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PROCESSING AND CHARACTERIZATION OF TRANSFORMATION-TOUGHENED
CERAMICS WITH STRENGTH RETENTION TO ELEVATED TEMPERATURES

R. A. Cutler, C. B. Brinkpeter, A. V. Virkar and D. K. Shetty
ABSTRACT

Monolithic and three-layered Al;03-15 vol. $% Zr0Ooy

composites were fabricated by slip casting aqueous slurries.
The outer and inner layers of three-layer composites
contained unstabilized and partially stabilized Zr0Oy,
respectively. Transformation of part of the unstabilized
Z2rOp led to surface compressive stresses in the outer layers.

Strain gage, x-ray, indentation crack length, and strength
measurements were used to determine the magnitude of residual
stresses in the composites. The strength of the three-layer
composites (=1200 MPa) was 500-700 MPa higher than that of
the monolithic outer layer composites at room temperature and
350 MPa higher at 750°C. The strength differential decreased
rapidly above the m-->t transformation temperature. Three-
layered composites showed excellent damage resistance and
improved reliability. Cam follower rollers were fabricated
to demonstrate the applicability of this technique for making
automotive components.

INTRODUCTION

Transformation of ZrO; from the partially stabilized

tetragonal polymorph to the equilibrium monoclinic form has
been successfully used to toughen a variety of ceramic
matrices[1l]. Transformation of the metastable tetragonal Zr0Ojp

in the near surface regions of ceramics has also been used to
produce compressive residual stresses and, thus, strengthen
ceramics containing Zr05[2,3]. The techniques developed to
date for this purpose, such as grinding[3] or partial removal
of the stabilizer([4], produce only modest thickness (=30 pm)
of the compressive stress zones. These ceramics do not
sustain the improved strength under severe damage conditions
that may produce a flaw larger than the compressive stress
zone. The compressive stress produced by grinding can also be
irreversibly lost by a high-temperature exposure and reverse
transformation of the monoclinic ZrOp to the tetragonal form.

Virkar[5] patented a simple technique for introducing
residual stresses in ceramics using transformation-induced
stresses. Virkar, et al.[6] showed that significant
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compressive residual stress can be introduced in Al203-10
vol. % ZrO; with surface compression zones of the order of
300 to 1000 pum. The technique involves fabrication of three-
layer composite ceramics consisting of outer layers that
contain unstabilized ZrO; in an oxide matrix, and an inner
layer that contains 2r0y (partially stabilized with an oxide
additive such as Y;03) dispersed in the same oxide matrix.

On cooling from the fabrication temperature, a large fraction
of the ZrOj; in the outer layer transforms to the monoclinic

form, while nearly all of the ZrOp in the inner layer is

retained metastably in the tetragonal form. This selective
transformation of the ZrOs (with the accompanying wvolume

expansion) in the outer layers and the constraint of the bulk
inner material leads to significant compressive stress in the
outer layers and balancing tensile stress in the bulk. The
residual stress will not decrease with temperature until the
monoclinic to tetragonal transformation temperature 1is
reached, since monoclinic and tetragonal Zr0O; polymorphs have

nearly the same coefficients of thermal expansion.

Cutler et al.[7,8] have successfully applied the three-
layer technique to Al703-2r0y composites. Using dry pressing
to form the sandwich composites, a compressive stress of 400
MPa was produced in the outer layers of Al703-15 vol. % Zr0yp

composites with an outer layer thickness of 375 um. During
the first two years of ORNL funding[9]) it was demonstrated
that: 1) three-layer composites could be made with retention
of a significant fraction of this residual stress (=200 MPa)
to temperatures of 750°C[7,8], 2) residual stresses could be
detected by strength testing[7,8]7, strain gage
measurements[10], characterization of monoclinic content by
X-ray diffraction{[7), or indentation/strength measure-
ments[11], 3) the three-layer composites have excellent
damage resistance[11l], and 4) significant (300-400 MPa)
residual compressive stress which is not transformation-
induced can be introduced by grinding monolithic Al;03-15
vol. % Zr0O3(3 mol. % Y303).

This report summarizes highlights of a two vyear
subcontract extension with objectives to: 1) increase the use
temperature of three-layer composites by substituting HfO»
for 2Zr0Oy, 2) develop aqueous slip casting techniques for
three-layer composites in order to obtain better layer
uniformity and to maximize residual compressive stress by
optimizing the outer layer thickness, 3) superimpose
temperature stresses on transformation-induced stresses in
three-layer composites, and 4) demonstrate improved thermal
shock resistance and damage resistance in optimized
composites.
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EXPERIMENTAL PROCEDURES

Alp03-15 vol. % ZrOp composites were prepared by dry
pressing using techniques discussed previously([7-11] and by
slip casting(12,13] using Al503 (ERC-DBM, Reynolds Metal Co.,
Bauxite, AR.) and ZrOp (DK-1, Daiichi Kaguku Kogyo Co. Ltd,
Osaka, Japan) as starting materials for the outer layer
monolithic material. The inner layer monolithic material
used the same source of Alp;03 but partially stabilized (3.0
mol. % ZrOp) ZrOp (HSY-3.0, Daiichi) was used in place of
unstabilized zirconia. The two slips were dispersed using

0.5 wt. % citric acid and 2.0 wt. % Darvan C (R. T.
Vanderbilt, Norwalk, CT.) in an aqueous slip at 70 wt. % (35

vol. %) solids. The slips were vibratory milled 16 hours
with Zr05(3.0 mol. % ¥Y503) media and degassed prior to slip
casting. Three-layer composites were slip cast in plaster

molds by first casting the outer layer slip for a given time
period and then pouring out the outer layer slip and quickly
pouring in the inner layer slip. The inner layer slip was
allowed to remain in the mold when making solid plates or
cylinders. When hollow tubes for cam followers were
fabricated, the inner layer slip was drained followed by
introduction of the outer layer slip for a second time. The
thickness of the layers was controlled by the slip casting
times of the outer layers. The slip cast parts were dried
under controlled conditions and sintered at 1587°C for 30
minutes. The sintered parts were subsequently HIPed in 200
MPa Ar at 1550°C for 30 minutes.

Unstabilized HfO; and coprecipitated Hf03(4 mol. % Y203)
powders were supplied at no cost to the program by Teledyne
Wah Chang Albany. Solid solution Hf03-50 mol. % ZrO; powder
was prepared by milling the Teledyne HfO; powder with Daiichi
DK-1 powder, calcining at 1700°C for 1 hour, and remilling
the calcined solid solution.

Characterization for slip cast materials([13] was similar
to that used previously for dry-pressed samples[6-111].
Strength testing was generally performed on bars in four-
point bending. Thermal shock testing was performed on 6.5 mm
diameter by 50 mm long rods. The samples were heated to
various temperatures prior to quenching in ice water (0°C).
Strength was measured in three-point bending at room
temperature for thermally shocked rods.

Ceramic cam followers were ground (Advanced Materials
Technology, Inc.(AMATEC), Georgetown, S.C.) to Chrysler Motor
Co. drawing SK-783-50201 (revision D). Impact testing at
Chrysler consisted of running the rollers on a motorized 2.2
liter cylinder head at 2750 rpm for five minutes with a
0.635-0.762 mm lash between the roller and the base circle of
the cam.
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RESULTS AND DISCUSSION

CHARACTERIZATION OF RESIDUAL STRESS

A schematic of the three-layer composites is shown in
Figure 1. Both the outer and inner layers consist of Al503-

15 vol. % Zr0O5 so that thermal expansion coefficients are
similar. The main difference is that the ZrOy in the outer
layers is unstabilized and the Z2rOy in the inner layer has
been coprecipitated with 3 mol. % 2rO3. Upon cooling from
sintering temperatures (=1600°C) where Zr0p in both outer and
inner layers is tetragonal, most of the unstabilized ZrO5 in

the outer layers transforms to monoclinic with an
accompanying volume expansion. The constraint of the inner
layer puts the outer layers under compression and the inner
layer in tension (see Figure 2). Assuming a square wave
stress distribution the accompanying residual compressive

stress, ©O1, in the outer layers is
O1 = -AggEdy/[(1-v)d] (1)

where Ag, is the unconstrained strain in the outer layers
from the transformation of ZrOj, E is Young's modulus, 4 is

thickness, v is Poisson's ratio and the subscripts 1 and 2
refer to the outer and inner layers, respectively.
Correspondingly, the residual tensile stress, O3, in the

Al,04-2r05 (TETRAGONAL)

Al,03-2r0Oo (MONOCLINIC)

Figure 1. Schematic of three-layer Al503-15 vol. % Zr0y
composites with unstabilized ZrOp in outer layers and
partially stabilized Zr0O2 in inner layer.
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Figure 2. Schematic of three-layer sample showing

unconstrained outer and inner layers as well as constrained
length of composite.

inner layer is
Oy = 2Ae Ed;/ [ (1-v)d] (2)

Based on fracture of three-layer composites from within
the outer layers, as would be expected in flexure, the

failure strength, of, is
Of = Og + AggEdy/[(1-v)d] (3)

where G, is the failure strength of the outer layers in the
absence of residual stress. A plot of strength as a function
of normalized inner layer thickness (dy/d) would be expected
to follow a linear relationship with slope of AgyE/(1-v) and

intercept equal to 6,. Experimental verification of Equation
(3) has been demonstrated for samples with flaw populations
typical of "as-sintered" samples[7], as well as for samples
with well characterized indentation flaws[8,11]. The value of

Ae, determined from these measurements agree with estimates
from x-ray measurements[7].

Virkar[14] has developed a technique for determining the
residual stress profile of sintered ceramics using inexpensive
strain gages. A strain gage is attached to one side of a
three-layer ceramic which initially has outer layers of equal
thickness. One side is then incrementally ground off (see




Figure 3) and the strain (g€) is measured as a function of

thickness removed (J). Using simple beam theory it is

possible to predict the shape of the strain vs thickness
removed[14] for a three-layer composite (see Figure 4).

Considering a symmetric stress profile (Oxx=0yy) so that
residual stress is a function of z (thickness direction of a
three-layer composite) only, the measured strain, em(0), vs &
data can be used to determine the residual stress profile.
For 0<0<d;

em(8) = {Ae,d28(2d+8)/ (d-8)24d) (4)
so that the residual stress can be calculated as
01 = -Aeod2E1Ez/ {(2E1dq) (1-v1) +(Ea2d2) (1-v3) } (5)

The expected tensile strain in the inner layer, for
d1<6<di+dy, is given by

em(8) = Aeo([(d12-(d2-8)2)/(a-8)2] + (dyp/d)} (6)

Verification of this predicted response 1is shown for
experimentally determined curves in Figure 5. As expected,
the monolithic outer and inner layer composites show no
change in strain as a function of thickness of material
removed, while the three-layer composites show significant
residual compressive stress in the outer layers. The bend in

eu(8) vs 8 occurs at 8=d; (the interface between outer and
inner layers). The magnitude of Ag, was measured to be

1.2x10-3 giving a calculated compressive residual stress in
the outer layers of =520 MPa[10].

e
/strain gag
-_ T
d d-§
| {2 ]
d,-6 = X
' \ground surface
Figure 3. Schematic showing the three-layer sample with a
strain gage mounted on one face. The other face is

incrementally ground off and the strain is recorded as a
function of the thickness ground off.
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Figure 4. Analytically determined normalized strain for

three-layer composite with dj=1 and dp=4 as a function of
thickness removed[10].

300
Al,03+15vol % Zr02
250 |- A - Monolithic Inner Material
® - Monolithic Outer Material
A-Three Layer Composite
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3(um)
Figure 5. Measured strain vs thickness removed for

monolithic and three-layer Al;03-15 vol. % ZrO; samples.
Monolithic samples show no residual stress while three-layer
sample shows compressive stress in outer layer([10].
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In the discussion of residual stress above, it was
assumed that an equibiaxial state of stress and strain exists
in the three-layer composites. In order to verify this
assumption, longitudinal and transverse strains were measured
on both bend bars (=4.5 mm in width and thickness) and plates
(20 mm square-shaped samples) as a function of thickness
removed. As shown in Figure 6, the strain in the transverse
direction was lower by about 20% than the strain in the
longitudinal direction for bar shaped samples. As expected,
the longitudinal and transverse strains were similar for the
square-shaped sample (see Figure 7). These data suggest that
the assumption of equibiaxiality is reasonable.

The influence of residual stresses present in the three-
layer composites can also be shown by measuring indentation
cracks. Assuming a simplistic analysis for indentation
behavior, the indentation crack length, Co, in the absence of

residual stress is given by

Co = [~0.016(E/H)1/2(P/KIC)]2/3 (7)

In the presence of residual stress, Or: the half-penny crack
after indentation is shorter in the outer layers which are
under uniform compressive stress or longer in the inner layer
which is under a lesser tensile stress. The crack length, c,
in the presence of residual stress may be calculated by

(co/c)2 = (co/c)1/2 4+ y= 0 (8)

where 7=AGR[(P/KIC4)(E/H)1/2]1/3 and A is a nondimensional
constant[11]. Previous work has confirmed the validity of
crack lengths which occur in the outer layers of three-layer
composites by comparing indentation cracks on the outer
surfaces of three-layer composites in relation to the
indentation cracks on the outer surfaces of monolithic bars.
Indenting cross-sections shows the effect of strong
residual stresses more dramatically (see Figure 8). Assuming
typical values[1l] of toughness (4.3 MPa-ml/z), Young's
modulus (340 GPa),hardness (17 GPa), compressive stress (-500
MPa) in the outer layers and balancing tensile stress (100
MPa) in the inner layer (1/12-5/6-1/12 bars), Equations (7)
and (8) give cy=115 pm and c=73.7 Um in the outer layers and
c=140.8 um in the inner layer. By aligning cracks parallel
and perpendicular to the surface (and interface), it is
possible to see shorter cracks in the outer layers
perpendicular to the interface/surface (i.e., in the
direction where the residual compressive stress is closing
the crack tip) and 1longer cracks in the inner layer
perpendicular to the interface/surface (i.e., in the
direction where the residual tensile stress is opening the
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Figure 6. Measured strain as a function of thickness removed
for bar-shaped three-layer composites([10].

350
O LONGITUDIAL
300 | O TRANSVERSE
Al03 +15v0l% 270, 88

250 —  Three Layer Composlite o 8 =]
_- 2XI072mX2X10"2mx5.3%X10" 3 m o0

200
E d;= 6.35%107%m g o
i dz= 4.03X1073m 8
= 150 |- e
«© o
-3
v {00 |— o

o
50 |— =]
g8 "
o o8
! i { { !
) 100 200 300 400 500
8(pm)

Figure 7. Measured strain as a function of thickness removed
for square-shaped three-layer composites{10].
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Figure 8. Optical micrographs of cross-sections of three-
layer (Outer layers of Al;03-15 vol. % Z2r0z and inner layer
of Zr0z(3 mol. % Y303)-40 vol. % Aly;03) composites with
indents oriented with cracks parallel and perpendicular to

the interface/surface. Note change in crack lengths between
outer (top) and inner (bottom) layers.
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S50 um

(d)

Figure 8 (cont). (c,d). Cracks in three-layer Al,03-15 vol.
$ ZrO5 after removing surface of indentation cracks to make

Q,
cracks more visible. Crack lengths are strongly influenced
by residual compression (outer layers) and residual tension

(inner layer).
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crack tip). These cracks are shorter (outer layers) and
longer (inner layer) than the cracks in the absence of
residual stresses, as predicted by the simple analysis above.

It is interesting to note, however, the resulting
difference in crack length parallel to the interface for
indentation cracks in the outer and inner layers. The cracks
parallel to the interface are longer in the outer layers and
shorter in the inner layer. The longer crack length in the
outer layers is due to the spontaneous energy release when
the crack parallel to the interface extends.

The integrity of the smooth interface obtained by slip
casting is also seen by aligning indentation cracks with the
interface. There is no tendency for the cracks to run along
the interface (see Figure 8).

The above observations with indentation cracks further
explain why strength is high when failure occurs within the
outer region and may be low when defects initiate failure
within the inner layer. These results give another method
for identifying materials with substantial residual stresses
and also provide a means for identifying interfaces in three-
layer materials without phase contrast.

COMPARISON OF SLIP CAST AND DRY PRESSED COMPOSITES

The advantages of slip casting three-layer Al;03-Zr03
composites compared to dry pressing the same layered
composition are improved uniformity in outer layer thickness,
and better particle packing prior to sintering resulting in
reduced flaw populations after densification. The
disadvantages of slip casting are that the thickness of
components is limited and the cycle times are increased due
to drying constraints.

Figure 9 shows a comparison of cross-sections of a
three-layer composite where the inner layver has been made
with higher ZrO; content such that the interface is easily
seen in the SEM. Figure 9(a) shows the interface of dry
pressed composites where spray dried agglomerates are readily
observed. Note how much more uniform the interface is for
the same composition when slip cast (Figure 9(b)). Figure 10
shows a strength comparison between monolithic and three-
layer Al303-15 vol. % Zr0O; composites made by dry pressing
(followed by isostatic pressing) and slip casting. The 10 to
20% strength improvement is due to the advantages of slip
casting outlined above.

Figure 11(a) shows the strength improvement at room
temperature for monolithic and layered composites which
occurred during the contract. The higher strengths were the
result of improved processing including limiting defects
(i.e., agglomerates, pores, inclusions), improved interface
control, and optimization of drying/sintering schedules.
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(b)

Figure 9. SEM micrographs of cross-sections of (a) dry
pressed and (b) slip cast three-layer (outer layers of Al;03-

15 vol. % ZrOp and inner layer of ZrO5(3 mol. % Y503)-40 vol.
% Al;03) composites. Note smooth interface in slip cast

composites and remnants of spray dried agglomerates in dry
pressed outer layer.
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Figure 10. Room temperature flexural strength comparison of

Alp03-15 vol. % ZrOy fabricated by dry pressing (followed by
isostatic pressing) and slip casting.

Improved strength was also achieved by controlling the

grinding process as described below. High temperature
(1000°C) strength also improved, as shown in Figure 11(b),
during the same time period due to improved processing. The

strength, however, decreases dramatically at elevated
temperature for both the monolithic and three-layer
composites due to the absence of transformation toughening.
The key to increasing the use temperature for transformation-
induced stress is the successful substitution of HfOy for
Zr0Oy (see section below on elevated temperature testing).

EFFECT OF GRINDING ON STRENGTH

The strength of the monolithic inner layer material
(Al203-15 vol. % Zr0O5(3 mol. % Y203)) nearly doubled upon

grinding as shown in Table 1. The strength degraded slightly
with temperature (see Table 1) but testing at 750°C (after




15

///////////////////////

/////////

A“n_sv —.—nmcw._nm

W 1986

%

1989

7// //

1000




16

cooling from 1200°C) showed that transformation-induced
stresses are not the primary strengthening mechanism since
strength was identical to that measured upon heating to
750°C. This is consistent with Xx-ray diffraction data which
showed no transformation to monoclinic zirconia upon grinding
(see Table 2). Specimens polished to a one um finish without
grinding showed only a moderate strength improvement
(strength of 551+49 MPa) despite a significant improvement in
surface finish, demonstrating that grinding does more than
improve surface finish. 1In order to see if it is possible
that grinding introduces compressive stresses due to plastic
deformation, Alp03, ZrOy, monolithic outer layer material
(Al203-15 vol. % 2rOy) and three-layer composites were all
tested (see Table 2) in the unground (edges chamfered before
HIPing) and ground state (220 grit wheel at down feed of 2.5
microns/pass before sparking out). The strength increased
(by 30-67%) for all specimens, although the magnitude of the
sStrength increase was greatest for Zr0z and the monolithic
inner layer specimen. Fractography showed alumina, zirconia,
and monolithic outer layer bars all failed from the tensile
surface, whereas monolithic inner layer and three-layer bars
showed a large bercentage of bars failing from near the
chamfers.

A number of factors affect the strength increase
including improved surface finish and transformation-induced
stresses for the 2ZrO;, monolithic outer, and three-layer

specimens. The inner layer monolithic ZrOp is unique in that
no measurable monoclinic ZrO; was observed on the ground or

fractured surface (see Table 2). While others[16-19] have
seen a strengthening via grinding for transformation
toughened ceramics, it has always been accompanied by an

Table 1
Strengthening of Al503-15 vol. % Zrog (3 mol. % Y¥Y303)

Due to Grinding

Specimen Test Temperature Samples Strength
Preparation (°c) Tested (MPa)

Unground 25 6 452411
Ground (220 Grit) 25 6 83585
Ground, 1200°C Anneal 25 5 731%168
Ground, 1600°C Anneal 25 6 666168
Ground, 1200°C Anneal 750 3 621+47
Ground, 1200°C Anneal 850 3 60615

Ground, 1200°C Anneal 950 3 528+%21
Ground, 12002C Anneal 1200->750 3 6271495
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Table 2
Strength Comparison of Ground and Unground Bars
Material Density Strength (MPa) m-ZrOy Content? (%)
(g/cc) UngroundP GroundC ub G¢ F.s.d
#e xf g 4 « s
alp03b 3.98 8 308%30 8 434464 --- - -
Zr02i 6.04 8 677163 5 998+73 <1 1.9 24.8
Outer] 4.29 8 389+23 5 650459 83.1 85.6 88.5
Innerk 4.32 8 485%34 8 806452 <1 <1 <1
3-laverd 4.32 7 679456 4 879451 ---M __.m ___m
a. Monoclinic content of ZrOj in specimen[15].
b. Chamfered before HIPing with no other grinding.
c. Ground with a 220 grit wheel at a down feed of 2.5

Hm/pass before spark out.

Number of specimens tested in four point bending.

Mean value.

Standard deviation.

Reynold's ERC-DBM alumina.

Daiichi's HSY-3.0 zirconia.

Outer layer composition.

Inner layer composition.

Three-layer composition with outer layers 1/12 total
hlckness

Not measured but has substantial monoclinic ZrO5[7,8].

B H AU QO

increase in monoclinic content. Stresses introduced during
grinding of the inner layer material, however, do not show
strength hysteresis dependent on the m<-->t transformation
temperatures and ground monolithic inner layer specimens have
higher strength than three-layer composites at temperatures

in excess of 950°cC. The lack of monoclinic zirconia on
ground and fracture surfaces, and prior work showing that the
effect is not solely due to improved surface finish, suggests
that plastic deformation during grlndlng may account for part
of the improved strength of the inner layer composition.

In order to optimize the stresses introduced into the
monolithic inner material during grinding, the rate of down
feed was varied. Table 3 shows that strengths over 900 MPa
were observed when the down feed was increased to 10.2
microns/pass. Furthermore, grinding on the sides of the bar
decreased the tendency for the bars to fail from chamfers and
increased the strength.

Monolithic Al303, Z2r03 (3 mol. % Y503), Al503-15 vol. %

ZrOy and three layer Al03-15 vol. % ZrO; (with and without

post HIP grinding) specimens were sent to Rockwell
International for determination of residual stresses by x-ray
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Table 3
Effect of Grinding Parameters on the Room Temperature
Strength of Al;03-15 vol. % Zr03 (Y¥203) Composites

Sides Ground@ Down feedP Strength (MPa)
(um/pass) #< x4 s€
0 2.5 8 485 34
2 2.5 8 806 52
4 2.5 6 876 100
2 5.1 6 749 105
4 5.1 6 862 119
1 7.6 8 806 652
4 10.2 6 926 178
4 15.2 6 849 102

a. Sides of samples ground with a 220 grit diamond wheel.
Tensile surface was ground for all samples except for
unground bars.

Down feed of 220 grit wheel prior to spark out.
Number of bars tested.

Mean strength.

Standard deviation.

Hho Qo

diffraction. Dr. Michael R. James performed the Cu Ky x-ray
analysis using (416) and (620) planes for Al,;03 and Zr07,
respectively. When using Cr Kq radiation, (1.1.10) and (331)
planes were used for Al203 and ZrO;, respectively. 1In Al,03,
the respective penetration depths for Cu and Cr radiation are
32 and 10 pum (i.e., 67% of the diffracted radiation comes
from a depth less than these values (87 and 27 Mm for 95%
return)). Thus, the difference in residual stress between
the two radiations represents the gradient of residual stress
with depth. The penetration depths are slightly less for
ZrOz since Zr is approximately three times more absorbent
than Al.

The measured compressive residual stresses are given in
Table 4. Surprisingly, the inner monolithic material which
showed a large strength increase with grinding, despite no
observable transformation (gsee Table 2), also showed low
residual stress and low dependence of residual stress on
depth of penetration. Further work is needed to explain the
significant strengthening which occurs upon grinding the
inner layer material. The outer layer and three-layer (the
outer layer of the three-layer sample was the surface exposed
to radiation) materials showed significantly higher residual
stresses at shallower penetration and were strongly
influenced by grinding. The 98 MPa incremental change in
compressive stress for Al;03 using Cr Kg radiation compares
with 125-145 MPa as reported by Lange, et al.[18]. 2Zro05(3
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Table 4
Residual Stress Determined at Rockwell International
by X-ray Analysis

Composition Residual Stress (MPa)

Cu K¢ Radiation Cr Ko Radiation

unground ground unground ground
Al;03 -136 -135 -101 -199
ZrO3 (3 mol. % Y303) -44 -15 -81 -271
Alp03-15 V/o ZrO -131 -256 -267 -822
Al703-15 V/o ZrOs(3 mol.% Y303) -131 -203 -173 -261
Three-laver -486 -711 =570 -1106

mol. % Y303) showed a strong dependence of residual stress on
depth, with residual stress which correlated well with the
observed strength increase. There was no overall correlation
of compressive stress with strength increase upon grinding
for the materials tested. However, the residual stress
difference between three-layer and outer layer Al;03-Zr0; as
determined by x-ray diffraction and strength measurements
were both on the order of 300-400 MPa, verifying the
substantial residual stress created by the stress-induced
transformation in the three-layer composites.

In an effort to determine the depth of compressive
stresses introduced by grinding slip cast Al303-15 vol. %
Zr0O5, specimens were prepared for strength/indentation
measurements. The strength of ground monolithic inner-layer
bars at indentation loads of 16, 37, 64, 125, and 296 N
agreed with data for unground samples (see Figure 12),
indicating that residual stresses introduced by grinding are
very shallow, as expected. The fact that the stresses are
shallow, as compared to stresses in three-layer specimens,
further supports the need for a protective compressive stress
layer of at least 100 um[6].

In order to investigate the strengthening which occurs
upon grinding Alz03-15 vol. % Zr03(3 mol. % Y303) (i.e.,
monolithic inner layer material), slip cast bars in the
unground and chamfered state were compared with machine

ground and chamfered bars. The difference in strength at
room temperature was 500 MPa, decreasing to 270 MPa at 750°C,
and 180 MPa at 1250°C (see Figure 13). Ground samples heated

to 1250°C, well above the m--->t transformation temperature,
and cooled to 750°C, had strength of 762%129 MPa (6 bars) in
comparison to 658+107 MPa measured for the same material
tested at 750°C without the high temperature anneal. These
data indicate that residual stresses due to grinding are not
completely removed by heating to 1250°C and holding for 30
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unground inner layer material.
indentation load, and (b) inverse cube root indentation load.
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Figure 13. Strength of ground (open) and unéround (solid)

inner layer material (Al;03-15 vol. % Zr02(3 mol.% ¥Y303)) as a
function of temperature.

minutes. Since the inner layer material does not contain
monoclinic Zr0Oj;, it does not show any strength hysteresis.

The difference in strength between ground and unground
inner layer material is not due to transformation-induced
stress as in the three-layer material. The larger surface
flaws on the unground surfaces account for part of the
difference in strength, but the experiments described above
showed that polishing unground samples to a high surface
finish did not result in comparable strengths to the ground
bars.

The high strength ground inner material, however, is
susceptible to surface damage, showing similar strength to
unground inner material at indentation loads as low as 16 N
(see Figure 12). These data indicate that the depth of
compressive stress, due to surface grinding, is shallow and
does not provide protection against surface flaws. This is
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consistent with shallow surface compression measured in
Si3Ny-based ceramics after grinding[20]. As shown below, a
primary advantage of layered composites is their greatly
enhanced damage resistance.

DAMAGE RESISTANCE

Indentation/strength testing of slip cast monolithic and
three-layer Al;03-15 vol. % 2rOy was performed in order to

determine their response in comparison to the dry pressed
bars tested previously[1l]. The main differences between the
dry pressed and the slip cast bars were the improved strength
of all three slip cast materials and the increased uniformity
of the outer layer thickness in the three-layer slip cast
bars (see Figure 9). 1In addition, the thickness of the outer
layers of slip cast three-layer bars was =250 Mm  in
comparison to dry pressed bars with outer layer thickness of
=375 pm. The indentation/strength response of three-layer
composites was compared with theoretical expectation based on
superposition of stress. It can easily be shown[11] that the
strength expected for three-layer composites which have been
indented with a Vickers indenter of load P is given by

Of = CK1c4/3/((E/H)1/6P1/3) + Ae_Ed,/(1-v)d (9)
f Ic o=d2

where C is a constant equal to 2.02[20,21], Kic is fracture
toughness and H is hardness. According to Equation (9), a
plot of Of vs P71/3, as shown in Figure 14, should vield a
straight line with a slope related to Krc and an intercept

giving the compressive residual stress, 01. Taking values of

E=340 GPa, H=17 GPa, linear regression of the data for
monolithic specimens gave slopes corresponding to Ky. values

of 5.35 and 5.03 MPa-ml/2 for outer and inner materials,

respectively. Both materials had intercepts near zZero,
showing that they were free of residual stress (see Figure
14). A linear regression of the data for the three-layer

composites gave a slope corresponding to a fracture toughness
of 5.75 MPa-ml/2, similar to the monolithic materials, as
predicted previously[11]. It is interesting to note,
however, that there was very little decrease in strength at
high indentation loads (greater than 125 N) suggesting that
the three-layer material has even better damage resistance
than predicted by Equation (9). The intercept from the linear
regression gave a value of -588 MPa for the compressive

stress. This value of 07 is higher than the difference in

strength of -497 MPa when comparing the unindented bars.
These data confirm the superior damage resistance of
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materials made using the three-layer concept and show that
improved resistance to contact damage can be expected for
ceramic components made using this technique.

In order to show the practical extension of this
technology, totally encapsulated =5 mm diameter rods were
fabricated by slip casting such that pits on the order of 50-
250 um were prevalent on the surface but were rarely present
in the bulk. The outer layer of the rods was =425 Hm thick
and surface compressive stress was on the order of 400 Mpa.
The strength (5 rods broken in 4-point bending using an inner
span of 20 mm and an outer span of 40 mm) of the "as-HIPed"
material was 908+116 MPa, as compared to strength of
1,211+123 MPa for three-layer rods which were ground to a 30
um surface finish. 1In contrast, monolithic outer layer rods
had strength of 476184 MPa in the "as-HIPed" state and 830%27
MPa in the ground state. The change in strength between the
three-layer and monolithic outer layer materials was improved
at larger flaw sizes. This means that as long as the outer
layer thickness of the three-layer composite is sufficiently
larger than the surface flaws, that strength improvement
consistent with the indentation/strength data can be expected
in components.

In order to further explore the use of three-layer
composites, monolithic and three-layer (outer layer =1/12th
the total thickness of the ceramic) composite cam followers
were fabricated and tested by Chrysler Motor Corp. The o.d.
of the roller was =17.8 mm, the i.d. was =7.59 mm, and the
length =12.7 mm. Ceramatec had previously tested Al,03~15
vol. % Zr0Oz(3 mol. % Y203) cam followers of similar geometry
which failed the lash test where high impact loads are
applied. The test consisted of running the rollers on a
motorized 2.2 L cylinder head at 2750 rpm for five minutes
with a 0.635-0.762 mm (0.025-0.030") lash between the roller
and the base circle of the cam. Previous tests were run at
3000 rpm, but due to limitations of the test fixture used at
Chrysler only 2750 rpm were applied.

Fifteen rollers were supplied and eight were selected
for testing. One monolithic outer roller broke during setup,
most likely due to expansion of the pin during welding. Of
the seven rollers tested, six of them passed the lash test.
This is in stark contrast to the previous testing of the
inner layer material made by dry pressing where three out of
three rollers failed the lash test. Two of each of the three
types of materials (i.e., monolithic outer, monolithic inner,
and three-layer) tested survived five minutes of the lash
test. The only material to fail was a three-layer roller
which was terminated after 18 seconds.

Due to the fact that the monolithic materials survived
the lash test, it was requested that a larger lash be applied
to see if the compressive stress in the outer layer of the
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three-layer material allowed improved damage resistance.
Additional testing was not performed by Chrysler for two
reasons: 1) the coefficient of friction for Si3Ng is lower
than Al303-Zr0; and wear is consequently improved for silicon
nitride rollers compared to oxide-based rollers (no wear
measurements were done on the slip cast rollers sent), and 2)
the cost per ground roller was $0.50/roller and Chrysler was
only interested in testing rollers from suppliers who were
serious about getting into this business (At the time the
rollers were tested, Si3iNg supplied by Sullivan Mining Co.
looked very promising and Ceramatec was not committed to
competing in this market). To the best of the authors®
knowledge, these are the only tests performed where aluminum
oxide-based ceramics have passed the impact test.

THERMAL SHOCK TESTING

Fracture strengths of monoliths and three-layer rods
after thermal shocking over different temperature ranges are
displayved in Figure 15. The as-HIPed strengths were 830127
MPa, 1185109 MPa, and 1206+36 MPa for outer, inner and
layered composite rods, respectively. These strengths are
similar to those reported above for bars in four-point

bending. The inner layer rods had a AT of slightly less than
300°C, the outer layer rods had a AT of =325°C and the

layered rods had a AT of =425°C. The exposed ends of the

layered rods were the regions most susceptible to thermal
shock and totally encapsulated rods would 1l1likely have

resulted in a higher AT for this material. Individual
layered composite rods had strengths greater than 1200 MPa at
temperatures up to 425°C. Since thermal shock under severe

cooling conditions generally initiates from the outer surface
of monolithic components, the increase in thermal shock
resistance of the three-layer rods over the outer layer rods
is of interest. This increase of 100°C can be compared with
what would be expected for the strength improvement due to

the surface compressive layer. The compressive stress, 07,

in the outer case and the balancing tensile stress, O3, in
the inner core can be easily calculated assuming a square-

wave stress distribution. These stresses are approximately
given by

61 = -{(Ay/A)EAey/ (1-V) (10)
and

G2 (A1/A)EAe,/ (1-V) (11)
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Figure 15. Thermal shock behavior of monolithic and

"three-layer" Al303-15 vol. % ZrO; quenched in ice water.
Layered rods with surface compressive stress of =400 MPa have
critical AT 100°C higher than monolithic rods.

where A is the cross-sectional area of the rods. The outer
case thickness was approximately 0.375 mm or 1/12th the
diameter of the rods. Taking values of 4.86x10-6 m2,

1.10x10-5 m2, and 1.59x10-5 m2 for A1, Az, and A,

respectively, E of 340 GPa, Ae, of 1.3x10-3 and Poisson's

ratio of 0.25, results in a compressive residual stress of
409 MPa in the case and a residual tensile stress of 180 MPa
in the core. The calculated compressive stress is in good
agreement with the increase in room temperature strength
between the outer and the layered composite rods of 376 MPa.
Based on the early work of Hasselman([23,24] it is
possible to explain the improved thermal shock resistance of
the Aly03-15 vol. % 2ZrOy ceramics having substantial

compressive surface stresses as compared to the monolithic
ceramics of similar composition, modulus and thermal
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expansion. The expected increase in AT., the critical

temperature difference to which the rods are subjected in
order to initiate crack growth and decrease strength, for a
material with compressive residual stress is given by

AT: = AT® + [Og(1-V)/0E]f (k/ha) (12)

where ATc° is the temperature differential in the absence of
residual stress given by [0Gf(1-v)/aElf(k/ah), where Of is the

unquenched strength, o is linear coefficient of thermal
expansion, k is the thermal conductivity, h is the surface
heat-transfer coefficient and a is the characteristic heat
transfer length. The work of Becher et al.[25] investigating
the effect of sample size on the thermal shock resistance of
ceramics shows the need to take the Biot modulus (ah/k) into

account in calculating AT.. For a conservative prediction, a

relatively high heat transfer coefficient, h=10 W/cm2°C was
assumed. With a=0.225 cm and k=0.25 W/cm°C, the Biot modulus
equals 9. For this value of £, f(k/ah)=0.433. From Equation
(12), the predicted increase in thermal shock resistance for

three-layer rods is 243°C for ©1=-376 MPa. The increase

obtained in experiments was =100°C. The reason for this
discrepancy is likely related to the fact that the ends of
the rods were not encapsulated. The reason for the 1low

values for AT. (300-425°C) measured in the present study in

contrast to the high values (AT, > 800°C) reported by
Becher[26] for monolithic Al;03-Zr03 composites is believed
to be due to the more vigorous quench of the ice water as
compared to boiling water([27] and to the difference in sample
thickness between the two studies.

Improved thermal shock resistance of the three-layer
composites is expected due to the presence of residual
compressive stresses. These results show that residual
compressive stress of substantial depth in layered composites
not only increases strength, apparent toughness([7], and
damage resistance, but also makes the materials more
resistant to thermal shock.

IMPROVED RELIABILITY

Superposition of temperature stress (due to difference
in thermal expansion) on transformation-induced stress (due
to volume expansion differences between monoclinic and
tetragonal zZrOp) was demonstrated using ZrO3(3 mol. % ¥Y503)-

40 vol. % Alz03 as the inner layer material in three-layer
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slip cast composites. The temperature-induced stress enhance
the strength of three-layer composites at low temperatures.
The expected compressive residual stress in the outer
layer of the bars is the combination of transformation-
induced and temperature-induced stresses. The transfor-

mation-induced compressive stress, 61, in the outer layer,
assuming a square wave stress distribution, is

61 = __=(E1EpdrAgs)

[(1-v) (2E1d1+Epdy) ] (13)

in an analogous manner to Equation (1). The temperature
induced stress, 61, in the outer layer, also assuming a
square wave distribution, is given as

C1 = =[(E1Epd>AT) (Qr-qt1) 1
[(1-v)(2E1d3+E2dp) ] (14)

where AT is the temperature difference over which stress

builds up and o is the coefficient of linear thermal

expansion. By superposition, the expected residual stress in
the outer layer is

61 = —(Ej1E2dp) (A +AT (Rp-0l1) )
[(1-v) (2E1d1+Epdy) ] (15)

Taking Ej as 340 GPa, Ep as 275 GPa, Aeg as 1.3x10-3, AT
as 1000°C, ap-a; as 1x10°6/°C, v as 0.25, d; as 500 pm, and
dy as 5 mm, the expected compressive residual stress in the

outer layer is slightly over 1,000 MPa. The corresponding
residual tensile stress in the inner layer is approximately

200 MPa. Strain gage measurements resulted in a measured
compressive stress of 1,100 MPa, in excellent agreement with
prediction.

The room temperature fracture strength of three-layer
composites was 1,275 MPa as compared to a strength of 549 MPa
for the outer layer bars. The compressive stress of -725
(difference between inner and three-layer bars) is 70% of the
predicted wvalue. More importantly, it shows that high
strengths can be achieved in layered ceramic composites using
a combination of transformation and temperature-induced
stresses, as expected.

Figure 16 shows linearized Weibull plots of fracture
stresses of monolithic outer, monolithic inner and three-
layer composites with transformation-induced stresses,
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Figure 16. Linearized Weibull plots of fracture stress of
monolithic and three-layer composites. Slip cast composites
have both transformation-induced and temperature-induced
residual stress. Note higher modulus of three-layer

composites compared to monoliths, indicating enhanced
reliability.

fabricated by dry pressing, as well as slip cast three-layer
composites with both transformation-induced and temperature-
induced stresse. It is noted that the three-layer composites
exhibit both increased strengths as well as improved Weibull
moduli relative to the monolithic ceramics. Improvements in
uniformity in the thickness of the layers by slip casting is
the main reason for the improved strength of the slip cast
composites. The improvement in Weibull modulus is due to
superposition of stress[7]. Residual compression
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deliberately introduced into the near surface regions of
structural ceramics can be a viable approach to increase
Weibull modulus and reliability.

ELEVATED TEMPERATURE TESTING

Strength measurements as a function of temperature are
shown in Figure 17 for monolithic outer, inner and three-
layer samples. At room temperature the three-layer
composites have a strength of 1150 MPa as compared to a
strength of 660 MPa for the outer layer monolithic bars. The
strength differential between the three-layer and outer layer
bars, as shown in Figure 18, is due to the compressive

U T T T i i i
1200 - C}) =
. A Outer Layer ]
Tl O Three-layer
1000 O Inner Layer N
g
é w B =
£
o]
c P -
5 &0
7] -
~~
: b,
S 400 — .
o
20 - -
or -
! i . | s | L ! L 1 N |
0 20 400 600 800 1000 1200
Temperature (°C)
Figure 17. Strength of three-layer Al;03-15 vol. % ZrOg

composites as a function of temperature, in comparison to
monolithic inner (Alz03-15 vol. % ZrO5(3 mol. % ¥503)) and

outer (Al03-15 vol. % ZrOj3) layer materials.
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Figure 18. Strength differential between three-layer and
outer layer materials. Strength differential is due to

compressive residual stress in the outer layers of the three-
layer composite.

residual stress in the outer layers of the three-layer bars.
The experimentally observed value of -490 MPa from strength
testing agrees well with the value of -520 MPa from strain
gage measurements.

The residual stresses are effective in strengthening the
three-layer composites until the monoclinic to tetragonal (m-
-->t) transformation is completed at a temperature above

750°C (see Figure 18). Dilatometric studies of the outer
layer material show the Ay temperature as =900°C and the Af
temperature as =1000°C. The Mg temperature was =600°C and
the Mf temperature was =500°C. Since these temperatures are

dependent on the constraint of the ZrO; in the outer layers,

these temperatures may be shifted slightly lower in the
three-layer composite. Figure 19 shows the strength
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Figure 19. Strength hysteresis for three-layer Al;03-15 vol.
% Zr0; composites as a function of temperature cycling. Open
symbols represent samples heated to the test temperature.
Solid symbols represent samples heated to 1250°C and then
cooled to the test temperature. Note that when layered
composites are heated above Ay, the martensitic start
temperature during heating, that strength is not fully
recovered until the samples are cooled below the Mg, the
martensitic finish temperature during cooling.

hysteresis measured for three-layer composites cycled above
the Af temperature and tested on cooling above the Mg
temperature. These results are in excellent agreement with
expectation and show that layered composites cycled above the
Ag temperature will have decreased strength during cooling
until they are cooled below the M temperature. This limits
the use of layered Al;03-Zr0O; ceramics with high damage
resistance to temperatures not exceeding =800°C (see Figures
18 and 19).
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Substituting HfO; for Zr0O; is the most straightforward
approach for increasing the use temperature of layered
composites. Alz03-15 vol. % HfOy, Al03-15 vol. % HfO,(4 mol.
% Y203), and Hf02(4 mol. % Y03) compositions were dry
pressed, sintered and HIPed using hafnia powders received
from Teledyne Wah Chang Albany. X-ray diffraction showed
that the sintering temperature of 1600°C was not high enough
to fully convert the monoclinic HfO03(Y203) to tetragonal.
Approximately 60 % of the Hf03(Y303) was monoclinic after
holding for two hours at 1600°C. The HfO3(Y203) with no Al,03
added had a strength of 329128 MPa. Monolithic outer (Al;03-
15 vol. % HfO2), monolithic inner (Al;03-15 vol. % HfO; (4
mol. % Y203)) and three-layer composites had strengths of
458+30 MPa, 437422 MPa, and 492+31 MPa, respectively. The
thermal expansion of the monolithics materials were both
=8.4x10-6/°C over the temperature range 25-1000°C. The
slightly higher strength of the three-layer composites is not
likely due to transformation-induced stresses since sintering
occurred in the monoclinic stability range for the
unstabilized HfO;.

In an effort to 1lower the m-->t transformation
temperature, HfO0-Z2r0O; powder was made and x-rayed to verify
that a solid solution had formed. Al;03-15 vol. % (Hf0,-50
mol. % ZrOz) was used as the outer layer and Al;03-15 vol. %
2r02(3 mol. % Y303)) was the inner layer in three-layer
composites. The room temperature strength of the three-layer
composite was 9471164 MPa and the strength at 1000°C was
523+23 MPa. The strength at 1000°C is not improved over the
strength of 644151 MPa measured at the same temperature for
three-layer Alz03-15 wvol. % ZrO; composites. While the
concept of improving the high temperature strength of three-
layer composites by substituting HfO; for Zr0O; is sound,
improved HfO2; or HfO3-ZrO; powders will be required before
this concept is realized in practice.

SUMMARY AND CONCLUSIONS

Three-layer oxide ceramics with compressive residual
stress ranging between 300 and 600 MPa in the outer layers
were fabricated using dry pressing and slip casting. The
outer layer thickness was controlled in the green state. The
outer layer protected against damage due to surface flaws or
sliding contact.

Transformation-induced stresses were present at
temperatures in excess of 750°C. Stress due to the thermal
expansion mismatch between inner and outer layers were
superimposed to give strength increases greater than 500 MPa
at room temperature.
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Slip casting was used to improve the uniformity of the
interface between layers to allow composites with outer layver
thicknesses of 200-300 Hm to Dbe fabricated. The room
temperature strength of Al;03-15 vol. % ZrOy composites
increased from 825 MPa to 1150 MPa and the strength at 1000°C
‘increased from 320 MPa to 640 MPa. Strength in excess of 1200
MPa at room temperature was achieved by superimposing
temperature stress on transformation-induced stress. Both
monolithic and layered cam rollers fabricated by slip casting
survived the impact testing required for cam followers in
automobiles.

In addition to strength measurements, residual stresses
were detected by strain gage measurements, characterization
of monoclinic content as a function of temperature by x-ray
diffraction, strength and indentation/strength measurements,
indentation crack length measurements, and thermal shock
testing.

Grinding dramatically improves the strength of Al;03-15
vol. % Zr02(3 mol. % Y303) without creating substantial
transformation-induced stresses detectable by standard x-ray
techniques. These monolithic materials do have surface
induced residual stresses which do not protect against
surface damage. In contrast, three-layer composites, with
outer layers exceeding 100 Um, have excellent damage
resistance. Further work is needed to identify applications
where layered composites are cost effective in replacing
monolithic ceramics due to their improved damage resistance.
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