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Abstract composition approach originally suggested by Auslan-

The foal os the PRISM project is the development of der and Tsao [1].
infrastructure and algorithms for the parallel solution The symmetric invariant subspace decomposition
of eigenvalue problems. We are currently investigating algorithm (SYISDA) for an n × n symmetric matrix
a complete eigen.ioiver based on the [nua_antgub_rpace A proceeds as follows.
Decomposition Algorithm for dense symmetric matri- Scaling: Compute upper and lower bounds on the
ces (SY[SDA). After briefly remewing the SYISDA spectrum A(A) of A and compute cl and 13such that
approach, we discus_ the algorithmic highlights of a for B = aA + j3I we have A(B) C_ [0, 1], with the
distributed-memori implementation of an eigensoiver mean eigenvalue of A being mapped to ½.

based on this approach. These include a fast matriz- Eigenvalue Smoothing: Let pi(z), i = 1,2,... be
matriz multiplication algorithm, a new approach to polynomials such that lirn_-.oopi([0, 1]) = {0, 1},
parallel band reductio, and tridiagonalization, and a that is, in the limit all values are mapped to either
harness for coordinating the ditnde-and.conquer paral. 0 or 1. Iterate
lelism in the problem. We also present performance

results of these kernels as well as the overall SYISDA Co = B, Ci+l = pi(CI), i = 0, |,... ,
implementation on the Intel Touchstone Delta proto-

type and the IBM SP/I. until IIC_+x- C_llis numerically negligible (in iter-

1. Introduction ation k, say).
lnvariant Subspace Computation: Find an or-

('omputation of eigenvalues and eigenvectors is an thogonal matrLx [U, V] such that the columns of U
_ssential kernel in many applications, and several and Ii' form orthonormal bases for the range space of
promising parallel algorithms have been investigated Ct and its complementary orthogonal subspace, re-
[29, 24, 3, 27, 21]. The work presented in this pa- spectively. That is, uTu = I, VTV = I, UrV = O,
per is part of the PRISM (Parallel Research on In- and the range of CiU is U.
variant Subspace Methods) Project, which involves re-
searchers from Argonne National Laboratory, the Su- Decoupling: Update the original A with [U, V], i.e..form

percomputingResearch(_enter, theUniversityofCa,- ( )ifornia at Berkeley, and the University of Kentucky. [U, V] r A [(." }'] = A1- .-12 '
The goal of the PRISM project is the development of

algorithms and software for solving large-scale eigen- Since the invariant subspaces of any matrix poly-
value problems based on the invariant subspace de-

nomial of a symmetric matrix A are also invarianti

"Tiffs paper is PRISM Working Note #12, available via subspaces of A, the columns of U and V span com-
aaionymous ftp to ftp. super, org in the directory pub/prism, plementary invariant subspaces of A, and hence their

Tiffs workwas partially supported by the Applied and Corn- application to A decouples the spectrum of A. The
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the eigenvectors is guaranteed due t,o the exclusive use computation is in matrix multiplication, high efficien-
of orthogonal transformations, cies and near optimal speedups can be expected on

Note that we have considerable freedom in imple- large problems. Second, since the algorithm performs
nlenting SYISDA, in particular with respect to choos- only orthogonal transformations, orthogonality in the

lag the polynomials Pi as well as the method for tom- computed eigenvectors is guaranteed.
puting the invariant subspaces. We also mention that The paper is organized as follows. The next section
any other method that produces invariant subspaces, briefly discusses the implementation of matrix-matrix
such as approximation methods for the matrix sign multiplication. Section 3 discusses the rank-revealing
function [12, 1:3, 20, 2], could be used in the Eigen- tridiagonalization algorithm employed for the Invari-
value Smoothing step as well. As in [26], we use pre- ant Subspace Computation step. It is based on
dominantly the first incomplete beta function 3X2--2X 3 the successive band reduction (SBR) framework de-
in our implementation. The experiments in [26] also veloped by Bischof and Sun [9] and, while completely
confirm the numerical robustness of SYISDA. general, derives significant benefit from the special

While the SYISDA algorithm can be used to com- eigenvalue structure of the matrices at hand [8]. Sec-
pute a full eigendecomposition, it is worthwhile to tion 4 discusses the overall divide-and-conquer strat-
point out certain mathematical features that distin- egy employed to orchestrate the various subproblems
guish it from other approaches: and presents preliminary performance results of the

first SYISDA implementation on the lntel Touchstone
Ordering of Eigenvalues" Assuming that p maps all Delta. We conclude with our findings, in particular

eigenvalues in [0, a) to 0 and all eigenvalues in [a, 1] with respect to the impact of data layout on the design
to 1, A(AI) contains all the eigenvalues of A that of scalable libraries for the support of matrix compu-
are smaller than _,, , and ,_(A_) contains the rest. rations, and describe how the kernels we have devel-
Hence, if one is only interested in eigenvalues in a oped form the infrastructure for a "library" of parallel
certain part of the spectrum, one need not further eigensolvers.
resolve diagonal blocks corresponding to uninterest-

ing parts of the spectrum. 2. Matrix Multiplication

Subspaces before Eigenvalues: SYISDA is pri- As noted previously, the computational cost. for
marily an algorithm that computes and refines in- SYISDA is dominated by dense matrix multiplication.
variant subspaces. If such a subspace has become Hence, its performance depends heavily on having a
one-dimensional, an eigenvalue/eigenvector pair has scalable matrix multiplication code for our initial tar-
been found. However, if one is only interested in get machine, the Intel Touchstone Delta. We have
finding an orthogonai basis for the subspace spanned developed a distributed matrix multiplication code
by a certain set ofeigenvectors, there is no need to that calculates the products (' = (_.4B + ,3(' and
expend the effort to conipute all eigenvalues, and (' = _.4 tB + ,:¢(' in double precision. Our objectiv_
one can tertninate the divide-and-conquer proce- were to
,lure when the subspace corresponding to the desired
eigenvalue range has been identified. (1) provide a highly efficient algorithm suitable for

use by SYISDA,
No Prohle,ns with Repeated Eigenvalues: Clus- (2) strive for high perfornmnce on large square ma-

ters of eigenvalues are _luickly gathere_l in the same trices,

subprc_blem and are. in fact., likely to increase the (3) provide roblmt perfornlance for mesh ccmfigu-
Sl)_,e(I,)f convorKetlco ¢)f the Eigenvalue Sm()oth- rations with I)oor aSl)eCt ral.i(,s, and
ing st(,p. "l'he orth(:)gonality of eigenvectors is not (4) ilse an alg;orithlll whose kernels rilat('h well
affected at :tll by ret:,oat.ed eigenvalues, with the expected calmbilities of fllt.llrP Ilia-

'Fire 1w_, key"t)riIIJitives of the algorit, hlll are tilatrix- chines.
iliatrix iJiult,il_lic:tlic,n, which accollllts for the nlajor- As usual, a critical issue in acllieving high efticimlcv
ity of tll,-, COlll[)llt;tti,)n. alld cOlllpllta.tion of the range is data locality, i.e., lllaxillllllll rptlse of data in ttoat-
an_l nllll Sl);tce tjf a ttiat, rix havilig eigellvaltleS CltlS- ing point colI|plltatiolls. To this end. we utilize the
l er,-I ar,,_ln_l zero and one. The seqllential complexity highly ot__tirnized assembly-coded douhle precision got>
,ffSYISI_A, when applied to dellse Iltatrices, is consid- eral nmt, rix multiplication, I)(',EMM, on single n,,des.
,,rahly greal.or lhall that ofm.her algorittnlls. Nonethe- It is capable of sustaining 36.5 Mtlol)s (en_pirically do-
less, t.l_,'alg,,rill_t_ is l_r,,_nising fro_ both ascalability termine_! using Release 1.4 of lnlel NX/.M ()S an,t
an,l:tll_t_,,ric;tll,,._i_t ,,fview. First. since n_ost ofthe related software) ¢_t'the 40 Mtlops possible. ()n _he



Delta, optimal single node performance for DGEMM

often decreases significantly as the matrix shapes be- 81..........................................................................:..................
come less square or when matrix granularities become i i ! :-- - : '----_

i i i i _Ifiner. Thus, our first general rule is to strive for ma-
trices having all their dimensions as large as possible i i _ocaldi

in local computations. 6
i i :: ilocal dim=400 |

Let us first consider the case of square meshes. In s ....................................i..................i.............. i.................ithe parallel SBR strategy, it is extremely desirable
from both a performance and ease of programming _4
point of view to have row and column blocks physi-

fashion (see [6] for example). Furthermore, the divide- 2
and-conquer strategy we use assumes that the blocks
of the matrix are spread out fairly evenly across the 1

mesh in such a way that the generated subproblems 0
remain spread out all over the mesh. Therefore, two- so 10o 15o 2oo 2_omatrix dimension

dimensional torus wrap is ideal. For the purposes of
matrix multiplication alone, optimal performance oc-

curs when each node has the same amount of data for FIGURI_ 1. Total performance of matrix mul-
each matrix; the use of torus wrapping is neither an tiplication on Delta
advantage nor a disadvantage. The situation changes,

however, when we try to generalize two-dimensional with overall peak performance in excess of 8 (';flops
torus wrap to nonsquare meshes. We found that the on 256 nodes for an 8800 × 8800 double precision ran-
choice of data layout has a significant effect on both trix and has demonstrated robust performance for non-
the ease of programming and granularity of local corn- optimal mesh aspect ratios.
putations. We chose to use a generalization of two- While our orientation was machine-specific and

dimensional torus wrap on non-square meshes, known aimed at optimization rather than portability, our
as virtual two-dimensional torus wrap, that resulted BMR variant will port well to other distributed ar-
in simpler, more easily tuned algorithms. Some of our chitectures such as the IBM SP/1.
preliminary findings are discussed in [6] and [22].

The Broadcast-Multiply-Roll (BMR) algorithm [16, 3. Successive Band Reduction
11, 28] has been demonstrated to scale extremely
well ,m loosely co_tpled S_lUare processor meshes anti To find the orthogonal t,ransformation that tlet',guple_
uses two readily p,grtable ccmlnlunication kernels: one- A, we have to find the range anti null space of a ma-
_lilnensional broadca,st and roll. We have implemented trix that h_s only two distinct eigenvalues, 0 and I.
;Lvariant, of BM R in (' using communication primitives For ease of reference, we henceforth call matrices with
highly s_lited to the Delta [22]. In particular, since the this special property PRISM matrices. As it turns out.
Delta ¢toes not effectively overlap contmunication anti the Invariaut Subspace Computation step can be
coltiputation, the algorithnl we chose is highly syn- achieved essentially via a tridiagonalizationof(.'_. The

chr,)notls, key observation is that, under some very general con-
()ur BMR variant is able to deal with _trbitrary rect- ditions, a batld matrix having only two distinct pigen-

:ttlgul:trtneshes and _z_atrix_limensions. ()ur code can values and bandwidth n/23 must I)e block diagonal.
,teal with a variety of different virtllal two-dimensional with each block being of size at, _ztost, n/'2:-1 In par-
t,,r_tsbh)cking scheltles I)y means of a user-passed func- titular, a tridiagonal matrix with such a Sl)e('trul_l is
t.i,Jll providing I_lock size infi-_rmation. The inlplernen- block diagonal with blocks of size ;tt in)st 2 x 2. H_ac_-.
t.aticm _,_larantees that all z,tatrix operan_ls end up in after the matrix has been reduced to tridiagonal f,:,r_t_.
i_la¢'e. Details of ,mr it_pler_entatio_ are discussed in one only needs to solve some (cornpletely independent,

[22]. 2 x 2 eigenvalue l)rol)lems to obtain the _tesired i_vari-
in Figure 1. we give the total perforr_;mce for our ant subspaces. These issues, a.s well as sotm' of t,h,_

distributed n_atrix multil)licaticm on square submeshes subtle numerical issues arising in this context, are dis-
,)f t,h,' l)_.lta fi-,r treat,rices havit_g _t_atrix .size I00 × 100, cussed ill [8].
.11}1}_ ,l(JI), and 550 ,c 550 ,.m eacl_ pr¢w_ss_r. In particu- It, is iltll)ort,_tl_l t,c_ realize l,hat, unlike ot her ap-
{:tr, ,,_r c_,,I,' I_as achie'w',l a parallel ,,tticiet_cy of 8fJ_,, preaches fi)r c,,_t_l_t, in_ so-called rank-revealit_g fac-



torizations [4, 5, 10, 30], tridiagonalization does not little data are left for every process to work on. but
involve any data-dependent pivoting strategies. In a lot of communication is needed to access successive
particular, in the parallel setting, the predictability matrix elements and perform bulge chasing. To imple-
of data flow greatly contributes to simplicity of imple- ment the second band reduction step, we redistribute
mentation as well as to the ability to overlap commu- the remaining band into packed storage and then em-
nication and computat, ion. ploy a variant of an algorithm suggested by Lang [25]

to reduce the band matrix to tridiagonal form. We

1_% _ _ made several modifications to Lang's algorithm to im-

prove the memory locality of the algorithm, and details
_ will be reported in a forthcoming paper.

SBRTtidiagonalizolaonof fuLPRISMMatruton66MHzIBM RS/6000

_0 _ ! ! ....

Fl¢;uaE 2 Reduction to tridiagonal form by i ,b_6

•
a sequence of band reductions

_ 40 ...........

In order to reduce the given matrix to tridiagonal _ _ _8 __..- :
form, we employ a variant of the successive band re- _[ "....... ::............_...........':...........!...........

S , i i _ !

duction framework suggested by Bischof and Sun [9],
which eliminates subdiagonals of (7_ in a piecemeal ! 20

fashion as illustrated in Figure 2. lncomparison, con- _ [ i } "_ ! / ! i ii' "--",,o..
ventional Householder tridiagonalization approaches ......................" i0 ................ i............i...........i...........i...........

[17] or block variants thereof [14] eliminate all subdiag-
onals at one time. This traditional approach also un- L__.i.........__ ........_............i ...........i...........!...........
derlies the parallel implementations described in [19]
and [15]. The SBR, variant used in our implementation

I
is discussed in detail in [7]. _00 400 _ _00 _0_ 1200 t400 i_ t_

In our particular version of SBR, we first reduce CA _"_'
to a banded matrix of bandwidth nb, using block or-
thogonal transformations with biocksize 7_band then,

FIGURE 3. Improvement over standard
in a second step, reduce the band matrix of bandwidth

tridiagonalization approach through SBR for
ltb to tridiagonal form. The first step rnaximally ex- PRISM matrices on IBM R.S/6000
ploits block transfortxlations, and tile hope is that the
little work that, is left to be done in the second step

(froHi a flop count point ,)f view) does not add much to Our SBR approach significantly outperforms the
the overall complexity, in the context of SYISDA, we usual tridiagonalization approach on SYISDA matri-

also expect to be able to skip large numbers of the or- ces. For example, as is shown in Figure 3, running on
thogorlal transformations, since the block diagonality a 66-Mhz IBM RS/6000 with 128 MBytes of memory
of the inatrices we will generate should result in many and using a_ssembler-coded BLAS. our SBR. approach
t,ransfortHations that would act on columns that are runs a good 30% faster than the standard tridiagonal-

:tlre;tdy negligible and hence need not be performed, ization procedure. Note that these t,itnes reflect both
()he issue that is critical is the need! to repackage the time for the reduction from full to t.ridiagonal form

the banded matrix renlaining after the first initial re- and the accumulation of the orthgonal transformatic, n

(Itit'ti,9_l st,e I) int.¢)a l_lore cotllpact form that allows us matrices. Ignoring tile usual timing variations one i.-:
1,_9acc_'ss adjacent entries of the band efficiently. For bound to expect on ;t non-(ledicate_l syst.elll, the I)l,:),'k-
exarlJple, in a serial iii,pl_,rilentation, entries (i + rib, i) size chosen does not seenl to have a significaut offe,-_
anti (i + 1 -t-rib. i + 1) are at lemst, ?_-- 1 storage loca- on the overall performance.
tions apart if :m I_ ;< _ n_atrix has been stored as the As hinte, d earlier, w_-_profit from the _nderlyi_g
_s_al t.wo-di_lensi,_nai array. Hence, the final band structure of the matrices _trising in SY1SDA. Fi_r, _
re_luctiou sche_t_e wo_l¢i exhibit no data locality and 4 shows how n_any reductions we can skip in the first
w,guld, ;Lsa result, suffer sew_re p,_rfi_rmance penalties and second baad retlucti_m steps, where, we first e,li_tti-
,)t_ra('he-l)ased ar('hiteet,_lres. Ev(m worse i)erforn_ance nat,e el subdiagoaals (el _ nb -- 16) of a 400 × ,U)(}_len._-
i)_,t_;tlt.i_'sw_,_tl_tr_sttll it_ l.h_ i)aralbq setting, ;ts very I'R.ISM _atrix and t,he_ r_.,(l_t'(,the r_,s_tll,ing _tatr_x



Success,re B_'_dreducoon of full PRISM Matrix n = 400, nb o 16 implementation, we chose to bmse our implementation

too/ _ :6ooo, on the Chameleon parallel programming tools [18].
J

90 ..................... _ 4000l .................. :................

'_. BO TouO Pedonmm¢_ for Block Band Reducuo on DELTA

"_ 70 , _ 100001 ..... )500 ............................................................................................i [ i : nb:.l_ .......

so...... _ sooo.................._................ _oo

6000 .................. i .................. 2see............... ,:................ ;............... i ................ ; ............ i .............
_ i : i • nb=S :

_ _ ............... i ............ ......... _................ ;............... 8...............

Oo ooO,o,ootop: 2nd band reduction bottom: 1st band reduction 5oo

FIGURE 4. Work savings due to exploitation , _ _ ,'o _ ' ,'_ ,,of mlmkrofpmr._.m_

of eigenvalue structure via SBR

to tridiagonal form. While a standard tridiagonaliza,- FIGURE 5. Total performance of blocked
tion approach, which eliminates all subdiagonal entries band reduction code on Delta
in one shot, would never incur any numerically zero
columns and hence never skip a transformation, SBR The performance of this code is rather promising,
can take advantage of the special block structure ex- and its performance on the reduction of a full ran-
hibited by banded matrices with only two eigenvalues, dom matrix to bandwidth l0 and the accumulation
The left plot shows the percentage of transformations of orthogonai transformations on the [ntel Touchstone
we could skip for a particular value of d, the right plot Delta are shown in Figure 5. In these experiments.
shows the total number of transformations skipped, the matrix size on each processor was kept constant
IvVesee that it is beneficial to reduce the matrix to a at 500 x 500, and the execution rates are based on

relatively narrow band in the first step. One benefit is the standard symmetric flop count of (8n3)/3. These
that we get closer to the desired tridiagonal form, anti experiments were performed in double precision. _,_
;tnother is is that we skip just about half the trans- recall that for random matrices, no transformations
fl)rmations in the tirst band reduction step, and over can be skipped.
90% in the second band reduction step. On the other

hand, reducing a matrix to too narrow a band is coun- n nb b Mfiops/proc Total Mflops

teri>ro(iuctive, a.s the blocksize I)ecornes too small and 1000 1 20 10.1 162
the nunfl)er of transformations needed for bulge chas- 1020 15 15 18.7 299
ing grows considerably. Based on these experiments,
we consi(ler an initial reduction to between _ and 24 2000 1 20 10.0 160
hancls a rea,sc)nable choice. 20(10 10 10 26.2....... '119

3000 1 10 10.9 174
The parallel implenlentation of this SBR scheme is ..........

in progress, with the first step having been conlpleted. 3000 15 15 33.7 539.4000 20 20 :)_.2 611
in fact, we implemented a general band reduction tool
that allows us to reduce a t[lat.rix of bandwidth )tb,k to
a i_latrix ,)f size nb,l. with l < 1 < k-I. Furthermore, TABLE 1. Prelinfinary performance results

- - on 16-node IBM SP/I)tb is the block size ilse(I for the blocked t.orus wrap
llial)l)ing ;m(I also the block size ,1sod for orthogonal
tr;msforniatio_s. Blocke(I reduct, i()ns of full nlat, rices Sorne rather preliminary performance results (:man

t,o narrow bands and the unl)locked t,ri(liagonalization IBM SP/I, using the EUI-H transpc)rt layer, are showr,
.f a f,lll ttlatrix ;tr(._Sl)ecial inst,anc(,s of this code. To, in Table 1. lit're )t is t,hp ow'rall Iilatrix size, 1)b is
(level(.)l) ;t l)()rt.;d)l(, co(l(, and t() allow a tliaintainal)le the block size i_s(,(I,b is the nun_l)er ()f I)an,ls the full



_llatrix is reduced to, and tile last two colurnns are per- local computation decreases. However, tills approach

processor performance anti overall performance for a guarantees near-perfect load balancing in the costly
double-precision run. again based on the standard flop early stages. A discussion of the rationale used to ar-
count. These results should be taken as a lower bound rive at this scheme is presented in [23].

on the ultirnate performance, ,as the performance of the
IBM software and of Chameleon are improving rapidly.

10"_3
We see that, even now, the performance of the :::::::::::::::::::::::::::::::::::::::::::::'::::::::::::::::::::::::::::::::::::::: :::!!::!:

blocked code is superior to that of the unbiocked code ............................._..............":..............................i................................................................ T ............................. ! .............. V" "

.......................................... _............................................ : ....

on both Delta and SP/I. In particular, on the SP/1 ....................................... ;.......
the blocked code outperforms the unblocked one by a ..........................._...............i...............................:;..............:.....

wide margin. For example, in the time that we can ...........!..... !............... i i........................... : .........._"i........:......i....*
reduce a 2000 x 2000 matrix to tridiagonal form using _ : _ : ! :• : .Jr- + : :

the unblocked approach, we can reduce a 3000 x 3000 _ m"' i . ..... :..._.....*......i..............i..............i......

::: :......................matrix to bandwidth 10, even though the latter reduc- _ !:!i!:.! ii:.i:.:. _.:.i:.!:.:.:-!:.:._:.i:.!!:.:.!:i:::::ii:.:.:.i:.:.:i:i!.!ii!!.!i!!!:!i!!. !tion involves roughly 3.5 times a.s many floating-point i :* :i .
operations. ""_ i........ i..............i...............:...............i..............!......

.............. _............ _............... :................ . .............. ! .............. !......
pl i : :We are in the process of im ementing a parallel ., ! ., ...............::..............................:,...........

version of Lang's algorithm, where the banded ma- _ _ i i

trix (but not the orthogonal transformation matrix) is _i :,: ii i! _:I I I I I

replicated in each row of the processor mesh. Given m""o _ooo 2ooo aooo 40oo s0oo 6ooo
the performance gap between blocked and unblocked rrmtr,xclJmension

band reduction and the savings we are likely to incur as (a) Residuals
a result of orthogonal transformations being skipped,

the final parallel SBR code should be even better in m-,3 '..........:............ :............ . ............ :............:............_..
comparison to the unblocked code than the serial one. "................................... ".............' ........... ' ............................ _ ............. _............ _............... _ ............ _............. _.

............ , .......................................... . ............. ?..................

........... _............................ _.; ..........................................

4 Load Balancing Strategies and Per- ' _ :..... _ '........ • ...i............_......... _..!.._,.......................:..............
: . . i 4.

formance Results ++:+ ......._.......i......... i _i............ _............ . , ............................ : ,
o :

ipl ly _ *+ : *t*: : * + iThe orchestration of mult e subproblems current _3 + _ . * i i ! :
consists of two separate stages The first stage encore- _m"' .._"...........*..................:: :::±:.............;...:::::::::::::..............,,,, ..........................: ....... ; .... ; ...............

• _ ......... ... ; ........................... ,_ ............ - ............. ; .................

p;t.ss_'s the early divides, where larg_ subproblems are _ ..........'............................."..............' ............' ............ ' ". .

._,,IvmlSe_lUentially and the scalability of the ,lense lrla- . ...................... : ............. _ .......... : ............ _ .

trix Itl|lltiplication and rank-rew,aling tridiagonaliza ............................................... i............. ;.............i....
li_)n lea_l to high et-l'iciencies. As pointed out ill Section ............................ i......................... ............ :....
1 clllst,-'rs tend to be gathered into the satne subprob- _ i :
It,it|. Since* early cluster (letect, ion can greatly reduce _0'_ , , i , i

" 0 1000 2000 3000 4000 SO00 60_00
l,h_' alllOlllit ()f work d,)ne, we lisp a silllple heuristic matrixd_mens_on

schel=le th;tt chooses whichever of .41 or A._ ha.s all

of its ,_iKonval_les on tile sa_,_e side of 0 ;ts the n_ean (b) Eigenvector orthogonality
e'iKenvallle ,ff .q. A running estit_late. A, ,.,f th,' largest

it,t.;tn ,'ig,_nval_lo in nlagnitu,le fr¢,_l alrea¢ly colllpleted Fl(lUrtg (3. Nutlterical accuracy of SY1SDA
¢livi_les is kept When t l_,' b,,_nds _s,'¢l ill the Seal-
in g sic, I, ,,f SYISDA indicate, that all the eigenval- As the SUbl_roblet_l size decreases, t,hor_, is ;t p,_inr
_t,,s ,,t" t,l_,-,c_lrr,,nt st_l,l_r,)l_lm,t are eit,ll,.r ()(_ MA) or probably lllaCllille-depel|dellt, at which cc)ll|lllllllic't-

wit tti_t ()(, hA) ,ff ea,'l_ ,)the.r ('M is tile _li;tchine el)- lions overhead _llakes it irlipractical to solve t,hal slll,-

sil,,n}, th,,n the subpr,,I)le_l_ is ,l_,cl;tre(t to have clus- l_roblenl over the entire t_lesh. The a.l[io_lllt of w,,rk
t,.r,.¢l ,.i_;,.t_val_l,'s anti t,, J)_,"'(J¢_tie." required to ti_¢l the eigerlsolutior| of the re_laitling -,==l,-

"l'l_r,,_=ghtile _lse ¢)f tw,,-(li==lensio_lal l.¢,r_ls wrap, no proble==l is very s_nall, b_tt the cost of the t=p,lat,' of th,.
,lath re,list, ril_t_tion is re¢ttlire¢l Imt,ween divides. As tile eigenvector matrix Z, whose leading dimension is still

stll,l_r,,l_b,_l_ siz¢' ,lecr,-ases, th,-, proporti-tl of the to- the size of the original t_tat,rix A, is still sl|l:)stantial.
lal t.i_,m r,-'(l_lir,*,lf,.,r c,,_l_t_tlllicali()ll ,l_ring, individual The second stage, or en,l gat_le, handles the sn_all stll,-
_t_;ttrix _lt_lt il_lical i,,_ls i_cr,.as_*s ;tnd the gr;m_laril,y of problenls remaining, exl_loiting paralMisr,l at t.w,, I,'_-



els: first, by solving individual subproblems in parallel
on single nodes and second, by performing distributed ' ': ' '

updates of the accumulated eigenvector matrix. The } i i_Li___.a
strategy used in the end game is also described in [23]. .....................................;..................;...................................L.

Nurnerical testing in double precision of our paral- ................i .................i...............J_eal r,.a0a

lel algorithm, using the unblocked version of the SBR ii
code, is currently in progress. Easily generated sym- _4 ..................i.............. m-ax_
metric test cases with uniformly distributed eigenval- _a

ues of dimensions 100-6400 have been tested so far.

Accuracy in the residuals for a given matrix A is mea- _10o
sured by computing the maxirnuna normalized oo-norm 2
residual

max IIAZ/- AiZille,,a 1
[basod onacl_ai Ol::_.exdu_inc_end _arn_ i

where Zi is the computed eigenvector corresponding numberof processors

to the eigenvalue Xi. We also measured the departure

from orthogonality residual given by FIGURE 7. Total performance of SYISDA on

maxJ[Zt Z _ ln]ijl square submeshes of Delta
l ,J

Our assembled SYISDA code currently runs only

to verify that the computed eigenvectors were, in- on square submeshes of the Delta using the unblocked
deed, orthonormal. Here Z is the matrix of eigenvec- SBR code. We expect its performance to improve
tots. Figure 6 shows that in terms of both accuracy when the blocked SBR has been completed. We are
in the residuals and orthogonality of the eigenvectors, in the process of porting the code to other architec-
SYISDA is performing well. We have done some lim- tures and plan to generalize the code to non-square
ited testing on Wilkinson matrices and have thus far processor meshes in the future.
encountered no problems with accuracy.

5. Data Layout and Library Considera-
time (min.) tions

n p = 4 p = 8 p = 12 p = 16 Our work has reinforced the need for systemic supl)ort

[ 1600 23.16 7.98 4.97 3.70 of basic communication kernels that are inevital)ly re-
3200 - 50.96 27.97 18.60 quired when data are physically distril.)llted. Because

-1800 - _ - 83.11 52.60 communication is highly nlachine-,l,'pendent, porta-

6401) - t - - 11"5.51" bility an(I compatibility with other software are
often

obtaine(l at the price of l)erformance or increased soft-

TABLE '2. Time for con_plete eigensolution of ware development effort. Support for data redistribu-
n x n matrix on p × p submesh of Delta tion is needed at, two levels. The first is to SUl)port

basic operations that are needed within the sanle data

Table 2 gives the solution tinle in minutes for test layout. In our case, the use of data layouts with svnP
t_latrices ofsizes 1600. 3200, 4800, 6400,.m p x p meshes metric placenlent of rows and colulnns led to sinll)ler

where p = 4, _. 12, 16. algorithms than with other layouts, withollt sacritic.
Figure 7 shows the total performance of SYISDA ing the perfi:_rlnance design objectives, ltowever, since

" the data layout we used (as is the case for n_ost data
for _,lr test lnatrices on square subnleshes of the Delta layouts) is not SUpl)orted in a syst.emic K11anner, umny
fi,r r_lat.rices having iz_at,rix dimensions of 100, 200, "'low-level" ¢'omrnunication routines had to be written
:{()0, ;tll_[ 400 ,,n each processor. ('learly, SYISDA

to l)erforul what should be collipilor-level op,:.rations.
scales ,-,xt,rmnely well. We see froni Figure 1 that our

For instance, routines were needed for tile Imsic oper-
tlistributed nlatrix nlultil_lication runs at, about 7.,1 ations described beb_w.
(;fl_,ps _-m ;t 16 x 16 nlesh for 6400 x 6400 matrices:
SYISDA ;tchievos 6.4 (;flops, about 86% of what we Scattering: The l_rol)loI,-i to he solved nlllsl. I)e dis-
believe t.,.)I)e l lie nlaxiz,lllI_t Imssible I-'rfor_a.nce for t,ributed on the processors in t,h,, layo_tl, usml.
this alg¢.,rit,h_. Redistribution: Ill both the SBR and th,-"en,l galg_-.



blocks of data scattered over one submesh had to be O(b"n) work versus O(n a) for two dense matrices. Fur-
redistributed or replicated over a different submesh, thermore, the special properties of the iterates in the
sometimes in a different layout. Eigenvalue Smoothing step result in surprisingly

Layout conversion: In both SBR and for the invari- slow band growth in the iterated matrices. In our
ant subspace update, data redistribution is required sequential implemetttation, using specialized routines

for multiplying symmetric band matrices [31], the run
whenever the matrix being updated is not aligned times for SYBISDA are competitive with the symmet-
with the update matrix, ric QR algorithm. In fact, the time spent in SBR be-

Specialized routines had to be developed to deal with comes the dominant time. SYBISDA uses essentially
each of these situations. The second level of support the same harness as SYISDA and the two computa-
should be in accommodating different layouts. Even tional kernels of SBR and banded matrix multiplica-
within the torus wrap data layout, changing the block tion. We intend to modify our current code to obtain
size requires significant data movement. Without such an implementation of SYBISDA and compare the two
support, more specialized routines would be required, algorithms.
In fact, all the types of data movement described here

pervade numerical computation and should be sup- Acknowledgements
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