uncertainies in an estimated physical quantity can only be
addressed in terms of the average of that quantity over a finite region. As the concepts of
Bayesian analysis mature, we will learn to only to deal with physical quantities that are
functions of continuous independent variables and we will avoid referencing directly the
underlying discrete parameters of the models.

One needs to be aware that any finite representation, which we are forced to use in
computer models, has a limited resolution. Thus when one explores the model at a scale
finer than the inherent resolution of the model, the model can only respond by using an
interpolation of the underlying discrete model [6]. One can only meaningfully explore the
model at resolutions coarser than this.

4. Perturbation from Equilibrium

We propose to exploit the above physical analogy to facilitate the exploration of the relia-
bility of a MAP solution. The reliability of the solution is indicated by the rate at which
the restoring forces increases as a user perturbs a single parameter, or group of parameters.
Parameter correlations may be explored by altering some parameters, fixing them, and al-
lowing the remaining parameters to readjust to minimize ¥. The correlations between the
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fixed set and the others is demonstrated by how much and in what direction the variable
parameters change. Ideally, these correlations could be seen through direct interaction with
a rapidly-responding dynamical Bayesian system. Alternatively, they may be demonstrated
by means of a video loop. As an aside, we use an adjoint method to efficiently calculate
the required derivative with respect to the variables of interest [7].

For the present we will assume that ¥ is well approximated by a quadratic expansion
in the neighborhood of the MAP point a:

¢ =3(Aa)TCAa+ 9, ,

where Aa = a—4 is the displacement from the MAP point and ¢ = ¥(a). Suppose that we
start from & and displace the parameter values by a small amount Aa. Then the gradient
of ¥, —Va¥, represents a force that pulls the parameters back toward the MAP point. The
units of the force are the reciprocal of the variance (or the square of the standard deviation)
under the prevailing Gaussian assumption. The curvature in the direction of Aa is given
by the ratio of |Va®|, evaluated at a + Aa, to |Aa|, for vanishingly small displacements.

As an alternative to directly displacing parameters, their perturbation may be achieved
by applying an external force to the parameters. Suppose that one pulls on the Parameters
with a force s. Note that this force can act on just one parameter or on many. From the
physical analogy, it is easy to write down the new potential;

¢ = 2(Aa)TCAa - AaTs + ¢ .
The new minimum of ¥ occurs when
Va?=0=CAa-s .
Solving for the displacement in a,
Aaﬂ= Cls=Vs.

Thus the ratio of |Aa| to the magnitude of the applied force s provides the covariance in
the direction of the force.

We note that reoptimization amounts to following the minimum in the valley of ¥ in
the space of a. Doing so demonstrates the correlations between the uncertainties in all the
parameters.

We can show that with reoptimization the dependence of ¥ on Aa is equivalent to
marginalization over the parameter space perpendicular to Aa, in the quadratic approxi-
mation. This marginalization is the proper thing to do in probability theory when one is
interested only in the probability as a function of Aa and not in any other parameters, in
which case the other parameters become nuisance variables.

Although we assumed that ¥ is quadratic; the above approach can be used when ¢ is
nonquadratic. What is lost in that case is the statement that the p(Aa) mapped out is
the same as the properly marginalized probability for Aa. Nonetheless we obtain a feeling
for the uncertainty in Aa and the correlations between Aa and the other parameters. Any
constraints on the parameters can be seen explicitly. For nonquadratic ¥ the plot of the
value of ¥ versus the applied force provides the means to visualize the uncertainty in Aa.
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Figure 1: An example of how a polygon (solid line) can be distorted by either pushing
node A inward (dashed line) or outward (dotted line), assuming that the measurements
cousist of two orthogonal projections. Note the effect on the overall shape of the object,
which indicates the correlations between the nodes.

5. Use with Deformable Geometric Model

The above approach takes on a poignant interpretation when the reconstructed object is
defined in terms of its geometric shape. The prior on the geometry is defined in terms
of the default shape together with a prescription of how to assess the probability of other
possible shapes. The latter is simply done by using a Gibb’s form for the probability given
as exp(—pBW), where W is the deformation energy, i.e. the energy required to deform the
geometry from the default shape into a new shape [8, 9, 10, 11, 12].  The parameter 3
regulates the strength of the prior on the geometry.

Figure 1 shows a polygon defined in terms of 20 control points or nodes. We assume that
two sets of parallel projections, one vertical and one horizontal, are available and that they
are subject to a very small amount of measurement noise. Starting from the known original
polygon, a force is applied to the leftmost node (node A), pulling it outward. The plot of
the applied force and the resulting horizontal displacement of the node is shown in Fig. 2.
For positive forces node A moves outward steadily up to a breakpoint (at a displacement
of 0.18), which we call point B. The dotted-line figure in Fig. 1 shows the configuration of
the polygon at that point. We note that the act of displacing node A outward contradicts
the vertical projections, which indicate that there is probably no material to the left of the
original position of the node. Beyond point B the slope of the curve decreases substantially,
principally because new configurations of the polygon are possible, which can reduce the
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Figure 2: Plot of the force applied to node A of the polygon in Fig. 1 versus the resulting
displacement of that node. The nonlinear nature of the force-displacement law for this
problem is dramatically demonstrated. The configurations shown in Fig. 1 are at the two
breakpoints in the curve: the dashed line corresponds to a force of -0.006 (inward) at point
C and the dotted line to a force of 0.080 (outward) at B.

excessive projection values to the left of the original position of node A.

Applying the force inward (negative force values) results in quite a different behavior.
For a small inward push, the displacement quickly reaches a breakpoint, point C in Fig. 2.
The configuration of the polygon at this point is shown Fig. 1 as the dashed figure. Node A
has just reached the line connecting its neighbors, one of which has moved outward to take
its place in supplying the proper vertical projection. Pushing harder only makes node A
slide down that line, which requires only a little force to achieve a large displacement. The
position of node A is not well determined in this region. We notice that the shape of the
object does not change during this process. The results for this situation are correct, but
may not be what one has in mind when specifying the force. It seems desirable to avoid
applying the force directly to the parameters. Rather the force should be applied to the
object and its effect translated to the parameters. Also we observe that the only reason
point C is not closer to the origin is that the coarseness of our polygon object model limits
the flexibility of the object to respond. With many more degrees of freedom, we would
expect neighboring sections of the object boundary to move out to take the place of node
A in response to a slight inward force.

The correlation between node A and all other nodes in the polygon is demonstrated in
Fig. 1. We observe that the nodes on the right side of the polygon move to maintain the
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measured horizontal projection. Of course, the constraints of the vertical projection also
figure into the problem, making the overall movement of the sides of the polygon rather
complex. This approach nicely handles the complex interaction between all the constraints
arising from measurements and prior knowledge.

For an object modeled in terms of its geometry, poor reliability of the MAP estimate
means that the object is soft or squishy, pliable. Good reliability of the estimate means
that the object is firm. Therefore, “truth” is hard or rigid.

6. Discussion

In the future it may be possible to use the tools of virtual reality, coupled to turbocompu-
tation, to explore the reliability of a Bayesian solution of complex problems through direct
manipulation of the computer model. Force feedback will permit one to actually “feel” the
stiffness of a model. Higher dimensional correlations might be “felt” through one’s various
senses.

The comments in Sect. 3 should be emphasized. We suggest that queries regarding
physical quantities should be made in terms of averages over regions rather than in terms of
point values. Furthermore, the uncertainties of individual parameters that, as a collection,
are meant to describe a physical quantity as a function continuous coordinates, may have
little meaning. Thus the question, "what is the rms error in a pixel value?” is almost
irrelavent. Meaningful questions regarding images represented as a grid of pixels can only
be made for areas larger than that of a single pixel. Furthermore, the correlations of an
average value within a region with the rest of the image must be considered. Consequently
our language must change. Instead of applying forces to individual parameters that are
used to describe an object, we should speak of applying pressures over regions of the object.
And it must be understood that when we ask about regions whose size is on the order of,
or smaller, than the resolution of the model of the object, we will only learn about the
interpolation properties of the model. - -

The approach to reliability testing described above is very general and can be used in
virtually any other kind of Bayesian analysis. Examples of other contexts are as follows:

Bayesian spectrum analysis: In typical spectral analysis a scalar variable quantity is
estimated for different discrete frequency values. Normally a single spectrum is estimated.
Skilling et al. [3] probed the variability possible in the answer through their probabilistic
display technique. That display gives one a true feeling for the range of answers possible
for a given set of input data. With our technique, one can ask direct questions about the
power at specific discrete frequencies or over a range of frequencies. The mode of interaction
with the spectrum might be thought of as pushing down or pulling up on a point or over
a region. In a virtual reality setting, the resistance to this attempted action indicates the
degree of uncertainty in the solution. The uncertainties may be quantified, of course, in
terms of cumulative probability or standard deviations.

Image reconstruction: The basic problem is to estimate the amplitudes in image pixels
from data, each of which is a combination of many pixels, as in tomographic reconstruction
from projections (line integrals) through the image, or deconvolution of blurred images.
Interaction with the image can be provided by allowing one to push or pull on the amplitudes
in an area of interest. The concepts behind this technique can be used to make binary
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decisions, for example, to decide whether an object is present or not, or to decide between

two different signals {13].
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