

MICHIGAN BIOTECHNOLOGY INSTITUTE

One Carbon Metabolism in Anaerobic Bacteria: Regulation of Carbon and Electron Flow During Organic Acid Production

Grant Number: DE-FG02-87ER13719
Amendment No. A004

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

J. Gregory Zeikus
and
Mahendra Jain

RECEIVED
BOSTON

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *g70*

SUMMARY

Our project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. We compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using *Butyribacterium methylotrophicum*, *Anaerobiospirillum succiniciproducens*, *Methanosaerina barkeri*, and a newly isolated tri-culture comprised of a syntrophic butyrate degrader strain IB, *Methanosaerina mazzei* and *Methanobacterium formicum* as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in *B. methylotrophicum* or *M. barkeri* is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO₂ fixation to succinate the PEP carboxykinase enzyme and gene of *A. succiniciproducens* are purified and characterized. Genetically engineered strains of *Escherichia coli* containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radiotracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO₂ fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

SCIENTIFIC BACKGROUND

One carbon and H₂ metabolism is associated with the degradation and synthesis of organic compounds during fermentations that provide energy for diverse species of anaerobic bacteria (Thauer et al., 1977, Zeikus, 1980). Methanogenic and acetogenic bacteria derive energy as a consequence of linking H₂ consumption with CO₂ reduction into methane or acetic acid. In these two different metabolic systems the functions of hydrogenase and the key CO₂ fixing enzymes for both catabolism and anabolism are shared and have been described (see Bhatnagar et al., 1991; Wood & Ljungdahl, 1991 for recent reviews).

Both methanogens and acetogens employ a carbonyl dependent acetyl CoA synthesis pathway of anabolism where H₂ + CO₂ are reduced to CH₃B₁₂ and CO which are condensed via CO dehydrogenase into acetyl CoA (Zeikus et al., 1985). Acetogens also use the carbonyl dependent acetyl CoA pathway (or Wood pathway) for catabolism (Wood et al., 1986). Dependent on the acetogenic species acetyl CoA can be converted to either acetic acid, butyric acid, ethanol or butanol. The acetogen we study, *Butyribacterium methylotrophicum* produces spores and ferments CO or glucose into all of these products (Lynd et al., 1982; Kerby et al., 1983, Lynd & Zeikus, 1983; Worden et al., 1989 see progress report).

Methanoscincina barkeri is one of the most catabolically diverse methanogen and it ferments H₂/CO₂, acetate, methanol, CO and methylamines. H₂ production and consumption is associated with both acetate and CO metabolism in *M. barkeri* (Krzycki et al., 1987; O'Brien et al., 1984; Bhatnagar et al. 1991). Most of the methane formed in nature (~70%) is derived from acetate fermentation. Methanogenesis from acetate proceeds by cleavage of acetyl CoA via CO dehydrogenase (Krzycki & Zeikus, 1984a) into a methyl moiety and a carbonyl moiety which serve as the electron acceptor and electron donor for methane and CO₂ production. The role of hydrogen and the mechanism of electron transfer between the C₁ and C₂ of acetate is the focus of the present research. We have proposed that this transfer is mediated by membrane bound electron carriers and enzyme with concommittant translocation of protons and reconsumption of the gradient to form ATP (Krzycki & Zeikus, 1984a; Krzycki et al., 1985; Kemner et al., 1987; Peinemann et al., 1988) have shown that methanogenesis from acetate leads to the formation of a transmembrane proton motive force, which can drive ATP synthesis. Cytoplasmic hydrogenase have been purified from *M. barkeri* strains which reduce F₄₂₀ (Fiebig & Feidrich, 1989; Fauque et al., 1984) and a ferredoxin (Hausinger et al., 1982) have been purified. Kemner et al. (1987) demonstrated that cytochrome b in *M. barkeri* membranes was reduced by hydrogenase and oxidized by methyl CoM reductase activities.

Anaerobic bacteria can also conserve energy as a consequence of fixing CO₂ into succinate but this biochemistry has not been well characterized (Thauer et al., 1977; Zeikus, 1980). Understanding of the biochemistry of succinate fermentations have focused on characterization of fumarate reductase and

electron transport coupled phosphorylation during growth of *W. succinogenes* grown on H₂ or formate plus fumarate (Kroger, 1980). Recently, succinate efflux has been shown to be linked to transport coupled phosphorylation in *Bacteroides* (Michel & Macy, 1990).

The catabolic pathway for glucose fermentation in *A. succiniciproducens* was proposed by Samuelov et al. (1991). It has been shown that the presence of CO₂ as an electron acceptor switches glucose catabolism from a lactate-ethanol fermentative process to a succinate respiratory process. Phosphoenol (PEP) carboxykinase was the key regulated enzyme in the pathway leading to succinate production, and its functions as a catabolic CO₂ fixing enzyme. By and large previous studies on PEP carboxykinase deal with the anabolic function of this enzyme. It is recognized as being a key enzyme in gluconeogenesis in different organisms from bacteria to vertebrates (Utter & Kolenbrander, 1972). Unlike these enzymes, PEP carboxykinase from *A. succiniciproducens* plays an important role in catabolic CO₂ fixation. The PEP carboxykinase of *A. succiniciproducens* was purified and characterized (Podkorytov & Zeikus, 1992). The enzyme was monomeric with an M_r of 57 000 \pm 2 000. The enzyme was ADP-dependent, oxygen stable, had a pH optimum of 6.5 - 7.1, and was stable from pH 5.0 to 9.0. The N-terminal sequence of the enzyme showed the most similarity to the enzyme from *Escherichia coli*. There are three genes encoding for ATP-dependent PEP carboxykinases sequenced to date from *E. coli*, *Trypanosoma brucei* and *Saccharomyces cerevisiae* (Medina et al., 1990). All of these enzymes function in vivo catalyzing formation of PEP from oxaloacetate.

We recently discovered that HCO₃⁻ is fixed into formate during syntrophic degradation of ethanol or butyrate (Thiele & Zeikus, 1988a,b; see progress report). This result was unexpected as syntrophic acetogenic bacteria which degrade ethanol or butyrate were thought to be obligate proton reducing bacteria that only produced H₂ and acetic acid which are simultaneously degraded by methanogenic partners (McInerney, 1988; Schink, 1992). This metabolic coupling between the syntrophiles and the methanogens is called interspecies H₂ transfer and is well documented (Zeikus, 1983; Schink, 1992). Interspecies formate transfer as a consequence of bicarbonate reduction by syntrophiles is more thermodynamically favorable (see progress report) than H⁺ reduction to H₂ but it remains to be better documented. Bicarbonate is reduced to formate by anaerobes either by formate dehydrogenase or CO₂ reductase (Thauer et al., 1977).

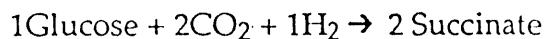
Hydrogenases have been characterized in diverse anaerobic bacteria that consume H₂ as an energy source or that produce H₂ as an end product of organic fermentations (see Przybyla et al., 1992 for a recent review). It is worth noting that we know a lot about the biochemistry of hydrogenase and we are learning more about hydrogenase genetics. However, we know almost nothing about the regulation of hydrogenase and its physiological function in anaerobes that produce and consume hydrogen during the fermentation of organic matter. The

production and consumption of H₂ during growth of anaerobes on organic substrates has been demonstrated during sulfidogenic fermentations (Odom & Peck, 1981), solventogenic fermentation (Kim et al., 1984), methogenic fermentation (Krzycki et al., 1987; O'Brien et al., 1984) and recently during carbonyl dependent acetogenic fermentations (see progress report). We intend to demonstrate how hydrogen production and consumption during acetate degradation by *M. barkeri* and during acetate synthesis in *B. methylotrophicum* is regulated by multiple hydrogenases and related to energy conservation (see progress report and proposed research).

Many bacteria produce multiple hydrogenases whose functions are not known (Adams et al., 1981). Hydrogenases also differ widely in regard to molecular composition, electron carrier specificity, kinetic properties, metal content, cellular localization etc. To date, hydrogenases have been purified, cloned, sequenced and characterized from diverse aerobic and anaerobic H₂ consuming or producing bacteria (Przybyla et al., 1992). The hydrogenase genes of methanogens but not acetogens have been characterized (Reeve & Beckler, 1990; Bhatnagar et al., 1991; Wood & Ljungdahl, 1991).

SIGNIFICANCE

The proposed research will provide new understanding on the regulation of carbon and electron flow pathways in anaerobic bacteria that employ one carbon metabolism in the synthesis or degradation of organic acids.


The biochemical properties and function of membrane bound hydrogenase associated with acetate degradation to methane by *M. barkeri* will be characterized. The biochemical properties and function of hydrogenases associated with the carbonyl dependent acetogenesis pathway of glucose degradation by *B. methylotrophicum* will be characterized. In addition, the hydrogenase genes of this acetogen will be cloned and compared to those of sulfate reducers, methanogens and fermentative bacteria described. This work will provide new physiological understanding on hydrogenase regulation and function in controlling carbon and electron flow in response to changes in fermentation substrates or end products.

The biochemical properties and physiological functions of two understudied catabolic CO₂ fixing reactions - PEP carboxykinase and CO₂ reductase will be elucidated. The former enzyme is the key CO₂ fixing enzyme for catabolic succinate production and the latter enzyme may be very important in the anaerobic degradation of fatty acids by mixed cultures of syntrophiles and methanogens.

The proposed research will also provide strategies for utilizing and controlling anaerobic bacterial fermentations used in the production of energy

intensive chemicals, and in waste treatment systems. Anaerobic bacterial fermentations have application in the direct fermentation of plant biomass substrates (starch, cellulose, glucose) into high value organic acids (lactic, succinic, butyric, acetic) and organic solvents (i.e., butanol, acetone and ethanol), or in the fermentation of synthesis gas ($\text{CO} + \text{H}_2$) or methanol derived from pyrolysis of coals and biomass residues into CH_4 , or oxychemicals (Zeikus, 1980). Most glucose based fermentations and the *B. methylotrophicum* CO fermentation produce multiple end products. Knowledge on how enzymes control carbon and electron flow in these fermentations is a key in understanding how to over produce a particular valuable end product as a consequence of elimination of a waste product. For example, just controlling production hydrogenase activity by inhibition with CO in the glucose fermentation by *Clostridium acetobutylicum* increased the butanol yield by 30% as a consequence of increasing butyric acid consumption and reduction (Kim et al., 1984). The current research should yield similar strategies for improving butyric acid and succinic acid based fermentation systems.

Succinic acid fermentations are particularly important for conversion of plant biomass into energy intensive chemicals and fuels. Succinic acid can be hydrogenated to 1-4 butanediol, the precursor to stronger than steel plastics used in manufacturing; and succinic acid is preferred over maleic anhydride, the current chemical feedstock used for 1-4 butanediol production (Jain et al., 1989). The succinate fermentation can be improved as the following reaction is feasible in theory (i.e., provided the organism has the right enzymes)

The succinate fermentation should be of interest to corn processors because industrial ethanol production from starch derived glucose fermentations produce copious amounts of CO_2 as waste end product. The uses for this waste CO_2 could be as the electron acceptor for a glucose based succinate fermentation process. We can predict that cloning the catabolic PEP carboxykinase gene into *E. coli* could convert it to a higher yielding succinate strain. This is in analogy to the work of Ingraham and coworkers who cloned the pyruvate decarboxylase and alcohol dehydrogenase genes of *Zymomonas mobilis* into *E. coli* and made the recombinant *E. coli* strain suitable for producing ethanol from hexose and pentose sugars.

Lastly, knowledge on the mechanism of degradation of acetate and butyrate and the role of hydrogen and CO_2 metabolism in these processes is crucial to understanding the anaerobic digestion of waste into methane. Butyrate degradation is often the rate limiting step in overall organic decomposition of soluble wastes and acetate degradation is rate limiting for methanogenesis. To improve anaerobic digestion systems, we need to understand the exact metabolites formed so as to develop monitoring systems based on them for improved process control.

R. Kerby and J. G. Zeikus. 1987. Anaerobic Catabolism of Formate to Acetate and CO₂ by *Butyribacterium methylotrophicum*. J. Bacteriol. 169:2063-2068.

Goodwin and J. G. Zeikus. 1987. Physiological Adaptations of Anaerobic Bacteria to Low pH: Metabolic Control of Proton Motive Force in *Sarcina ventriculi*. J. Bacteriol. 169:2150-2157.

J.A. Krzycki, J.B. Morgan, R. Conrad, and J.G. Zeikus. 1987. Hydrogen Metabolism During Methanogenesis From Acetate by *Methanosarcina barkeri*. FEMS Microbiol. Letts. 40:193-198.

R. Kerby and J. G. Zeikus. 1987. Catabolic Enzymes of the Acetogen *Butyribacterium methylotrophicum* Grown on Single-Carbon Substrates. J. Bacteriol. 169:5605-5608.

J. M. Kemner, J. A. Krzycki, R. C. Prince and J. G. Zeikus. 1987. Spectroscopic and Enzymatic Evidence for Membrane-Bound Electron Transport Carriers and Hydrogenase and Their Relation to Cytochrome b Function in *Methanosarcina barkeri*. FEMS Microbiol. Letts. 48:267-272.

J. Thiele and J. G. Zeikus. 1988. Control of Interspecies Electron Flow During Anaerobic Digestion: Significance of Formate Transfer Versus Hydrogen Transfer During Syntrophic Methanogenesis in Flocs. Appl. Environ. Microbiol. 54:20-29.

J. Thiele and J.G. Zeikus. 1988. Interactions Between Hydrogen- and Formate- Producing Bacteria and Methanogens During Anaerobic Digestion. Handbook on Anaerobic Fermentations Marcel Dekker, Inc. pp. 537-595.

T.E. Thompson and J.G. Zeikus. 1988. Regulation of Carbon and Electron Flow in *Propionispira arboris*: Relationship of Catabolic Enzyme Levels to Carbon Substrates Fermented During Propionate Formation Via the Methylmalonyl Coenzyme A Pathway J. Bacteriol. 170:3996-4000.

R.M. Worden, A.J. Grethlein, J. G. Zeikus and R. Datta. 1989. Butyrate Production from Carbon Monoxide by *Butyribacterium methylotrophicum*. Appl. Biochem. Biotechnol. 20/21:687-698.

S.E. Lowe, H.S. Pankratz, and J. G. Zeikus. 1989. Influence of pH Extremes on Sporulation and Ultrastructure of *Sarcina ventriculi*. J. Bacteriol. 171:3775-3781.

K. Saeki, M.K. Jain, G.-J. Shen R. Prince and J.G. Zeikus. 1989. Purification and Properties of Ferredoxin and Rubredoxin from *Butyribacterium methylotrophicum*. J. Bacteriol. 171:4736-4741.

B.C. Saha, R. Lamed, and J.G. Zeikus. 1989. Clostridial Enzymes. Clostridia Plenum Publishing pp. 227-263.

K. Saeki, Y. Yao, S. Wakabayashi., G.-J. Shen, J. G. Zeikus. 1989. Ferredoxin and Rubredoxin from *Butyribacterium methylotrophicum*: Complete Primary Structures Structures and Construction of Phylogenetic Trees. J. Biochem. 106:656-662.

M.K. Jain, R. Datta, J. G. Zeikus. 1989. Chapter 25: High-Value Organic Acids Fermentation Emerging Processes and Products [T. K. Ghose, ed., Ellis Harwood Limited Publishers, Chichester, England]. Bioprocess Engineering: The First Generation pp. 366-398.

H. Thiele, W.-M. Wu, M. K. Jain, J. G. Zeikus. 1990. Ecoengineering High Rate Anaerobic Digestion Systems: Analysis of Improved Syntrophic Biomethanation Catalysts. Biotechnol. Bioeng. 35:990-999.

N. S. Samuelov, R. Datta, M. K. Jain, and J. G. Zeikus. 1990. Microbial Decarboxylation of Succinate to PropionateKinetic Studies. Annals of NY Academy of Sciences 589:697-704.

L. Bhatnagar, M. Jain, and J.G. Zeikus. 1990. Methanogenic Bacteria. Chapter 9. Variations in Autotrophic Life (ed. Barton and Shively) Academic Press, pp. 251-270.

J. G. Zeikus, S. Lowe, and B.C. Saha. 1990. Biocatalysis in anaerobic extremophiles Chapter 13. Biocatalysis (ed. D. A. Abramowicz) Van Nostrand Reinhold, New York pp. 255-276.

S. Lowe and J. G. Zeikus. 1991. Metabolic regulation2 of carbon and electron as a function of pH during growth of *Sarcina ventriculi*. Arch. Microbiol. 155:325-329.

N. S. Samuelov, R. Lamed, S. Lowe, and J. G. Zeikus. 1991. Influence of $\text{CO}_2\text{-HCO}_3^-$ levels and pH on growth, succinate production, and enzyme activities of *Anaerobiospirillum succiniciproducens*. Appl. Environ. Microbiol. 57:3013-3019.

M. K. Jain, J. G. Zeikus, and L. Bhatnagar. 1991. Methanogens. Chapter 12. [Edited by Paul N. Levett, West Indies]. Anaerobic Microbiology: A Practical Approach pp. 223-245.

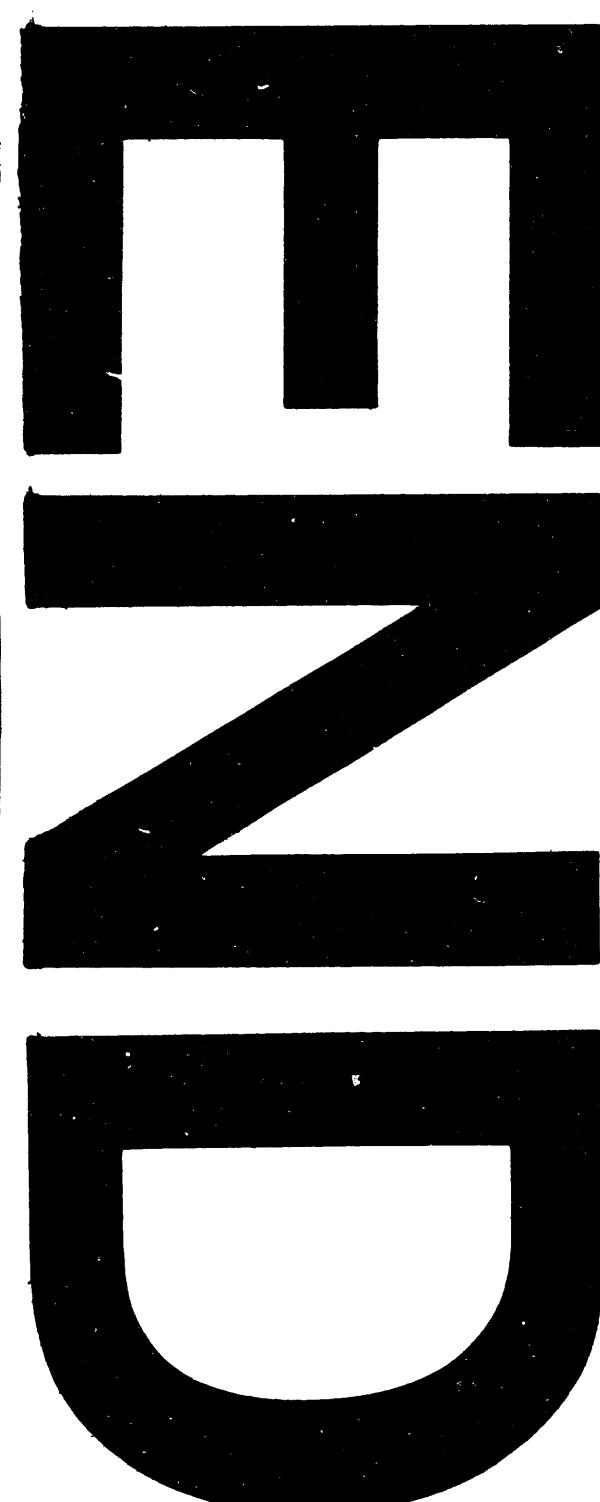
Wei-Min Wu, Mahendra K. Jain, E. Conway de Macario, Jurgen, H. Thiele and J. Gregory Zeikus. 1992. Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. *Appl. Microbiol. Biotechnol.* 38:282-290.

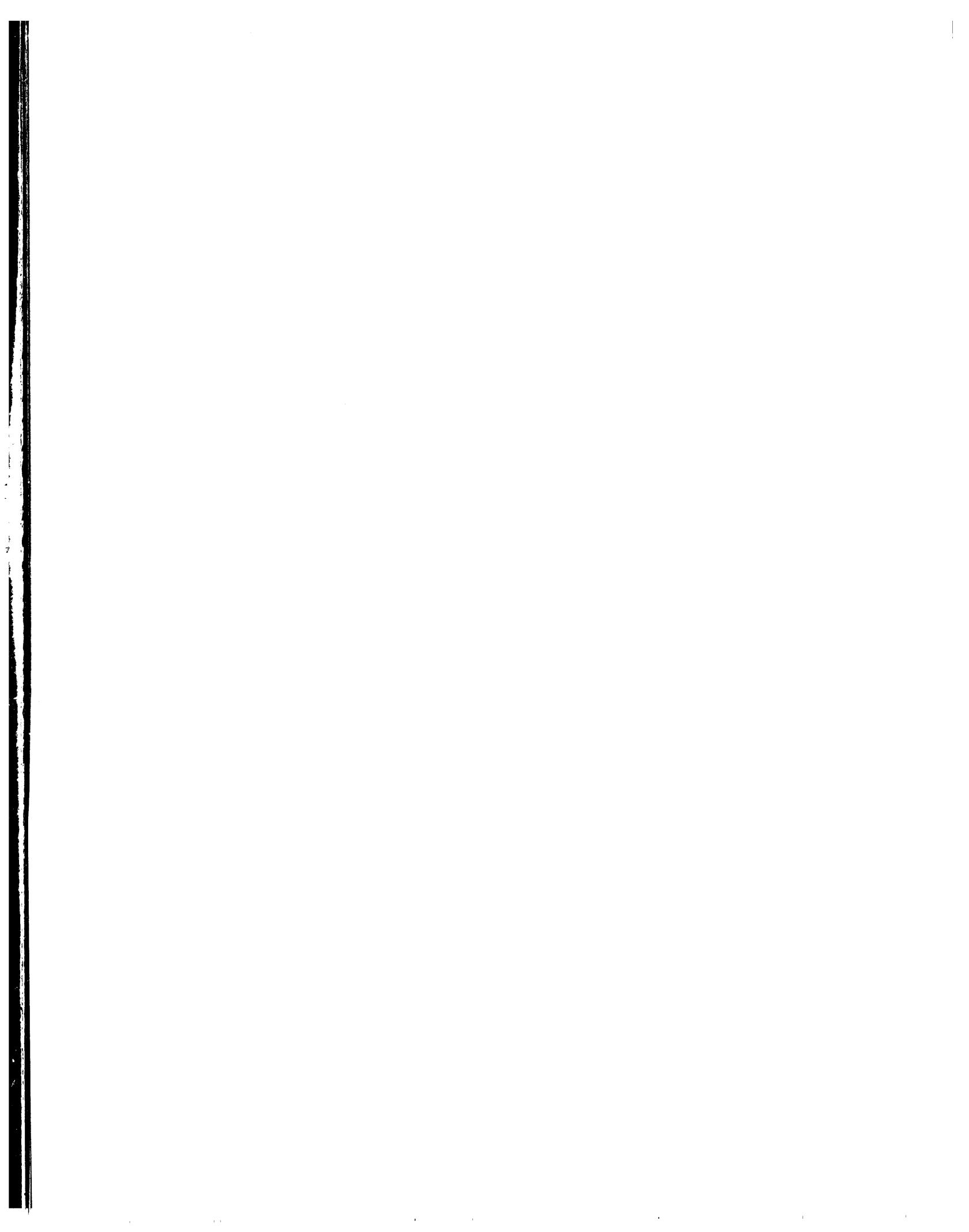
Seunho Jung, Susan E. Lowe, Rawle I. Hollingsworth, and J. Gregory Zeikus. 1993. *Sarcina ventriculi* Synthesizes Very Long Chain Dicarboxylic Acids in Response to Different Forms of Environmental Stress. *J. Biological Chem.* 268:2828-2835.

Wei-Min Wu, Robert F. Hickey, Mahendra K. Jain and J. Gregory Zeikus. 1993. Energetics and regulations of formate and hydrogen metabolism by *Methanobacterium formicicum*. *Arch. Microbiol.* 1993:159:57-65.

Seunho Jung, Susan E. Lowe, Rawle I. Hollingsworth, and J. Gregory Zeikus. 1993. *Sarcina ventriculi* Synthesizes Very Long Chain Dicarboxylic Acids in Response to Different Forms of Environmental Stress. *J. Biol. Chem.* 268:2828-2835.

S. M. Podkorytov and J. G. Zeikus. 1993. Purification and characterization of phosphoenolpyruvate carboxykinase, a catabolic CO₂-fixing enzyme, from *Anaerobiospirillum succiniciproducens*. *J. Gen. Microbiol.* 139:223-228.


U. Gokhale, H. C. Aldrich, L. Bhatnagar, J. G. Zeikus. 1993. Localization of carbon monoxide dehydrogenase in acetate-adapted *Methanosaarcina barkeri*. *Can. J. Microbiol.* J. 39:223-226.


Susan E. Lowe, Mahendra K. Jain and J. Gregory Zeikus. 1993. Biology, Ecology, and Biotechnological Applications of Anaerobic Bacteria Adapted to Environmental Stresses in Temperature, pH, Salinity, or Substrates. *Microbiol. Reviews* P. 451-509.

S.E. Lowe and J.G. Zeikus. 1993. Metabolic regulation of carbon and electron flow as a function of pH during growth of *Sarcina ventriculi*. *Arch Microbiol* (1991) 155:325-329.

Susan E. Lowe and J. Gregory Zeikus. 1993. Purification and characterization of pyruvate decarboxylase from *Sarcina ventriculi*. *J. Gen. Microbiol.* (1992), 138, 803-807.

6
3
DATE
REMOVED
by [redacted]

