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ABSTRACT

We use a one parameter model for GRB source repetition to investigate
the ability of BATSE to detect source repetition and to place constraints on
the fraction of repeating sources. From Monte Carlo simulations we find that
the current uncertainty in BATSE burst locations severely limits our ability to
confidently detect source repetition from distributions containing fewer than 10
-15% repeaters. A fit of our repetition model to 260 BATSE catalog bursts
yields a best-fit repeating fraction of fr = 21% with a 90% confidence region
ranging from 5.5 to 32.5 %. By modifying the size of the measurement errors
in our simulations we show that the location and width of the confidence region
depends sensitively on the burst location errors. With BATSEs present location
accuracy analysis of larger samples of bursts will not appreciably improve the
constraint on the repeating fraction.

INTRODUCTION

If correct, the recent suggestion I that as many as 15% of the classical
gamma ray bursts (GRBs) detected by BATSE arise from repeating sources has
important implications for current burst source models. A significant fraction
(>_ 10 %) of repeating sources can be more easily accomodated in galactic neu-
tron star models than extragalactic scenarios 1'2. Thus the ability to constrain
the fraction of repeating sources could provide crucial information distinguishing
between the most currently favored source models. The excess nearest neighbor
clustering would seem to have three possible causes. 1) Burst sources are re-
peating. 2) Systematic errors or biases in the measured BATSE positions mimic
intrinsic clustering. 3) The clustering arises from a random, source distribu-
tion purely by chance. Assuming there are no systematic biases in the BATSE
positions, the probability of 3) occurring is _ 2% for the BATSE B1 catalog 3.
Recent work by several authors 4'5 warns that systematic errors may be the cause
of the excess clustering. In addition, it has been shown that certain measure-
ment biases can produce the observed excess 6. However, at present the existence
of such a bias remains unproven. Here we investigate the ability of BATSE to
both detect and measure burst source repetition.

DETECTING GRB SOURCE REPETITION WITH BATSE

A test for repetition of sources is performed by computing the cumula-
tive distribution of observed nearest neighbor separations and comparing this
with the distribution expected theoretically for uniform sources 7'1. The rele-



",rant statistic is D, the maximum vertical difference between the observed and
expected cumulative distributions. The significance of a given measurement is
the probability of obtaining from the uniform distribution a value for D greater
than or equal to the measured value. Since nearest neighbor separations can
be significantly correlated it is necessary to obtain this probability from Monte
Carlo calculations 4'5

We have developed a numerical model for source repetition which depends
on a single parameter, fr, the fraction of sources which repeat. Burst positions
are assigned sequentially and with random sky positions unless the value of a
random number between 0.0 and 1.0 sampled for each burst is less than or equal
to ft. When this occurs the next burst location is r'andomly selected from one
of the existing burst locations, and represents a recul:rent event. This procedure
is repeated until N bursts have been generated. It is possible in this model to
have multiple events from any given source. In table 1 we summarize some of
the characteristics of this model for a sample of 260 bursts.

To investigate BATSEs ability to detect burst repetition we simulate the
measurement of source distributions which contain repeating events and then
compare these with the non-repeating hypothesis using the nearest neighbor
method. To compute the measured source distributions we filter the model
source positions with instrumental location errors 3's'9. Each model source posi-
tion is randomly assigned one of the BATSE error circles and a measured position
is then sampled from each sources error circle. We assume that each error circle
corresponds to the lcr value of a Gaussian distribution in angular separation,
ensuring that 68% of the time the measured position will be within the error
circle. Having simulated the measurement of a model distribution we compare
it with the theoretical nearest neighbor distribution for random (non-repeating)
sources. For a given model we generate many different realizations in order to
compute the distribution of D which would be seen by BATSE. In figure 1 (left
panel) we show the distributions of D so computed from 2000 realizations of 260
burst sources with repeating fractions of fr = 0, (solid histogram), 0.1 (dotted
histogram), and 0.2 (dashed histogram). Notice that the distribution with 10%
repeaters looks quite random, since the clustered bursts tend to be smeared out
upon measurement. Even with a 20% repeating fraction many of the measured
distributions are still consistent with the fr = 0 (random) histogram and upon
measurement by BATSE would not be strongly identified with source repetition.
For comparison the right panel shows the same distributions but now computed
under the assumption that BATSE measures positions twice as accurately as
specified in the BATSE catalog. Notice now that the 20% histogram has only a
small tail which extends into the random (fr = 0) histogram. This graphically
demonstrates the increase in sensitivity for detecting burst source repetition
produced by an improvement in burst location accuracy.

CONSTRAINTS ON THE REPEATING FRACTION

We now fit our model of burst repetition to the BATSE data. We choose
to investigate two samples of bursts. The full 260 burst sample from the BATSE
catalog, and the sample of m, 200 bursts investigated in ref. 1., and for which
has been claimed the mos_ significant clustering. We use the same Monte Carlo
technique described above to compute the expected cumulative nearest neighbor
distribution for a given value of fr and a fixed number of bursts. The expected
cumulative nearest neighbor distributions so computed are then compared to
the observed BATSE distribution and the K-S statistic D(f_) is computed. We
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Table I

Bursts(Nb) fr Sources(Ns) No Nl N2 N3 N4

260 0.0 260.0 260.0 0.0 0.0 0.0 0.0

260 0.1 234.1 212.8 17.9 2.7 0.6 0.1

260 0.2 208.2 173.225.1 6.3 2.1 0.8

260 0.3 182.3 139.8 26.6 8.4 3.5 1.6

Table I-Summary of the repeating source model for 260 total bursts. The
column labelled Ns represents the average number of burst sources generated.
The columns labelled Ni give the average number of sources which repeated i
times in each model.

repeat this procedure for different fr in order to minimize the statistic D(fy). For
the 260 burst sample the minimum in D occurs at fr _ 0.21. Upon examination
of the cumulative nearest neighbor distributions we find that the model with
21% repetition provides an improved fit to the observed distribution at small
angular separations than the non-repeating model. We emphasize that this does
not prove that sources are repeating. Rather, it establishes that burst repetition
can reasonably account for the observed distribution.

Figure 1. The distributions of the K-S statistic D obtained by comparison of sim-
ulated BATSE measurements of GRB locations with the distribution expected
theoretically for random sources. The solid histograms show the random (non-
repeating) model. The dotted and dashed histograms show the distributions
computed from source models containing 10% and 20% repeating fractions re-
spectively. The left panel assumed the full BATSE location uncertainties, while
the right panel assumed a factor of two improvement in location measurement.

To estimate the confidence region for fr we repeat the same fitting pro-
cedure described above but now employing simulated data sets generated from
model distributions with fr = fbest. Since the repeating models are most readily
computed at discrete values of fr we estimate the confidence region by tabulating
the fraction of fits which yield a certain value for fbest. In figure 2 (left panel) we
show the fraction of realizations which resulted in best-fit values for fr ranging
from 0.01 to 0.4 in equal steps of 0.01. This estimate of the confidence region



Figure 2. Estimated confidence region for fr derived from the analysis of the 260
burst sample (left panel). Each vertical bar represents the fraction of realizations
which resulted in the corresponding best-fit value for ft. The right hand panel
shows the results of a similar calculation but assuming a factor of 4 improvement
in burst location accuracy.

was computed using fits to 2000 realizations. Notice that the distribution peaks
near fbest as expected, but extends from a few percent to beyond 40 %. This in-
dicates that the BATSE measurements and accompanying uncertainties do not
provide a tight constraint on the fraction of repeating sources. For comparison
we show in the right panel of figure 2 the results of a similar calculation, but
assuming a factor of 4 improvement in burst location accuracy. Notice that a
smaller repeating fraction now gives the best fit (_ 7%) and that the confidence
region is more sharply peaked around the best-fit value. These results forcefully
demonstrate the need to fully understand and if possible reduce the sources of
error in burst location determination.

Table II summarizes our calculations for the full 260 burst sample, the 201
burst sample, and the full sample assuming a factor of 4 improvement in source
location accuracy. Column 1 gives the value of the K-S statistic D for each

'sample of BATSE bursts, while column 2 lists the significance aKS computed
via Monte Carlo for this value of D. Columns 3 and 4 contain respectively, the
best-fit value for fr and the 90 % confidence limits determined from the calcu-
lations described above. Notice that the reduction in positional error yields a
smaller best-fit repeating fraction and that the accompanying confidence region
is more sharply peaked around frbest. This calculation emphasizes the impor-
tance of accurate burst locations for both detecting burst source repetition and
constraining the fraction of repeating burst sources.

We have also investigated how burst sample size affects the constraint on
ft. We find that with BATSEs present burst location accuracy, only marginal
improvement in the ability to constrain the repeating fraction is attained by
analysing larger burst samples. This results from the fact that BATSEs typical
error circle becomes larger than the average separation between nearest neigh-
bors. It appears unlikely that nearest neighbor population studies with BATSE
data will ever be able to place a tight constraint on the repeating fraction.

SUMMARY AND DISCUSSION

Although our results indicate that burst source repetition at about the
20% level can account for the observed excess clustering of bursts with small
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Table II

Sample DKS OZKS fr best O'_ 0_

All bursts (260) 0.117 0.018 21% 5.5%- 32.5%

QL bursts (201) 0.159 0.0013 26% 10.5%- 34.5%
....

All bursts (a/4) 0.117 0.018 7.0% 1.5%- 12.0%
i

Table II-Summary of the fits to our repeating source model for the full 260
burst BATSE sample, the 201 burst sample 1, and the full burst sample assuming
a factor of 4 improvement in burst location accuracy (a/4).

angular separations, they also show that the substantial burst location uncer-
tainties severely limit our ability to place useful constraints on the fraction of
burst sources which repeat. This in turn reduces the confidence with which we
can exclude a given source model which might only be compatible with some
moderate level of burst repetition. In addition we have shown that the derived
constraint on the fraction of repeating bursts depends quite sensitively on the
BATSE position measurement uncertainties. It is therefore essential that these
errors be calibrated.

Since all previous observations of classical bursts gave essentially no hint
that classical GRBs repeat, it is perhaps troubling that the BATSE measure-
ments yield such large best-fit repeating fractions, in fact as high as 26% for the
sample of bursts investigated by QL. Could such a significant fraction of repeat-
ing events have escaped detection by previous experiments? It has been sug-
gested that the weak BATSE events are repetitions of stronger events 1 and that
previous instruments would not have detected this association. This is possible,
however, the large positional uncertainties make association of specific events,
especially faint and bright events, extremely tenuous. We have not attempted to
investigate this possibility in further detail, but the fact that the BATSE mea-
surements appear consistent with fairly large repeating fractions, while all other
previous experiments support the opposite conclusion would seem to warrant
caution in interpretation of the BATSE measurements.

We thank the BATSE team for compiling the public catalog. This work
at Los Alamos was supported by the United States Department of Energy, and
by the GRO guest investigator program.
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