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Abstract storm centers, but interpretation in real-time by operations
personnel can be difficult. For example, NASA's opera-

Lightning represents an event detectable optically, elec- tional guidelines are simply to halt activities if any contour
trically and acoustically, and several systems are already line breaks 1000 Volts/meter. However, non-threatening
in place to monitor such activit): Unfortunately, such
detection of lightning can occur too late, since operations conditions such as ground fog and sea spray can also gen-
need to be protected in advance of the first lightning strike, erate such fields, and operations are needlessly halted.
Additionall), the bolt itself can traverse several kilometers There is a pressing need for new analysis techniques for
before striking the ground, leaving a large region of efficient and effective interpretation of this quasi-static
uncertainD' as to the center of the storm and its possible electric field signal. We have been developing just such
strike regions. NASA Kenned)' Space Center has in place
an array of electric field mills that monitor the (effectively) techniques for an analogous problem of source localization
DC electric field. Prior to the first lightning strike, the sur- in human brain responses from the magnetoencephalogram
face electric fields rise as the storm generator within a (MEG) [1]. These MEG techniques are based on an adap-
thundercloud begins charging. Extending methods we tation of MUSIC, an algorithm originally developed for RF
developed for an analogous source localization problem in direction finding [2]. We have adapted this MEG research
magnetoencephalographs; we present Cramer-Rao lower
bounds and MUSIC scans for fitting a point-charge source to the thunderstorm localization problem and applied our
model to the electric field mill data. Such techniques can technique to data from the KSC field mill array.
allow for the identification and localization of charge cen-

ters in cloud structures. 2.0 Background

1.0 Introduction Figure 1 displays a photograph of one of the older field
mills in use at KSC. KSC has begun a program to replace

Lightning represents an event detectable optically, elec- these older field mills with a more modern version, but the

trically, and acoustically, and several systems are already in physical measurement concept remains the same. A spin-
place to monitor such activity. Unfortunately, such detec- ning metal rotor alternatingly exposes and covers station-
tion of a lightning event can occur too late, since many out- ary metal plates (the spinning blade "mills" the field).
door operations need to be protected before the lightning Charges alternatingly accumulate in either the stator or
strikes. Additionally, the bolt itself can traverse several rotor plates, and the sensor monitors the charge movement,
kilometers before striking the ground, leaving a large which is proportional to the electric field. This older ver-
region of uncertainty as to the center of the storm and its sion transmitted the signal over analog land-lines to a cen-
possible strike regions. NASA Kennedy Space Center tral digitizing site; the modern mills digitize at the sensor
(KSC) and sites in New Mexico (two of the United States before transmission over land-lines. Figure 2 shows the
most active thunderstorm regions) have in place arrays of positions of the 31 field mills spread throughout the Cape
electric field mill sensors that monitor the (effectively) DC Canaveral area.
electric field. Prior to the first lightning strike, the surface The data received at the 31 electric field mills are

electric fields rise dramatically as the storm generator formed into a spatiotemporal data matrix. Figure 3 displays
within a thundercloud begins charging. Surface contours the response of two selected mills over a time interval span-
generated from these arrays can give indications of the ning the approach and then decline of a thunderstorm.

Figure 4 displays the overlay of all mills in this same inter-
val, a period of about four hours. Some of the key features

Los AlamosNationalLaboratoryis operatedby theUniversityof Ca/i- in a thunderstorm are the onset of electrification, lightning
fomiafortheUnitedStatesDepartmentof Energyundercontract
W-7405-ENG-36. activity, then end of storm oscillations (EOSO), during
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HorJzon_RMSError,Meter5 xl0S ever, has been in use for two decades at KSC, and a heuris-
tic interpretation of its output has been acquired by KSC

FIGURE 5. Cramer-Rao bounds for the NASA Kennedy
Space Center - Cape Canaveral Air Force Station personnel. Thus this method of contour generation will be
sensor array of 31 electric field mills. Source is 10 used as a comparison test against the Thunderstorm
Coulombs point-charge 6 km over the Cape, with 100 MUSIC.
volts/meter RMS noise assumed at each sensor. This
figure is the scalar horizontal error. 5.0 Thunderstorm MUSIC

4.0 Contour Generation The sensors are recording a quasi-static electric field

The existing KSC technique for processing the field mill signal, so no time-of-arrival information among sensors is
data is to model the observed fields with 31 point charges available. As in the MEG problem, we instead exploit the

placed 6 km directly over each sensor, then solve for the near-field intensity of the signal and the signal's assumed
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FIGURE 7. Contour generation from KSC Model for two Peak 1,00, Refinedpk1.00ndx1:2 x 10s

simulated sources. Compare with Figure 8. FIGURE 8. MUSIC images for two source simulation.
Peaks occur at proper locations.

algebraic independence from other sources. The matrix is
decomposed into signal and noise subspaces through con- the KSC model was observed to have a large variability in
ventional eigendecomposition approaches. An array mani- the apparent peak of the field as a function of time, while
fold is formed for the point charge model over a conducting the MUSIC peak was relatively stationary. The MUSIC
plane and scanned in three dimensions through the signal peak of 0.98 indicates a very good fit between the model
subspace, looking for intersections of the model and data and the rank 5 subspace. Unfortunately, "ground truth" is
spaces. The metric recorded at each point is the primary not readily available for this data set, and future efforts will
cosine of the angle between the model and signal subspace, focus on data sets where other corroborating modalities are
such that unity indicates a perfect intersection of the pri- available, such as weather radar and lightning detection
mary vectors [5]. The observed rank of the signal subspace systems.

is typically less than 5. References
In spite of this oversimplification of the thunderstorm

model, the point-charge results are quite promising. We [1] Mosher JC, Lewis PS, and Leahy RM, "Multiple dipole
present a simulation and a data example to illustrate the modeling and localization from spatio-temporal MEG data,"IEEE Trans.Biomedical Eng, 1992, 39:541-557.
potential of the thunderstorm MUSIC in processing KSC
field mill data. Figure 7 and Figure 8 present the KSC con- [2] Schmidt RO, "Multiple emitter location and signal parameter
tour model and the results of a MUSIC scan for a two estimation," IEEE Transactionson Antennas and

Propagation, vol. AP-34, pp. 276-280, March 1986.Reprint
source equal intensity simulation. The contours were gen- of the original 1979paper from the RADC Spectrum
erated from the average observed field, while the MUSIC Estimation Workshop.
image was generated from a rank 2 analysis of the same
interval. Only the field values above 1 kv/m were imaged [3] Mosher JC, Spencer ME, Leahy RM, Lewis PS, "Errorbounds for EEG and MEG dipole source localization,"
in the KSC model, while only MUSIC peaks above 0.9 Electroenceph. andclin. Neurophys, 1993,86:303-321.
were imaged. We see that the MUSIC scan correctly iden- [4] Stoica P andNehorai A, "MUSIC, maximum likelihood, and
titles the two peaks, while the KSC model results in an Cramer-Rao bound," IEEE Transactionson Acoustics,
overall blur. Speech and Signal Processing, vol. 37, pp. 720-741,

Figure 9 displays a 200 second time interval during a May 1989.

thunderstorm recorded on August 5, 1991, during the [5] Golub GH and Loan CFV, Matrix Computations. Baltimore,
CAPE program. The arrow indicates the region analyzed MD:The Johns Hopkins University Press, second ed., 1989.
by both the KSC model and the Thunderstorm MUSIC.
Figure 10 displays the contours from the KSC model, and
Figure 11displays the MUSIC image. The two results now
disagree in the apparent location of the slorm cell; however,
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FIGURE9. Overlayof sensorresponsesduring200 Map Coordinates x 105

secondsof thunderstormactivity.Sharpchangesare FIGURE11.MUSICImageforsameperiod.Thislocation
theresponseof themillsto lightningactivity.Thedata wasconsistentlyfoundovermanytimeintervals,unlike
areanalyzedjustpriortoa lightningstrike.Someother theestimatedfieldpeakinFigure10;
featurestonotearetheapparentexponentialclamping
of thefields(aphysicalphenomenon),aswellassome
clippedsensorresponses(a sensorproblem).
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