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Abstract 
 
Multiscale, multirate scientific and engineering applications in the SciDAC portfolio possess resolution 
requirements that are practically inexhaustible and demand execution on the highest-capability computers available, 
which will soon reach the petascale. While the variety of applications is enormous, their needs for mathematical 
software infrastructure are surprisingly coincident; moreover the chief bottleneck is often the solver. At their current 
scalability limits, many applications spend a vast majority of their operations in solvers, due to solver algorithmic 
complexity that is superlinear in the problem size, whereas other phases scale linearly. Furthermore, the solver may 
be the phase of the simulation with the poorest parallel scalability, due to intrinsic global dependencies. This project 
brings together the providers of some of the world’s most widely distributed, freely available, scalable solver 
software and focuses them on relieving this bottleneck for many specific applications within SciDAC, which are 
representative of many others outside.  Solver software directly supported under TOPS includes: hypre, PETSc, 
SUNDIALS, SuperLU, TAO, and Trilinos. Transparent access is also provided to other solver software through the 
TOPS interface.  
 
The primary goals of TOPS are the development, testing, and dissemination of solver software, especially for 
systems governed by PDEs. Upon discretization, these systems possess mathematical structure that must be 
exploited for optimal scalability; therefore, application-targeted algorithmic research is included.  TOPS software 
development includes attention to high performance as well as interoperability among the solver components. 
Support for integration of TOPS solvers into SciDAC applications is also directly supported by this proposal. 
 
The role of the UCSD PI in this overall CET, is one of direct interaction between the TOPS software partners and 
various DOE applications scientists – specifically toward magnetohydrodynamics (MHD) simulations with the 
Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC and Applied Partial Differential Equations 
Center (APDEC) SciDAC, and toward core-collapse supernova simulations with the previous Terascale Supernova 
Initiative (TSI) SciDAC and in continued work on INCITE projects headed by Doug Swesty, SUNY Stony Brook.  
In addition to these DOE applications scientists, the UCSD PI works to bring leading-edge DOE solver technology 
to applications scientists in cosmology and large-scale galactic structure formation. 
 
Unfortunately, the funding for this grant ended after only two years of its five-year duration, in August 2008, due to 
difficulties at DOE in transferring the grant to the PI’s new faculty position at Southern Methodist University.  
Therefore, this report only describes two years’ worth of effort. 
 
 
 
 
 
 
 
 
                                                
1  TOPS PI at the Unversity of California, San Diego.  
Current address is SMU Department of Mathematics, PO Box 750156, Dallas, TX 75275, reynolds@smu.edu. 
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Scalable Implicit Solvers for Fusion Plasmas 
  

 
Problem/collaboration introduction: 
Plasma physics simulations are a key component to scientific understanding of both fusion 
plasmas and atmospheric processes.  A standard model in both regimes is that of 
magnetohydrodynamics (MHD), which couples the compressible Euler equations for gas 
dynamics with the low-frequency Maxwell equations for evolution of electromagnetic fields.  
The MHD equations exist in three basic variants, each with increasing physical realism: ideal 
MHD, visco-resistive MHD, and extended MHD.  The basic ideal MHD model is hyperbolic in 
type, but exhibits extreme numerical stiffness due to the presence of non-energetic but rapid fast-
magnetosonic and Alfven waves.  The latter models increase the numerical stiffness, due to the 
introduction of diffusion in the visco-resistive model, and the introduction of dispersive wave in 
the extended model.  As such, large-scale simulations of these equations, especially for fusion 
plasmas, require the use of implicit time methods for computational efficiency.   
 
It is in this context that our work resides, namely in the development of implicit solvers of 
optimal complexity for solution of PDE systems modeling fusion plasmas.  As with most modern 
approaches to fully implicit solvers, we utilize an inexact Newton-Krylov method, wherein each 
time step of the evolution requires the solution of a large-scale nonlinear problem.  The inexact 
Newton algorithm in turn reduces this nonlinear problem into a sequence of large-scale linear 
solves.  The Krylov method then reduces each linear solve to a sequence of highly efficient 
matrix-vector products. However, for true scalability of this overall approach, a preconditioner 
must be used to accelerate convergence of the Krylov iteration as the overall problem size 
increases. 
 
The role of this preconditioner is to provide an approximate solution approach to linearizations 
of the original nonlinear partial differential equation (PDE) operator.  For a preconditioning 
approach to enable effective utilization of modern large-scale computing resources, the 
preconditioner must simultaneously provide a good approximation to the original PDE, while 
also allowing a high computational efficiency, and optimal parallel scalability.  
 
 
Ideal MHD preconditioner description: 
In this work, we have completed the mathematical derivation, theoretical analysis and 
computational testing of a new preconditioning strategy aimed at stiff, ideal MHD problems, in 
collaboration with Princeton Plasma Physics scientist Ravi Samtaney and Lawrence Livermore 
National Laboratory scientist Carol Woodward.   
 
The preconditioning approach that we have developed aims to alleviate stiffness due to the 
fastest waves inherent in the MHD formulation.  This works through a multi-stage process:  

(1) Directionally split the implicit Newton system into separate systems for each Cartesian 
direction. 

(2) Project the linear implicit Newton systems that are written in terms of conserved 
variables into characteristic variables, effectively splitting the coupled implicit system 
into separate scalar systems.  

(3) Directly solve only the resulting implicit systems that arise due to the fast MHD waves 
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that cause stiffness in the overall implicit solve; and  
(4) project the preconditioned solution in characteristic variables back into the original 

conserved variable formulation. 
 
A key component of this preconditioning approach is the decomposition of the PDE system into 
its individual characteristic components, followed by the selective solution of only those 
components that cause stiffness in the PDE system.  In a mathematical analysis of this approach, 
we have shown that the accuracy is a function of both the splitting accuracy used to decompose 
the system, as well as the number of characteristic components chosen to precondition.  The first 
term gives rise to an O(dt2) error term, and the latter error is dominated by the term |c dt/dx| / (1 - 
|c dt/dx|), where c corresponds to the eigenvalue of the first neglected component, and dt and dx 
correspond to the temporal and spatial discretization parameters.  Since the time step dt is 
selected to follow the dynamics of interest (the energetic slower wave dynamics), this estimate 
implies that one need only precondition those characteristics with speeds faster than the slow 
waves, i.e. those causing stiffness in the implicit MHD system.  Experimental verification of this 
property is born out in Figure 1, showing that the eigenvalue distribution for the overall implicit 
system decreases dramatically as the number of preconditioned waves (q) increases. 
 

 
 
Results: 
Initial tests on model MHD test problems (both ideal and visco-resistive) show that this approach 
provides both a dramatic decrease in iteration counts required for the outer iterative linear solver, 
along with tremendous run-time improvements over non-preconditioned implicit simulations.  
Specifically, testing has shown that this preconditioner performs remarkably well for problems 
where the underlying stiffness results from the fastest MHD waves, scales well to large problem 
sizes and numbers of processors (see Figure 2), and does not contribute significantly to 
divergence errors in the magnetic field (see Figure 3).  

Figure 1: eigenvalue spectrum as 
a function of the number of waves 
preconditioned (q) for an 
illustrative 1D MHD problem.  
There are 8 total waves, and as q 
increases, the preconditioned 
spectrum shrinks as predicted. 
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Solver ramifications on solenoidal MHD constraint: 
In our studies of preconditioning approaches above, we have investigated how the choice of 
numerical solution methods, both at the spatial discretization level and at the nonlinear solver 
level, affect the underlying solenoidal constraint condition on the magnetic field.  For example, it 
is well known that non-commutative spatial semi-discretizations can result in significant 
violations of this constraint, since the continuum-level identity div(curl(u))=0  inherently 
requires that  
 

€ 

∂ 2

∂x∂y
=

∂ 2

∂y∂x
. 

 
Standard upwind spatial discretizations and piecewise linear finite elements violate this 
requirement, which gives rise to modern Constrained Transport methods and C1 finite element 
formulations of MHD systems.  In a similar vein, we investigated whether the use of inexact 
Newton-Krylov methods, both with and without preconditioning, caused similar deleterious 
effects on the solenoidal condition.   
 
Through numerical analysis of the inexact Newton algorithm, we found that if the underlying 
spatial semidiscretization is commutative, the non-preconditioned inexact Newton algorithm will 
exactly preserve the solenoidal constraint (to floating-point roundoff).  However, when 
preconditioners are introduced, this theory no longer holds.  However, in computational 
experiments of our non-preconditioned and preconditioned inexact Newton solver on standard 
ideal MHD test problems, we found that solenoidal violation due to preconditioning was minimal 
(in the 9th digit), providing far less harm than use of non-commutative discretizations (see Figure 
3). 

Figure 2: preconditioner 
scaling for ideal MHD 
problem involving non-
mesh-aligned propagation of 
slow MHD waves.  All 
preconditioned solves require 
a small fraction of the effort 
of non-preconditioned solves 
(not shown), and overall 
iterations remain relatively 
constant with mesh 
refinement.  
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Scalability improvements: 
Since completing our work on [21], we have made significant progress in improving this 
preconditioning approach for large-scale computation.  At the heart of this preconditioner, we 
solve a large number of decoupled, possibly periodic, parallel tridiagonal or pentadiagonal 
systems.  Since all other calculations in our preconditioner are spatially local, the scalability of 
our approach inherently relies on the scalability of the parallel periodic banded solver used at it's 
core;  if that component solver scales well to p processors, the overall preconditioning approach 
should scale well to p2 processors for 2D simulations, and p3 for 3D simulations.  In previous 
results [21], this inner solver was implemented using a standard Schur-complement approach, 
wherein each process locally solved their portion of the domain, and then a single global solve 
coordinated all inter-process couplings in a linear system with 2 unknowns per inter-process 
boundary.  Due to the high degree of concurrency and significant parallel communication 
required for this method, tests on this component solver showed ideal parallel weak scaling only 
for problems using up to 16 processors in a given Cartesian direction (i.e. 256 processors in 2D, 
1024 in 3D), which is clearly well below the needs of petascale computing platforms.   
 
We therefore investigated alternate solution techniques for this inner solver for the directional 
preconditioner sub-systems, based on fully asynchronous execution and only requiring point-to-
point communication. Tests of a new asynchronous approach, based on pipelining the large 
number of solves in each direction, have demonstrated near perfect weak scaling on problems 
using up to 1024 processors in any coordinate direction, as seen in Figure 4.  As this examines 
only a 1D parallel decomposition, we estimate that this approach could result in near perfect 
solver scalability to up to 106 processors for 2D simulations, and 109 for 3D.  We have begun 
work on testing the utility of this solver on large-scale stiff ideal MHD simulations. 
 
 

Figure 3: solenoidal constraint 
violations due to implicit solvers.  
“Base” corresponds to a non-
preconditioned Inexact Newon-
Krylov method.  “Preconditioned” 
employs the fast wave 
preconditioner above.  “Non-
Commutative” employs a non-
preconditioned solver, but uses an 
upwind spatial discretization that 
does not preserve commutativity 
in the discrete differentiation 
operators. 
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Extensions to resistive MHD: 
In addition, we have continued development of a multigrid-based preconditioning approach for 
visco-resistive MHD simulations involving significant diffusive effects.  While many MHD 
problems are dominated by stiffness due to the interaction of fast and slow hyperbolic waves, 
higher-order MHD models incorporate viscosity, resistivity and thermal heat conduction.  Even 
if these diffusive terms are small (as is the case with fusion plasmas), at petascale resolutions the 
increased stiffness resulting from these second-order derivatives can begin to dominate the 
numerical convergence of an implicit solver.  
 
This new preconditioning component employs the HYPRE linear solver library, using both their 
robust scalar-valued multigrid solver SMG, allowing for solutions involving anisotropic heat 
conduction, as well as their highly efficient PFMG solver enabling geometric multigrid solvers 
for systems of coupled diffusion operators.  Through continued dialogue with the HYPRE solver 
authors, we have optimized this interface so that for large scale diffusion-dominated MHD 
simulations, scalability of the entire implicit MHD solver infrastructure should hinge on the 
ultra-scalable HYPRE linear solver components.  We have begun testing of this preconditioning 
approach on relevant visco-resistive MHD problems. 
 
We have also begun investigation of coupled preconditioning strategies that will employ both the 
fast wave stiff ideal MHD preconditioner, and the HYPRE-enabled diffusive MHD 
preconditioner, to allow for realistic MHD simulations in which both the stiff hyperbolic waves 
and the diffusion dominate various events and/or regions in the nonlinear evolution of the fusion 
system.  These strategies rely on operator-split approaches for combining these linear 
preconditioning operators, in which we plan to introduce spatially- and temporally-adaptive 
splitting strategies to employ the appropriate preconditioning operator for the relevant physics 
present in the simulation. 
 
 
Extensions to shaped plasmas: 
In collaboration with Samtaney and Woodward, we have pursued extensions of the fully implicit, 
preconditioned approach to simulations of stiff, nearly ideal MHD problems posed on mapped 

Figure 4: Weak scaling of inner 
solvers.  All processors used a 
base grid of 643 cells, and we 
increased the number of 
processors in one direction.  We 
compare three implementations: 
“Algorithm 1” was the method 
used in the publication [21], 
“Algorithm 2” attempted to 
reduce the overall number of 
messages, and “Algorithm 3” 
followed an asynchronous 
pipelining approach.  All times 
are shown in seconds, and all 
runs were performed on the 
TACC Ranger system. 
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spatial grids, used for representing tokamak geometries. This work is based on our previous 
collaborative efforts in development of fully implicit simulation technology for resistive MHD 
simulations using Cartesian grids [28].  Mapped spatial grids, however, allow for simulations in 
the native toroidal geometry of tokamak fusion devices based on logically Cartesian data 
structures.  The use of such regular data structures then allows for highly efficient computational 
algorithms.  Moreover, since these consist of mapped cylindrical grids, explicit-time simulations 
on which suffer from a well-known difficulty due to the decreasing CFL time step stability 
restriction due to the very small cell sizes near the core of the cylinder.  Implicit methods, on the 
other hand, are immune to this artificial stability restriction resulting from small cells near the 
plasma core.   
 
To this end, we have finished implementation of implicit simulations on mapped cylindrical 
grids, allowing both simulations using a fixed-step second-order time discretization, as well as a 
more efficient adaptive step and order time integration approach based on the CVODE solver. 
These extensions required bolstering of the previous interface to the SUNDIALS implicit 
solvers, as well as the development of robust solver algorithms that allow discontinuities arising 
from flux-limited spatial discretizations prevalent in high-order finite-volume algorithms.  
Results from these un-preconditioned implicit mapped-grid simulations of pellet injection are 
shown in Figure 5. 
 
In addition, we have finished the mathematical formulation and initial development of the fast-
wave preconditioning approach for the mapped-grid systems.  While following the same overall 
approach, the mapped equations induce transformations between the physical tokamak geometry 
and logically rectangular solver data structures, which we have incorporated into the 
preconditioning formulation.  We are in the process of code verification for the mapped-grid, 
stiff hyperbolic preconditioner, and plan to begin testing of the approach on simulations of pellet 
injection refueling and edge-localized mode (ELM) instabilities of tokamak plasmas in the near 
future.  
 

12

Curvilinear coordinates for shaped plasma
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Figure 5: Implicit solver results from shaped-plasma simulation of pellet injection fueling.  Left: plot of the 
curvilinear grid.  Right: time snapshots of the density field, showing advection and ablation of the high density 
pellet.  The implicit solver framework is inherently geometry-neutral, though the fastwave preconditioning 
approach relies on a logically Cartesian mesh.  Here it will follow waves traveling radially (slow), toroidally 
(medium) and around grid-aligned flux tubes (fast), in a natural decomposition of speeds in geometric 
directions.  
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Although implicit methods ameliorate the CFL stability restriction for such simulations, both 
implicit and explict methods suffer from increased spatial discretization error due to the 
coordinate singularity near the plasma core.  We have therefore begun investigations of two 
additional approaches for simulations of shaped plasmas, both based on logically-Cartesian 
methods as in our previous work.  The first is based on a level-set approach to allow for arbitrary 
shaped plasma geometry.  The second is an embedded boundary method in which the 
plasma/vacuum boundary is simulated by an extremely steep gradient in density, pressure, 
resistivity and heat conduction in the computational domain.  The first of these approaches 
allows a very straightforward approach for simulating the shaped plasma, but requires 
investigation on combining level-set and implicit-time methods.  The second of these approaches 
allows simulations of plasma edge-core interactions including edge-localized mode (ELM) 
instabilities, but requires advances in scalable solver technologies for problems involving 
extreme anisotropies in the relevant physical parameters. 
 
With Carol Woodward (LLNL) and her summer student, Daniel Osei-Kuffuor, we have begun 
studies of methods for scalable solution of highly anisotropic heat conduction processes on 
mapped spatial grids.  Although implicit solvers for implicit heat conduction in MHD typically 
assume the heat conductivity to be isotropic, tokamak plasmas exhibit very high anisotropy, with 
the conductivity much larger along the magnetic field lines than orthogonal to them.  For this 
work, we are investigating various multigrid methods, specifically those that have achieved high 
success in highly anisotropic simulations of groundwater flow.  Furthermore, lessons learned 
from this work will directly apply to inclusion of nonlinear (and highly anisotropic) resistivity in 
models of fusion MHD, which is also traditionally approximated using constant resistive terms. 
 
 
Talks and Papers: 
Our DOE-supported work on implicit solvers and preconditioners for Cartesian MHD 
simulations has been published in [21-22,28].  We are currently working on a paper involving 
our studies of combination preconditioning combining the fast wave and diffusive solvers in 
[29].  We are also currently working on a paper describing our studies of implicit solvers and 
preconditioners for mapped-grid MHD simulations in [30]. 
 
Moreover, we have presented this work at numerous conferences, colloquia and workshops [1-
5,8-17,19-20]. 
 

 
 

Implicit Solvers for Coupled Multiphysics Simulations Involving Shocks 
 
Problem/collaboration introduction: 
In collaboration with Doug Swesty at SUNY Stony Brook and Carol Woodward at Lawrence 
Livermore National Laboratory, we have continued investigations of robust and efficient 
approaches for fully implicit simulations of hydrodynamics and constrained hydrodynamics 
applications of relevance to stellar astrophysical systems.  These investigations were a 
continuation a previous SciDAC-1 collaboration with the Terascale Supernova Initiative (TSI), 
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and under SciDAC-2 were in support of a DOE INCITE project on core-collapse supernova 
simulations headed by Doug Swesty and Eric Myra from SUNY Stony Brook.  The problem 
under investigation in this work is the development of fully implicit solvers for simulations of 
core-collapse supernovae.  To properly simulate such events, models must be included for 
radiation transport of multiple neutrino species, hydrodynamic motion for capturing strong 
shocks present due to the collapsing stellar core, and chemical kinetics to model the reacting 
neutrino species’ interactions.  In such coupled simulations, the time scale for radiation transport 
and neutrino physics is much faster than the hydrodynamics, and traditional numerical methods 
handled these in a simple operator-split fashion, with the radiation transport and chemistry 
handled implicitly, and the hydrodynamic motion evolved explicitly. However, such splittings 
introduce time-discretization errors and additional stability restrictions, and the goal of our 
astrophysics collaborators was to instead use a fully implicit approach to allow for increased 
accuracy and stability.  
 
Unlike typical physical problems tackled through implicit methods, these systems typically give 
rise to strong hydrodynamic shocks, incorporate non-differentiable 'switches' in their 
computational implementation, and involve solution components that vary by many orders of 
magnitude throughout a simulation, all of which result in tremendous difficulty for standard 
inexact Newton solver formulations. We therefore have been working toward the implicit 
solution of the most non-differentiable and difficult (from an implicit algorithms viewpoint) 
component of a fully implicit multi-physics simulation capability for such astrophysical systems, 
that of implicit-time shock-capturing methods. 
 
 
Computational approach: 
To this end, we have completed construction of a fully nonlinearly-implicit approach for 
hydrodynamics and gravitationally-constrained hydrodynamics evolution equations for fluid 
dynamics in stellar astrophysical systems.  The resulting approach handles implicit formulations 
of both Eulerian and Lagrangian hydrodynamics, and will prove invaluable in simulations of 
stiffly interacting radiation-hydrodynamics, gravitational-hydrodynamics, and reacting-
hydrodynamics systems present in high energy and density physics applications, including 
problems involving strong shocks and adaptive meshes.   
 
 
Talks and papers: 
Details of these robustness improvements to standard methods were presented in [23], and were 
featured in an invited talk by Carol Woodward at the SciDAC 2008 conference.  We are 
currently working on a more thorough article documenting and testing these approaches in detail 
[24]. 
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Implicit Solvers for Large-Scale Simulations of Cosmological Reionization 
 
Problem/collaboration introduction: 
While not directly supported by the DOE Office of Science, we have worked to benefit leading 
DOE-related science applications through the use of TOPS software.  The Laboratory for 
Computational Astrophysics at the University of California, San Diego, develops and maintains 
an open-source community astrophysics code (Enzo) that enables very large-scale adaptive mesh 
simulations of cosmological hydrodynamics, dark matter particle dynamics, and chemical 
ionization.  This group has a long history of strong collaborations with LLNL astrophysicists and 
high-energy physicists with interests in large-scale simulations involving radiation and materials 
couplings. 
 
 
Numerical methods: 
In working with the LCA, we have incorporated new solvers in the Enzo code to enable fully 
implicit couplings between radiation hydrodynamics, chemical ionization kinetics, and gas 
energy feedback, with the aim of enabling petascale simulations of cosmological reionization in 
the early universe.  This stiff implicit sub-system is solved using a customized Newton-Krylov 
solver infrastructure, with a Schur-complement linear solver to handle inter-physics couplings.  
The resulting inner Schur linear systems are then solved using a multigrid-preconditioned 
conjugate-gradient linear solver from the TOPS-supported HYPRE library.   
 
In addition, this set of equations and code infrastructure serve as a testing ground for our 
development of methods for accurate, robust and scalable solution of coupled multi-physics 
systems.  In order to deal with its nonlinear interaction of multi-scale processes in both space and 
time, we have just developed a novel approach for implicit couplings between reaction and 
diffusion processes.  Tests of this new approach show that it provides a highly robust formulation 
for accurate, coupled, implicit systems of this type, even at very large time step sizes.   
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Figure 6: Weak scaling of 
the HYPRE-based implicit 
multiphysics solver for 
cosmological ionization. 
All processors used a base 
grid of 643 cells, and we 
increased the number of 
processors uniformly in 
each direction.  Note the 
predicted O(log p) scaling, 
typical of multigrid. All 
runs were performed on the 
NICS Kraken system. The 
runtime decrease going to 
32k cores resulted from 
dedicated “whole machine” 
time, in which no other 
uses were running jobs. 
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Results: 
Recent tests of this solver infrastructure have shown tremendous results on a suite of DOE-
related and cosmological verification test problems, and have demonstrated near perfect weak 
CPU scaling to over 32000 processors on some of the largest NSF computer resources, as shown 
in Figure 6.   
 
 
Talks and Papers: 
Details of this work, including its reliance on TOPS-based software projects, are included in [25-
27], and have been featured in presentations [7, 18].  We are also currently working on a 
manuscript describing our approach for increased robustness in calculations of coupled reaction 
and diffusion. 
 
In addition, much of this work has been performed in tight dialogue with LLNL radiation 
physicists John Hayes, Frank Graziani and Louis Howell, and may lead to strong collaborations 
in the near future. 
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Presentations, Workshops and Manuscripts Resulting From This Work 
 
 
Presentations and Workshops: 
 
[1] Invited presentation, "Mathematical Modeling and Simulation in Fusion Energy Research", University of 
California at San Diego, Department of Mathematics, 2007. 
 
[2] Invited presentation, "Implicit Integration and Constraint Preservation in Resistive MHD Fusion Modeling", 
University of Washington, Department of Applied Mathematics, 2007.  
 
[3] Invited presentation, "Mathematical Modeling and Simulation in Fusion Energy Research", Duquesne 
University, Department of Mathematics, 2007.  
 
[4] Invited presentation, "Implicit Integration and Constraint Preservation in Resistive MHD Fusion Modeling", 
Southwestern University, Department of Mathematics and Computer Science, 2007.  
 
[5] Invited presentation, "Implicit Integration and Constraint Preservation in Resistive MHD Fusion Modeling", 
Tufts University, Department of Mathematics, 2007.  
 
[6] Chair, invited plenary panel discussion, "Research Directions and Enabling Technologies for the Future of 
CS&E", 2007 SIAM Conference on Computational Science and Engineering, 2007. 
 
[7] Invited presentation, "Simulating Radiation Transport in Enzo", Center for Applied Scientific Computing, 
Lawrence Livermore National Lab, Livermore, CA, 2007. 
 
[8] Invited presentation, “Modeling and HPC Challenges in MHD: Magnetically-Confined Fusion Plasmas,” Young 
Scientists US/France bilateral workshop on Modeling and High Performance Computing,” Georgetown University, 
Washington DC, 2007. 
 
[9] Invited presentation, "Implicit MHD Based on SUNDIALS Software", Future Directions for M3D Workshop, 
Princeton Plasma Physics Laboratory, 2008. 
 
[10] Invited presentation, “Scalable Implicit Methods for Magnetic Fusion Modeling”, Southern Methodist 
University, Department of Mathematics, 2008. 
 
[11] Invited presentation, “Scalable Implicit Methods for Magnetic Fusion Modeling”, U.S. Naval Academy, 
Department of Mathematics, 2008. 
 
[12] Invited presentation, “Scalable Implicit Methods for Magnetic Fusion Modeling”, Texas A&M University, 
Department of Mathematics, 2008. 
 
[13] Invited presentation, “Scalable Implicit Methods for Magnetic Fusion Modeling”, Temple University, 
Department of Mathematics, 2008. 
 
[14] Invited presentation, “Applied Mathematics and Scientific Computing in Fusion Energy Modeling”, 
Swarthmore College Department of Mathematics, 2008. 
 
[15] Invited presentation, “Scalable Implicit Methods for Magnetic Fusion Modeling”, Georgia Institute of 
Technology, Department of Computational Science and Engineering, 2008. 
 
[16] Invited presentation, “Operator-Based Preconditioning of Stiff Waves in Implicit MHD”, 2008 SIAM 
Conference on Parallel Processing for Scientific Computing, 2008. 
 
[17] Invited presentation, “Scalable Implicit Methods for Magnetic Fusion Modeling”, University of California at 
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San Diego, Center for Computational Mathematics Seminar, 2008. 
 
[18] Invited presentation, “Multi-physics/nulti-scale methods I: methods for multi-physics coupled solvers”, 
Computational Infrastructure for Geodynamics: Workshop on Mathematical and Computational Issues in the Solid 
Earth Geosciences, Santa FE, NM, 2008.  
  
[19] Invited presentation, “A preconditioned JFNK method for resistive MHD in a mapped-grid tokamak geometry”, 
2009 SIAM Conference on Computational Science and Engineering, Miami, FL, 2009. 
 
[20] Invited panelist, Mathematical Formulations Panel, DOE Extreme-Scale Computing for Fusion Energy 
Workshop, March 18-20, 2009. 
 
 
 
Manuscripts: 
 
[21] D.R. Reynolds, R. Samtaney and C.S. Woodward, “Operator-based preconditioning of stiff hyperbolic 
systems,” SIAM Journal on Scientific Computing, 32: 150-170, 2010. 
 
[22] D.R. Reynolds, R. Samtaney and C.S. Woodward, “Physics-based preconditioning of resistive MHD systems,” 
(in progress). 
 
[23] D.R. Reynolds, F.D. Swesty and C.S. Woodward, “A Newton-Krylov solver for implicit solution of 
hydrodynamics in core collapse supernovae,” Journal of Physics: Conference Series, 125, 2008. 
 
[24] D.R. Reynolds, C.S. Woodward and F.D. Swesty, “Efficient algorithms for implicit hydrodynamic simulation 
using Newton-Krylov methods,” (in progress). 
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