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INTRODUCTION

A magnetic material in an alternating field will experience a mechanical vibration due

to the magnetostriction, such as the humming (vibration) of a transformer. Most

magnetostrictive materials exhibit a strain (A1/1or k) on the order of 10-5, but Terfenol has

outstanding magnetostrictive properties at room temperature (Table 1). Some of the

advantages of Terfenol for applications include: the largest room-temperature strain of any

commercially produced magnetostrictive material, a response time in milliseconds, and a

capability of hundreds of newtons of force (1). Further study of this alloy could improve the

magnetostrictive response of this material.

Table I Magnetostriction coefficients of some cubic materials (2)

IIII I

Material k <100> (106)... ;Z<111> (106)

Iron 21 -21

Nickel -46 -24

Terfenol 90 1600

Terfenol is a rare earth-iron alloy that was first developed at the Naval Ordinance Lab

because of its rare magnetostrictive properties. In fact, the name "Terfenol" is derived from

Ter (terbium) -Fe (iron) -NOL (Naval Ordinance Lab). Terfenol is an alloy composed of the

rare earth elements terbium and dysprosium combined with iron in a composition TbxDyl-

xFe2, where x--0.3.

Rare earth elements have large magnetostrictions at low temperatures, but at room

temperatures they are above the Curie temperature. Thus, by alloying these rare earth

elements with the magnetic transition metals Ni, Co, and Fe, the Curie temperatures of the

rare earth alloys are above room temperature and the magnetostrictions are present at room

temperature. By alloying Tb and Dy with Fe such that the compound TbxDy 1-xFe2 (x._0.3)

forms, high strains at a low field are possible from the low anisotropy energy, which

maximizes domain wall mobility and easy domain rotation at low fields (3). Figure 1 shows

the dependence of the 2L111magnetostriction on the Tb:Dy ratio; note that at x=0.75, the

magnetostriction changes axes to the < 100> crystallographic direction for DyFe2 alloys.
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Figure I Plot of the magnetostriction k<l 11> of Tbl.xDyxFe2 at room temperature;
open circles are Z<I 11> and solid circles denote a region where no
spontaneous k<l 11> exists (taken from Clark et al., 1976) (3)

Terfenol is generally considered to be the RFe2 phase (where R = rare earth elements

Tb or Dy); however, the overall composition of commercial Terfenol is usually - RFel.95.

This is attributed to the fact that the RFe2 phase is quite brittle, and small amounts of rare

earth phase in the Terfenol matrix make the material more ductile without being too

detrimental to the magnetostrictive properties. In this state, the material consists of two

microconstituents: the RFe2 compound and the rare earth rich microconstituent (4).

Formation of the RFe3 and other iron-rich phases are detrimental to the magnetostrictive

properties of the alloy.

During the solidification of Terfenol alloys, the solid tends to grow with a dendritic

growth front. The Terfenol dendrites grow with a sheet morphology having a <112> growth

direction and a {111} plane aligned parallel with the sheet plane. The <112> dendrites

characteristically have two or more parallel {111 } twin planes along the center of the sheet

plane, which are detrimental to the magnetostriction because they impede the domain wall

motion during magnetization (4, 5). Since the largest magnetostriction of Terfenol occurs in

the <111> direction, it would be desirable to have the crystal grow in the <111> direction,

but the <112> dendrites form preferentially and large temperature gradients and slow

solidification rates would be necessary to achieve a planar growth front during solidification.



A planar growth front could be achieved during solidification if the dendrites were

suppressed. Dendrite growth requires constitutional supercooling; therefore, by creating a

temperature gradient at the interface that is larger than the freezing temperature gradient due

to the solute build-up at the interface, constitutional supercooling can be avoided and a planar

growth front may be achieved (Figure 2). The solute build-up at the interface decreases the

freezing temperature because of the inverse relationship between the freezing temperature

(Tf) and the concentration (C) for systems where Xs/Xl< 0 (the composition of the solidus is

smaller than the composition of the liquidus for a given temperature) (6).
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(COi = concentration of the liquid at the interface
(Cs)i = concentration of the solid at the interface
(CI)B - concentration of the bulk liquid

Gcr ---critical temperature gradient
Tf--- freezing temperature

TR = real temperature
S - supercooling

Figure 2 Tile supercooled region (shaded area) produced by the solute build-up in alloy
solidification in a positive temperature gradient provides a driving force for
dendritic growth; a large temperature gradient is required in order to avoid
supercooling to form a planar growth front (6)



From the equilibrium phase diagrams for Tb-Fe and Dy-Fe (Figures 4 and 5), the

compositions of dendrites in equilibrium can be predicted, as shown for (a) Dy-Fe and (b)

Tb-Fe in the Figure 3 below. The first model depicts the formation of a dendrite where the

first phase forms from the liquid and subsequent phases form on the same dendrite. The

second model shows different phases forming individual dendrites.

(a) Dy-Fe (b) Tb-Fe

1270°C 129_°C 2/I-7_"_,,_187°C 1212oc 1230°C

Model I 3/11 ] 23/6 }

,-t"4mm -I _ _ 3'6mm_"-I
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Figure 3 Composition of dendrites for Dy-Fe and Tb-Fe for same-phase dendrites and
multi-phase dendrites

For a liquid of 2/1 (Fe/R) stoichiometry, the Tb-Fe equilibrium phase diagram (Figure

4) predicts that the R6Fe23 phase will form first upon solidification, followed by the RFe3

phase, and finally the RFe2 phase will form. However, for the Dy-Fe system (Figure 5), a

liquid composition of 2/1 (Fe/R) will yield the RFe3 phase first and then the RFe2 phase

during solidification.
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Although the equilibrium phase diagrams for Tb-Fe and Dy-Fe (Figures 4 and 5)

predict that the RFe2 phase would not form f'wst for a liquid of 2/1 (Fe/R) composition, RFe2

is the primary phase formed during solidification for DyFe2 and Tb.27Dy.73Fe2. Studies of

RFe2 samples have shown that float zone solidification at a growth rate of 140 I_rn/sec with

both DyFe2 and Tb.27Dy.?3Fe2 will form the RFe2 phase with some eutectic, but TbFe2

will form the RFe3 phase surrounded by RFe2. Additional work has indicated that growth

rates exceeding 35 I.trn/sec in Tb.27Dy.73Fe2 will form the RFe2 compound directly from the

liquid as a primary phase (7).

Faster solidification rates increase the undercooling of the liquid due to the latent heat

of the alloy, and this undercooling may cause non-equilibrium precipitates to form. The

solidification rate determines the amount of alloy that undergoes a phase change per unit

time, and this phase change requires an amount of energy; this energy is achieved by

undercooling the liquid to drive the reaction because thermodynamically the free energy (AG)

is a function of the undercooling (AT).
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Figure 4 Terbium-iron equilibrium phase diagram (8)
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Figure 5 Dysprosium-iron equilibrium phase diagram (8)

Formation of the RFe3 phase in Terfenol is detrimental to its magnetostrictive

properties since the RFe3 phase exhibits a smaller magnetosaiction than the RFe2 phase. In

a sample of overall RFel.95 composition, microsegregation may occur in the dendrite, where

the core of the dendrite is iron rich and the interdendritic area is rare earth rich; the iron rich

region may lead to precipitation of the RFe3 phase after solidification. However, an anneal at

---950°C for 1 hour has proven effective for homogenization (elimination of the RFe3 phase

to produce an RFe2 matrix with some undissolved rare earth metal). This heat treatment

much improves the magnetostrictive response of the material because the RFe2 phase

exhibits superior magnetostrictive properties than the RFe3 and other iron-rich phases(5).



With the given phase diagram for the dysprosium-iron system, free energy curves can

be constructed to demonstrate that the RFe2 phase will not precipitate out under equilibrium

conditions, but may form under metastable conditions. Shown in Figure 6 are two free

energy diagrams drawn at the temperature of the liquidus line at the 2/1 composition (T2) and

T2 I I

tl t
T1

1300- i /
T2---
T1-.

6"
o...,

_ 1250"

1200 lll l , , ,
20 30 40 50

atomic % Dy

Figure 6 Possible free energy curves of the Dy-Fe phase diagram at T 1 and T2



at a temperature just below that (T1). The free energy diagram drawn at T2 demonstrates

that if the liquid of 2/1 composition began to solidify at the liquidus line (equilibrium

conditions), the RFe2 phase would not precipitate out because it has a higher fi'ee energy than

the liquid; however, at T1 it can be seen that the RFe2 phase could form metastably, since

the free energy change between the RFe2 and RFe3 phases is very small at the 2/1

composition. From these observations the conclusion can be reached that either the phase

diagrams presented are not quite correct or that the solidification of the Terfenol dendrites is

taking place under metastable conditions.
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LITERATURE REVIEW

Several solidification techniques have been employed to grow Terfenol crystals;

these include: Bridgman, Czochralski, and float zot,,e solidification, to name a few of the

most common ones. Terfenol produced for optimum magnetostriction would be high purity

single crystals of RFe2 oriented in the <111> crystallogcaphic directions.

The Bridgman technique involves directional solidification of the Terfenol in an

alumina or silica tube. Typically, the entire rod of Terfenol is melted (in a tube or container)

and solidified directionally by lowering the Teffenol out of the furnace and through a cooling

device. Since this technique requires that the molten Terfenol be in contact with alumina or

silica at elevated temperatures for some time, especially if slow growth rates are used,

contamination may occur in the Terfenol. Additionally, if large temperature gradients are

achieved in order to try to get a planar growth front, further contamination is found because

the molten Terfenol is in contact with the container at even higher temperatures.

The Czochralski solidification method involves using a seed of <111> oriented

Teffenol in order to pull a <111> oriented single crystal of Terfenol from the melt. It has

been attempted to grow <111> oriented Teffenol dendrites with <111> seeds, but this trial

was unsuccessful because the <112> oriented grains formed near the seed interface and

crowded out the <111> seeded grain (4).

Also, contamination of the Terfenol can occur in the crucible of molten Terfenol

during solidification and macrosegregation may take place. Bi et. al. (9) have shown that

contamination may be minimized by using an induction-heated cold crucible in Czochralski

solidification. However, the Terfenol crystals grown in his system contained many

Widmanstiitten precipitates, which are detrimental to the magnetostrictive properties. In the

same study, float zone solidification of the same composition of Terfenol yielded a sample

with a higher density of defects, but with fewer interior oxide particles and twins.

Float zone solidification occurs when the Terfenol is melted at a small zone by

coupling the Terfenol with a large RF field created by a coil surrounding the rod at the area to

be melted. The molten zone created is quite small, and large temperature gradients can be

achieved by controlling the distance between the zone and a cooling device. Numerous

studies have been published which involve float zone solidification of Terfenol to try to grow

single crystals.

Verhoeven et al. (4) did microstructural studies on Terfenol of composition

Tb0.3Dy0.7Fex (x = 1.80 to 1.99) solidified by Bridgman and float zone techniques. The
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results indicated that the Terfcnol solidified with a cellular to dendrite morphology in the

<112> crystallographic direction along the rod axis. The dendrites formed as plates with

their face parallel to the {111} plane; these planes contained two or more {111} twin

boundaries along the center of the plate. Attempts to form <111> oriented rods from seeded

float zone experiments failed. Rods of <112> orientation were formed as "single crystals"

from seeded float zone experiments, but the crystals were not truly single due to the presence

of parallel twin planes.
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OBJECTIVE

Ultimately, our concern is to determine the growth characteristics of Terfenol and its

dependence on solidification rate, temperature gradient, and stoichiometry. Several goals to

further our knowledge were outlined at the beginning of this study:

(1) Verify the phase equilibria that is currently accepted for the systems DyFe2 and

TbFe2, and establish the phase equilibria near the composition Tb0.3Dy0.7Fe2.

(2) Establish that Tb0.3Dy0.7Fe2 grows directly from the liquid, and that the reaction

is occurring under metastable conditions.

(3) Evaluate whether or not we can grow Tb0.3Dy0.7Fe2 under plane front conditions

with a new RF (radio frequency) float zone apparatus.

(4) Determine whether or not we can grow <111> seeded crystals and produce <111>

single crystals by elimination of dendrites employing growth methods capable of achieving

high G/R (temperature gradient/solidification rate) ratios.
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EXPERIMENTAL TECHNIQUES

Bridgman

Directionalsolidification(Bridgmantechnique)was conductedon castiron,copper,

andTerfenol.Intheexperiments,a Pt-Rh(typeB) thermocouplewas placedinthemolten

metal,justabovethesolid/liquidinterface,andthetemperatureofthemetalwas recordedat

1secondintervalsasthefurnaceandcold-fingerofthedirectionalsolidificationsystemwere

slowlymoved uptheaxisofthemoltenmetal,causingsolidificationofthemetalaroundthe

thermocouple.The metalwas containedinan aluminatubeunderan argonatmosphere.

Solidificationrateswerecontrolledby a computerdrivenmotor.Ratesof 10,25,and 50

I.tm/sec were used at furnace temperatures of 1300, 1350, 1400, 1450, and 1500 °C for four

runs using a sample of Fe-4.3C-0.02S, and the same rates were used at furnace temperatures

of 1250, 1300, 1350, and 1400 °C for one run using high purity copper. Terfenol samples of

composition Tb0.31Dy0.69Fel.98 were also solidified ; the rates employed were 5, 10, 25,

and 50 I.tm/sec at furnace temperatures of 1350 and 1400 °C. A diagram of this furnace is

shown in Appendix A.

Float Zone Solidification

The float zone method is the solidification technique of interest due to its appealing

characteristics for directional solidification: high temperature gradients , low impurity

introduction, and minimal macrosegregation. In this system, the Terfenol is held in an argon

atmosphere and is not in contact with anything, except at each end where the Terfenol rod is

held. A coil around the Terfenol rod couples with a copper concentrator (water cooled)

which creates its own field that couples with the Terfenol rod. The coil is held stationary as

the Terfenol rod is moved up slowly by a computer driven motor, causing the zone to move

down the rod axis. Also, the heating coil allows only a small band of metal to be melted at

one time, causing a large temperature gradient and allowing little segregation. Thus, this set

up may provide the proper conditions for plane front growth. A diagram of the float zone

system is shown in Appendix A.
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DTA Experimentation

Differential thermal analysis experiments were performed on Terfenol alloys of

varying compositions in order to determine which phases are present at these compositions.

An experiment done by McMasters involved the solidification of DyxFey samples where the

dysprosium content was 22.5%, 26%, and 30% to determine which composition shows the

3/1 phase beginning to form. In a similar experiment, we solidified samples of RxFey, where

the rare earth content (R) of the alloy was 22.5, 26, and 30 atomic % (Table 2); the rare earth

component had a Tb:Dy ratio of 3:7 in each alloy. The three Terfenol samples were arc

melted into fingers and the microstmcture of the samples was studied; the composition of

each sample was verified using ICP (induction coupled plasma) analysis.

ICp Chemical Analysis

Three arc cast fingers, each with a different Terfenol composition, were sectioned and

analyzed at each end and at the midsection (where the DTA samples were taken) in 1 to 2

gram samples using the ICP in order to determine the differences in composition from the

target composition. The three Terfenol target compositions are listed in Table 2; the Dy:Tb

ratio for each alloy was set to be 7:3 when the alloys were made.

The ICP test results have a +3% error relative to the amount of each element present.

Thus, included in the ICP results is the error associated with each alloy in each test specimen.

The ICP results are given in Table 3. These results and their relative errors have been

compared to the target compositions for each alloy (Table 2) to determine whether we can

assume that the composition of the alloy is the target composition.

The difference between the target compositions and the ICP results can be compared

to the error of the ICP analyses to determine how valid our target compositions are (Table 4);

if the target composition are within the error of the analysis, then it is reasonable to assume

Table 2 Target compositions of the three arc cast Terfenol samples (RE stands for rare
earth metals Tb and Dy)

Alloy atom % Fe atom % RE atom % Dy atom % Tb
Terf 22.5 77.5" 22.5 15.75 6.75

Terf 26 74.0 26.0 18.20 7.80

Terf 30 70.0 30.0 21.00 9.00



14

that the target compositions are the compositions of the DTA samples. Note that the values

for the target compositions at the midsection of each alloy in Table 4 are within error, since

the DTA samples were extracted form the midsections of each casting, the DTA sample

compositions for each alloy are assumed to be the target compositions.

Table 3 Results of the ICP chemical analysis from at each end and at the midsection of
each of three are cast Teffenol samples: Teff 22.5, Teff 26, and Teff 30

i i ii i ,i.

Allo_, area atom % Fe atom %D_, atom %Tb

Terf 22.5 end #1 74.80_.24 17.73_-+0.53 7.47±0.22

end #2 79.53+__2.39 14.38±0.43 6.09-!"0.18

midsection 77.62.+.2.33 15.66_+0.47 6.72±0.20
iH Hi i ,,

Terf 26 end #1 71.59±2.15 19.92_+0.60 8.49±0.25

end #2 79.06±2.37 14.67±0.44 6.27±0.19

midsection 73.55:1.2.21 18.53±0.56 7.92_+0.24

Terf 30 end #1 70.16:12.10 20.97±0.63 8.87:1.-0.27

end #2 71.30±2.14 20.22_+0.61 8.48±0.25

midsection 70.28+_2.11 20.84_+0.63 8.88_+0.27

Table 4 The calculated difference between the target composition and the ICP
composition compared with the error associated with the ICP test shows if we
are within error; the values not within the ICP error are printed in bold

ii i

4-atom % Fe :1:atom % Dy + atom % Tb

Allo_, area diff., ± ICP diff. + ICP diff. + ICP
Terf 22.5 end #1 -2.70 -I-2.24 1.98 :L-0.53 0.72 _'_+0.22

end #2 2.03 ±2.39 -1.37 _-+0.43 -0.66 _+0.18

midsection 0.12 +_2.33 -0.09 _+0.47 -0.03 _-+0.20

Terf 26 end #1 .2.41 __.2.15 1.72 !0.60 0.69 _+0.25

end #2 5.06 .-!:2.37 -3.53 _+0.44 -1.53 -!"0.19

midsection -0.45 ±2.21 0.33 _+0.56 0.12 ±0.24

Terf 30 end #1 0.16 _+2.10 -0.03 ±0.63 -0.13 _'_+0.27

end #2 1.30 .-]:2.14 -0.78 _-/-0.61 -0.52 _-+0.25

midsection 0.28 +_2.11 -0.16 _+0.63 -0.12 :L-0.27
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DTA Methods

Initially, differential thermal analysis (DTA) was performed using a Perkin Elmer

DTA apparatus, which holds a small sample (= 100 mg) of crushed material in an alumina

crucible in an argon atmosphere and measures the temperature difference between the sample

of interest and a sample of alumina as the crucibles are heated at a standard rate of

0.167°C/sec. Thus, when the sample undergoes a thermal arrest during a phase

transformation, the difference in temperature between the two samples becomes quite large.

DTA was performed on high purity copper and iron, as well as some Terfenol samples with

established compositions. This analysis was done for the comparison of the DTA results

with the confirmed values to check the validity of the DTA system. The DTA results were

reasonably congruent with expected results, indicating that the DTA method may be able to

determine the phase diagram around the ternary Terfenol system. To better interpret the

meaning of the DTA results, it was decided that metallographic analysis of solidified samples

was required. Because the sample sizes of the Perkin-Elmer unit were too small, a DTA unit

was constructed from the platinum furnace used with the directional solidification

experiments. A diagram of our DTA unit is given in Appendix A.

In the construction of our own differential thermal analysis furnace, two type B

thermocouples in alumina sheaths are used to determine the temperatures of a nickel standard

and the Terfenol sample (=2 grams) as the furnace temperature is incremented at a prescribed

rate. The nickel and Terfenol samples are contained in alumina crucibles on pedestals that

can be lowered out of the bottom of the furnace for quenching purposes. This setup is

designed to be capable of quenching the sample in a liquid tin bath in order to observe the

phases forming at critical temperatures. Also, the Terfenol samples are large enough that

they may be mounted and polished for optical and SEM observation to determine the phase

morphology and composition. The DTA experiments were performed with the Terf 22.5,

Terf 26, and Terf 30 samples at cooling rates of 0.017 °C/sec, 0.083 °C/sec, furnace cooled

(=0.433 °C/sec), and helium quenched. Table 5 presents a summary of the experimental

parameters used in the five sets of experiments carried out in the DTA apparatus.

The experiments using our DTA system consisted of heating the furnace under

vacuum conditions to =800°C, then backfilling the furnace to 5 inches Hg (necessary because

of the low vapor pressures of Tb and Dy) and heating the furnace to =1100°C. Next, the

furnace was heated to 1250-1350°C at a prescribed rate while the temperature readings were

taken, followed by cooling to = 1150°C at a given rate with temperature readings, and then a

reheat to 1250-1350°C (same as the first heat, except the first heats show the melting of
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Table 5 DTA experimental parameters.

mount # expt #'s Composition Temp. range heating rate coolin[ rate final cool i'ate
Set 1 1-79 Terf 22.5 1000-1320°C 0.083 °C/sec 0.083 °C/see furnace cool

1-81 Terf 26 " " " "

1-83 Terf 30 " " " "
I II II II II

Set 2 1-85 Terf 22.5 1000-1320°C 0.083 °C/sec 0.083 °C/see 0.083 °C/see

1-87 Terf 26 " " " "

1-89 Terf 30 " " " "
I I I I III III

Set 3 1-91 Terf 22.5 1140-1340°C 0.083 °C/sec 0.083 °C/see 0.083 °C/see

1-93 Terf 26 " " " "

1-95 Terf 30 " " " "
IIII II I

Set 4 1-99 Terf 22.5 1100-1350°C 0.083 °C/sec 0.017 °C/see 0.017 °C/sec

1-101 Terf 26 " " " "

1-103 Terf 30 " " " "

Set 5 1-107 Terf 26 1100-1350°C 0.083 °C/sec 0.083 °C/sec 0.083 °C/see

1-109 Terf 26 " 0.083 °C/sec furnace cool furnace cool

1-111 Terf 26 " 0.083 °C/sec 0.017 °C/sec 0.017 °C/sec

1-113 . "left 26 " 0.083 °C/sec Quench Quenc h

phases from the arc cast metal and the second heating should show the same phases that

formed on cooling at the given rate). At the peak temperature, the thermocouple is removed

from the molten metal, and the sample is cooled at the same rate as the first cool so that the

microstructure of the DTA sample reflects the thermal events recorded.

Metallography

The DTA samples were mounted, polished, and etched for optical and SEM

examination in order to determine the phases that formed and their morphology. The

samples were generally polished using silicon carbide papers, then diamond polishing, and

finally Linde A and B. Several etches were employed in order to be able to easily identify

the phases optically: 2% nital, 5 % ferric chloride, Vilella's microetch, and boiling picric
l

etch. The boiling picric etch gave the most outstanding differentiation between the phases.

The samples were then observed microscopically and photomicrographs were taken to record

the microstructure. Figure 8 describes the microstructure of a DTA sample.
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Figure 8 Photomicrograph at 510X of a DTA sample from experiment 1-103 of Terf 30
(30 atomic % rare earth elements Tb and Dy) solidified at 0.017 °C/sec and
etched with the boiling picric etch for 420 seconds showing RFe3 dendrites
and RFe2 interdendritic (dark)

Scanning El¢clr0n Microscopy (SEM)

Scanning electron microscopy (SEM) was used with electron probe microanalysis

(EPMA) for a quantitative analysis to determine the compositions of dendrites and other

phases present in the Terfenol DTA samples. Iron, dysprosium, terbium, and Terfenol

standards were used in the quantitative analysis. The atom% Fe found for each phase was

compared to the atom% Fe that would be present in each of the four phases (see Table 6) in

order to determine which phase was present.

Table 6 Compositions of four phases found in the Terfenol samples.

Phase Abbr. At % Fe At % Dy At % Tb At % RE

RFe2 2/1 66.67 23.34 9.99 33.33

RFe3 3/1 75.00 17.50 7.50 25.00

R6Fe23 23/6 79.31 14.48 6.21 20.69

R2Fel7 17/2 89.47 7.37 3.16 10.53
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RESULTS AND DISCUSSION

Bridgman

Directional solidification (Bridgman technique) of iron, copper, and Terfenol was

performed in order to determine the temperature gradients achievable with the system and in

order to observe the quench interface to see what the growth front looks like (planar or

dendritic). Initial experiments were conducted on iron and copper, and eventually we

progressed to Terfenol.

Figures 9 and 10 show example plots of the temperature gradients (temperature versus

distance) in the liquid and solid during solidification for cast iron and copper, respectively.

Figure 11 shows the temperature gradient versus the furnace temperature for each

solidification rate for both liquid and solid metal; these plots show the following

relationships:

a) Increased furnace temperatures cause increased _,_mperaturegradients for both

solid and liquid metal, for both iron and copper.

b) In cast iron, the temperature gradients for the solid are larger than the liquid

temperature gradients, while the reverse is true for copper. (For cast iron, this indicates that

the liquid is more conductive than the solid, which is an unusual case resulting from the

presence of graphite in the solid)

c) For cast iron, the solid temperature gradients increase with increasing velocity,

while the liquid temperature gradients decrease with increasing velocity. The relation is

unclear for copper.

From the solid and liquid temperature gradients determined for a particular furnace

temperature and solidification rate, the thermal conductivities of the solid and liquid metal

can be calculated from manipulation of the heat flow balance equation. This information is

useful because the relationship between the temperature gradient and velocity is derived,

which can be used to determine the solidification velocity corresponding to the critical

temperature gradient at which a planar growth front is achieved. A derivation of the relation

is given in Appendix B.
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Figure 9 Example plot of temperature versus distance for cast iron at a furnace
temperature of 1350°C and a solidification rate of 25gin/see
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Figure 10 Example plot of temperature versus distance for high purity Cu at a furnace
temperature of 1300°C and at a solidification rate of 25 I.trn/sec
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Directional solidification using the Bridgman technique was attempted with a

Terfenol sample of composition Tb0.31Dy0.69Fel.97. In order to achieve a planar growth

front, large temperature gradients and slow solidification velocities are needed. However,

Terfenol is easily oxidized, and since the Terfenol is contained in alumina (A1203), lower

furnace temperatures and fast solidification rates are required in order to minimize the

contamination of the Terfenol. Since the melting temperature of this alloy is = 1240°C,

furnace temperatures of 1350 and 1400°C with solidification rates of 5, 10, 25, and 50

I.tm/sec were employed and the temperature gradients were evaluated. Additionally, one run

was conducted with a furnace temperature of 1350°C at a rate of 1 I.tm/sec and quenched in

order to observe the interface. The dendrite formation was no' suppressed even at this slow

solidification rate, and evidence of oxidation was noted on the Terfenol samples. Also, the

Terfenol samples were very difficult to remove from the alumina tubes without shattering

due to their brittle nature. An example plot of temperature versus time is given in Figure 12;

note the change in thermal conductivity at the melting temperature. More temperature

gradient data on the Terfenol is given in Appendix B.

1300 -, ',, ._--._'' I .... I ........ I .... l'"' ..... "

i _"4=! i liquii temp; at!re gradieiti i" i T melt ii

i solid temperature

® i i i i _ / grad:'ient

1150 ............ '' '' ' ''' '' '' ''''' '''
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Figure 12 Plot of temperature versus time for a Terfenol sample of composition
Tb.31Dy.69Fe 1.97 in experiment 1-51 with a furnace temperature of 1350°C
and a solidification rate of 50 }.tm/sec
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Float Zone Solidification

Development of the float zone apparatus was done by E. D. Gibson and is not the

work of the author. The results of this work are presented here because of their close

connection to the overall research program on Terfenol solidification. The float zone

solidification experiments remain incomplete due to stability problems at the zone during

experimentation. As the zone was melting and the rod was being moved at a constant rate of

10 btm/sec, the zone would begin to melt and the power would have to be turned down to

prevent the rod from separating at the zone; the rod would then solidify and the power would

have to be increased in order to have a molten zone. This process would continue because a

stable zone could not be achieved. Part of the problem could be that the coupling between

the field and the Terfenol changes as the Terfenol becomes molten and the rod diameter

changes. Modifications to the setup, including changes in concentrator design, coil design,

and power source, did not make the molten zone more stable. Solidification at faster rates

may make the zone more stable, however the slow rates would be necessary to suppress

dendrites (planar growth front).

Currently under construction is a new pancake coil that may concentrate the field

more effectively. Also in design is a new type of concentrator modeled after the horizontal

silver boat design.

Differential Thermal Analysis

The differential thermal analysis results indicate the temperatures at which thermal

events (solidification or melting of phases) take place; from the size of the peak at the

thermal event it is evident how much energy was absorbed or released during the phase

transformation. Some of the DTA peaks overlap and it becomes difficult to differentiate

between the thermal events. Some DTA plots for each composition at varying solidification

rates are shown in Appendix C. The phase transformation is said to begin at the temperature

of the steepest slope on the peak; this data has been arranged in Table 7 for each sample.

The groupings of temperatures for the columns of Table 7 are thought to be the formation

temperatures of the four phases; these temperatures were chosen because of the trend seen in

the DTA results and for simplicity for correlation to the SEM phases found and phase

solidification sequence from microstructure studies. The set 2 experiments were a repeat of

set 1, with a final cool of 0.083 °C/sec instead of a furnace cool, and the DTA results were
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quite similar. Sets 3 to 5 were heated to a higher furnace temperature than sets 1 and 2 to

make sure that all of the R2Fel 7 phase was melted. Set 4 was solidified at a slower rate,

0.083 °C/see. Set 5 consisted of all Terf 26 samples cooled at the various rates, because Terf

26 seemed to have the widest variation of microstructures depending on the solidification

rate. The DTA plots are shown in Appendix C.

Table 7 Results of the DTA (Differential Thermal Analysis) experiments

Samples i DTA Thermal Events !
final c _1 1220 to 1250 to 1275 to 1290 to

_.mount samples rate (°C/min) 1230,,°C 1260 °C 1285 °C 1300°C
Set 1 Terf 22.5 furnace cool 1255 °C 1280 °C

Terf 26 " 1220 °C 1250 °C 1280°C

Terf 30 " 1230 °C 1250 °C

Set 2 Terf 22.5 0.083 °C/sec 1250 °C 1280 °C

Terf 26 " 1225 °C 1260 °C 1280 °C

Terf 30 " 1225 °C 1250 °C
iliiill i i ii i i ill i i it i ill ii

Set 3 Terf 22.5 0.083 °C/sec 1255 °C 1280 °C 1295 °C

Terf 26 " 1230 °C 1255 °C 1275 °C

Terf 30 " 1230 °C 1250 °C
_1 ii ii 111 ii i i

Set 4 Terf 22.5 0.017 °C/sec 1254 °C 1282 °C 1300 °C

Terf 26 " 1262 °C

Terf 30 " 1233 °C 1257 °C

Set 5 Terf 26 0.017 °C/sec 1255 °C 1280 °C

Terf 26 0.083 °C/sec 1255 °C 1280 °C

Terf 26 furnace cool 1255 °C 1280 °C
ii i i

Metallography

From the etches of the various DTA samples, the morphology of the phases present

becomes evident and the solidification sequence of the phases can be determined. The

etchant that distinguished all four phases (RFe2, RFe3, R6Fe23, and R2Fel 7) the best was
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theboilingpicricetchfor= 420 seconds.Table8 showsthephasespresentforeachsample.

A seriesofphotomicrographsfortheDTA samplesisshowninAppendixD.

From thephotomicrographs,thesolidificationsequenceofthephasesisdeducedfrom

thephasemorphology.Forexample,thephotomicrographinAppendixD ofTcrf22.5in

experiment1-83(furnacecooled),showsthatthematrixofthesampleisRFc3,thedendrites

arcR2FeI7,andthefacctedphaseisR6Fe23.The dendriticphaseformsfromsupercooling

Table $ Phases present by etching and their relative structures and approximate
amount present; verification has been performed via EPMA on an SEM

17/2 23/6 3/1 2/1
I Ill II I I ii

Set #1 Terf 22.5 =30%, dendrite =30%, faceted =40%, matrix ---

(furnace Terf 26 interdendritic some facets matrix ---

cool) Terf 30 --- some facets =50%, dendrite =50%, dendrite

Set #2 Terf 22.5 =30%, dendrite =30%, faceted --40%, matrix ---

(5 °C/rain) Terf 26 interdendritic some facets mau'ix ---

Terf 30 --- some facets =50%, dendrite =50%, dendrite

Set #3 Terf 22.5 =30%, dendrite =30%, faceted =40%, matrix ---

(5 °C/min) Terf 26 interdendritic some facets matrix ---

Terf 30 --- some facets =50%, dendrite =50%, dendrite

Set #4 Terf 22.5 ---40%,dendrite --40%, matrix =20%, ? ---

(1 °C/rain) Terf 26 interdendritic =20%, faceted =75%, matrix ---

Terf 30 --- few facets =50%, dendrite =50%, dendritei,|=

Set #5 Terf 26 --- =50%, faceted =5%, peritectic =45%, peritectic
(1 °C/min)

Terf 26 --- =30%, faceted =65%, dendrite 5%interdendritic
(5 °C/min)

Terf 26 --- =20%, faceted =77%, dendrite 3%interdendritic
(furnace cool)

Terf 26 ...... =99%, dendrite ---
(Quench)
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at the solid/liquid interface (Figure 2). As the first phase forms (R2Fel7 dendrites), the

composition of the liquid changes along the liquidus line of the phase equilibrium diagram.

Eventually, the composition of the liquid changes so that it is more favorable for another

phase to form (R6Fe23 faceted phase). This phase grows until again the liquid composition

has changed such that a third phase (RFe3) is formed, and the remaining liquid solidifies as

the RFe3 phase.

The faceted phase grows by motion of small ledges, where atoms attach themselves

only at the ledges, as shown in Figure 13 (a). The faceting planes of the faceting interface

occur on preferred crystallographic planes (6). For non-faceting solidification, atoms attach

themselves all along the solid/liquid interface, as shown in Figure 13 (b).

(a) (b)

___f liquid

llIIIlll
intnfa_ "_ sdid

Figure 13 Atomic attachment at (a) the faceted interface and (b) the non-faceted
interface (6)

Peritectic solidification occurred in the DTA samples of Terf 22.5 and Terf 26 that

were solidified at a rate of 0.017 °C/sec (Figures 37 and 38 in Appendix D). Peritectic

reactions involve the liquid reacting with one phase to form a second phase (L + 0_--) 13),as

shown in Figure 14 (10).
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Figure 14 Peritectic solidification in a temperature gradient (10)

Scanning Electron Microscopy

The results of the SEM analysis show the phases present in each sample determined

by electron probe microanalysis (EPMA). The compositions were determined for the phases

in an area where the sample had been optically photomicrographed, so that the composition

could be directly related to the phases observed. Table 9 presents a summary of the phases

identified with EPMA in experiment sets 1, 2, 4, and 5. These results are the basis for the

classification presented in Table 8.
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Table 9 SEM results from EPMA performed on the DTA samples from experiment
sets 1, 2, 4, and 5 (set 3 was not evaluated on the SEM)

Phases
,i i i

set # final cool rate sample RFe2 RFe3 R6Fe23 R2Fel7II I I

Set 1 furnace cool Terf 22.5 X X X

Terf 26 X X

Terf 30 X X

Set 2 0.083 °C/sec Teff 22.5 X X X

Terf 26 X X X

Terf 30 X X
I II I I I ___ I II!

Set 4 0.017 °C/see Terf 22.5 X X X

Terf 26 X X X

Terf 30 X X X

Set 5 0.017 °C/see Terf 26 X X X

0.083 °C/see Terf 26 X X X

furnace cool Terf 26 X X X

Quench Terf 26 X

Correlation

The results of the thermal events detected by differential thermal analysis and the

phases present determined by the study of photomicrographs and from the quantitative

analysis on the SEM for the three Terfenol compositions can be correlated to understand the

solidification process of Terfenol and its dependence on stoichiometry. By observation of

the morphology of the phases present, the solidification sequence at each composition and
solidification rate can be determined. From this information and the DTA results, a

pseudobinary phase diagram could be constructed for Fe and R (Dy:Tb =3:7).

The thermal events from the DTA should correspond to the phases determined in the

SEM. However, the first set of data had a furnace cool, which occurs much faster than the

0.083 °C/see DTA analysis, thus forming non-equilibrium phases that did not appear in the

DTA results. Additionally, the first and second sets of data were not heated to a temperature
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high enough to melt one of the phases (R2Fel7) and thus the phase did not appear in the

DTA results. The third and fourth sets of data were heated to a point where the fourth phase

was detectable. The fourth set of data was cooled at 0.017 °C/sec to get sharper peaks so that

smaller peaks would not be overlooked due to overlapping of a larger, broader peak.

The data in Tables 7 to 9 may be correlated to identify the melting temperatures found

for the four phases forming in these alloys; these results are presented in Table 11. The

melting temperature for the R2Fe17 phase was not determined, because melting of the Teff

30 alloy melted the R2Fel7 phase on the liquidus line of the phase diagram.

Table 11 Correlation of the phases found in the SEM to the thermal events of the DTA

Phase T. melt
i,m,,

RFe2 =1225 °C

RFe3 =1255 °C

R6Fe23 =1280 °C

Phase Diagram

From the experimental results a pseudobinary phase diagram can be derived. The

temperatures at which each phase forms for the three Terfenol compositions has been

determined with DTA experimentation. From the analysis of the morphology of the phases

in the photomicrographs, the solidification sequence was determined. The results of EPMA

on the SEM revealed the phases present. The evaluation of the results led to the phase

diagram in Figure 15. This diagram agrees with the solidification structures that have been

observed in the DTA samples. The microstructures approach equilibrium morphologies as

they are cooled at slower rates. Thus, Terf 22.5 and Terf 26 displayed peritectic reactions at

a 0.017 °C/sec cooling rate, and the phase diagram constructed predicts peritectics between

the R2Fel7 phase and the R6Fe23 phase, as well as between the R6Fe23 and RFe3 phases.

It is of interest to note that the proposed phase diagram in Figure 15 (for R-Fe where

R has a constant Dy:Tb ratio of 7:3)more closely resembles the construction of the Tb-Fe

phase diagram (Figure 4) than the Dy-Fe phase diagram (Figure 5), even though there is

considerably more Dy in the alloy than Tb.
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Figure 15 Diagram of a possible Fe-R (Dy:Tb : 7:3) phase diagram from experimental
data

For comparison, an Fe-R (Dy:Tb = 7:3) phase diagram has been constructed from the

Dy-Fe and Tb-Fe phase diagrams by calculations assuming a linear relationship between

phases on the diagrams, This diagram is an isopleth of the Tb-Dy-Fe ternary phase diagram.

The melting temperature for each phase was determined by weighing the respective melting

temperatures according to the Dy:Tb ratio as follows:

Tmelt (R-Fe phase) = 0.7*Tmelt (Dy-Fe phase) + 0.3*Tmelt (Tb-Fe phase)

This technique assumes that there is a linear relation as the alloy composition

changes. The calculat_ results for the melting temperatures of the R-Fe phases (where R =

Dy:Tb = 7:3) are listed in Table 12.
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The same method of calculation was used in determining the compositions at which

two phases are in equilibrium with the liquid. The results of the composition calculations are

given in Table 13. The calculation format is as follows:

Comp R-Fe (_, phase 1, phase 2) = 0.7*Comp Dy-Fe (_, phase 1, phase 2)
+ 0.3*Comp Tb-Fe (£, phase 1, phase 2)

An R-Fe (Dy:Tb = 7:3) phase diagram based on our assumptions of a linear relation

between the Dy-Fe alloys and the Tb-Fe alloys was constructed using the data in Tables 12

and 13; this diagram is shown in Figure 16. A comparison of the phase diagram from

experimental results (Figure 15) to Figure 16 reveals that the solidification temperatures for

the phases vary, but both diagrams show peritecrtics between phases. Also, Figure 16 shows

that the R2Fe 17 phase would not be present in Teff 22.5 under equilibrium conditions.

Table 12 Calculation of the melting temperatures for the R-Fe phases from the Dy-Fe
and Tb-Fe phase diagrams

Melting Temperature (°C)

Phase Dy-Fe Tb-Fe R-Fe (Dy:Tb = 7:3)
RFe2 1270 1187 1245

RFe3 1305 1212 1277

R6Fe23 1290 1276 1285

R2Fel7 1360 1312 1345
I II I I1 II I

Table 13 Calculation for the R-Fe phase diagram of the composition at which the liquid
is in equilibrium with two phases. Data from the Tb-Fe and Dy-Fe phase
diagrams in Figures 4 and 5, respectively

Composition, atom % rare earth metal

Phase .Dy-Fe Tb-Fe .... R-Fe (Dy:Tb = 7:3)
RFe2 39.0 41.2 39.7

RFe3 22.5 37.0 26.9

R6Fe23 21.7 22.6 22.0

R2Fel7 8.8 17.8 11.5
II
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Figure 16 R-Fe phase diagram (where R has a constant Dy:Tb ratio of 7:3) constructed
from calculations involving the Dy-Fe and Tb-Fe phase diagrams

A ternary diagram of Fe-Dy-Tb system looks like a triangle with one side being the

Dy-Fe phase diagram, one side as the Tb-Fe phase diagram, and one as the Dy-Tb phase

diagram; the volume of the ternary diagram consists of Tb-Dy-Fe phases. Since Tb and Dy

are so similar, it is expected that there is a linear change from the phases of the Tb-Fe phase

diagram to the phases of the Dy-Fe phase diagram. The ternary diagram from above (Figure

17) shows the assumed linear relationships and where they cross over from eutectic (DyFe3

and Dy6Fe23 eutectic and Dy2Fel7 and Fe eutectic on the Dy-Fe phase diagram) to

peritectic (on the Tb-Fe phase diagram).

For example, a line has been drawn from 63 at %on the Tb-Fe phase diagram to 77.5

at % Fe on the Dy-Fe phase diagram; this line symbolizes the liquid/RFe3/R6Fe23
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equilibrium points from Tb-Fe to Dy-Fe. Just to the right of the 0.7Dy/0.3Tb line, the RFe3

and R6Fe23 trough crosses the RFe3 composition (75 at% Fe), which means that if the

trough is between the RFe3 and R6Fe23 compositions, there is a eutectic between RFe3 and

R6Fe23. For a peritectic reaction between RFe3 and R6Fe23, tile trough must lie at

composition with less iron than the RFe3 phase.

The phase diagram in Figure 16 has come from the 0.7 Dy/0.3 Tb line (which

represents that the rare earth component, R, consists of 70 at%Dy and 30 at% Th). It can be

seen from Figures 16 and 17 that for Terf 22.5 the R2Fel7 phase is not expected under

equilibrium conditions. Since the R2Fel7 phase was observed in our samples, it seems that

0.7Dy
Tb 0.3Tb Dy

58. RFe2 and RFe3 trough
60 61

63

66.7

70 ........ T__f30.

Tarf26

_%"6 75 ....77.4 R6Fe23 and R .7.7..5__-T.erf22.5
-_ 79.3 t.3

80
82.2

89.5 R2FeI7

90 91.2

Fe

Figure 17 Fe-Dy-Tb ternary phase diagram viewed from above
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eitherthetroughlineshouldbe curvedinFigure17(nota linearrelationship)orthatour

samplesdid not solidifyunderequilibriumconditions.Ifthelatterisso,thennon-

equilibriumprecipitatesformquiteeasilyfortheseTerfenolalloys.

Also,from thecalculationinTable13,itisshown thatanalloyofcompositionof

26.9at% R (Dy:Tb= 7:3)willhaveequilibriumbetweenRFe3,R6Fc23,andliquidmetalat

a giventemperature.Thus,analloyofcomposition26 at% R (Dy:Tb= 7:3)shouldform

verylittleR6Fc23 beforetheRFe3 phaseforms.However,ourTerf26 alloysshowed

considerableamountsofR6Fc23. Thisalsoimpliesthateitherthetroughlineshouldbc

curvedinFigure17orthatourTcrf26samplesdidnotsolidifyunderequilibriumconditions.
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CONCLUSION

Although the magnetostrictioncharacteristics of Terfenol are outstanding, there is

room for improvement. If we can control the dendritic growth of solidifying Terfenol, we

may be able to grow a <111> oriented single crystal of Terfenol. Furthermore,the extensive

research already conducted on Terfenol has not revealed its exact

microstructure/stoiehiometryrelationship. With the research conducted, the ternaryphase

diagram of the Tb-Dy-Fe system in the Teffenol region has been outlined for a constant

Dy:Tb ratio of 7:3. This information may be instrumental in defining the optimum

stoichiometryand solidification conditions.
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APPENDIX A. EQUIPMENT SETUP
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Figure 18 Schematic of the directional solidification furnace (courtesy of J. H. Lee)
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APPENDIX B. TEMPERATURE GRADIENT INFORMATION

Assuming a unidirectional heat flow during solidification, the heat flow balance can
be written as follows:

KsGs - KIGI + LV (1) Ks = solid thermal conductivity

K1 = liquid thermal conductivity

at V = 0: KsG's = K1G'I Gs = solid thermal gradient

G1 = liquid thermal gradient

and Ks/KI = G'I/G's L = latent heat

V = velocity (velocity of furnace =

solidification velocity)

and (1) can be arranged as:

KI = LV ; forms: GI = K_ - LV (2)

{(G'I/G's)Gs - GI} K1

Ks = KI(G'I/G's) (3)

also, since Gs and GI have a linear relationship with V,

GI - G'I + mlV ml = slope of G1 versus V

Gs = G's + msV ms = slope of Gs versus V

By plotting the temperature gradient versus the solidification rate, G'I and G's can be

calculated for each furnace temperature and the average of these is used as G's and G'l.

Thus, the thermal conductivities can be ca1"zulated. For use in the Teffenol experiments, this

technique was useful in determining the solidification velocity necessary to achieve large

temperature gradients.

In order to determine the solidification rate required to grow part of a Teffenol rod

with a planar growth front using directional solidification, it is necessary to use a mass

balance of the rod as it is solidifying, as in Figure 20. From the mass balance:

[Co- Ccmpd] Z - {el- Co} (L- Z)

CI- Co = _ [Co- Ccmpd]
L-Z

fraction solid = fs = Z/L fraction liquid = fl = (L - Z)/L
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I solid I liquid 1I

c I-

.
CO"

Ccmlxl

A L _

L = length of the meltedrod (fixed)
Z = length of rod solidified (variable)
Cl =rareearthcompositionof the liquid (variable)
Co = rareearthcompositionoriginally (fixed)
Ccmpd= rareearth compositionof RFe2 (fixed)

Figure 21 Schematic of the directional solidification of a Terfenol rod

C1= Co+ _ [Co- Ccmpd]
fl

C1- Ccmpd= [Co - Ccmpd]+ _f.#..[Co- Ccmpd]
fl

CI - Ccmpd= [Co- Ccrnpd][1 + (fs/fl)]

CI - Ccmpd= [Co- Ccmpd][l/fl]

Adding this to the equation for the critical temperature gradient (temperature gradient
above which dendrites will not form) yields:

Gcr = m_.__R[CI- Ccmpd] = mR [Co- Ccmpd]
D D fl

where: m = slope of the liquidus on the phase diagram = 10 °C/atom %
R = solidification rate = 10 and 2 _tm/sec
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D = diffusion rate = 2x 10"5cm2/sec
Co = original composition = 33.56 atom %rare earths
Ccmpd = compound composition = 33.33 atom %rare earths

Solving for both rates:

at R = 2 I.ma/sec, Gcr = 23 °C/cm
fl

at R = 10 lam/sec, Gcr = 115 °C/cm
fl

For a six inch rod (= 15 cm), the rate required to get 1/4 of the rod dendrite-free is:

at R = 2 lam/sec, Gcr = 13 °C/cm

at R = 10 gm/sec, Gcr = 153 °C/cm

Some of the temperature gradients from direction freezing experiments using Terfenol

are given in Table 14. From preliminary calculations of the minimum temperature gradiem

required to suppress dendritic growth, it was determined that at a solidification rate of 10

microns/sec the critical temperature gradient, Gcr, would be 153°C/cm, and Gcr for a 2

micrort/sec rate would be 31 °C/cm. As can be seen in Table 14, the temperature gradient did

not exceed 153°C/cm at a 10 micron/sec solidification rate.

Table 14 Liquid and solid temperature gradients of Terfenol (Tb.31Dy.69Fe 1.98) from
a furnace temperature of 1350 °C

I I I III

Exp. MBH-I-51

Rate: liq gradient sol gradient T melt

(unffsec) (°C/cm) (°C/cm) (°C)

5 36.2 63.3 1234

10 34.9 64.7 1235

25 32.4 65.1 1238

50 32.8 69.2 1235
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Figure 23 Temperature vs. distance plots directional solidificationof Terfenol (1350°C
furnace at solidification rates of (a) 5, (b) 10, (c) 25, and (d) 50 um/sec)
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APPENDIXC. DTA PLOTS
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Figure 24 Cool and reheat at 5°C/rain from differential thermal analysis performed on
Teff 22.5 in experiment set 1 (experiment 1-79)
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47

Tert 96 cool 1

t i _ /t

, ..................................i,.............................................,.i..................i................-
2 ....................................................!........................!.....................................

g i t 1 ' ,r

_" ..................!..................I .............._.......'""t....

................ _.................. ;.................. _................. $....._........... ;_................ 4.................
-2 ' ; ! _ i' "

t , i itZ t I ;,

................i.................._..................l.................L.._............i:.................,.................1
"4 t | _ I II ,_

!

, , l I It I ]
d

-6
i _ i i ! 4

.s ,,,,1,,,,i ........ i,,,,i,,,,i,,,,t

I000 1050 1100 !!50 1200 12.50 1300 13.50

T-,p. Tiff (L3

Terf 96 heat 2

"2 ......;,' ' ' I ' ' ' _' '' '' ' ' ' ' I ' _ ' ........ "v"

-4 _ " ' ' ............. ' ................

I'- ................ ; ...................................................... ._ ............................... • .................

JI -10 I
t

i ! _ ! : i

-14 ................ ;..................!..................; .................. ............_"_'."...............";.................

-16 ................'..................i..................,.................4............_:"_.................i.................

-18

I000 1050 II00 1150 1200 1250 1300 1350

Temp. T_f (C')

Figure26 Coolandreheatat5°C/minfromdifferentialthermalanalysisperformedon
Teff30inexperimentsetI(experiment1-83)



48

T_f 94 ©ool1

......................._........................_......................................................................- ...................

, ......................._t.......................t.......................................................................r, ..................
6 ......................,......................._...................................................................."_"(...................

'!]
' i4 .......................:i......................._......................................................................(.-.L..................

A ! ! .:

.......................1.............................................._............................................i..._.._...................

.......................i.......................4.......................i........................................../....'..._...._

-z .......................i......................._.......................!........................t.......:._............_.................

-4 . • . , I , , . . i , , , , I ........ i., . .
1000 10SO 11O0 1150 1200 12SO 1300

Temp. Tiff (C)

Terf 94 heat 2

4 '"'_ ' " I _''''' ' ' 1 .... ' .....w , ..,, . ! .,.-. . , .. , .-_ ,

'__ ...................._..........::::_::....................T......................

° .......................!........................i........................*..................................................................
_-z .......................i........................_...............................................i .......................;-ii /;.................
i -4 .........................................................................................................................,_-._.......;...........

i: ,i
! !i: -'"_ ...............................................!........................t......................._.......................:P_............
i i i :

-e .......................,........................i........................i......................._.......................:.....t -]:.............
t.... i .... i .... i ........ i ....-10

1000 1050 11 O0 11 SO 1200 1 Z 50 1:300

Temp. Terf (C)

Figure 27 Cool and reheat at 5°C/minfrom differentialthermal analysis performed on
Terf 22.5 in experiment set 2 (experiment 1-85)



49

Terf 95 cool 1

I0 ' '_ _"_ ' ' "' I ' ..... '" " ' I "_" ' ' i ' '' '
i i i
i t !

,^
5 ..............................................._...............................................,......................._..,.-..................

i

i 1
• i.....................' a/: L

i i I i /
' 1 i

I i ,i ,

-10 ........ I • , . , I .... I .... I ....

1000 1050 11(30 1150 1200 1250 1300

Temp.Tw!(_

Terf 95 heat

-4 __.-...-..-.-. .........._......................

i
i i _

-14 .......................!........................:......................................................................."'"I'"'!............

-I6 .......................i........................;..............................................._........................,....................

-18 .... I .... i ..... i .... i............

1000 1050 1100 1150 1200 1250 1300

Teml_. Tiff (C)

8Figure 26 Cool and reheat at 5°C/min fromdifferential thermalanalysis performedon
Terf 26 in experimentset 2 (experiment1-87)



50

Terf 96 ©ool 1

, , , .
8 • , . , , , , , ., , , , ,, , • , , , ! ; , , ,

6 ,.......... .....°... ..... ..... ......... ................ °._°..o......_ ....................... . ...................... ./l.j.°.-. ................

4 ...............................................+.......................'............................................_.+:.....................

......................+.......................++.......................'i.......................................+,!-!i':....................
: :I/ i!i '0 ......................_.......................;.......................+.......................,.........:..._.4.....+4....................Z : I • ! :

'+ . ! ; .

: : : + , ;

-2 ......................";.......................;.......................+.......................i.......,+...............;.+....................
: : ! i "

'_.__ " : ; ,........... +, a .............. _.L ..................4 ........ + ..._,
!

!
=6 .... I , . , .... , • I .... I .... I ....

I000 I050 1I00 1150 1200 1250 1300

T_ T_rf (c)

Terf 96 heat 2

, ; , , i , , ""' • .... ! ' , , ' ¼" , , • , , , • • , , , ,

0 _ ....... I ................... '""; ........................ ! ........................ +........................ P .......................-, _L+..,._ .. . : : : :

.+ ....................................._ ..........t.................T

i .6 ................................................................. . ................................................ . ......... ° .................... i i

_ , ,

"8 ...................... _........................ ' ........................ '........................ _................ !"_ .....................

 Ji!:
-I0 .............................................._........................................................................i.._...-..............

"12 , . I , l , , . . I .... I . . , I .... I , . I

1000 1050 1100 1150 1200 1Z50 1300

Temp.Tert(C)

Figure 29 Cool and reheat at 5°C/rain from differential thermal analysisperformed on
Teff 30 in experiment set 2 (experiment 1-89)



51

Terf 94 cool 1

10 . ' ........... ' "j .........
i
i
i
i

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii[iiiiiiiiiiiiiiiiiii"iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilljo

i i ; "
-10 , , , , I , , • , , , . , I .... I ....

1100 1150 1200 1250 1300 1350

Temp.Ted(C)

Terf 94 heat 2

.2 iiii iiii-4 ...........................................

-6 ....................... - ................................................... -"

i.-

-10 ....................... - ......................... ° ......................... -"

-12 ................................................. ° .............................

.1,.......................i...................................................i _
-16 , . ., i , . . . , .... i .... J ....

1100 1150 1200 1250 1300 1350

Temp.Ted(C)
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Figure 31 Cool and reheat at 5°C/min from differential thermal analysis performed on
Terf 26 in experiment set 3 (experiment 1-93)
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(a)

|

(b)

Figure38 Photomicrographsof Terf26 solidifiedby (a)furnacecooling(=26°C/min)
and(b)quenchingin aheliumatmosphere
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