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SUMMARY 

 

 

The main objective of this research is to develop an integrated diffusion/transport (IDT) method to 

substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High 

Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the 

Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these 

regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep 

flux gradients. The IDT method uses a local transport solver based on a new incident flux response 

expansion method in the controlled nodes. Diffusion theory is used in the rest of the core.  This approach 

improves the accuracy of the core solution by generating transport solutions of controlled nodes while 

maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is 

sufficient.  The transport method is initially developed and coupled to the reformulated 3-D nodal 

diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. 

 

This method is also extended to the prismatic VHTR.  The new method accurately captures transport 

effects in highly heterogeneous regions with steep flux gradients.  The calculations of these nodes with 

transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods 

in reactor core simulators. 



 

I. INTRODUCTION 

 

The current generation of core neutronics methods is based on nodal diffusion theory and utilizes 

homogenized cross sections and other physics data generated by single assembly, infinite medium 

transport theory calculations. This reactor analysis methodology was developed and refined for the 

currently operating class (Generation II) of light water reactors (LWRs). Until about a decade ago, the 

reload cores of these reactors were designed with relatively homogeneous distributions of fuel, moderator, 

and absorber materials. For these systems, core-level diffusion theory is a good approximation, and the 

computational de-coupling of fuel assemblies for generating physics data is acceptable. 

 

The current trend in reactor cores, however, is toward higher degrees of heterogeneity. In order to 

lengthen operating cycles, recent cores have been designed with higher amounts of total fissile mass 

which has necessitated the addition of burnable absorbers to hold down the reactivity at the beginning of 

core life. Increased fuel utilization has been achieved by varying the fuel enrichment within assemblies 

and optimizing the arrangement of assemblies with significantly different fissile and fission product 

compositions. 

  

The extension of this approach to Very-High-Temperature Reactors (VHTRs) seems inadequate 

for a number of reasons.  Firstly, VHTRs may be highly heterogeneous reactors (e.g. the double 

heterogeneity of pebble bed reactors), and the ad-hoc measures to account for double heterogeneity in 

LWRs (such as Dancoff correction factors for resonance absorption) are not adequate for the third spatial 

dimension.  In LWRs, the axial nuclide densities are sufficiently slowly varying such for this 

approximation to be workable.  In the PBR-VHTR, however, the fuel-moderator distribution is doubly 

heterogeneous in all three dimensions and must be modeled accordingly.  The extent to which the 3D 

pebble-grain distributions affect the Dancoff correction factor (and hence, resonance absorption) is 

currently an active area of research for the PBR-VHTR.  Secondly, the inaccuracy in the determination of 

reflector cross sections is of major concern for these types of reactors, especially since several designs 

confine the control rods to the reflector regions.  Thirdly, it is well known that diffusion theory is not 

valid near strong absorbers (control rods) and interfaces with large material discontinuities including the 

external boundary of the system.  As a consequence, standard nodal methods based on infinite-medium 

homogenized cross sections cannot be expected to provide detailed spatial flux reconstruction, 

estimations of peak pin power and estimates of control rod worth with the level of accuracy that is needed 

for reactor safety analysis.  

 

A suitable methodology for the VHTR (both PBR and prismatic) should be able to treat nodes 

with high heterogeneity including reflector regions containing control rods, for the strong transport effects 

expected therein.  In addition, the computational cost of the proposed methodology should be of primary 

importance for reactor simulations; thus it must retain both the speed and scalability to 3-D problems 

presented by nodal methods. 

  

This final report is divided into five major sections.  Section II contains an overview summarizing 

the objectives, work scope, and products of the project.  In Section III is a list of the publications 

generated by this project.  In Section IV contains a complete description of the work performed in this 

project.  Finally, Section V highlights the project accomplishments. 

 

II. PROJECT OVERVIEW 

 

Objective 

 



The main objective of the proposed project is to develop a novel methodology to substantially improve 

the accuracy of current nodal diffusion methods for the design and analysis of new Very-High-

Temperature Reactor (VHTR) designs. The method is to be implemented in existing diffusion codes. It 

was expect that the new approach will achieve a significantly higher degree of accuracy than current 

industry (diffusion) methods, especially for heterogeneous reactors. 

 

Work Scope 

 

The main scope of work involves the development of an integrated diffusion/transport (IDT) method, the 

implementation of the method in existing diffusion codes, the development of PBR and prismatic VHTR 

benchmark problems, and the evaluation of the implemented method. The first year effort was focused on 

2-D (r, z) cylindrical geometry applications. In year 2, the IDT method was extended to 2-D (r, theta) 

cylindrical geometry. In the third year, the IDT method was extended and fully tested in 3-D cylindrical 

geometry. In addition, the IDT method in 2-D hexagonal geometry was developed and implemented into 

the diffusion code PARCS.   

 

The project was a collaborative effort of three organizations: Georgia Institute of Technology and Idaho 

National Laboratory (INL). As the lead organization, Georgia Tech’s responsibility was to develop and 

implement the transport method for LWR calculations. The INL provided expertise in the area of PBR 

calculations, and was responsible for incorporating the coarse-mesh computational module(s) into the 

diffusion code CYNOD.  

 

Products 

 

The products developed as a result of this project are listed below: 

 

1. An integrated nodal transport/diffusion code for whole core calculations in the 3-D cylindrical 

geometry for the pebble bed design option of the VHTR. This method, which is implemented into 

CYNOD, has the accuracy close to that of pure transport methods because of its capability to treat 

highly absorbing nodes (such as controlled reflector nodes) by a local transport solver.  

 

2. A new 2-D response function transport method in hexagonal geometry for the prismatic design option 

of the VHTR. Improved accuracy is achieved when this new transport method is implemented into 

PARCS.  

 

3. New benchmark problems for both VHTR options. 

 

4. A series of publications and reports documenting the results of the project 

 

 

III. PUBLICATIONS 
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IV. MAJOR TASKS 

 

A. Task 1.1: Develop 2D(r, ) response function-based transport method, Georgia Tech 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

This aim of this task is to develop a 2-D cylindrical transport method to generate response 

functions, in terms of exiting partial currents, surface-averaged and node-averaged scalar 

fluxes, for non-multiplying regions such as inner and outer reflectors to couple with the 

diffusion method. This task is essentially to develop a set of expansion functions, which is 

suitable for coupling with 2-D cylindrical diffusion methods on the interfaces between 

diffusion and transport regions, to expand/approximate particle phase space distributions. 

These expansion functions will be used as boundary conditions to generate local solutions 

(i.e. response functions) for each unique coarse mesh in Task 1.3.   

 

b. Task Status/Progress 

 

 

b1. Conventional Legendre Polynomial Expansion 

 

To generate response functions for a coarse mesh, an approximation of neutron phase space 

distributions on the mesh boundaries must be made since the whole core solution is not 

known a priori. Conventionally, it is assumed that the interface angular current  , ,j r E  can 

be expanded in terms of multi-products of Legendre polynomials as shown in Eq. (A.1), and 

then response functions are calculated by solving each local fixed source problem with an 

incoming flux imposed on the mesh boundaries.  

 

            , , , lmnp l m n p

lmnp

j r E J P r P P P E                                                                   (A.1) 

 

or equivalently, 
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 In above equations, r represents spatial variable on the mesh interface, ̂  is the neutron 

direction,   and   denote the azimuthal and polar angle variables, respectively, E represents 

neutron energy, n


is the outward or inward normal to the mesh interface at point r , Pn(x) is 

the n-th order scaled Legendre polynomial, and lmnpJ   represents expansion coefficients or 

partial current moments.  

 

Obviously, the 0
th
 order expansion function represents a spatially uniform and angularly 

isotropic surface source with a flat energy spectrum. Accordingly, the 0
th
 expansion moment 

is identical to the total partial current. Because of the orthogonalities of Legendre 

polynomials, a higher order expansion only changes the shape of the neutron distribution 

functions, while the total partial current still remains unchanged. 



 

Though this expansion can guarantee that intra-nodal partial currents are conserved, it 

introduces singularities in scalar fluxes and consequently cannot be used by transport 

methods that couple to diffusion methods, in which response functions, in terms of surface-

averaged fluxes, are required. In thermal reactors, the angular flux in most regions is 

dominated by its isotropic component; it would be physically natural to require the 0
th
 order 

angular expansion function to be equivalent to the isotropic angular flux.   

 

b2. Requirements of New Expansion Functions in 2D Cylindrical Geometry 

 

Based on the discussion above, the following are the desirable characteristics of a new set of 

expansion functions: 

 

1) The scalar flux resulting from the expansion is finite; 

2) total partial currents remain unchanged after an expansion; 

3) the 0
th
 angular expansion function is constant in angle (isotropic). 

 

To avoid singularities introduced by an expansion, angular fluxes instead of angular currents 

should be chosen to be expanded in both the outward and inward hemispheres as in the 

following form. 

 

       
, , ,

ˆ ˆ, , , ,ijkl ijkl

i j k l

r E c f r E                                                                                    (A.3) 

 

where ijklc  are expansion coefficients, ijklf  represent expansion functions which satisfy the 

following orthogonality condition.  
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where S represents the mesh interface,  δ is the Kronecker delta, ijklA  are constants, and the 

factor n


  is a weighting function. By using the above condition, the expansion 

coefficients ijklc can be defined by the following relation with the angular flux  , ,r E   . 

 

     
0
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S n

c dr dE d n f r E r E



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It should be pointed out that the commonly used spherical harmonic functions are defined in 

the whole 4 solid angle and does not satisfy the orthogonality condition (A.4), and 

consequently cannot be used as the expansion functions in this research.  

 

b3. New Expansion Functions in 2D Cylindrical Geometry 

 

For a 2D cylindrical surface shown in Figure 1 in which axis z is chose to be parallel with the 

axis of the cylinder and y is along the outward/inward normal direction at point r , new 



expansion functions are a tensor product of Legendre polynomials  nP x and Chebyshev 

polynomials of the second kind  nU x : 

         ˆ, , cos cosijkl i j k lf r E P r U P P E                                                            (A.6) 

where i, j, k and l are expansion orders in spatial, polar angle, azimuthal angle and energy 

variables, respectively. Chebyshev polynomials  nU   have the recurrence relation given 

below. 

 

 

     

0

1

1 1

1

2

2   for  1n n n

U

U

U U U n



 

    





  

                                                                  (A.7) 

 
 

Apparently, the 0
th
 order expansion is a constant and consequently represents a flux which is 

isotropically distributed over the outward hemisphere and uniformly distributed over the 2D 

cylindrical surface. From equation (A.6), we can calculate the 0
th
 expansion coefficient as 
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It is evident that the 0
th
 expansion moment is identical to the total partial incoming/outgoing 

current crossing the mesh boundary when the new 2D expansion functions are used. As a 

result, the total partial currents (or particles) based on these expansions are always conserved. 

The new expansion functions also avoid the singularity introduced by the conventional 

Legendre polynomial expansion since the lowest order expansion function represents an 

isotropic flux.  These new expansion functions will be used as a boundary condition imposed 

on an inner/outer coarse mesh to generate response functions for coupling with the diffusion 

solutions in fuel regions. 

 

b4. Local transport method in 2D Cylindrical Geometry 

 

The coarse-mesh methodology for the transport treatment of a set of selected nodes has been 

tailored to match the requirements of the CMFD method. The response functions of the 

coarse mesh corresponding to an incoming current from one of the adjacent regions can be 

calculated by solving the local problem below. 
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Fig. A1: Angular variables in a 2D cylindrical surface  



 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. A2: 2-D simplified PBMR400 model 

 

 

       

         
0 4

1ˆ ˆ ˆ, , , , , , , , ,

ˆ ˆ ˆ ˆ ˆ, , , , , , , , ' ' , , ', ' , , , ', '

i i i

t i i s i

r r E r E r E
r r r r

r E r E Q r E dE d r E E r E


 
     

 

        


  
    

  

         

     (A.9) 

 

with the following boundary condition 
 

   ˆ ˆ, , , , , ,i ij ij j ij ijr E r E                                                                                    (A.10) 

 

where  ( , )ij ij i jr V V    for all Vj bounding Vi . 

   

In the above equations,  , , ,i r E    is the neutron angular flux within coarse mesh i, r and 

 are spatial variables in the cylindrical coordinate,  and  are angular variables.  Q is the 

internal volumetric source that may also include scattering neutrons. Vi represents all the sub-

volume elements (i.e. coarse meshes). The superscripts “+” and “-”on the angular flux 

indicate the outgoing and incoming direction, respectively. 
 

B. Task 1.2: Develop 2D(r, ) RMNB diffusion method, INL 

 

1. Task Status and Significant Results 

 

Introduction 

 

The goal of this work is to include transport treatment in selected nodes of a diffusion nodal 

code.  The targeted nodes are non-multiplying regions in the reflector of a pebble bed reactor 



with control rods or voids in the locations of the control rods.  Transport effects are captured 

through the use of response functions. The response functions can be manipulated in such a 

way that they form a set of equations that can be easily incorporated into the nodal diffusion 

code.   

 

CMFD Derivation from Nodal Green’s Function Approach 

 

The derivation of the nodal Green’s function method is well known and can be found in many 

sources.  Expressions for the edge currents are obtained in terms of Green’s functions, 

average scalar fluxes, and nodal source terms.  These expressions are then used to obtain a 

banded system of equations for the nodal scalar flux in the Direct Coarse Mesh Finite 

Difference (Direct CMFD) form.  The system of equations is iterated upon until the scalar 

flux converges to a specified tolerance. 

 

Algorithm of the CYNOD Code for Analysis of PBRs 

 

The banded systems of equations that result from the derivation with the Green’s function for 

the scalar flux have been implemented in the CYNOD code.  The CYNOD code solves for 

the scalar flux with a direct tri-diagonal solver when the radial, axial and angular cylindrical 

directions are obtained separately.  When the directions are coupled, the angular flux is 

obtained by iterating on the banded matrix. 

 

The generation of the coefficients of the matrix coupling the fluxes within the neutronic 

solver inside CYNOD can be obtained from diffusion theory, as described above of from 

transport theory when the corresponding response functions are available.  The response 

function treatment within the CYNOD solver is discussed next. 

 

Derivation of the Response Function Treatment for CYNOD 
 

The outward current, average nodal scalar flux and edge scalar flux values are formulated in 

terms of response functions and the edge currents are expressed in terms of the outward and 

inward facing currents.  The edge current equations and the outward current response 

function formulation are algebraically manipulated to obtain expressions for the nodal inward 

facing currents.  These nodal inward facing current relations are then substituted into the 

response function formulation of the average scalar flux to obtain the nodal response balance 

equation.  Next the response function formulated edge scalar flux values are set equal to the 

edge scalar flux values of a designated transport nodes or they are set equal to the edge scalar 

flux values multiplied by a discontinuity factor of designated diffusion nodes.  This results in 

a continuous flux interface equation that has currents as the unknowns.  The inward currents 

obtained from the nodal balance equation are substituted into the flux interface expression.  

For an interface between a transport node and a diffusion-node edge currents obtained from 

the balance equation are substituted into flux interface expression. 

 

When applied, the process described above and in the previous section results in the 

derivation of equations that relate the nodal scalar fluxes in three consecutive nodes.  The 

collection of these equations yields a system of linear equations that can be cast into matrix 

form.  The system contains coefficients that are obtained either from diffusion theory or from 

transport theory depending on the type of node considered.  The unknowns are the nodal 

scalar fluxes over the extent of the reactor. 

 



C. Task 1.3: Develop 2D(r, ) response function-based transport method and RMNB method 

into the code, Georgia Tech/INL 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to implement the 2D(r, ) response function-based transport method 

developed in task 1.1 and RMNB diffusion method developed in task 1.2 into the code for 

hybrid diffusion/transport calculations of neutron transport in Pebble Bed Reactors (PBRs). 

This task consists of the following two subtasks: 1) implementation of the 2D(r, ) response 

function-based transport method into the MCNP code to generate response functions for inner 

and outer reflectors; and 2) implement the  2D(r, ) RMNB diffusion method into the 

CYNOD code. 

 

b. Task Status/Progress 

 

b1. HYBRID DIFFUSION/TRANSPORT METHOD 

 

Suppose that the spatial domain of interest V can be divided into two domains: the transport 

domain VT in which the transport effects are very import and the diffusion domain VD in 

which the traditional diffusion theory is valid. The neutron flux distribution within region VD 

can be computed by solving the following transport problem. 
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              (C1) 

where  ˆ, ,T r E   is the angular flux in the transport region, H and F represent the usual 

transport operators, V  is the external boundary of the entire spatial domain V, k is the 

eigenvalue of the global system, DTV  denotes the interface between the diffusion and 

transport regions, n̂
 
and ˆ

Tn  stand for the outward normal at the external boundary  V  and 

interface
 DTV , respectively. B is the boundary operator (such as vacuum, specular and 

albedo boundary conditions) on V .  ,D r E  is the scalar flux within the diffusion 

domain, which is computed by the diffusion method, and the net current  ,Dj r E  is defined 

as:
 
 

 

     , , ,D Dj r E D r E r E                                              (C2) 

 

where D is the diffusion coefficient.  

It is should be pointed out that Equation (C1) is a fixed-source problem with a linearly 

anisotropic flux imposed on the diffusion/transport interface and that the fission source (if 

there exist fuel materials in the transport domain) is scaled by the global eigenvalue. Both the 



external incoming flux at the diffusion/transport interface and the global eigenvalue are 

provided by the diffusion method. Once Equation (C1) is solved, the albedo coefficients will 

be calculated as the ratio of the outgoing partial current to the incoming partial current on the 

diffusion/transport interface. These albedo coefficients are then repeatedly used by the 

diffusion method to do more accurate calculations in the diffusion domain. The iterations 

between the diffusion and transport methods are continuously performed until both the 

eigenvalue and albedo coefficients on DTV  are converged. 

 

b2. RESPONSE-FUNCTION-BASED TRANSPORT METHOD 

 

As mention in the above section, during the diffusion/transport iterations, equation (c1) is 

repeatedly solved once the diffusion method provides the updated interface condition (the 

incoming flux on the diffusion/transport interface). The incident flux response expansion 

method [2] is an ideal candidate to obtain the transport solution to Equation (c1) because of 

its high accuracy and computational efficiency. By this approach, the transport domain VT is 

first divided into a number of non-overlapping coarse meshes {Vi}. Based on the incident 

response flux expansion method, the outgoing partial current (and its higher moments) from a 

coarse mesh can be written as the superposition of all contributions responding to each 

incoming partial current entering from the adjacent coarse meshes: 
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where ,m
sJ   is the m

th
 expansion coefficient (moment) of the outgoing/incoming current on 

surface s, m m
s sR

  are the surface-to-surface response functions. The physical meaning of 

response functions is obvious: the response functions  
m m

s sR


  are the magnitude of the m
th
 

moment of the outgoing partial current crossing surface s as the response to a unit incoming 

partial current in the thm  mode through surface s . Essentially, the response functions of a 

coarse mesh are the solutions to a local fixed-source problem with a predefined incoming flux 

imposed on one of the bounding surfaces. For example, the surface-to-volume response 

functions    ˆ, ,m

isR r E  are the solution to the following local transport problem. 

 

 
  

Figure C1: Local geometry for response function generation 
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with the boundary condition 
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where  ˆ, ,m r E   are the orthogonal expansion functions which are defined in the next 

subsection. There is the following relation between the surface-to-surface and surface-to-

volume response functions. 
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b3. Expansion Functions 

Conventionally, the tensor-product of Legendre polynomials is used as orthogonal expansion 

functions to expand the flux distributions on the interfaces between coarse meshes [3-6]. 

However, the previous research has shown that they would introduce singularities in the 

scalar flux on the coarse mesh interface and consequently cannot be used to couple with the 

diffusion method. The angular expansion functions developed in reference 1 will be used in 

this work. 

       ˆ ˆ, ,ijg i j gr E P r E                                                          (C7) 

 

where  iP r  are the scaled Legendre polynomials, and the 0
th
 and 1

st
 order angular expansion 

functions are defined as: 
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where  0
ˆ   represents the isotropic expansion function,  1

ˆ  ,  2
ˆ   and  3

ˆ   

represent the linear anisotropic flux in the radial (r-axis), tangential (Θ-axis) and axial (z-

axis) directions. 

 

b4. Numerical Procedures 

The flowchart of the diffusion/transport method is schematically illustrated in Figure C1. The 

transport component of the hybrid method consists of the tree numerical steps: response 

function generation, iterative sweeping to compute the partial currents crossing the coarse 

mesh interfaces, and local calculations of the flux distribution within each transport node and 

the albedo coefficients on the diffusion/transport interface.   

 



In the first step, MCNP was modified to solve the local problem (C4) to obtain response 

functions for each unique coarse mesh. The Monte Carlo method is chosen to generate the 

response function library because of its geometric flexibility. It can be seen from Equation 

(C4) that the response functions also depend on the core eigenvalue for fuel regions. The 

response functions can be calculated in a set of predefined eigenvalues (e.g. 0.95, 1.0 

and1.05). These calculations are performed in the pre-computation phase. In addition, since 

the response calculations are generated by solving local fixed problems for a small region 

(each unique coarse mesh) with the vacuum boundary, these pre-computations are very 

efficient for all regions. Therefore the computational time is not a concern.  

In the second step, a deterministic sweeping method can be used to iteratively determine the 

partial current crossing the transport nodes. The sweeping procedure is started from the 

transport nodes which are next to the diffusion and transport interface. The incoming fluxes 

(or partial currents) provided by the diffusion method are used as an external source 

impinging on the transport domain. The particle balance equation (C3) is used to repeatedly 

calculate the outgoing partial currents from each transport node. The above mentioned inner 

iterations must be repeated until the outgoing partial current from each transport coarse mesh 

is converged.  

Once the inner iterations are converged, the flux distribution within each transport coarse 

mesh can be easily computed as a superposition of all contributions responding to each 

incoming flux entering from the adjacent coarse meshes. 
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The albedo coefficients on the diffusion/transport interface are calculated as the ratio of the 

outgoing partial current to the incoming partial current. These albedo coefficients are then 

iteratively used by the diffusion method to perform core calculations in outer iterations.  It 

should be pointed out that the transport method can provide the higher moments to the 

diffusion method if necessary.  

 

D. Task 1.4: Test product of 1.3 on an existing 2D benchmark problem, Georgia Tech/INL 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to test and validate the integrated diffusion/transport (IDT) method on 

a benchmark problem by comparing the IDT calculations with MCNP reference solutions. 

 

b. Task Status/Progress 

 

b1. Test of the transport module 

 

In order to test the accuracy of the response-function-based transport method, a direct 

comparison with the MCNP reference solution was performed.   

 



 
Figure D1. Geometric configuration of the 2-D benchmark problem 

 

The 2-D Pebble Bed Reactor (PBR) benchmark problem, shown in Figure D1, consists of an 

inner reflector region with a diameter of 2 meters (m), a homogeneous annular fuel region of 

0.85 m thickness and a 0.5 m thick controlled outer reflector region. There are 24 control rods 

made of B4C each of 0.2 m in diameter whose centers are evenly positioned on a 

circumference of a 3.902 m diameter ring. Vacuum boundary condition is imposed on the 

outer cylindrical surface. 

 

Two different control states were selected to test the transport method: core 1: 12 rods are 

inserted in every other rod location, and core 2: 12 rods randomly inserted (rods 1, 2, 4, 8, 9, 

12, 16, 17, 18, 21, 22 and 23 are placed). 

 

The local transport method is used in the entire outer reflector in which the diffusion 

approximation is not sufficient. In this test, MCNP was first used to perform the whole-core 

benchmark calculation using 2-group cross sections. In order to test the accuracy of the local 

response-funciton-based transport method only, the MCNP scalar fluxes and net currents on 

the fission/outer reflector interface were used as the incoming sources to perform a response-

function-based transport calculation for the problem consisting of the outer reflector and 

control ring as shown in Figure 4. Note in the local transport calculations, the outgoing flux 

escaping from the transport domain (the entire outer reflector) is assumed to never come 

back, i.e. the fuel region and inner reflector are treated as an infinite absorb. 

 



 
Figure D2. Local response-function-based transport calculation model 

 

The quantities of interest in the comparison is the average relative difference (AVE), root 

mean square (RMS), mean relative difference (MRD) and maximum (MAX) relative 

difference of the node-averaged fluxes computed by the two methods. These statistical 

quantities for the two benchmark problems are listed in Table I. The comparison of the node-

averaged fluxes in the outer reflector against the MCNP reference solution is also illustrated 

in Figs. D3-D6. In the response- function-based transport calculations, the spatial and angular 

expansion orders are 4 and 1, respectively.  

 

 

Table DI. statistics of the relative difference between the node-averaged fluxes  

predicted by the two methods  

 

Core State AVG (%) MRD (%) RMS (%) MAX (%) 

Core 1 
Fast 0.17 0.17 0.20 0.52 

Thermal 0.19 0.19 0.24 0.56 

Core 2 
Fast 0.13 0.12 0.17 0.55 

Thermal 0.21 0.13 0.28 0.72 
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Figure D3. Relative difference (%) of the fast node-averaged fluxes predicted by the two 

methods for core 1 (control rod is placed in every other location) 
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Figure D4. Relative difference (%) of the thermal node-averaged fluxes predicted by the two 

methods for core 1 (control rod is placed in every other location) 
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Figure D5. Relative difference (%) of the fast node-averaged fluxes predicted by the two 

methods for core 2 (12 control rods are randomly inserted) 
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Figure D6. Relative difference (%) of the thermal node-averaged fluxes predicted by the two 

methods for core 2 (12 control rods are randomly inserted) 

 



From the comparisons it can be seen that both the fast and thermal fluxes calculated by the 

local transport method agree very well with the MCNP reference solutions. The relative and 

maximum difference is about 0.18% and 0.55% for core 1. The similar agreement is found 

for core 2. The excellent agreement between the results of the response function method and 

the MCNP reference solutions indicates that a low order flux expansion can sufficiently 

represent the actual flux distribution on the coarse mesh boundaries and the local response-

function-based method can reproduce the MCNP benchmark solutions since there is no need 

for the spatial homogenization.   

 

b2. Test of the IDT method in 2D (r, theta) geometry 

 

It is well known that large transport effects occur in the radiation field due to the presence of 

a control rod.  In the PBMR design the control rods, which are located in the outer reflector, 

have a great impact on the radiation field.  To account for the transport effects, a response 

function nodal method which can accurately model neutron transport was derived and 

implemented inside of a cylindrical nodal code (CYNOD).  

 

The nodal response function method is coupled to the designated diffusion regions through 

scalar fluxes and net currents.  The transmission of the neutron current from one designated 

region into the other is updated in the source iteration process in the inner iteration.  The 

hybrid method works as follows: the averaged nodal flux and net currents at the 

diffusion/transport surface are calculated by the diffusion module.  These scalar fluxes and 

net currents are used as an external source imposed on the transport nodes. The outgoing 

partial currents (and their higher expansion moments) are repeatedly calculated via the pre-

computed response functions until they are converged. The outgoing currents from the 

response region at the adjoined diffusion/response boundary become a new set of inputs to 

the diffusion region and are incorporated into the nodal source of the adjoined diffusion 

nodes.  The nodal sources to the diffusion region are then updated and new average nodal 

scalar flux values are obtained for the next source iteration.  In this way the response and 

diffusion regions are iterated upon until the average nodal scalar flux is converged to a 

specified tolerance.  

 

Results: 

 

The hybrid method was implemented for a cylinder of infinite height. The reactor core has a 

total radius of 235 cm, and is made of three basic regions. The first region is an inner 

reflector with a radius of 100 cm, the second region is fuel ring that is 85 cm long, and the 

third region is an outer reflector that is 50 cm long.   

 

The inner blue zones are the inner reflector, the green zone is the core fuel, and the red zones 

are the outer reflector.  The deep red zone or first outer reflector region contains 24 control 

rods. These are equally spaced throughout the outer reflector region close to the core fuel 

zone.  A reference solution was generated by Monte Carlo (MCNP) for comparison 

 

Table D2: the critical core eigenvalues for a fully shutdown case with 24 control rods 

inserted. 

 

Case Core Eigenvalue 

Reference 0.97515 

Pure Diffusion 0.98192 

Hybrid 0.97443 



 

As shown in the table above the as expected the hybrid has a critical core eigenvalue that is 

less than 0.08% while the pure diffusion solution is less accurate giving critical core 

eigenvalue that is within 0.6%. 

 

 

 

Fig. D7: Plots of the relative errors for the fast and thermal energy group scalar fluxes with 

24 control rods inserted. The relative errors are obtained by comparing the scalar fluxes 

generated by MCNP and the fluxes generated from CYNOD Hybrid. 

 

Fig.D8: Plots of the relative error of the pure diffusion solution with 24 control rods inserted. 

The pure diffusion solution obtained from CYNOD is compared to a MCNP solution for the 

fast and thermal scalar fluxes 



 

Furthermore, in Figures D9 and D10 the relative errors of the fluxes are obtained from a 

comparison with MCNP are shown.  As expected the relative error of the hybrid solution is 

much less than that of the diffusion solution.  For the thermal energy group the pure diffusion 

solution has a relative error that is above 19% in the outer reflector while the hybrid solution 

is less than for all regions 2%. In the fast energy group the diffusion solution shows a relative 

error of about 3% in the control rod region while the hybrid solution shows a relative error 

less than in all regions 2%.  

 

The hybrid methodology was also examined for twelve control rods randomly distributed in 

the control reflector region.  Thus for this case twelve rods are randomly distributed.  The 

critical core eigenvalues for twelve randomly distributed rods are shown in table D3. 

 

Table D3: These are the critical core eigenvalues for 12 control rods randomly distributed. 
Case Core Eigenvalue 

Reference 1.02575 

Pure Diffusion 1.02555 

Hybrid 1.02549 

 

Both the diffusion and hybrid methods give critical core eigenvalues that are less than 0.03% error.  

Both methods obtain an excellent critical core eigenvalue.  The diffusion solution does slightly well.  

 

 
 

Fig.D9: Plots of the relative error for the fast and thermal fluxes for twelve randomly inserted control 

rods. In these plots the Hybrid method is compared to the MCNP. 

 



 
 

 

Fig. D10: Plots of the relative error of the fast and thermal fluxes with twelve control rods randomly 

inserted.  The relative error was obtained by comparing pure diffusion CYNOD and MCNP. 

 

However, as shown in Figures D9 and D10 the relative error of the hybrid solution is much 

less than that of the diffusion solution.  For the thermal energy group the pure diffusion 

solution has a relative error that is above 19% in the outer reflector while the hybrid solution 

is less than for all regions 2%. In the fast energy group the diffusion solution shows a relative 

error of about 3% in the control rod region while the hybrid solution shows a relative error 

less than in all regions 2%. 

 

E. Task 2.6: Develop, implement (into MCNP) and test the (r-z) response function-based 

transport method, Georgia Tech 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to develop a 2D(r, z) transport method to generate response functions, 

in terms of exiting partial currents, surface-averaged and node-averaged scalar fluxes, for 

non-multiplying regions such as inner and outer reflectors to couple with the diffusion 

method. This task is essentially to develop a set of expansion functions, which is suitable for 

coupling with 2D(r, z) diffusion methods on the interfaces between diffusion and transport 

regions, to expand/approximate particle phase space distributions. These expansion functions 

will be used as boundary conditions to generate local solutions (i.e. response functions) for 

each unique coarse mesh in Task 2.7.   

 

b. Task Status/Progress 

In this performance period, we have developed a set of orthogonal expansion functions for a 

(r, z) node shown in Figs. E1 and E2. 
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Figure E1:  A 2D(r-z) cylindrical coarse mesh 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E2:  The (r, Θ) view of the coarse mesh shown in Fig. E1 

 

The previously developed expansion functions, which are the tensor products of Legendre 

and Chebyshev polynomials, can be extended to the inner and outer cylindrical surface if the 

neutron direction ̂  is represented (measured) in the local geometry as illustrated in figure 

A3. The expansion functions can be written as: 

 

       ˆ, cos cos     on the inner/outer cylindrical surface ijk i j kf z P z U P      (E1) 

 

where i, j, and k are expansion orders in spatial, polar angle and azimuthal angle, 

respectively. Chebyshev polynomials  nU   of the second kind have the recurrence relation 

given below. 
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Figure E3:  Local representation of  ̂  on the inner/outer cylindrical surface 

 

 

On the top and bottom surfaces, the same angular expansion functions can be used if the 

neutron direction ̂  is represented (measured) in a local geometry as illustrated in figure A4. 

However, in order to ensure the particle balance over the top and bottom surface, the spatial 

expansion functions must satisfy the following orthogonality conditions: 
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where δ is the Kronecker delta, mA  are the constants. 

 

Obviously, Legendre polynomials cannot be used to expand the spatial distributions since 

they do not satisfy the orthogonality conditions E3.  

 

Since the 0-th moment usually represents a uniform distribution over the surface, we choose: 
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Figure E4:  Local representation of  ̂  on the top/bottom surface 

 

The higher order expansion functions can be constructed as: 
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where coefficients ,m nB  are defined as: 

                       
2

2

, 1
1

1
2

R

m n m n
R

n

B r q r q r dr
A

                                             (E65) 

 

It should be pointed out that, for the inner reflector (R1=0), the above expansion function 

 mq r  is equivalent to Chebyshev polynomials of the first kind. However, for the outer 

reflectors, we must use Equations E5 and E6 to construct the expansion functions 

numerically. 

 

As a result, the angular flux on the top/bottom surface can be expanded in terms of the 

following representation functions: 

 

       ˆ, cos cos     on the top/bottom surface ijk i j kf r q r U P        (E7) 

 

The above expansion functions have been implemented into the MNCP code to generate 

response functions for 2D(r, z) nodes. Preliminary tests have shown that the expansion 

functions can guarantee the particle balance. 

 

In order to test the accuracy of the response-function-based transport method, a direct 

comparison with the MCNP reference solution was performed.   

The 2-D (r, z) Pebble Bed Reactor (PBR) benchmark problem, shown in Fig. 5, consists of an 

inner reflector region with a diameter of 2 meters (m), a homogeneous annular fuel region of 

0.85 m thickness and a 0.5 m thick controlled outer reflector region. The inner and outer radii 

of the control ring are 185.1 cm and 205.1 cm, respectively. The height in the z direction is 

400 cm. The material properties for each region are listed in Table 1. Vacuum boundary 

condition is imposed on the outer cylindrical surface and top and bottom surfaces. 

  

̂  

  

r̂  

̂  



 

Region index Material property 

1-80 Inner Reflector 

82-119, 122-159, 162-199, 

202-239 and 242-279 
Fuel 

81, 120, 121, 160, 161, 

200, 201, 240, 241, 280 

Top/bottom 

reflector 

281-320 
Outer reflector 

with control rod 

321-360 Outer reflector 

Table E1: Material property of the 2-D PBR problem. 

 

 

In the test, MCNP was used to perform the 2-group whole-core reference calculation. Then 

the MCNP reference scalar fluxes and net currents on the fission/outer reflector interface 

were used as the incoming sources to do a response-function-based transport calculation for 

the problem consisting of the outer reflector and control ring as shown in Fig. 6. 
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Fig. G5: Local response-function-based transport calculation model 

 

The comparison of the node-averaged fluxes in nodes 281-360 against the MCNP reference 

solution are illustrated in Figs. G6 and G7. In the response- function-based transport 

calculation, the spatial and angular expansion orders are 4 and 1, respectively. However, the 

incoming surface fluxes on the interface between the fuel regions and outer reflector are 

assumed to be piecewise constant in space and linearly anisotropic along the radial direction 

(r-axis). As a result, the higher spatial and angular moments (including the linear angular 

moments in the tangential and axial directions) are ignored since the node diffusion module 

cannot provide such information.  
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Fig. G6: Comparison of the fast node-averaged fluxes predicted by the two methods 
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Fig. G7: Comparison of the thermal node-averaged fluxes predicted by the two methods 

 

From Fig. G7 it can be seen that the fast fluxes calculated by the local transport method agree 

very well with the MCNP reference solution. The maximum errors occur in the regions close 

to the top and bottom boundaries. This is mainly because the high spatial moments of 

incoming fluxes are ignored. For the thermal flux, the relative difference varies from 0.5 to 

2.5%. The slightly worse agreement of the thermal flux can be explained by the fact that the 

spatial gradients and high-order angular anisotropy become more import in the thermal group. 

 

 

F. Task 2.7: Develop, implement and test the RMNB diffusion method, INL 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to the 2D (r, z) RMNB method and to implement it into the CYNOD 

code. 

 

c. Task Status/Progress 

 



To incorporate the response functions, the response equations of the outgoing nodal currents, 

the average nodal scalar flux, and the side average scalar fluxes are algebraically manipulated 

such that the result is a three stripe or tri-diagonal row of the average nodal scalar fluxes.  

This nodal response equation is then embedded seamlessly inside of the tri-diagonal matrix 

for the average nodal scalar flux.  Iteration on the transverse leakage and nodal source terms 

for both diffusion and designated response nodes are done until the nodal scalar flux and net 

nodal boundary currents are converged. 

 

However, a disadvantage to the direct embedding of the response functions inside the tri-

diagonal matrix for the average nodal flux was the lack of higher moments in space and 

angle.  These moments were discovered to be needed for adjoined response nodes in order to 

produce results with high fidelity.  The direct incorporation of the higher moment equations 

inside the current tri-diagonal form of the flux equations would be potentially difficult and 

would result in a set of equations that are not in the tri-diagonal form. 

 

To overcome these difficulties, a second approach that allowed the seamless embedding of 

the response equations with higher moments was devised. This new approach does not 

change the matrix structure of the average nodal flux, but adjoins the response region to a 

diffusion region through partial currents.  This approach is incorporated into the nodal source 

iteration with the transverse leakages.  The new approach works as follows: for a fixed 

neutron source the averaged nodal flux and net currents are calculated for the diffusion 

region.  From the fluxes and net currents, the partial incoming currents at the adjoined 

diffusion/response boundary to the response region are calculated.  The response region is 

then swept with the partial currents from the diffusion region as inputs and the partial currents 

in the response region are obtained.  The outgoing currents at the adjoined diffusion/response 

boundary from the response region become a new set of inputs to the diffusion region and are 

incorporated into the nodal source of the adjoined diffusion nodes.  The nodal sources to the 

diffusion region are then updated, and new average nodal scalar flux values are obtained.  In 

this way the response and diffusion regions are iterated upon until the average nodal scalar 

flux is converged to a specified tolerance.  

 

The 2D (r, z) benchmark problem described in the next section was used to test the integrated 

diffusion/transport method. The new approach was examined with two different couplings to 

the incoming current of the designated diffusion region, and in both cases the diffusion region 

was designated to be the inner reflector and the core region.  The incoming currents to the 

diffusion region were obtained from albedos obtained from a reference solution in the first 

case, and in the second case the incoming currents were obtained from an embedded code 

that interacted with a segmented response function over the outer rod and reflector region.  

This is very close to the method implemented by Fen et al.  The results of the core eigenvalue 

are shown in a table below. 

 

Case Core Eigenvalue (Keff) 

Reference 0.90243 

Pure Diffusion 0.90488 

Albedos 0.90183 

Embedded Response 

Code 

0.90181 

 

A reference solution was obtained from a MCNP model.  The embedded response method 

and the albedos from the reference solution produce nearly the same critical core eigenvalue.  



In both cases the difference between the reference eigenvalue and the calculated solution 

from the hybrids is 0.06%.  In comparison a pure diffusion result produces a difference of 

0.27%. 

 

In addition, the nodal fluxes obtained from the embedded code and the albedos were 

compared against the fluxes obtained from the reference solution.  As shown in Figure F2 and 

Figure F3 the absolute error of the average nodal flux shows good agreement with the 

reference solution.  For the fast group in the embedded response function case the maximum 

error occurs around the control rod near the boundary and is less than 3.5% and for the 

thermal group the maximum error of the embedded response functions are less than 1.6%.  

The maximum error in the fast flux for the case generated with albedos is less than 3%, and 

the maximum error for this case in the thermal group is less than 2%. In the case generated 

with albedos, the diffusion region is shown since no nodal average fluxes are generated for 

the control rod region.  These results should be contrasted with that obtained from pure nodal 

diffusion. For the fast energy group the relative errors are less than 3.5 % and for the thermal 

energy group the relative errors are up to 36.0%.  This is because diffusion is well known to 

break down around the highly absorbing region such as a control rod. 

 

 
 

Fig. F1: Plots of the error generated by the embedded response method for the fast and 

thermal group average nodal fluxes. 

 



  
Fig. F2: Plots of the error generated by the Albedos for the fast and thermal group nodal 

average fluxes. 

 

  
Fig. F3: Plots of the error generated by comparing MCNP results to Nodal Diffusion results 

for the fast and thermal group nodal average fluxes. 

 

 



G. Task 2.8: Develop a PBR benchmark problem in (r-z) geometry for testing the methods in 

2.6 and 2.7, Georgia Tech 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to develop a PBR benchmark problem in 2D (r, z) geometry for testing 

the methods developed in Tasks 2.6 and 2.7.  

 

c. Task Status/Progress 
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Figure G1:  A 2D(R, z) PBR benchmark problem 

 



A 2-D(r, z) PBMR 400 benchmark problem shown in Fig. G1 has been developed during this 

performance period. The benchmark consists of an inner reflector region with a diameter of 2 

meters (m), an annular fuel region of 0.85 m thickness and a 0.5 m thick controlled outer 

reflector region. The height of the benchmark problem is 4 m, and the control rod is partially 

inserted from the top. The material for each region is listed in Table G1. 

 

Table G1: Material composition for the 2D(r, z) benchmark problem 

 

Region(s) Material 

1-16 Inner reflector 1 

17-32 Inner reflector 2 

34-47 Fuel 1 

50-63 Fuel 2 

66-79 Fuel 3 

82-95 Fuel 4 

98-111 Fuel 5 

33, 48, 49, 64, 65, 80, 81, 96, 97, 112 Top/Bottom reflectors (graphite 

113-126, 128 Outer reflector 1 

129-144 Outer reflector 2 

127 Controlled outer reflector 

 

 

H. Task 2.1: Develop 3D cylindrical response function-based transport method, Georgia Tech 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to develop a 3-D cylindrical transport method to generate response 

functions, in terms of exiting partial currents, surface-averaged and node-averaged scalar 

fluxes, for non-multiplying regions such as inner and outer reflectors to couple with the 

diffusion method. This task is essentially to develop a set of expansion functions, which is 

suitable for coupling with 3-D cylindrical diffusion methods on the interfaces between 

diffusion and transport regions, to expand/approximate particle phase space distributions. 

These expansion functions will be used as boundary conditions to generate local solutions 

(i.e. response functions) for each unique coarse mesh in Task 2.3.   

 

b. Task Status/Progress 

In the last performance period, we developed a set of expansion functions for a 3-D 

cylindrical surface, i.e. (Θ, z) surface. In this performance period, we have developed a set of 

orthogonal expansion functions for the other surfaces. 

 

 



 

Figure H1:  A 3-D cylindrical coarse mesh 

 

We have found that the same set of expansion functions developed for the (Θ, z) surface can 

be extended to the (r, Θ) and (r, z) surfaces if the neutron direction ̂  is represented 

(measured) in local geometry as illustrated in figures H2 and H3. As a result, the expansion 

functions are again a tensor product of polynomials  nP x and Chebyshev polynomials of the 

second kind  nU x : 

           ˆ, , , cos cos     on the ( , ) surface ii jkl i i j k lf r E P r P U P P E r          (H1) 

 

           ˆ, , , cos cos     on the ( , ) surface ii jkl i i j k lf r z E P r P z U P P E r z          (H2) 

 

where i, i’,j, k and l are expansion orders in spatial, polar angle, azimuthal angle and energy 

variables, respectively.  

 

Figure H2:  Local representation of  ̂  on the (r, z) surface 
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Figure H3:  Local representation of  ̂  on the (r, Θ) surface 

 

I. Tasks 2.2 and 2.3: Implement results of tasks 2.1 and 2.2 into the code, INL/Georgia Tech 

 

a. Task Summary 

 

The aim of this task is to develop a 2-D hexagonal transport method to generate response 

functions for controlled regions to couple with the diffusion method.   

 

d. Task Status/Progress 

 

A 3-D sweeping module has been developed by Georgia Tech. This sweeping module uses 

the incoming fluxes and net currents from the diffusion code as the source to do transport 

calculations for the outer reflector. The albedo coefficients on the diffusion/transport surface 

are calculated after the partial currents crossing mesh surfaces converge.  These updated 

albedo coefficients will then be used by CYNOD to do a diffusion calculation for the rest of 

the core. The MCNP reference fluxes and net currents on the fuel region/outer reflector were 

used to test the accuracy of the 3-D sweeping transport module. The average and maximum 

relative difference between the node-averaged fluxes calculated by the transport module and 

MCNP reference solution is about 0.8% and 4%, respectively, when the expansion orders in 

the two space variables and two angular (polar and azimuthal) variables are 4, 4, 2 and 2. 

This indicates that the transport module can achieve an acceptable accuracy at a relatively 

low order expansion. However, the CYNOD code uses the finite difference method (fine-

mesh) in the theta direction and the mesh dimension in the z (axial) direction is required to be 

no more than 10 cm. This makes the sweeping module very inefficient since there are about 

2,000 meshes in the outer reflector.  

.   

INL has implemented the transport module into the CYNOD code during the previous 

quarter. Accurate knowledge of the neutron radiation field is essential for the characterization 

of the Pebble-Bed Modular Reactor (PBMR).  Efficient nodal diffusion methods provide 

accurate characterization of the neutron distribution, and have been successfully applied to 

the analysis of PBMR designs.  However, these methods break down in regions that contain a 

control rod because of the anisotropic behavior of the neutron flux near the control rod.  A 

new method has been developed that successfully captures the anisotropic behavior of the 

control rods present inside a PBMR. The method embeds a response function treatment of the 

control rod regions inside an accurate and efficient nodal diffusion method.  

 

A common approach for nodal methods is to efficiently sweep the spatial mesh in a single 

direction, and iterate on the source. The source contains leakage information about the other 

transverse directions and is updated after all the net currents of the chosen direction are 

obtained.  The new coupled approach with response functions is to incorporate the iteration 

over the response function region into the nodal source iteration.  The approach works as 

follows: for a fixed neutron source the averaged nodal flux and net currents are calculated for 

the diffusion region.  From the fluxes and net currents, the partial incoming currents at the 

adjoined diffusion/response boundary to the response region are calculated.  The response 

region is then swept with the partial currents from the diffusion region as inputs and the 

partial currents in the response region are obtained.  The outgoing currents at the adjoined 

diffusion/response boundary from the response region become a new set of inputs to the 

diffusion region and are incorporated into the nodal source of the adjoined diffusion nodes.  

The nodal sources to the diffusion region are then updated, and new average nodal scalar flux 



values are obtained.  In this way the response and diffusion regions are iterated upon until the 

average nodal scalar flux is converged to a specified tolerance.  

The response function technique has been implemented inside of an R-Z (radial-axial) and R-

Θ (radial-azimuthal) versions of CYNOD. These showed great success in capturing the 

effects of the control rod on the neutron radiation field. This task was to develop, implement, 

and test the response function method in the full 3-D (R- Θ-Z).  To accomplish this task, the 

finite difference method was implemented for the Θ direction inside the R-Z nodal version of 

CYNOD.  A module provided by Georgia Tech. was embedded inside this version of 

CYNOD, and captures the effects of the control rods by sweeping over a set of pre-computed 

response functions. 

 
 

J. Task 2.4: Develop a 3-D PBR-VHTR benchmark problem for testing the methods in 2.6 and 

2.7, Georgia Tech 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to develop a PBR benchmark problem in 3D (r, Θ z) geometry for 

testing the methods developed in Tasks 2.1 and 2.2.  

 

d. Task Status/Progress 

 

A 3D PBMR 400 benchmark problem was developed in the performance period. The 

benchmark consists of an inner reflector region with a diameter of 2 meters (m), an annular 

fuel region of 0.85 m thickness and a 0.5 m thick controlled outer reflector region. There are 

24 control rods each of 13 cm diameter whose centers are positioned on the circumference of 

3.974 m diameter ring. The (r, Θ) and (r, z) cross sections of the 3D PBR problem are 

illustrated in Figs. J1 and J2. 

 

 
 

Fig. J1: (r, Θ) cross section of the 3D cylindrical benchmark problem 
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Figure J2:  (r, z) cross section of the 3D cylindrical benchmark problem 

 

    2. Issues/Concerns 

 

This task has been completed as scheduled. There are no issues/concerns.  

 
 

K.   Task 2.5: Test the implementation of task 2.3 with the problem in task 2.4, Georgia 

Tech/INL  

 

 1. Task Status and Significant Results 



a. Task Summary 

 

The aim of this task is to test the integrated diffusion/transport method.   

 

e. Task Status/Progress 

 

The method was tested on a mock pebble-bed modular reactor (PBMR) problem designed by 

Georgia Tech.  The reactor core has a total radius of 235 cm, and is 400 cm high. The reactor 

core is composed of three basic regions. The first region is an inner reflector of graphite with 

a radius of 100 cm, the second region is fuel ring made of fuel pebbles that is 85 cm, and the 

third region is an outer graphite reflector that is 50 cm.  A diagram of the PBMR without any 

control rods is shown in Figure K1.  The inner blue regions are the inner reflector regions, 

and the yellow-orange and red regions are the outer reflector regions. The light green is the 

top reflector while the darker green is the pebble fuel zone. 

 
Figure K1: A diagram of the sample PBMR with no control rods 

 

Table K1: Comparison of the core eigenvalue for the PBMR problem with no control rods 

 

Case Core Eigenvalue 

Reference 1.0372 

Pure Diffusion 1.0360 

Hybrid 1.0362 

 

Both the hybrid method and the pure nodal diffusion method are compared against a 

reference solution obtained from MCNP.  The embedded response method and the diffusion 

solution produce nearly the same core eigenvalue as the reference solution. 



 
Figure K2: The relative difference in the fast fluxes between the nodal diffusion solution and 

the MCNP reference solution for the PBMR problem with no control rods 

 

 
Figure K3: The relative difference in the thermal fluxes between the nodal diffusion solution 

and the MCNP reference solution for the PBMR problem with no control rods 

 



 

 
Figure K4: The relative difference in the fast fluxes between the hybrid solution and the 

MCNP reference solution for the PBMR problem with no control rods 

 

 

 
 

Figure K5: The relative difference in the thermal fluxes between the hybrid solution and the 

MCNP reference solution for the PBMR problem with no control rods 

 



The relative errors of the nodal diffusion Fast and Thermal fluxes compared to the MCNP 

reference solution are shown in Figures K2 and K3, and the relative errors of the Fast and 

Thermal fluxes obtained hybrid method compared to the MCNP reference solution are shown 

in Figures K4 and K5.  For the Fast flux both the pure diffusion solution and the hybrid 

solution have a relative error near 1% inside the reactor core.  Both solutions also show a 

relative error a little over 2% in the inner reflector region.  But, these two solutions have 

different regions where the maximum error occurs.  The maximum relative error in the fast 

flux for the Hybrid solution is a little under 4.0% and occurs at the top and bottom reflectors 

at the inner ring. This band of error occurs because of the coupling between the response 

region and the nodal diffusion solver.  This error may be eliminated either by refining the 

axial mesh near the boundary or by coupling the higher order spatial moments in the nodal 

diffusion solver to the higher order response function region.  

Next the hybrid and pure nodal diffusion methods are tested on a PBMR core with twelve 

control rods evenly distributed in the inner reflector. A diagram of the PBMR with the control 

rods is shown in Figure K6.  Like Figure K1, the inner blue regions are the inner reflector 

regions, and the yellow-green and orange regions are the outer reflector regions. The light 

green is the top reflector while the mint green is the pebble fuel zone.  The red regions 

represent the position of the control rods inside reflector core.  

 
Figure K6: A diagram of the PMBR with twelve control rods evenly distributed around the inner 

reflector. 

 

The critical core eigenvalue for the twelve even control rod problem are listed in Table K2.  

Both the pure nodal diffusion method and the response function method give critical core 

eigenvalues that are 0.18% less than the reference. 

 

Table K2: These are the critical core eigenvalues for the PBMR with twelve evenly 

distributed control rods inserted. 

Case Core Eigenvalue 

Reference 0.97805 

Pure Diffusion 0.97622 

Hybrid 0.97619 

 



 

 
Figure K7: The relative difference in the fast fluxes between the nodal diffusion solution and 

the MCNP reference solution for the PBMR problem with 12 control rods evenly distributed 

 

 
Figure K8: The relative difference in the thermal fluxes between the nodal diffusion solution 

and the MCNP reference solution for the PBMR problem with 12 control rods evenly 

distributed 

 



 

 
Figure K9: The relative difference in the fast fluxes between the hybrid solution and the 

MCNP reference solution for the PBMR problem with 12 control rods evenly distributed 

 

 

 
Figure K10: The relative difference in the thermal fluxes between the hybrid solution and the 

MCNP reference solution for the PBMR problem with 12 control rods evenly distributed 

 

 



Figures K7 and K8 show the relative error obtained by comparing the nodal diffusion method 

to the MCNP reference solution for the reactor with twelve evenly distributed control rods. 

Figures K9 and K10 show the relative error obtained by comparing the reference solution to 

the hybrid solution.  The diffusion solution shows a relative error of less than 2% in the fast 

flux and around 2% error in the reactor core for the thermal flux. However, the diffusion 

solution also has an error that is around 19% in the rodded reflector region.  But, the Hybrid 

method shows an error of less than 2% in the fast and thermal fluxes in the core and less than 

3% in the control rod region.  Again a larger error band around 4.5% occurs at the boundary 

due to the coupling of the axial moments near the boundary.  

 

L. Task 3.1: Develop 2D response function-based transport method for hexagonal geometry, 

Georgia Tech 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to develop a 2-D hexagonal transport method to generate response 

functions for controlled regions to couple with the diffusion method.   

 

b. Task Status/Progress 

 

The transport method has been developed, implemented and tested. Over a transport region 



VT , the method works as follows: 

 

Divide the transport region 



VT  into a series of coarse meshes. For our purposes, each coarse 

mesh will correspond to a single assembly. We expand the angular flux entering each coarse 

mesh using an orthogonal basis.  

 

Define the spaces of incoming 



m


 and outgoing 



m


 angular flux for a hexagonal assembly 



VH  

 

 



m

  (r , ˆ ,E) r VH

m,( ˆ n H 
ˆ )  0  (L1) 

 

with inner products 

 

 



f ,g
m


 d

VH
m

 r d ˆ 
(  ̂n H   ̂)0

 dE
0



 ( ˆ n H 
ˆ ) f (r , ˆ ,E)g(r , ˆ ,E) (L2) 

 

where 



VH

m
 is the 



m th
 face of the assembly and 



ˆ n H  is the outward unit normal on the 

assembly boundary. Let 



0,1,  be a set of functions on 



1


 that are orthonormal with 

respect to the corresponding inner product. Note that this basis can be trivially transformed to 

any of the other spaces 



m


. Let 



i

m
 satisfy the fixed-source transport equation with 

heterogeneous boundary condition 

 



 



HTi

m (r , ˆ ,E) 
1

k
FTi

m (r , ˆ ,E) for r VH

i

m (r , ˆ ,E) 
 i(r , ˆ ,E), (r , ˆ ,E)m



0, (r , ˆ ,E)VH

 m







.

 (L3) 

 

Now define the response coefficient 



cmn

ij
 

 

 



cmn

ij  i

m, j
n



 (L4) 

 

to be the response of basis component 



j  on surface 



n  to a source of shape 



i   on surface 



m . 

Given these coefficients and a known angular flux 



 
 impinging on the surface of the 

assembly, one can approximate the outgoing angular flux on surface 



n  by 

 

 



n

   jcmn

ij , i m



i, j


m1

6

 . (L5) 

 

If the basis 



0,1,  is complete, then the above approximation is exact in the limit as the 

expansion order goes to infinity. The basis must be truncated in practice, thus it is important 

to use a basis that provides a good representation at low order. For the spatial basis choose 

the orthonormal Legendre polynomials up to third order 

 

 



p0(x) 
1

2

p1(x) 
3

2
x

p2(x) 
5

2 2
3x 2 1 

p3(x) 
7

2 2
5x 3  3x .

 (L6) 

 

For the angular basis, choose the functions 

 



 



q0 , 
1



q1 , 
2


3sin sin  2 

q2 , 
2


cos sin

q3 , 
1

17
20sin2 12sin sin  7 

q4 , 
1

11
15sin2 sin2 16sin cos 

q5 , 
1

34
51sin2 cos2  47sin2 120sin sin  32 

 (L7) 

 

which have been derived by orthonormalizing the spherical harmonics with respect to the 

inner product 

 

 

 



f ,g  d sin dsin sin f , g , 
0




0



  (L8) 

 

and by omitting functions which are not symmetrical in 



  about the x-y plane.  

 

If the transport region



VT  is a single assembly, then this response expansion is sufficient to 

provide a detailed solution. When a sub-region is composed of several adjoining assemblies, 

however, all of these assemblies must be coupled together to solve the transport problem. In 

order to solve these multi-assembly problems, an iterative sweeping method is used, where 

the boundary flux expansion coefficients are updated one assembly at a time until they 

converge. This sort of response function expansion with sweep has been shown to work well 

for whole-core coarse-mesh transport problems [1, 2]. 

  

The above method has been implemented. The response functions are calculated with a 

modified MCNP5 and post-processed with Python scripts. The iterative sweep is performed 

using a module written in Fortran90. 

 

2. Issues/Concerns 

There are no issues/concerns.  

 

M. Task 3.2: Integrate transport method from Task 3.1 with an existing diffusion method, 

Georgia Tech 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 



The aim of this task is to integrate the 2-D hexagonal transport method with an existing 

diffusion code so that it can perform transport calculations for the selected regions while 

using the diffusion method for the rest of the core.   

 

b. Task Status/Progress 

 

PARCS has been modified to treat transport regions as external to the problem. The albedo is 

simply the ratio of the surface averaged net current (in the outward direction) to the surface 

averaged scalar flux. The unmodified PARCS uses a groupwise albedo on the external 

surfaces of the problem. This behavior has been modified in two ways: 

 The albedo has been modified to be surface-dependent rather than having a single 

global albedo for each energy group. 

 The input routines have been modified to treat arbitrarily placed hexagonal nodes as 

being external to the problem and thus treated through albedo boundary conditions. 

 

In addition to these modifications of the albedo, PARCS has also been modified to accept a 

corner point ratio (CPR) boundary condition. At each corner point along the diffusion-

transport interface, we specify the ratio of the scalar flux at that point to the sum of the node-

averaged scalar fluxes over the entire diffusion region. This boundary condition is applied 

during the PARCS corner point balance. The combination of CPRs. and albedos creates a 

higher order boundary condition than would be possible with albedos alone. 

 

The albedos and CPRs along the diffusion transport interface are not known a priori; instead, 

they are calculated iteratively. For an initial guess, the albedos are initialized to 0 and the 

CPRs are set to the reciprocal of the number of diffusion nodes. This guess would be exact in 

the case of an infinite medium (ie flat flux) solution. At each iteration these interface 

conditions are improved by a fixed source calculation in the transport region using the 

incident flux response expansion method. The transport method takes the incoming flux from 

its shared boundary with the diffusion region as input. The transport region then calculates 

the detailed solution that results from this diffusion surface source. From this detailed 

solution in the transport region, the albedos and CPRs are updated. 

 

The incoming surface source for the transport response calculation is derived from the 

Triangular Polynomial Expansion Nodal (TPEN) solver in PARCS. The TPEN method (a 

part of the PARCS nodal update) considers each hexagonal assembly to be made of 6 

triangles. It assumes that the flux shape in each triangle conforms to a 9-term polynomial 



TPEN (x,y)  c0x  ax x  ay y bx x2 buu
2 bp p2  cx x 3  cuu

3  c p p3

where u  x  3y  2 and p  x  3y  2.
 

The coefficients of the angular flux expansion described above in Task 3.1 can be calculated 

analytically from the TPEN coefficients. This relationship was derived analytically using the 

Maxima computer algebra system. These coefficients are then fed into the response functions 

(outlined in Task 3.1). The response is then used to update the boundary albedo and corner 

point ratios. 

 

In summary, the incoming boundary conditions for the transport region are derived from the 

latest diffusion iteration, and then transport region response function is applied to update the 

diffusion boundary conditions. This interface condition update occurs after each PARCS 

nodal update. 

 



2. Issues/Concerns 

There are no issues/concerns.  

 

N. Task 3.4: Test result of 3.2 with the problem of 3.3, Georgia Tech 

 

1. Task Status and Significant Results 

 

a. Task Summary 

 

The aim of this task is to test the combined diffusion-transport method developed in tasks 3.1 

and 3.2 with the HTTR benchmark developed in task 3.3.   

 

c. Task Status/Progress 

 

The method has been applied to a simplified version of the HTTR benchmark developed in 

task 3.3. 

 
Figure N1. HTTR Core Layout 

 

The test problem we have used differs from the one developed in 3.3 in the following ways: 

 only a single type of fuel assembly is retained 

 only a single type of graphite block is retained 

 2 energy groups are used instead of 6 

 

A reference calculation is performed with MCNP5. This is compared to a whole-core 

diffusion calculation (denoted PARCS), and to two different diffusion-transport hybrid 

setups. 1) The transport region is chosen to consist of all of the control blocks; this is denoted 

IDT C. In this case, the transport region is a set of isolated blocks. 2) The transport region is 

chosen to be a single contiguous region consisting of all of the control blocks and all of the 

reflector blocks; this is denoted IDT C+R. 

 



The reference eigenvalue is k=0.63536 with estimated uncertainty of 2 pcm at the 1-standard-

deviation level. All of the assembly power values for the reference solution have uncertainty 

of less than 0.01% at the 1-standard-deviation level. Let 



rj  ( ˜ p j  p j

* ) p j

*
 denote the 

relative error in assembly power where 



p j

*
 is the fission rate in assembly j from the reference 

solution, and 



˜ p j  is the corresponding value from an approximate calculation. Table N1 

compares the accuracy of the methods with respect to eigenvalue and assembly powers. Table 

N2 compares the computation times of the methods. 

 

Table N1. Error comparison. 

 PARCS IDT C IDT C+R 

error in eigenvalue k (pcm) -3303 213 183 

average relative error = 



1

N
rj

j1

N

  0.88% 0.72% 1.53% 

RMS relative error = 



1

N
rj

2

j1

N

  0.97% 0.83% 1.78% 

maximum relative error = 



j
max rj  1.60% 1.59% 2.69% 

 

Table N2. Computation times on 2GHz CPUs. 

Computation Parallel Time (seconds) Number of Cores Seqential Time (core-

seconds) 

MCNP Reference 

Solution 

4.9E+4 32 1.6E+6 

Fuel Homogenization 1.7E+4 32 5.4E+5 

Control Homogenization 7.7E+3 32 2.5E+5 

Control Response  

Pre-Computation 

1.3E+4 96 1.2E+6 

Reflector Response 

Pre-Computation 

7.2E+3 96 6.9E+5 

PARCS 1.3E-1 1 1.3E-1 

IDT C 4.7E+0 1 4.7E+0 

IDT C+R 3.6E+0 1 3.6E+0 

 

Figure N3 gives the assembly powers from the reference solution and the corresponding 

relative errors for the PARCS calculation and for the IDT calculations. 



 
Figure N3. Assembly-wise power distribution; MCNP reference values are normalized so that the 

average assembly power is 1. 

 

Both of the IDT calculations produce an eigenvalue estimate that is an order of magnitude 

better than that of the PARCS estimate. The best assembly powers were calculated by the 

IDT C computation, while the worst were with the IDT C+R computation. Both hybrid 

computations are nearly 6 orders of magnitude faster than the reference MCNP. 

 

2. Issues/Concerns 

This task has been performed with a simplified benchmark problem not due to any limitations 

of the method itself, but because we did not have access to the GenPMAXS code that is used 

to generate PMAXS cross section files for PARCS. Using the 2-group structure, cross 

sections can be input directly into PARCS, but going to a higher number of groups (6 for the 

problem in task 3.3) requires the PMAXS input files. 



 

V. SUMMARY AND CONCLUSIONS 

 

 

Status Summary of NERI Tasks  

 

Milestone/Task 

Description (Organization) 

Planned 

Completion Date 

Actual 

Completion 

Date 

Percent Complete 

1.1: 2D(r, θ) response function 

method - GT 
02/25/2008 02/25/2008 100% 

1.2: 2D(r, θ) RMNB diffusion method 

- INL 
02/25/2008 09/30/2008 100% 

1.3: Implement the 2-D methods into 

the code - INL/GT 
08/25/2008 06/30/2010*  100% 

1.4: 2D PBR benchmark test – 

INL/GT 
08/25/2008 06/30/2010* 100% 

2.1: 3D(r, θ, z) response function 

method – GT 
02/25/2009 02/25/2009 100% 

2.2: 3D(r, θ, z) RMNB diffusion 

method - INL 
11/30/2010 06/30/2010 100% 

2.3: Implement results 2.1 and 2.2 into 

the code - INL/GT 
12/30/2010 12/30/2010 100%  

2.4: Develop a 3D PBR-VHTR 

benchmark problem - GT  
09/30/2009 09/30/2009 100% 

2.5: Test the implementation of task 

2.3 with the problem in task 2.4 – 

INL/GT 

12/30/2010 12/30/2010 100% 

2.6: Develop, implement  and test the 

(r-z) response function-based transport 

method – GT 

06/30/2009 06/30/2009 100% 

2.7: Develop, implement and test the 

RMNB diffusion method – INL 
08/30/2009 06/30/2010 100% 

2.8: Develop a PBR benchmark 

problem in (r-z) geometry for testing 

the methods in 2.6 and 2.7 – GT 

05/31/2009 05/31/2009 100% 

3.1: Develop 2D response function-

based transport method for hexagonal 
09/30/2010 09/30/2010 100% 



geometry – GT 

3.2: Integrate the transport method 

into an existing diffusion code - GT 
10/30/2010 11/30/2010 100% 

3.3: Develop 2D prismatic VHTR 

benchmark problem - GT 
08/30/2010 08/30/2010 100%  

3.4: Test result of 3.2 with the 

problem of 3.3 - GT  
12/30/2010 12/30/2010 100% 

3.5: Write the user’s manual for the 

modified CYNOD – INL 
12/30/2010 12/30/2010 100% 

* Tasks 1.3 and 1.4 were reactivated in Y3Q3 and completed in Y3Q4. 

 

 

The objective of this research project was to develop an integrated diffusion/transport (IDT) method to 

substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High 

Temperature Reactors (VHTR). In this method, the reactor core is first divided into two domains: 

transport and diffusion domain. The traditional diffusion method is used for the region where the 

diffusion approximation is sufficient, while a local transport method based on the incident flux response 

expansion method is used for the rest of the core. Researchers implemented the method into a computer 

code which is capable of performing realistic whole core neutronic calculations. The method has been 

benchmarked extensively in benchmark configurations typical of PBR and prismatic (in 2-D) VHTR 

cores. Excellent accuracy against full core Monte Carlo results is achieved with the new IDT method.  

The hybrid whole core calculations are found to be highly accurate and very efficient.  

 

Based on the encouraging results and efficiency obtained in this project it recommended to extend this 

method to three-dimensional hexagonal geometries. This will results in a highly accurate and efficient 

method for practical whole core calculations for prismatic VHTR design and analysis. 


