25 -

2l Sl Sl =)
SEEE
ﬁﬁﬁ!i&ﬁmu

16

14

125







SIRSIIES/ P 54042

Cond-a310220- -4

The PRISM Project: Infrastructure and
Algorithms for Parallel Eigensolvers*

Christian Bischof!

Steven Huss-Ledermant?

Xiaobai Sunt  Anna Tsao?

tArgonne National Laboratory, Argonne, IL 60439.
*Supercomputing Research Center, Bowie, MD 20715.

Abstract

The goal of the PRISM project is the development of
infrastructure and algorithms for the parallel solution
of eigenvalue problems. We are currently investigating
a complete eigensolver based on the Invariant Subspace
Decomposition Algorithm for dense symmetric matri-
ces (SYISDA). After briefly reviewing the SYISDA
approach, we discuss the algorithmic highlights of a
distributed-memory implementation of an eigensolver
based on this approach. These include a fast matriz-
malriz maulliplication algorithm, a new approach to
parallel band reduction and tridiagonalization, and a
harness for coordinating the divide-and-conquer paral-
lelism in the problem. We also present performance
resulls of these kernels as well as the overall SYISDA
implementation on the Intel Touchstone Delta proto-
type and the IBM SP/1.

1. Introduction

(‘omputation of eigenvalues and eigenvectors is an
essential kernel in many applications, and several
promising parallel algorithms have been investigated
[29, 24, 3, 27, 21). The work presented in this pa-
per is part of the PRISM (Parallel Research on In-
variant Subspace Methods) Project, which involves re-
searchers from Argonne National Laboratory, the Su-
percomputing Research (lenter, the University of Cal-
ifornia at Berkeley, and the University of Kentucky.
The goal of the PRISM project is the development of
algorithms and software for solving large-scale eigen-
value problems based on the invariant subspace de-

*This paper is PRISM Working Note #12, available via
anonymous ftp to ftp.super . .org in the directory pub/prism.

This work was partially supported by the Applied and Com-
putational Mathematics Program, Advanced Research Projects
Agency, under Contract DM28E04120, and by the Office of Sci-
entific Computing, 1'.S. Department of Energy, under Contract
W-31-109-Eng-38. Access to the Intel Touchstone Delta System
operated by Caltech on behalf of the Concurrent Supercomput-
ing Consortium was provided by NSF.
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composition approach originally suggested by Auslan-
der and Tsao [1].

The symmetric invariant subspace decomposition
algorithm (SYISDA) for an n x n symmetric matrix
A proceeds as follows.

Scaling: Compute upper and lower bounds on the
spectrum A(A) of A and compute a and S such that
for B = aA + BI we have A(B) C [0,1], with the
mean eigenvalue of A being mapped to %

Eigenvalue Smoothing: Let pi(z), i = 1,2,... be
polynomials such that limi_ pi([0,1]) = {0,1},
that is, in the limit all values are mapped to either
0 or 1. Iterate

Co= B,Ciy1 =pi(Ci),i=0,1,...,

until ||Ci41 — Cil| is numerically negligible (in iter-
ation k, say).

Invariant Subspace Computation: Find an or-
thogonal matrix (U, V] such that the columns of U
and V form orthonormal bases for the range space of
C: and its complementary orthogonal subspace, re-
spectively. Thatis, UTU = I, VTV = ILUTV = 0,
and the range of C, U/ is U.

Decoupling: Update the original A with [, V], i.e..
form
AT e v < [N
VT Al V) = ( h).

Since the invariant subspaces of any matrix poly-
nomial of a symmetric matrix A are also invariant
subspaces of A, the columns of U and V span com-
plementary invariant subspaces of A, and hence their
application to A decouples the spectrum of A. The
subproblems A; and A2 can now be solved indepen-
dently and the algorithm applied further recursively.
with the number of subproblems doubling at every
step. [f eigenvectors are desired as well, we also up-
date the current eigenvector matrix. Orthogonality of
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U. S. Government purposes.

S




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thercof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



the eigenvectors is guaranteed due to the exclusive use
of orthogonal transformations.

Note that we have considerable freedom in imple-
menting SYISDA, in particular with respect to choos-
ing the polynomials p; as well as the method for com-
puting the invariant subspaces. We also mention that
any other method that produces invariant subspaces,
such as approximation methods for the matrix sign
function [12, 13, 20, 2], could be used in the Eigen-
value Smoothingstep as well. As in [26], we use pre-
dominantly the first incomplete beta function 3z?—2z3
in our implementation. The experiments in [26] also
confirm the numerical robustness of SYISDA.

While the SYISDA algorithm can be used to com-
pute a full eigendecomposition, it is worthwhile to
point out certain mathematical features that distin-
guish it from other approaches:

Ordering of Eigenvalues: Assuming that p maps all
eigenvalues in [0.a) to 0 and all eigenvalues in [a, 1]
to I, A(A;) contains all the eigenvalues of A that
are smaller than “—(‘;‘i, and A(Aq) contains the rest.
Hence, if one is only interested in eigenvalues in a
certain part of the spectrum, one need not further
resolve diagonal blocks corresponding to uninterest-
ing parts of the spectrum.

Subspaces before Eigenvalues: SYISDA is pri-
marily an algorithm that computes and refines in-
variant subspaces. [f such a subspace has become
one-dimensional, an eigenvalue/eigenvector pair has
been found. However, if one is only interested in
finding an orthogonal basis for the subspace spanned
by a certain set of eigenvectors, there is no need to
expend the effort to compute all eigenvalues, and
one can terminate the divide-and-conquer proce-
dure when the subspace corresponding to the desired
eigenvalue range has been identified.

No Problems with Repeated Eigenvalues: Clus-
ters of eigenvalues are guickly gathered in the same
subproblem and are. in fact, likely to increase the
speed of convergence of the Eigenvalue Smooth-
ing step. The orthogonality of eigenvectors is not
affected at all by repeated eigenvalues.

The twao key primitives of the algorithin are imatrix-
matrix multiplication. which accounts for the major-
ity of the compntation. and computation of the range
and null space of a matrix having eigenvalues clus-
tered aronnd zero and one. The sequential complexity
of SYISDA, when applied to dense matrices, is consid-
erably greater than that of other algorithius. Nonethe-
less, the algorithin is promising from both a scalability
and a munerical point of view. First. since most of the

computation is in matrix multiplication, high efficien-
cies and near optimal speedups can be expected on
large problems. Second, since the algorithm performs
only orthogonal transformations, orthogonality in the
computed eigenvectors is guaranteed.

The paper is organized as follows. The next section
briefly discusses the implementation of matrix-matrix
multiplication. Section 3 discusses the rank-revealing
tridiagonalization algorithm employed for the Invari-
ant Subspace Computation step. It is based on
the successive band reduction (SBR) framework de-
veloped by Bischof and Sun [9] and, while completely
general, derives significant benefit from the special
eigenvalue structure of the matrices at hand [8]. Sec-
tion 4 discusses the overall divide-and-conquer strat-
egy employed to orchestrate the various subproblems
and presents preliminary performance results of the
first SYISDA implementation on the Intel Touchstone
Delta. We conclude with our findings, in particular
with respect to the impact of data layout on the design
of scalable libraries for the support of matrix compu-
tations, and describe how the kernels we have devel-
oped form the infrastructure for a “library” of parallel
eigensolvers.

2. Matrix Multiplication

As noted previously, the computational cost for
SYISDA is dominated by dense matrix multiplication.
Hence, its performance depends heavily on having a
scalable matrix multiplication code for our initial tar-
get machine, the Intel Touchstone Delta. We have
developed a distributed matrix multiplication code
that calculates the products (7 = «AB + J(" and
(" = aAd'B + 3C in double precision. Our objectives
were to

(1) provide a highly efficient algorithm suitable for
use by SYISDA,

(2) strive for high performance on large square ma-
trices,

(3) provide robust performance for mesh configu-
rations with poor aspect ratios, and

(4) use an algorithin whose kernels mateh well
with the expected capabilities of future ma-
chines.

As usual, a critical issue in achieving high efficiency
is data locality, i.e., maximum reuse of data in tloat-
ing point computations. To this end. we utilize the
highly optimized assembly-coded double precision gen-
eral matrix multiplication, DGEMM. on single nodes.
It is capable of sustaining 36.5 Mflops (empirically de-
termined using Release 1.4 of Intel NX/M 0OS and
refated software) of the 40 Mflops possible. On the



Delta, optimal single node performance for DGEMM
often decreases significantly as the matrix shapes be-
come less square or when matrix granularities become
finer. Thus, our first general rule is to strive for ma-
trices having all their dimensions as large as possible
in local computations.

Let us first consider the case of square meshes. In
the parallel SBR strategy, it is extremely desirable
from both a performance and ease of programming
point of view to have row and column blocks physi-
cally spread across processor columns in a torus wrap
fashion (see [6] for example). Furthermore, the divide-
and-conquer strategy we use assumes that the blocks
of the matrix are spread out fairly evenly across the
mesh in such a way that the generated subproblems
remain spread out all over the mesh. Therefore, two-
dimensional torus wrap is ideal. For the purposes of
matrix multiplication alone, optimal performance oc-
curs when each node has the same amount of data for
each matrix; the use of torus wrapping is neither an
advantage nor a disadvantage. The situation changes,
however, when we try to generalize two-dimensional
torus wrap to nonsquare meshes. We found that the
choice of data layout has a significant effect on both
the ease of programming and granularity of local com-
putations. We chose to use a generalization of two-
dimensional torus wrap on non-square meshes, known
as virtual two-dimensional torus wrap, that resulted
in simpler, more easily tuned algorithms. Some of our
preliminary findings are discussed in [6] and [22].

The Broadcast-Multiply-Roll (BMR) algorithm [16,
[1. 28] has been demonstrated to scale extremely
well on loosely coupled square processor meshes and
uses two readily portable communication kernels: one-
dimensional broadcast and roll. We have implemented
a variant of BMR in (' using communication primitives
highly snited to the Delta [22]. In particular, since the
Delta does not effectively overlap communication and
computation, the algorithm we chose is highly syn-
chronous.

Our BMR variant is able to deal with arbitrary rect-
angular meshes and matrix dimensions. Our code can
deal with a variety of different virtual two-dimensional
torus blocking schemnes by means of a user-passed func-
tion providing block size information. The implemen-
tation gnarantees that all matrix operands end up in
place. Details of our itmplementation are discussed in
[22].

In Figure 1. we give the total performance for our
distributed matrix multiplication on square submeshes
of the Delta for matrices having matrix size [00 x 100,
100 % 100, and 550 x 550 on each processor. In particu-
far. our code has achieved a parallel efficiency of 86%,

Glops

0 50 100 150 200 250
matrix dimension

FiGure 1. Total performance of matrix mul-
tiplication on Delta

with overall peak performance in excess of 8 Gflops
on 256 nodes for an 8800 x 8800 double precision ma-
trix and has demonstrated robust performance for non-
optimal mesh aspect ratios.

While our orientation was machine-specific and
aimed at optimization rather than portability, our
BMR variant will port well to other distributed ar-
chitectures such as the IBM SP/1.

3. Successive Band Reduction

To find the orthogonal transformation that decouples
A, we have to find the range and null space of a ma-
trix that has only two distinct eigenvalues, § and 1.
For ease of reference, we henceforth call matrices with
this special property PRISM matrices. As it turns out.
the Invariant Subspace Computation step can be
achieved essentially via a tridiagonalization of ('y. The
key observation is that, under some very general con-
ditions, a baud matrix having only two distinct eigen-
values and bandwidth n/27 must be block diagonal.
with each block being of size at most n/2/~" In par-
ticular, a tridiagonal matrix with such a spectrumn is
block diagonal with blocks of size at most 2x2. Hence.
after the matrix has been reduced to tridiagonal form.
one only needs to solve sorne (completely independent
2 x 2 eigenvalue problems to obtain the desired invari-
ant subspaces. These issues, as well as some of the
subtle numerical issues arising in this context, are dis-
cussed in [8].

It is important to realize that, unlike other ap-
proaches for computing so-called rank-revealing fac-



torizations [4, 5, 10, 30], tridiagonalization does not
involve any data-dependent pivoting strategies. In
particular, in the parallel setting, the predictability
of data flow greatly contributes to simplicity of imple-
mentation as well as to the ability to overlap commu-
nication and computation.

FIGURE 2. Reduction to tridiagonal form by
a sequence of band reductions

In order to reduce the given matrix to tridiagonal
form, we employ a variant of the successive band re-
duction framework suggested by Bischof and Sun [9],
which eliminates subdiagonals of Ci in a piecemeal
fashion as illustrated in Figure 2. In comparison, con-
ventional Householder tridiagonalization approaches
[17] or block variants thereof [14] eliminate all subdiag-
onals at one time. This traditional approach also un-
derlies the parallel implementations described in [19]
and [15]. The SBR variant used in our implementation
is discussed in detail in [7].

In our particular version of SBR, we first reduce Cy
to a banded matrix of bandwidth nb, using block or-
thogonal transformations with blocksize nb and then,
in a second step, reduce the band matrix of bandwidth
nb to tridiagonal form. The first step rmaximally ex-
ploits block transformations, and the hope is that the
little work that is left to be done in the second step
(from a Hop count point of view) does not add much to
the overall complexity. In the context of SYISDA, we
also expect to be able to skip large numbers of the or-
thogonal transformations, since the block diagonality
of the matrices we will generate should result in many
transformations that would act on columns that are
already negligible and hence need not be performed.

One issue that is critical is the need to repackage
the banded matrix remaining after the first initial re-
duction step into a more compact form that allows us
to access adjacent entries of the band efliciently. For
example. in a serial implementation, entries (i + nb, 1)
and (i 4+ 1 +nb.i+ 1) are at least n — | storage loca-
tions apart if an 1 x n matrix has been stored as the
usttal two-dimensional array. Hence, the final band
reduction scheme would exhibit no data locality and
would, as a result. suffer severe performance penalties
on cache-based architectures. Even worse performance
penalties would result in the parallel setting, as very

little data are left for every process to work on. but
a lot of communication is needed to access successive
matrix elements and perform bulge chasing. To imple-
ment the second band reduction step, we redistribute
the remaining band into packed storage and then em-
ploy a variant of an algorithm suggested by Lang [23]
to reduce the band matrix to tridiagonal form. We
made several modifications to Lang’s algorithm to irn-
prove the memory locality of the algorithm, and details
will be reported in a forthcoming paper.

SBR Tridiagonalizauon of ful: PRISM Matrix on 66MHz [BM RS/6000
50 "
: nb 16 : '

-— ~ w S
=3 =3 =] S

Improvement oves unblocked tridiagonalization

=)

FiGUurE 3.

Improvement over standard
tridiagonalization approach through SBR for
PRISM matrices on IBM RS/6000

Our SBR approach significantly outperforms the
usual tridiagonalization approach on SYISDA matri-
ces. For example, as is shown in Figure 3, running on
a 66-Mhz IBM RS/6000 with 128 MBytes of memory
and using assernbler-coded BLAS. our SBR approach
runs a good 30% faster than the standard tridiagonal-
ization procedure. Note that these titnes reflect both
the time for the reduction from full to tridiagonal form
and the accumulation of the orthgonal transformation
matrices. lgnoring the usual timing variations one is
bound to expect on a non-dedicated system, the block-
size chosen does not seemn to have a significaut effect
on the overall performance.

As hinted earlier, we profit. frormm the underlying
structure of the matrices arising in SYISDA. Figure
4 shows how many reductions we can skip in the first
and second band reduction steps, where we first elimi-
nate d subdiagonals (d > nb = 16) of 4 400 x 400 denze
PRISM matrix and then reduce the resulting matrix



Successive Sandreducton of full PRISM Matrix: n = 400, nb = 16
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FIGURE 4. Work savings due to exploitation
of eigenvalue structure via SBR

to tridiagonal form. While a standard tridiagonaliza-
tion approach, which eliminates all subdiagonal entries
in one shot, would never incur any numerically zero
columns and hence never skip a transformation, SBR
can take advantage of the special block structure ex-
hibited by banded matrices with only two eigenvalues.
The left plot shows the percentage of transformations
we could skip for a particular value of d, the right plot
shows the total number of transformations skipped.
We see that it is beneficial to reduce the matrix to a
relatively narrow band in the first step. One benefit is
that we get closer 1o the desired tridiagonal form, and
another is is that we skip just about half the trans-
formations in the first band reduction step, and over
90% in the second band reduction step. On the other
hand, reducing a matrix to too narrow a band is coun-
terproductive, as the blocksize becomes too small and
the number of transformations needed for bulge chas-
ing grows considerably. Based on these experiments,
we consider an initial reduction to between 8 and 24
bands a reasonable choice,

The parallel implementation of this SBR scheme is
in progress, with the first step having been completed.
In fact, we iinplemented a general band reduction tool
that allows us to reduce a matrix of bandwidth nb*k to
a matrix of size nbxl, with | <1 < k- 1. Furthermore,
nb is the block size used for the blocked torus wrap
wapping and also the block size used for orthogonal
transformations. Blocked reductions of full matrices
to narrow bands and the unblocked tridizgonalization
of a full matrix are special instances of this code. Te
develop a portable code and to allow a waintainable

implementation, we chose to base our implementation
on the Chameleon parallel programming tools [18].

Towl Performance for Block Band Reducuon on DELTA

4 6 8 10 12 14 16
sqrt of nember of processors
FiGUuRE 5. Total performance of blocked

band reduction code on Delta

The performance of this code is rather promising,
and its performance on the reduction of a full ran-
dom matrix to bandwidth 10 and the accumulation
of orthogonal transformations on the Intel Touchstone
Delta are shown in Figure 5. In these experiments.
the matrix size on each processor was kept constant
at 500 x 500, and the execution rates are based on
the standard symmetric flop count of (8n3)/3. These
experiments were performed in double precision. We
recall that for random matrices, no transformations
can be skipped.

n | nb b | Mflops/proc | Total Mflops
1000 1| 20 10.1 162
1020 | 15 | 15 18.7 299
2000 | 20 10.0 160)
2000 | 10 | 10 26.2 419
3000 l 10 10.9 174
3000 | 15 | 15 33.7 534

{4000 | 20 | 20 38.2 611
TasLe 1. Preliminary performance results

on 16-node IBM SP/1

Some rather preliminary performance results on an
IBM SP/1, using the EUI-H transport layer, are showy
in Table 1. Here n is the overall matrix size, nb is
the block size used, b is the number of bands the full



matrix is reduced to, and the last two columns are per-
processor performance and overall performance for a
double-precision run. again based on the standard flop
count. These results should be taken as a lower bound
on the ultimate performance, as the performance of the
IBM software and of Chameleon are improving rapidly.

We see that, even now, the performance of the
blocked code is superior to that of the unblocked code
on both Delta and SP/1. In particular, on the SP/1
the blocked code outperforms the unblocked one by a
wide margin. For example, in the time that we can
reduce a 2000 x 2000 matrix to tridiagonal form using
the unblocked approach, we can reduce a 3000 x 3000
matrix to bandwidth 10, even though the latter reduc-
tion involves roughly 3.5 times as many floating-point
operations.

We are in the process of implementing a parallel
version of Lang’s algorithm, where the banded ma-
trix (but not the orthogonal transformation matrix) is
replicated in each row of the processor mesh. Given
the performance gap between blocked and unblocked
band reduction and the savings we are likely to incur as
a result of orthogonal transformations being skipped,
the final parallel SBR code should be even better in
cotnparison to the unblocked code than the serial one.

4. Load Balancing Strategies and Per-
formance Results

The orchestration of multiple subproblems currently
consists of two separate stages. The first stage encom-
passes the early divides, where large subproblems are
solved sequentially and the scalability of the dense ma-
trix multiplication and rank-revealing tridiagonaliza-
tion lead to high efficiencies. Ax pointed out in Section
I. clusters tend to be gathered into the samme subprob-
leti. Sinece early cluster detection can greatly reduce
the amount of work done. we use a simple heuristic
scheme that chooses whichever of 4; or A has all
of its eigenvalues on the same side of 0 as the mean
eigenvalue of 4. A running estimate, A, of the largest
tean eigenvalue in magnitude from already completed
divides is kept. When the bounds used in the Seal-
ing step of SYISDA indicate that all the eigenval-
nes of the current subprobletn are either Oy A) or
within Oy A) of each other (ey is the machine ep-
silon). then the subproblem is declared to have clus-
tered eigenvalues and to be “done”

Through the use of two-dimensional torns wrap, no
data redistribution is required between divides. As the
subproblem size decreases, the proportion of the to-
tal time required for eammunication during individual
matrix multiplications inereases and the granularity of

local computation decreases. However, this approach
guarantees near-perfect load balancing in the costly
early stages. A discussion of the rationale used to ar-
rive at this scheme is presented in [23].

max rasidual

o ; I : :
0o 1000 2000 3000 4000 5000 6000
matnx dimension
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matrnx dimension

(b) Eigenvector orthogonality

FiGure 6. Numerical accuracy of SYISDA

As the subproblem size decreases. there is a point
probably machine-dependent, at which cotnmunica-
tions overhead makes it impractical to solve that sub-
problem over the entire tnesh. The amount of work
required to find the eigensolution of the remnaining subs-
problem is very small, but the cost of the update of the
eigenvector matrix Z, whose leading dimension is still
the size of the original matrix A, is still substantial.
The second stage. or end game, handles the small sul.-
problems remnaining, exploiting parallelism at two lev-




els: first, by solving individual subproblems in parallel
on single nodes and second, by performing distributed
updates of the accumulated eigenvector matrix. The
strategy used in the end game is also described in [23].

Nurmerical testing in double precision of our paral-
lel algorithm, using the unblocked version of the SBR
code, is currently in progress. Easily generated sym-
metric test cases with uniformly distributed eigenval-
ues of dimensions 100-6400 have been tested so far.
Accuracy in the residuals for a given matrix A is mea-
sured by computing the maximum normalized co-norm
residual

0 NAZi — MiZil| .o,
i Al

where Z; is the computed eigenvector corresponding
to the eigenvalue A;. We also measured the departure
from orthogonality residual given by

max|[2°Z - nlis |

to verify that the computed eigenvectors were, in-
deed, orthonormal. Here Z is the matrix of eigenvec-
tors. Figure 6 shows that in terms of both accuracy
in the residuals and orthogonality of the eigenvectors,
SYISDA is performing well. We have done some lim-
ited testing on Wilkinson matrices and have thus far
encountered no problems with accuracy.

time (min.)

n p=4 p=23 =12 p=16
1600 | 23.16 7.98 4.97 3.70
3200 - 1 50.96 27.97 18.60
4800 - - 83.11 52.60
65400 - - - | 115.51

TasLE 2. Time for complete eigensolution of

n % n matrix on p x p submesh of Delta

Table 2 gives the solution time in minutes for test
matrices of sizes 1600, 3200, 4500, 6400 on p x p meshes
where p = 4.8, 12,16,

Figure 7 shows the total performance of SYISDA
for our test matrices on square submeshes of the Delta
for matrices having matrix dimensions of 100, 200,
300, and 400 on each processor.  Clearly, SYISDA
scales extremely well. We see from Figure | that our
distributed matrix multiplication runs at about 7.4
GHiops on a 16 x 16 mesh for 6400 x 6400 matrices:
SYISDA achieves 6.4 Gtlops, about 86% of what we
believe to be the maximum possible performance for
this algorithin.

Ebasad on adj:aal ops. axduﬁng end gam:g :
0 50 100 150 200 250
number of processors

FIGURE 7. Total performance of SYISDA on
square submeshes of Delta

Our assembled SYISDA code currently runs only
on square submeshes of the Delta using the unblocked
SBR code. We expect its performance to improve
when the blocked SBR has been completed. We are
in the process of porting the code to other architec-
tures and plan to generalize the code to non-square
processor meshes in the future.

5. Data Layout and Library Considera-
tions

Our work has reinforced the need for systemic support
of basic communication kernels that are inevitably re-
quired when data are physically distributed. Because
communication is highly machine-dependent, porta-
bility and compatibility with other software are often
obtained at the price of performance or increased soft-
ware development effort, Support for data redistribu-
tion is needed at two levels. The first is to support
basic operations that are needed within the same data
layout. In our case, the use of data layouts with sym-
metric placement of rows and columns led to simpler
algorithms than with other layouts. without sacrific-
ing the performance design objectives. However. since
the data layout we used (as is the case for most dara
layouts) is not supported in a systemic manner, many
“low-level” communication routines had to be written
to perform what should be compiler-level operations.
For instance, routines were needed for the basic oper-
ations described below.

Scattering: The problem to be solved must be dis-
tributed on the processors in the layout used.

Redistribution: In both the SBR and the end game.



blocks of data scattered over one submesh had to be
redistributed or replicated over a different submesh,
sometimes in a different layout.

Layout conversion: In both SBR and for the invari-
ant subspace update, data redistribution is required
whenever the matrix being updated is not aligned
with the update matrix.

Specialized routines had to be developed to deal with
each of these situations. The second level of support
should be in accommodating different layouts. Even
within the torus wrap data layout, changing the block
size requires significant data movement. Without such
support, more specialized routines would be required.
In fact, all the types of data movement described here
pervade numerical computation and should be sup-
ported in future parallel languages such as High Per-
formance Fortran. Otherwise, every user will be re-
quired to write his own specialized embedded routines.
C'ontinued lack of compiler support for basic commu-
nication kernels associated with data layout and move-
ment will not only greatly impede library development,
but will also impede the adoption of these libraries by
users because of interface problems.

In our work on SYISDA, we have developed three
kernels that provide the infrastructure for a “library”
for parallel eigensolvers and, to a more limited extent,
for numerical linear algebra computations. The first is
matrix multiplication, the primitive of choice in cur-
rent algorithmic design. The second, SBR, can in fact
be used in conjunction with any tridiagonal or banded
eigenvalue solver. Finally, the harness we have devel-
oped for managing the multiple subproblems produced
by SYISDA readily transfers to any algorithm based
on the invariant subspace decomposition approach. In
particular, our approach can be readily modified to
solve specialized partial spectrum problems, including
those where the eigenvalues in a specified interval are
desired and those where only the invariant subspace
corresponding to eigenvalues in a specified interval is
sought.,

Our prelitninary experiments indicate that our par-
allel implementation of SYISDA provides excellent
scaling and accuracy. In addition to continuing our
studies of SYISDA and the data layout issues asso-
ciated with the kernels we are interested in, we are
also investigating variants of SYISDA aimed at re-
duciug the ammount of time spent doing dense matrix
multiplication. A particularly promising algorithm,
SYBISDA, uses SBR to reduce A4 to a narrow band
and then periodically reduces matrices in the Eigen-
valne Smoothing step to a narrow band. Multipli-
cation of two matrices of bandwidths b only requires

O(b*n) work versus O(n3) for two dense matrices. Fur-
thermore, the special properties of the iterates in the
Eigenvalue Smoothing step result in surprisingly
slow band growth in the iterated matrices. In our
sequential implementation, using specialized routines
for multiplying symmetric band matrices [31], the run
times for SYBISDA are competitive with the symmet-
ric QR algorithm. In fact, the time spent in SBR be-
comes the dominant time. SYBISDA uses essentially
the same harness as SYISDA and the two computa-
tional kernels of SBR and banded matrix multiplica-
tion. We intend to modify our current code to obtain
an implementation of SYBISDA and compare the two
algorithms.
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