

# NOTICE

CERTAIN DATA  
CONTAINED IN THIS  
DOCUMENT MAY BE  
DIFFICULT TO READ  
IN MICROFICHE  
PRODUCTS.

Conf-93118 - - 1

## ASTM Second Symposium on Constraint Effects in Fracture

### AUTHOR'S NAMES:

T. J. Theiss<sup>1</sup>, B. R. Bass<sup>2</sup>, & J. W. Bryson<sup>1</sup>

### TITLE OF PAPER: \*

Experimental and Analytical Comparison of Constraint Effects Due To Biaxial Loading and  
Shallow-Flaws

### AUTHOR'S AFFILIATIONS

<sup>1</sup>Development engineer, Oak Ridge National Laboratory, P. O. Box 2009, Oak Ridge, TN  
37831-8056

<sup>2</sup>Senior Researcher, Oak Ridge National Laboratory, P. O. Box 2009, Oak Ridge, TN  
37831-8056

### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

---

\* Research sponsored by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission under Interagency Agreement 1886-8011-9B with the U.S. Department of Energy under Contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

MASTER

The submitted manuscript has been authorized by a contractor of the U.S. Government under contract No. DE-AC05-84OR21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *gtr*

**ABSTRACT:** A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. The focus of studies described herein is on the evaluation of a micromechanical scaling model based on critical stressed volumes for quantifying crack-tip constraint through applications to experimental data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Shallow-crack effects and far-field tensile out-of-plane biaxial loading have been identified as constraint issues that influence both fracture toughness and the extent of the toughness scatter band.

Results from applications indicate that the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Crack-tip constraint analyses of the shallow-crack cruciform specimen subjected to uniaxial or biaxial loading conditions are shown to represent a significant challenge for these methodologies. Unresolved issues identified from these analyses require resolution as part of a validation process for biaxial loading applications.

## Introduction

Crack-tip constraint is an issue that significantly impacts fracture mechanics technologies employed in safety assessment procedures for the commercially licensed nuclear reactor pressure vessel (RPV). A validated technology that incorporates constraint effects is essential to the transfer of fracture toughness data from, for example, miniature fracture toughness surveillance specimens to RPVs. This capability could have a substantial impact on the outcome of probabilistic pressurized-thermal-shock (PTS) analyses and assessments of startup/cooldown transients of aging nuclear plants. This paper provides interim results from a program to evaluate selected fracture methodologies for the quantitative assessment of crack-tip constraint effects on fracture toughness of RPV steels.

Far-field tensile out-of-plane biaxial loading [1], and shallow-crack effects [2] have been identified as constraint issues that influence both fracture toughness and the extent of the fracture toughness scatter band. Relevance of these issues to RPV safety assessments is supported by several observations. First, PTS loading produces biaxial stress fields in an RPV wall that have no counterpart in conventional laboratory specimens used to generate fracture toughness data. Limited data indicate that a decrease in toughness is associated with biaxial loading [1]. Second, the probability of RPV vessel failure in PTS analyses is dominated by initiations from shallow cracks [3-5]. Recent testing has demonstrated an effective increase in fracture toughness of shallow cracks compared to deep-cracked specimens [2]. Determining the extent of the interaction between this toughness elevation associated with shallow cracks and toughness reduction due to biaxial loading effects is one of the main goals of the Heavy-Section Steel Technology (HSST) biaxial testing program [1].

The focus of the studies performed to date has been on evaluations of stress-based fracture methodologies (i.e., the J-Q model of O'Dowd and Shih [6-9] and the Dodds-Anderson constraint correction model [9-11]) through applications to experimental and fractographic data. These methodologies were selected for the initial evaluations because of their previously demonstrated promise as practical means for incorporating effects of crack-tip constraint into fracture assessments. Data for these assessments were obtained primarily from the HSST shallow-crack [2] and biaxial testing programs [1]. Shallow- and deep-crack single-edge notch bend (SENB) specimens and uniaxially and biaxially loaded cruciform specimens from these testing programs were analyzed using both the J-Q methodology and the Dodds-Anderson (D-A) fracture toughness constraint scaling model.

This paper is a summary of recent HSST investigations comparing experimental and fractographic data from the SENB shallow-crack and biaxial cruciform testing programs to the near-tip constraint analysis of those tests. Emphasis is given in this paper to the application of the Dodds-Anderson (D-A) fracture toughness scaling model to the SENB and cruciform experimental data. Additional information on the D-A scaling model and results of the application of the J-Q methodology to the test data and the comparison of the analytical results to the fractographic data are covered in Ref. 12. For completeness, this paper includes a summary of the shallow-crack and biaxial testing programs which have been reported previously [1, 2]. The finite-element analysis of the cruciform specimens used in the biaxial testing program is included in a following section. The next section in the paper outlines an overview of the J-Q methodology but details of the J-Q method applied to the test data is in Ref. 12. The results of the application of the D-A fracture toughness scaling model to the shallow-crack and cruciform test data comprises the next section. A discussion of crack-tip analysis which is applicable to both the J-Q method and the D-A scaling model is presented followed by a summary of the interim conclusions of this investigation.

### **Summary of Shallow-Crack Testing Program**

1. Thirty-eight relatively large ( $W \sim 100$  mm deep) laboratory beam specimens were tested to compare the behavior of specimens with shallow flaws to that of specimens with deep flaws.
2. The results showed conclusively that shallow-flaw beam specimens of A 533 B material have a significant increase in crack-tip-opening displacement (CTOD) or  $J_c$  toughness ( $\sim 150\%$ ) and  $K_{Ic}$  toughness ( $\sim 60\%$ ) over deep-crack specimens in the transition region of the toughness curve. All specimens were 100 mm deep ( $W$ ). Shallow-crack beams had crack depths ( $a$ ) ranging from 9 to 14 mm ( $a/W \sim 0.1$  to 0.14), while deep-crack beams had 50-mm-deep cracks ( $a/W \sim 0.5$ ).
3. There is little or no difference in toughness between deep- and shallow-flaw specimens on the lower shelf where linear-elastic conditions exist.
4. Varying the beam thickness from 50 to 150 mm had little or no influence on the toughness in both the shallow- and deep-crack specimens in spite of the fact that the American Society for Testing and Materials (ASTM) E-399 requirement for valid plane strain results were not met. This observation suggests that plane strain behavior for steels of this strength level differ from ASTM E399.

5. In the transition region of the fracture toughness curve, the increase in shallow-flaw toughness compared with deep-flaw toughness appears to be well characterized by a temperature shift of about 35°C. This temperature shift, which is crack-depth dependent, could be greater for shallower cracks that are also important in RPV safety assessments.
6. The two-parameter J-Q analysis methodology was used as a means of quantifying the effect of flaw depth on constraint and fracture toughness. Analysis results appear to support the utility of the J-Q concept and interpretation method to characterize the crack-tip fields up to the onset of crack initiation in specimens with either deep or shallow flaws. At J-critical (onset of cleavage initiation) for the deep-flawed specimens, the Q-stress was about zero, indicating small-scale yielding (SSY) conditions. At J-critical for the shallow-flawed specimens, the Q-stress was about  $-0.7$ . This negative Q-stress indicates a significant loss of constraint.

## Biaxial Testing Program

### Cruciform Bend Specimen

The configuration of the cruciform bend specimen used in the testing program is depicted in Fig. 1. The specimen has a cruciform-shaped geometry with a cross section with dimensions of 91  $\times$  102 mm and a straight through-crack of uniform depth of 10 mm in the test section. The total length of this specimen in the longitudinal or transverse direction, including the test section and the loading arms, is 610 mm. Three slots are machined into each arm to minimize diffusion of the load around the test section containing the through-crack. The crack is cut between two opposite central load diffusion control slots to produce a two-dimensional (2-D) shallow crack with no singularity on the surface. Figure 1(b) shows the profile of the crack and the intersection of the crack and the central slot.

Instrumentation is placed on the specimen to monitor crack-mouth-opening displacement (CMOD), load-line displacement (LLD), surface strain, and temperature at various locations. A special load reaction system has been constructed for applying bending loads (P) to the arms of the specimen in a statically determinant manner. Loading is applied at midspan to the specimen using a square, flat seat having rounded edges and the same planar dimensions as the center test section. The test section bends into two orthogonal surfaces that contact the seat along the outer edges, resulting in eight-point bending (or four-point bending for the uniaxial case).

## Test Matrix

The HSST Program assigned five cruciform specimens to the initial development phase of the biaxial testing program. These "development" specimens were used to evaluate the performance of the test specimen, test fixture, and procedures and to develop a test specimen geometry suitable for the generation of biaxial fracture toughness data.

Of the five development specimens, four were tested under biaxial loading, and one was tested under uniaxial loading. All biaxially loaded cruciform specimens were tested with a transverse-to-longitudinal load ratio of 0.6:1, as described in Ref. 1. The uniaxially loaded cruciform specimen allows comparison with previous uniaxial SENB shallow-crack specimens under identical test conditions (crack depth, temperature, etc.). Testing cruciform specimens in both uniaxial and biaxial loading configurations will allow toughness values to be measured with only one test condition changed, namely, the out-of-plane loading.

Test conditions were selected to facilitate comparison of data from the cruciform specimens with previous HSST shallow-crack data tested under uniaxial conditions [2]. Several of the uniaxial shallow-crack tests were conducted at  $T - RT_{NDT} = -10^{\circ}\text{C}$ , which is in the transition region of the deep-crack toughness curve for A 533 B steel. The A 533 E steel used for the test section material in these tests has an  $RT_{NDT}$  of  $-35^{\circ}\text{C}$ . Therefore the test temperature for the cruciform specimen tests was set at  $-45^{\circ}\text{C}$ . The cruciform specimens were 91 mm deep with a crack depth of 10 mm. The beam width and crack depth of the cruciform specimen are approximately the same as for the HSST shallow-crack beams.

## Experimental Results and Interpretation

Of the five specimens tested, one biaxial test (designated BB-3) initiated at the intersection of the crack tip and the load diffusion control slot. This result is questionable since the stress concentration at the slot could have influenced the failure load. As a result, this test was not interpreted in terms of toughness. Additional details are included in Ref. 1. The interpretable test results indicate that the critical load for each specimen was similar but that in the uniaxial test (BB-2) the specimen was able to withstand substantially more ( $\approx 60\%$ ) deflection (LLD or CMOD) than the biaxial tests (BB-1, -4, and -5). (Strains imposed in these tests were substantially higher than any that would be produced in an RPV either from normal or accident loading; this is a consequence of testing in the transition region of the toughness curve.) In addition, the plastic "work" at the crack tip as defined by either the plastic area under the P-LLD

curve or the P-CMOD curve (defined as  $U_{pl}$  or  $A_{pl}$ , respectively) in the three biaxial tests was about one-third of the corresponding uniaxial value of  $U_{pl}$  or  $A_{pl}$ . Furthermore, the critical displacements (LLD or CMOD) and work performed ( $U_{pl}$  or  $A_{pl}$ ) were consistent for the three interpretable biaxial test results. These results indicate a pronounced reduction in the ductility of the material at fracture (as measured by critical displacement or work) due to biaxial loading.

Toughness data for the biaxial and uniaxial cruciform specimens were calculated using the techniques described in Ref. 1. The critical J-integral values were converted to critical elastic-plastic, stress-intensity factors  $K_{Jc}$  using the plane strain formulation. The data necessary to estimate J and the resulting toughness values are tabulated in Ref. 1. The P vs CMOD method is considered the more sensitive of the techniques examined for determining fracture toughness shallow-flaw specimens and is the primary method used for the cruciform specimen analysis.

Toughness results for the SENB and cruciform specimens expressed in terms of  $K_{Jc}$  are shown in Figs. 2-4 (taken from Ref. 1). Figure 2 shows the deep- and shallow-crack uniaxial toughness data as a function of normalized temperature. The data at  $T - RT_{NDT} = -10^{\circ}\text{C}$  are plotted as a function of crack depth in Fig. 3 and as a function of load ratio in Fig. 4. Examination of the data in Figs. 2-4 reveals several important points. First, biaxial loading appears to reduce the fracture toughness compared with either the uniaxial cruciform value from test BB-2 or the SENB data. The average of the biaxial toughness is  $\approx 20\%$  less than the uniaxial cruciform value and  $\approx 18\%$  less than the average of the uniaxial SENB and cruciform results. Second, the uniaxial cruciform value is consistent with the SENB toughness results; this tends to validate the use of the cruciform specimen for uniaxial data generation. Third, the scatter band of the biaxial data may be less than that associated with the uniaxial, shallow-crack data. An increase in toughness and scatter is associated with loss of constraint in laboratory specimens. Results presented in Fig. 3 indicate that biaxially loaded cruciform specimens yield results with reduced scatter. The trends in the biaxial and uniaxial cruciform data described here are tentative results based on very limited data. Additional data are required to substantiate these trends and to provide better quantification of the effect of biaxial loading on fracture toughness. Nonetheless these initial results strongly suggest that an improved understanding of the shallow-flaw and biaxial loading effects would significantly impact the fracture mechanics technologies employed in reactor safety assessments.

## Finite-Element Analysis of Cruciform Specimen

Three-dimensional elastic-plastic, finite-element analyses were performed on the cruciform specimen depicted in Fig. 1. Local crack-tip stress fields obtained from these analyses are used in applications of stress-based constraint characterization models. The one-fourth section of the cruciform specimen is represented in the 3-D finite-element model of Fig. 5. The model consists of 18,650 nodes and 3,890 twenty-node isoparametric brick elements. Collapsed-prism elements arranged in a focused or centered fan configuration at the crack tip are used to produce a  $1/r$  strain singularity appropriate for inelastic analysis. Reduced integration was employed to eliminate shear locking in the elements. The cruciform specimen is assumed to be supported on a rigid plate under the test section (i.e., the area defined by  $-51 \text{ mm} \leq z \leq 0, 0 \leq x \leq 51 \text{ mm}$ ) in Fig. 5] and loaded by uniformly applied forces at the ends of the longitudinal/transverse arms (i.e., locations C and D in Fig. 5) to produce the uniaxial or biaxial bending conditions. The rigid support plate is incorporated into the finite-element model of Fig. 5 using a contact element option in the ABAQUS (Ref. 13) finite-element program.

The full geometry of the load-diffusion control slots is represented in the finite-element model [Fig. 5(b)]. The slot geometry incorporated in the model is represented by the configuration of Fig. 6(d), which was used for test specimens BB-4 and -5. The same finite-element model was used for analysis of specimen BB-2, although the latter employed a different slot configuration [Fig. 6(c)]. The model also incorporated a highly refined mesh in the crack-tip region [Fig. 5(c)] to provide resolution of stress fields over the normalized distance  $2 \leq r\sigma_0/J \leq 5$  in front of the crack.

The outermost semicircular ring of nodes in the mesh of Fig. 5(c) has a radius of 2 mm. This radius was extended to 4 mm in a second finite-element model developed for analysis of the BB-2 test [Fig. 5(d)]. The relatively higher failure load (measured in terms of  $J$ ) of the latter test required an expanded region of refinement to resolve the stress at a normalized distance ahead of the crack tip of  $r\sigma_0/J = 5$ .

The material properties used for all calculations presented herein include Young's modulus  $E = 205,170 \text{ MPa}$ , Poisson's ratio  $\nu = 0.25$ , and the piecewise linear stress-strain curve. The stress-strain curve represents a modification of material data for A 533 grade B class 1 steel taken from Ref. 14. The modification consists of an adjustment of the yield stress to produce better agreement with load vs CMOD data from the biaxial tests (described below).

Results from small-strain analyses of tests BB-2 (uniaxially loaded specimen) and BB-4 and -5 (biaxially loaded specimens) are compared with measured data in Figs. 7 and 8. Because geometry and test conditions were essentially the same for BB-4 and -5, only one computation was performed for the biaxial loading case. In Fig. 7, the calculated longitudinal load vs LLD curves (measured at point C in Fig. 5) are compared with measured data from each of the three tests (BB-2, -4, and -5). Comparisons of calculated and measured longitudinal load vs CMOD for the same tests are given in Fig. 8. Both Figs. 7 and 8 show good agreement between the computed and measured load vs deflection curves for the BB-2 test. Minor differences between the CMOD curves in Fig. 8 for BB-2 may be partly due to differences in the slot configurations in the model and in the BB-2 test specimen. The load vs deflection curves for specimens BB-4 and -5 are within the data scatter for the two tests.

### Stress Triaxiality (J-Q) Method

One of the methods used to assess the effects of shallow-crack depths and biaxial loading on crack-tip stress triaxiality is the J-Q methodology. The J-Q method was applied to the shallow- and deep-crack SENB specimens previously [2]. The J-Q method applied to the uniaxial and biaxial cruciform specimen is based on analyses described in the previous section. Results of the J-Q analyses from both test series are presented in Ref. 12. Additional results of the crack-tip analysis interpreted in terms of the Q-stress are presented later section in this paper. The J-Q methodology is summarized here for completeness.

The definition of Q-stress employed here is given by O'Dowd and Shih [8] in the form

$$Q(\bar{r}) = \frac{\sigma_{\theta\theta}(\bar{r}) - [\sigma_{\theta\theta}(\bar{r})]_{SSY}}{\sigma_0} \quad (1)$$

where  $\bar{r} = r/(J/\sigma_0)$  is a normalized distance measured in the crack plane ahead of the crack tip ( $\theta = 0$ ); the  $r, \theta$  polar coordinate system is centered at the crack tip such that  $\theta = 0$  corresponds to the crack plane ahead of the tip. In Eq. (1), the Q-stress measures the departure of the opening-mode stress  $\sigma_{\theta\theta}$  from the reference plane strain SSY solution, normalized by the yield stress  $\sigma_0$ .

Using a modified boundary layer (MBL) formulation, O'Dowd and Shih [8] determined that the Q-stress characterizes the magnitude of a spatially uniform (approximately) hydrostatic stress state in a forward sector ( $|\theta| \leq \pi/2$  and  $1 \leq \bar{r} \leq 5$ ) of the crack-tip region. The Q-stress, although

found to be essentially independent of  $\bar{r}$ , was formally defined at  $\bar{r} = 2$ , which falls just outside the finite strain blunting zone. For conditions ahead of the crack that do not conform to a spatially uniform hydrostatic stress field, O'Dowd and Shih [8] introduced Eq. (1) to emphasize the explicit dependence of  $Q$  upon distance  $\bar{r}$ . The latter definition of  $Q$ -stress is convenient for applications presented in Ref. 12 due to the spatial dependence of  $Q$  determined for certain loading conditions applied to the cruciform specimen.

### **Fracture Toughness Scaling Model (Dodds-Anderson)**

The Dodds-Anderson (or D-A) scaling model [11] analyzes constraint conditions by determining the area (or volume when considering a 3-D geometry) within a particular stress contour for a finite-body geometry and scaling that area (or volume) with an equivalent SSY solution. The SSY state is then considered to yield true fracture toughness results completely independent of specimen size or loading and is comparable to a specimen of infinite size. The scaling model has been successfully applied to fracture toughness results exhibiting either a loss of in-plane constraint (i.e., shallow cracks) or out-of-plane constraint (i.e., thickness effects) [11]. The scaling model assumes that the volume of critically stressed material surrounding the crack tip is the same in different specimens with different constraint conditions. As a result, the SSY critical fracture toughness can be determined in a high-constraint geometry and then applied to a low-constraint geometry or vice versa.

### Application of Scaling Model to Shallow-Crack Data

The D-A scaling model has been used to investigate both in-plane and out-of-plane constraint loss in the HSST shallow- and deep-crack test results. The in-plane investigation is reported herein; the application of the model to out-of-plane constraint or thickness effects is the subject of a separate report [15]. The scaling model was applied to the shallow-crack data using information available in the literature [16] without the need of additional crack-tip analysis.

The fracture toughness data from the HSST shallow-crack program are shown in Fig. 9 as a function of normalized temperature ( $T - RT_{NDT}$ ). The shallow-crack toughness increase can be quantified by a temperature shift of  $\sim 35^\circ\text{C}$ . The data within the box at a normalized temperature range of approximately  $-10^\circ\text{C}$  to  $-25^\circ\text{C}$  in Fig. 9 are replotted in Fig. 10 as a function of crack depth. As expected in a low-constraint geometry, Fig. 10 shows both an increase in the fracture toughness values and data scatter from the shallow-crack specimens when compared with the

deep-crack specimens. The regression analysis shown in Fig. 10 indicates a mean shallow-crack toughness value of about 1.6 times the deep-crack toughness as previously reported [2].

Using the D-A [10] analysis results, Wallin [16] has quantified in-plane constraint loss by the following equation:

$$J_{FB}/J_o = 1 + 176 (J_{FB}/a\sigma_0)^{1.37} , \quad (2)$$

where  $J_o$  is the SSY or reference value of  $J$ , and  $J_{FB}$  is the value of  $J$  in the finite body geometry. Equation (2) is applicable to materials with a Ramberg–Osgood hardening exponent of  $\sim 10$ , such as A 533 B steel. It is recommended in Ref. 11 that results from the above equation not be used in situations in which  $J/J_o > 4$ . The SSY value ( $J_o$ ) was computed from Eq. (2) for each specimen tested as a part of the HSST shallow-crack program. The plane-strain elastic modulus was used to convert from  $J$  to  $K$ .

The  $K_o$  values as a function of crack depth in the transition region are shown in Fig. 11. The data in Fig. 11 correspond to the uncorrected data in Fig. 10. As indicated in Fig. 11, the  $K_o$  results are reduced to a toughness level independent of the crack depth of the specimens. Comparing Figs. 10 and 11, the deep-crack data in Fig. 11 experience little to no reduction to their  $K_o$  values, while the shallow-crack data are reduced substantially to almost exactly the same toughness level. The regression analysis shown in Fig. 11 confirms that the  $K_o$  data are independent of crack depth. The mean and standard deviation of the shallow- and deep-crack data are included on Fig. 11 as well. The mean values are almost identical at  $112 \text{ MPa}\sqrt{m}$  for the shallow-crack  $K_o$  data and  $114 \text{ MPa}\sqrt{m}$  for the deep-crack  $K_o$  data. The shallow-crack  $K_o$  also exhibit substantially less scatter than the original shallow-crack data in Fig. 10. The standard deviation of the original shallow-crack  $K_{Jc}$  data was  $37.2 \text{ MPa}\sqrt{m}$ ; the shallow-crack  $K_o$  data had a deviation of only  $8.1 \text{ MPa}\sqrt{m}$ . All of the data in Fig. 11 met the criteria of  $J_{FB}/J_o \leq 4$  except one specimen that had a  $J_{FB}/J_o$  ratio of  $\sim 5.6$ . The average  $J_{FB}/J_o$  ratio for the shallow-crack specimens in Fig. 11 was 2.73; the average deep-crack specimen  $J_{FB}/J_o$  value was 1.05.

Several conclusions can be drawn from the application of the D-A scaling model to the HSST shallow-crack data. First, the scaling model works very well with the shallow-crack data. The model adjusts both shallow- and deep-crack data to the SSY toughness value. In addition, the scatter in the corrected toughness data was also reduced by the application of the scaling model to the original shallow-crack toughness results. Furthermore, the scaling model is very simple to use in this application. The analysis of the data using the scaling model required no additional crack-tip analysis. The constraint corrections were based on specimen geometry and cleavage

toughness results. It appears likely that  $J_c$  predictions for shallow-crack geometries could be made from  $K_o$  data obtained from deep-crack specimens.

### Application of Scaling Model to Cruciform Beam Data

Dodds et al. [9] have also developed a methodology for performing constraint adjustments of fracture toughness data from test specimens that utilize a J-Q description of the crack-tip stress fields. This methodology has the advantage of being computationally simpler to apply than the stressed-volume technique for constraint correction previously introduced by Dodds and Anderson [11]. Applications of this simplified approach to data from the uniaxially and biaxially loaded cruciform specimens, which draw upon the J-Q analyses of the previous section, are presented herein.

The modified D-A scaling procedure, like the scaling model previously described, determines the ratio of finite-body toughness to SSY toughness (i.e.,  $J_{FB}/J_o$ ). The modified D-A scaling procedure is based on the observation [9] that even under different constraint conditions the shape of the principal stress contour ahead of the crack tip remains the same, with only the size varying. This relationship is maintained until deformation becomes excessive. Critically stressed areas ahead of the crack can be related to critical distances ahead of the crack, which allows the use of the near-tip stress field to determine  $J_{FB}/J_o$ . Figure 12 shows the stresses ahead of the crack tip for the SSY solution and the cruciform specimen under uniaxial and biaxial loading. The uniaxial and biaxial stresses are at (or near) the critical value of  $J$ . This allows the determination of the constraint conditions (and  $J_o$  toughness) in these specimens at failure (i.e., critical SSY toughness,  $J_o$ ). The three biaxial specimens yielded toughness values sufficiently close such that only one  $J$  value for these specimens is necessary.

Two different methods of applying the D-A scaling procedure were used for these results. Both methods begin with the ratio of the distance ahead of the crack tip,  $\bar{r}$ , for the finite-body and SSY solutions to determine the  $J_{FB}/J_o$  ratio. Both methods begin the construction with an  $\bar{r}$  value of about 2. The first method holds the finite-body stress constant at  $\bar{r} = 2$  and determines the distance ahead of the crack tip in the SSY solution that corresponds to that stress (see Fig. 12). The second method begins with the SSY stress at  $\bar{r} = 2$  and finds the distance corresponding to that stress in the finite-body solution(s). Both of these methods are outlined in Fig. 12. The first method begins with the finite-body stress at  $\bar{r} = 2$  or  $r = 2J_{FB}/\sigma_o$ . The distance in the SSY solution that yields the same critical stress is  $\bar{r} = 11.63$  or  $r = 11.63 J_o/\sigma_o$ . Because the critical

distances are assumed equal,  $J_{FB}/J_o = 11.63/2.0$  or 5.82. The second method yields a  $J_{FB}/J_o$  of  $2.0/0.621 = 3.22$ .

The two methods of applying the D-A scaling model just described yield  $J_{FB}/J_o$  ratios that are quite different. Theoretically, as discussed in Ref. 9, both methods should yield identical results. One reason for this problem is that these are numerical approximations to the stresses near the crack tip, which always contain some error. The SSY stress solution tends to flatten as distance from the crack tip increases, which could exaggerate the error in  $J_{FB}/J_o$  with increasing distance from the crack tip. Furthermore, the first D-A scaling method used distances greater than  $\bar{r} = 10$ , which is typically far beyond the process zone for cleavage fracture. (Additional information on the location of the cleavage origin site ahead of the crack tip are presented in Ref. 12.) For the two reasons just outlined, the second D-A scaling procedure that uses smaller distances ahead of the crack tip is the preferred method in this investigation and will be used to interpret the results.

The  $J_{FB}/J_o$  results using the D-A scaling procedure for the uniaxial and biaxial cruciform specimens at  $\bar{r} = 1.5$  to 4 are plotted as a function of distance ahead of the crack tip in Fig. 13. Examination of these results leads to several observations. First, the  $J$  ratios (and subsequently  $J_o$ ) vary as a function of distance ahead of the crack tip. For the uniaxial cruciform, the  $J_{FB}/J_o$  ratio increases from  $\sim 3$  at  $\bar{r} = 1.5$  to  $\sim 4$  at  $\bar{r} = 4$ . The biaxial cruciform shows a similar increase in  $J_{FB}/J_o$  with distance ahead of the crack tip. In Ref. 9, the calculation of  $J_o$  is considered valid when values determined at  $\bar{r} = 1.5$  and at  $\bar{r} = 4$  differ by  $<10\%$ . The variation in  $J_{FB}/J_o$  (and subsequently  $J_o$ ) shown in Fig. 13 is about 25% over this range for both the uniaxial and biaxial cases. The D-A scaling model results do not, therefore, meet the criteria established in Ref. 9.

There are two potential explanations for  $J_o$  varying by more than the accepted criteria of 10%. The first is the nature of the cruciform specimen itself, which possesses 3-D stress fields that vary through the thickness. The D-A scaling model allows the use of critically stressed areas ahead of the crack, assuming a relatively constant field through a specimen thickness. The second explanation is the assumption that the stressed areas in these cases are similarly shaped, allowing the comparison of distances ahead of the crack rather than areas. This assumption could lead to variations in  $J_o$  that might not exist had the D-A scaling model used contour areas.

Figure 13 indicates that the range of  $J_{FB}/J_o$  ratios for the uniaxial cruciform is consistent with previous  $J_{FB}/J_o$  values for the shallow-crack SENB specimens. The uniaxial cruciform yields values of  $J_{FB}/J_o$  between 3 and 4; the shallow-crack SENB specimens yielded  $J_{FB}/J_o$  ratios ranging from 1.8 to 5.6, averaging  $\sim 2.7$ . Finally, as shown in Fig. 13, the biaxial  $J_{FB}/J_o$  ratio is

~25% greater than the uniaxial J-ratio. This implies greater constraint loss for the biaxial specimen than the uniaxial specimen, a result which is inconsistent with the experimental toughness results. However, these ratios have been determined for a very limited number of tests. Additional tests will be necessary to determine if these trends continue.

The  $K_o$  values were calculated for the uniaxial and biaxial cruciform tests for comparison with SENB  $K_o$  values using the analytically based  $J_{FB}$  values and the  $J_{FB}/J_o$  ratios determined at  $\bar{r} = 2$  and the plane-strain conversion from  $J$  to  $K$ . The ratio at  $\bar{r} = 2$  was chosen because the Q-stress is typically determined at that location and the biaxial and uniaxial stresses ahead of the crack tip are almost identical at that location (see Fig. 12). The  $K_o$  values for the four cruciform tests are shown in Fig. 11 along with the upper and lower SSY toughness ( $K_o$ ) results from the shallow- and deep-crack SENB tests. As indicated in Fig. 11, all of the cruciform SSY toughness values are within the range of SSY data from the SENB specimens. The  $K_o$  values from the biaxial cruciform are near the lower limit of the SENB  $K_o$  range; the uniaxial  $K_o$  value was nearer the upper limit. Additional data are necessary to determine the full range of SSY toughness values under uniaxial and biaxial loading.

### Discussion of Crack-Tip Analyses

The J-Q method and D-A scaling model have been applied to the shallow- and deep-crack SENB tests and the uniaxial and biaxial cruciform tests. Data sets used in these applications are generated from tests or specimen geometries that provide a contrast in analytical modeling requirements. The SENB specimen is modeled in terms of a 2-D plane strain formulation, while the cruciform specimen exhibits a fully 3-D character that must be considered. Analysis results indicate that both methodologies can be used successfully to interpret experimental results from the deep- and shallow-crack SENB specimen tests. Applications of the two methodologies to the cruciform specimen each showed promising features, but they also raised several issues concerning constraint analysis based on near-tip stress fields. These issues have been identified and discussed in the preceding sections. Some additional observations of the limitations of the two methods applied to the cruciform specimen are presented herein.

Figure 12 shows the stresses ahead of the crack tip for the SSY solution and the uniaxial and biaxial cruciform specimens at the critical value of  $J$ . Because both the J-Q method and the scaling model are based on the stresses ahead of the crack tip, observations about Fig. 12 are germane to both techniques. First, the coincidence of the critical crack-tip stresses near the crack tip ( $\bar{r} \leq 2$ ) is encouraging and indicates the potential applicability of these methods to the

uniaxial and biaxial cruciform specimens. Furthermore, both the uniaxial and biaxial stresses deviate significantly from the SSY solution, indicating that the J-integral alone cannot characterize the crack-tip stresses. The crack-tip stresses for the uniaxial and biaxial cruciform specimens begin to diverge at  $\bar{r} = 2$ , which reflects that the far-field bending stresses are beginning to impinge on the crack-tip stresses in the uniaxial case. In other words, at distances very near the crack tip, ( $\bar{r} \leq 2$ ), the stresses are dominated by the crack-tip singularity. At distances satisfying  $\bar{r} > 2$ , however, the stresses tend to be influenced by the far-field bending stress, resulting in a divergence of the uniaxial and biaxial stresses. Physically,  $\bar{r} \geq 2$  represents a distance ahead of the crack tip of 1.2 and 0.8 mm for the uniaxial and biaxial cruciform specimens, respectively. These distances are well within the corresponding plastic zone radius that is conservatively estimated, from the plane strain relation [17] to be 14 and 9.6 mm for the uniaxial and biaxial case at failure, respectively. In reality, both the uniaxial and biaxial specimens have reached a condition of uncontained yielding at the point of failure.

The difference between the SSY stresses and the uniaxial and biaxial stresses (i.e., the Q-stress) ahead of the crack tip is shown in Fig. 14. The Q-stress for the uniaxial specimen is not constant within the range of  $\bar{r} = 1.5$  to 5 because of the interaction of the bending stresses with the crack-tip singular stresses. In fact, the uniaxial stresses in Fig. 12 between  $\bar{r} = 6$  and 8 appear to be controlled by the far-field bending stress, resulting in a near linear stress distribution. If the identical load were applied to the specimen in a tensile manner rather than through bending loads, the Q-stress for the uniaxial specimen is expected to be more uniform than shown in Fig. 14. It is anticipated, however, that the bending stress field will influence the uniaxial and biaxial specimens less as the specimen size increases and/or the load at failure decreases.

In contrast with the uniaxial specimen, the biaxial Q-stress shown in Fig. 14 is relatively constant over the distances shown. In fact, the biaxial Q-stress at failure agrees well with the shallow-crack Q-stress determined from the SENB specimens. The reason for the constant biaxial Q-stress appears to be due to offsetting effects. First, the bending stress tends to drive the Q-stress more negative with distance from the crack tip as in the uniaxial case. The offsetting effect is the out-of-plane biaxial load itself. The addition of the out-of-plane stress increases the hydrostatic stress, which in turn increases the opening-mode stress. The offsetting nature of the bending stress and the out-of-plane stress cannot be generalized, however, for other biaxially loaded specimens.

The application of crack-tip analysis to a shallow-crack cruciform specimen under biaxial loading such as described in this chapter represents a significant challenge for these techniques.

Differences in constraint conditions due to a biaxial load are difficult to quantify because of the absence of an appropriate distance parameter. Out-of-plane constraint (i.e., thickness effects) can be quantified in terms of the specimen thickness  $B$ . In-plane constraint loss is similarly related to a shallow-crack depth,  $a$  or  $a/W$ . Biaxial loading, however, which impacts the crack-tip stresses substantially, has no appropriate length scale or distance parameter to which the constraint condition can be related. Another way of considering the influence of biaxial loading is that the out-of-plane stress appears to make the specimen behave as a larger uniaxial specimen.

The final impact of out-of-plane biaxial loading is not fully known at this time. It is known, however, that biaxial loading does impact the conditions at the crack tip in a significant manner under conditions of uncontained yielding. Preliminary estimates from Ref. 18 indicated that under contained yielding, changes in initiation toughness due to biaxial effects would not exceed a few percent. Biaxial effects were exhibited in the cruciform specimen at conditions beyond contained yielding. The analyses confirm previously described experimental trends. As shown in Fig. 12, uniaxial and biaxial near-tip stresses ( $\bar{r} \leq 2$ ) are coincident at failure loads. The applied load at which failure occurred in the uniaxial and biaxial specimens is almost identical; however, the critical value of toughness (note  $J$  in the legend of Fig. 12) is quite different. Biaxial loading further alters the way that applied load on a cracked specimen is related to the crack-driving force. Biaxial loading also substantially reduces the ductility of a specimen. Additional crack-tip analysis and additional biaxial tests are necessary before the impact of the biaxial loads on the fracture resistance of an RPV is understood.

## Summary and Conclusions

Applications of the D-A scaling model to data obtained from shallow- and deep-crack SENB specimens produced very good results. The scaling model provided adjusted SSY toughness values in the transition region that were virtually identical for deep- and shallow-crack data. In addition to removing the influence of crack depth in the toughness data, the scaling model reduced the scatter associated with the shallow-crack data.

When the scaling model was applied to the cruciform data, the results were again more difficult to interpret than the SENB application. In the original formulation of the scaling model, toughness data are adjusted to SSY values based on ratios of areas (or volumes) within stress contours around the crack tip. The engineering model applied to the cruciform specimens approximates these ratios from the stress distribution directly ahead of the crack tip. Stresses very close to the crack tip ( $\bar{r} < 2$ ) were used to determine the  $J_{FB}/J_0$  ratios for the cruciform

specimens. These ratios were found to vary  $\sim 25\%$  over the annulus  $1.5 < \bar{r} < 4$  for both uniaxial and biaxial load cases. This difference exceeds the maximum of 10% recommended in Ref. 11 for a valid calculation of  $J_o$ . Also, the biaxial  $J_{FB}/J_o$  ratio was  $\sim 25\%$  greater than the uniaxial ratio, which implies a greater constraint loss for the biaxial specimen than the uniaxial specimen. The latter result is inconsistent with toughness results determined from experimental data. All of the cruciform SSY toughness values determined from these ratios, however, were within the range of SSY data from the SENB specimens.

Applications of the J-Q and D-A constraint methodologies presented herein utilized data sets generated from tests of specimen geometries that provide a contrast in analytical modeling requirements. The shallow- and deep-crack SENB specimen is modeled in terms of a 2-D plane-strain formulation, while the fully 3-D character of the uniaxially and biaxially loaded cruciform specimen must be considered. Analysis results from applications indicate that both methodologies can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. The two methodologies showed some promising features in applications to the cruciform specimen, but also raised a number of questions concerning the interpretation of constraint conditions in the specimen from near-tip stress fields. The more successful interpretations of these methodologies applied to the SENB data are partially explained by the greater number of available data points. Crack-tip constraint analyses of the shallow-crack cruciform specimen subjected to uniaxial or biaxial loading conditions represent a significant challenge for these methodologies. Unresolved issues identified from these analyses and summarized in the foregoing discussion require resolution as part of a validation process for biaxial loading applications. Additional cruciform specimens need to be tested before any conclusion can be reached concerning the application of these methods to the cruciform data.

Some additional observations concerning applications to the cruciform specimen are presented herein. The near-tip stresses ahead of the crack are the focal point of the stress-based fracture methodologies applied in this study. The uniaxial cruciform specimen exhibited a substantial interaction of the near-tip and far-field bending stresses, which provided a contrast to a relatively uniform hydrostatic (i.e., Q-stress) field ahead of the crack tip in the SENB specimen. The biaxial specimen appears to be influenced by offsetting effects that also result in a spatially independent Q-stress field ahead of the crack. The far-field stresses, which tend to lower the near-tip stresses, are almost exactly offset by the out-of-plane stress component that increases the opening-mode stress in the biaxial specimen. This offsetting effect, however, cannot be generalized to biaxial specimens having different dimensions or load ratios. In addition, the impact of the far-field bending stress on the near-tip stresses would be reduced in specimens

having larger dimensions. Testing of a limited number of larger biaxial cruciform specimens, such as currently planned within the HSST Program, would provide additional data to quantify these effects.

The primary problem with using techniques described herein to examine the influence of biaxial loading is the absence of an appropriate length scale with which to quantify constraint. Differences in out-of-plane constraint are quantified by the specimen thickness; in-plane constraint is related to crack depth, but biaxial loading cannot be related to a similar length parameter. Examination of analytical results from this study indicates that biaxial loading produces a near-tip stress pattern similar to that expected of a larger specimen under uniaxial loading (i.e., biaxial loading increases the "effective" size of the specimen). However, additional data and analyses are necessary to substantiate this observation.

## References

1. T. J. Theiss et al., "Initial Results of the Influence of Biaxial Loading on Fracture Toughness," USNRC Report NUREG/CR-6036 (ORNL/TM-12349), June 1993.
2. T. J. Theiss, D. K. M. Shum, and S. T. Rolfe, "Experimental and Analytical Investigation of the Shallow-Flaw Effect to Reactor Pressure Vessels," USNRC Report NUREG/CR-5886 (ORNL/TM-12115), July 1992.
3. R. D. Cheverton and D. G. Bail, "Pressurized-Thermal-Shock Evaluation of the H. B. Robinson Nuclear Power Plant," pp. 263-306, USNRC Report NUREG/CR-4183 (ORNL/TM-45657/V1), September 1985.
4. R. D. Cheverton and D. G. Bail, "Pressurized-Thermal-Shock Evaluations of the Calvert Cliffs Nuclear Power Plant," pp. 201-244, USNRC Report NUREG/CR-4022 (ORNL/TM-9408), September 1985.
5. R. D. Cheverton and D. G. Bail, "Preliminary Development of an Integrated Approach to the Evaluation of Pressurized Thermal-Shock as Applied to the Oconee 1 Nuclear Power Plant," pp. 5.1-5.51, USNRC Report NUREG/CR-3770 (ORNL/TM-9176), May 1986.
6. N. P. O'Dowd and C. F. Shih, "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter: Part I—Structure of Fields," *J. Mech. Phys. Solids* 39, 989-1015 (1991).
7. N. P. O'Dowd and C. F. Shih, "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter: Part II—Fracture Applications," *J. Mech. Phys. Solids* 40, 939-963 (1992).
8. N. P. O'Dowd and C. F. Shih, "Two Parameter Fracture Mechanics: Theory and Applications," USNRC Report NUREG/CR-5958 (CDNSWC/SME-CR-16-92), February 1993.

9. R. H. Dodds, C. F. Shih, and T. L. Anderson, "Continuum and Micromechanics Treatment of Constraint in Fracture," Report UILU-ENG-92-2014, November 1992.
10. R. H. Dodds, T. L. Anderson, and M. T. Kirk, "A Framework to Correlate a/W Ratio Effects on Elastic-Plastic Fracture Toughness ( $J_c$ )," *Int. J. Frac.* 48, 1–22 (1991).
11. T. L. Anderson and R. H. Dodds, "Specimen Size Requirements for Fracture Toughness Testing in the Ductile-Brittle Transition Region," *J. Test. Eval.* 19, 123–134 (1991).
12. B. R. Bass, et. al., "Biaxial Loading and Shallow-Flaw Effects on Crack-Tip Constraint and Fracture Toughness," USNRC Report NUREG/CR-6132 (ORNL/TM-12498), to be published.
13. *ABAQUS Theory Manual*, Version 4-8, Hibbit, Karlson, and Sorensen, Inc., Providence, R.I., 1989.
14. D. J. Naus et al., "High-Temperature Crack-Arrest Behavior in 152-mm-Thick SEN Wide Plates of Quenched and Tempered A 533 Grade B Class 1 Steel," USNRC Report NUREG/CR-5330 (ORNL/TM-11083), April 1989.
15. T. J. Theiss and S. K. Iskander, "Constraint and Statistical Analyses of Transition Range A533 B Toughness Data," USNRC Report NUREG/CR-6106 (ORNL/TM-12467), to be published.
16. K. Wallin, "Statistical Aspects of Constraint with Emphasis on Testing and Analysis of Laboratory Specimens in the Transition Region," pp. 264–288 in *Constraint Effects in Fracture, ASTM STP 1171*, E. M. Hackett, K. H. Schwalbe, and R. H. Dodds, Eds., American Society for Testing and Materials, 1993.
17. J. M. Barsom and S. T. Rolfe, *Fracture and Fatigue Control in Structures—Applications in Fracture Mechanics*, 2nd Ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
18. D. K. M. Shum et al., "Analytical Studies of Transverse Strain Effects on Fracture Toughness for Circumferentially Oriented Cracks," USNRC Report NUREG/CR-5592 (ORNL/TM-11581), April 1991.

## List of Figures

Figure 1 Cruciform bend specimen used in HSST biaxial testing program: (a) dimensions of cruciform specimen and (b) detail of crack plane

Figure 2 Biaxial and uniaxial shallow-crack toughness data as function of normalized temperature

Figure 3 Uniaxial and biaxial toughness data as function of crack depth at  $T - RT_{NDT} = -10^\circ C$

Figure 4 Toughness data for deep- and shallow-crack specimens as function of load ratio at  $T - RT_{NDT} = -10^\circ C$

Figure 5 (a) Finite-element model for local crack-tip analyses of cruciform bend specimen, (b) test section region of finite-element model for cruciform bend specimen, (c) highly refined crack-tip region of finite-element model for cruciform bend specimen, and (d) finite-element model with expanded region of refinement near the crack tip for analysis of uniaxially loaded cruciform specimen

Figure 6 Slot configurations used in analyses of the cruciform bend specimen: (a) uniform slots on test section boundary, (b) outer slots extended inward by 8.9 mm across test section boundary, (c) center slot contracted away by 5.1 mm from test section boundary, (d) a superposition of configurations (b) and (c)

Figure 7 Comparison of calculated and measured LLD for cruciform bend specimens

Figure 8 Comparison of calculated and measured CMOD for cruciform bend specimens

Figure 9 HSST shallow-crack fracture toughness results as function of normalized temperature  $T - RT_{NDT}$

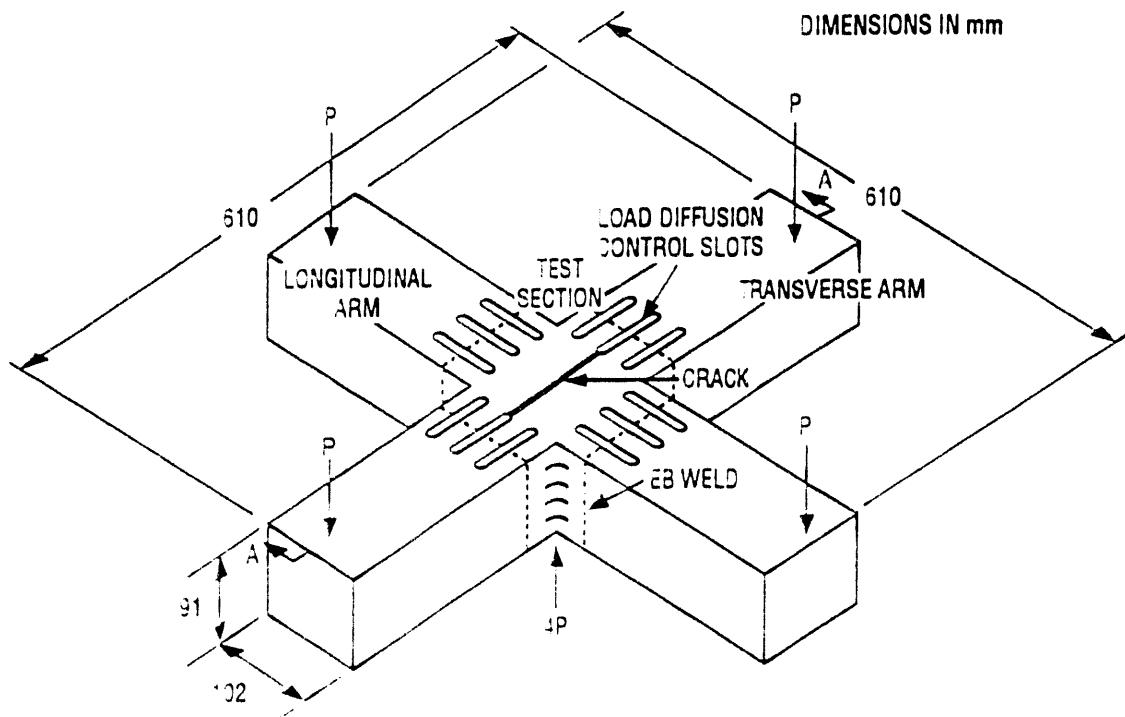
Figure 10 Toughness data at  $T - RT_{NDT} = -25$  to  $-10^\circ C$  as function of crack depth

Figure 11  $K_0$  data at  $T - RT_{NDT} = -25$  to  $-10^\circ C$  as function of crack depth

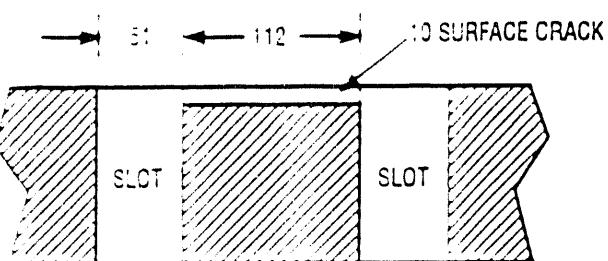
Figure 12 Determination of finite-body to SSY toughness ratio from stresses ahead of crack tip

Figure 13 Finite-body to SSY toughness ratio as a function of normalized distance ahead of crack tip

Figure 14 Q-stress ahead of crack tip at critical values of  $J$  for uniaxial and biaxial cruciform specimens

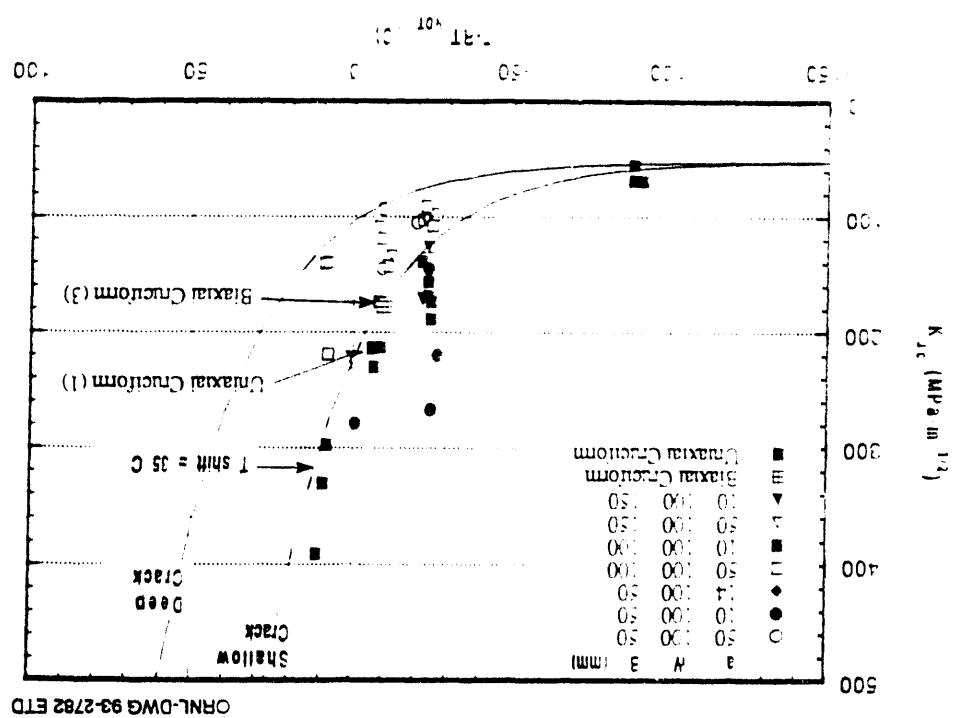


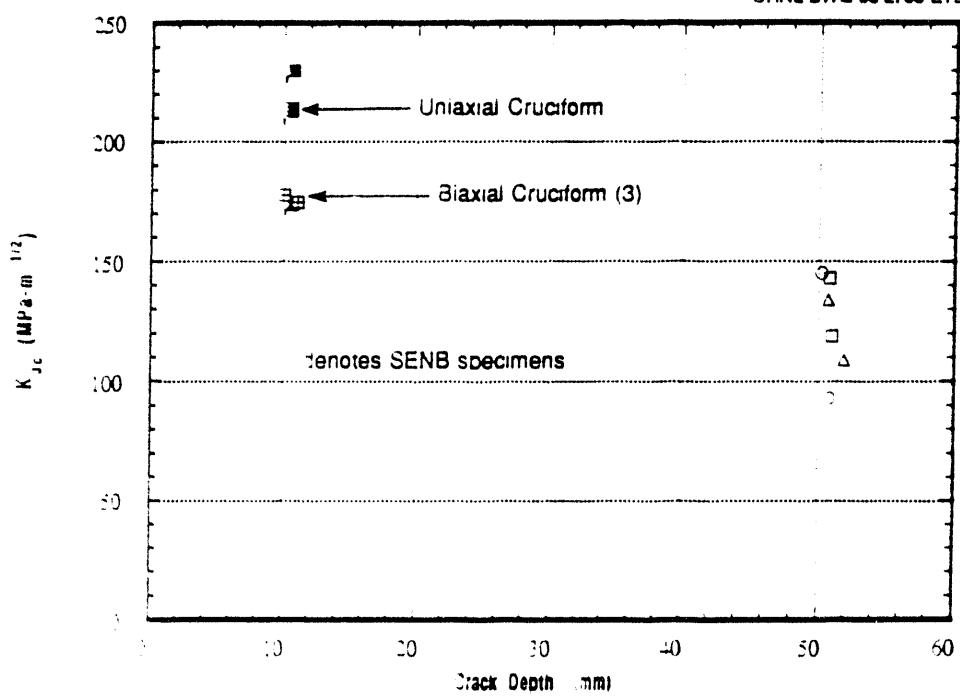
a)

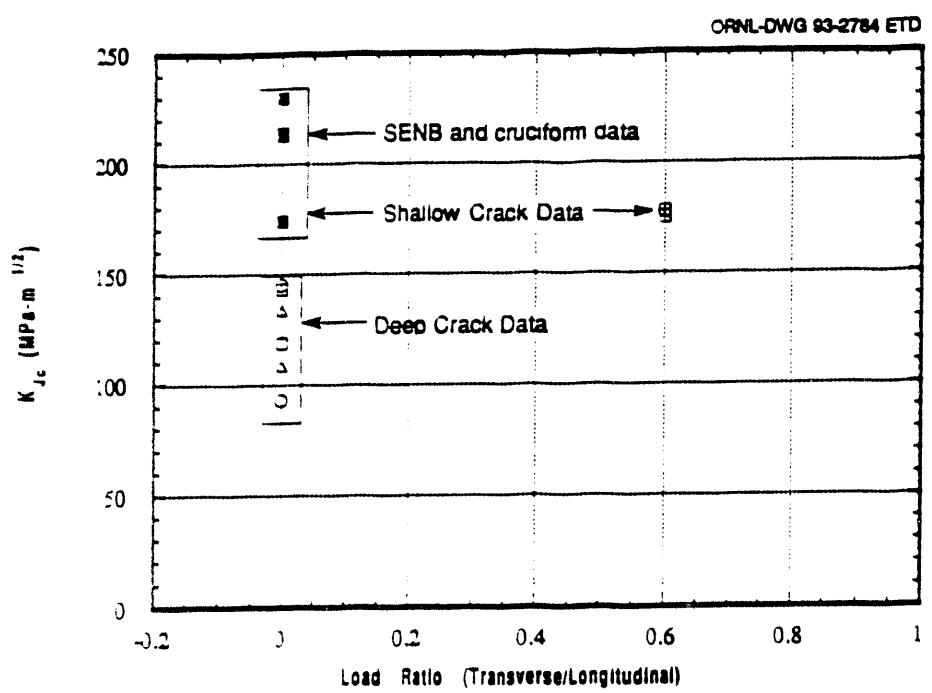


b)

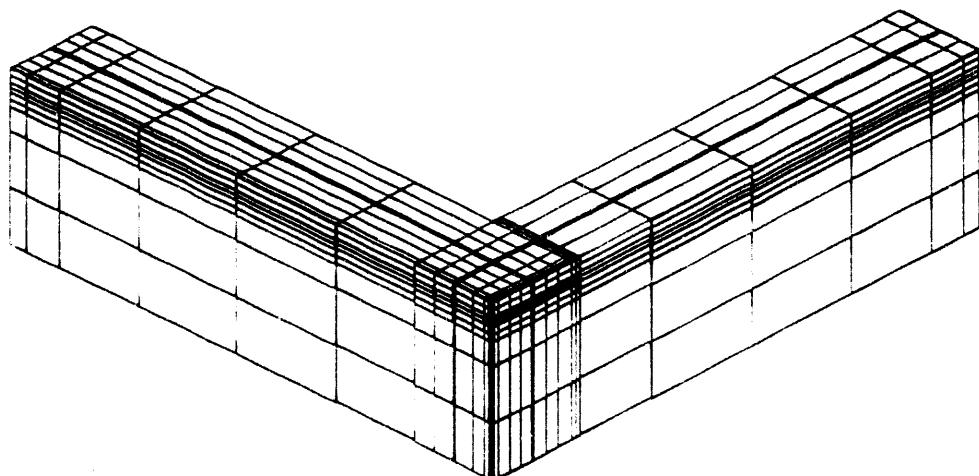
SECTION A-A



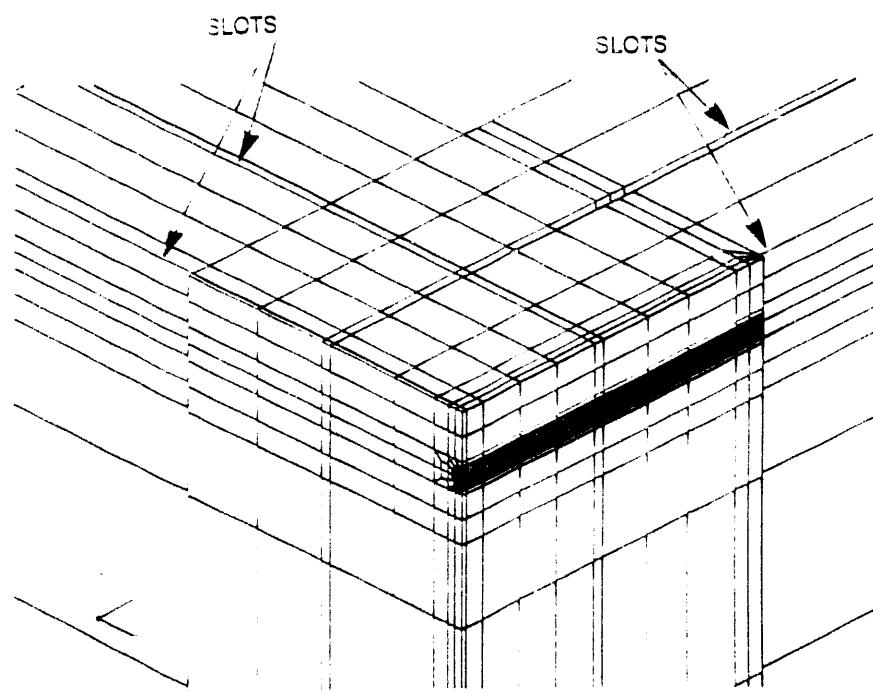




ORNL-DWG 93-3902 ETD

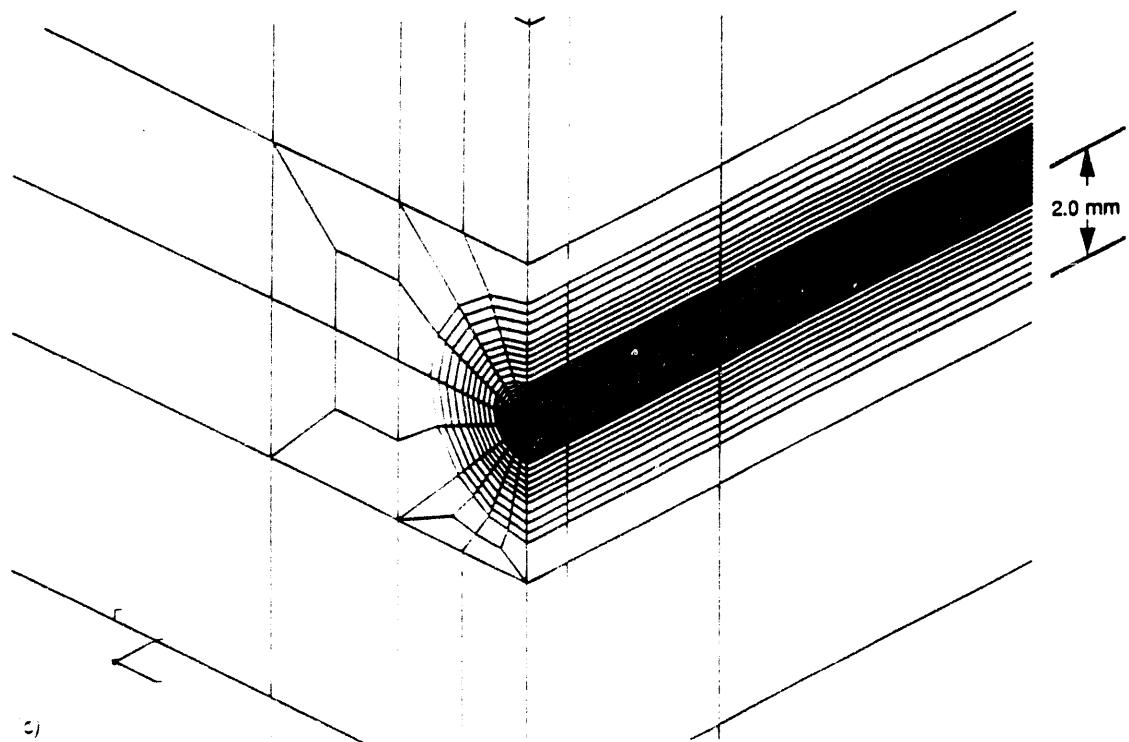
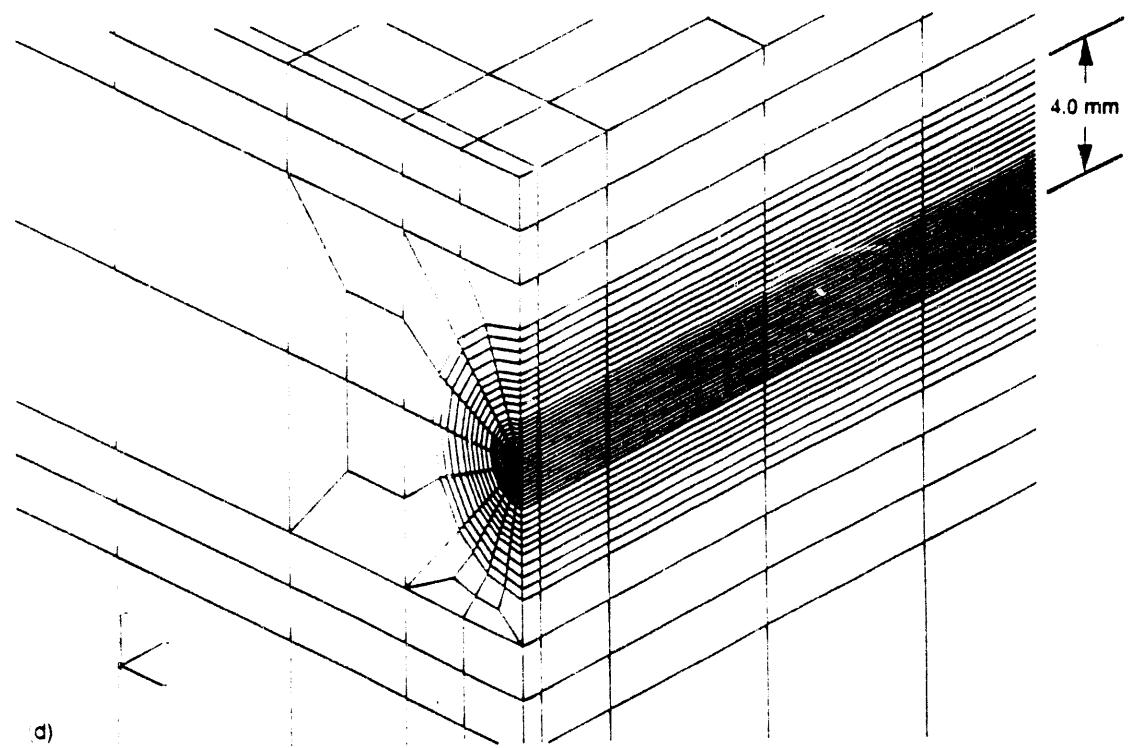


(a)

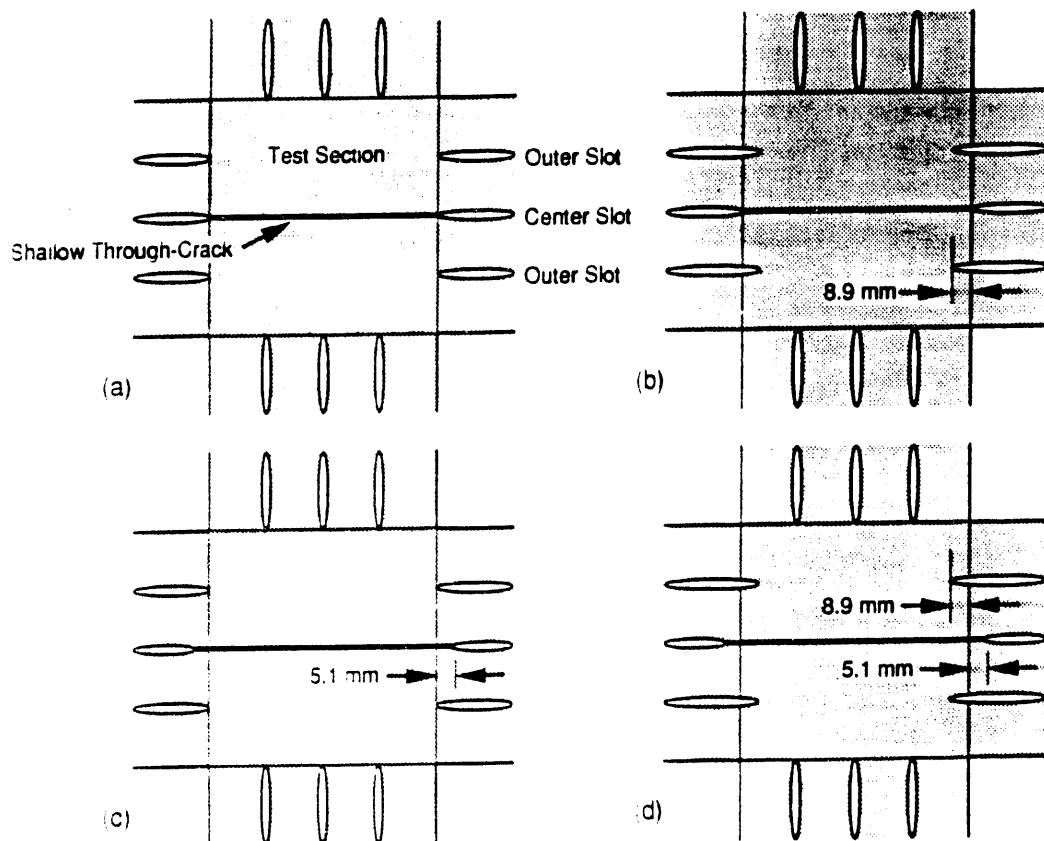


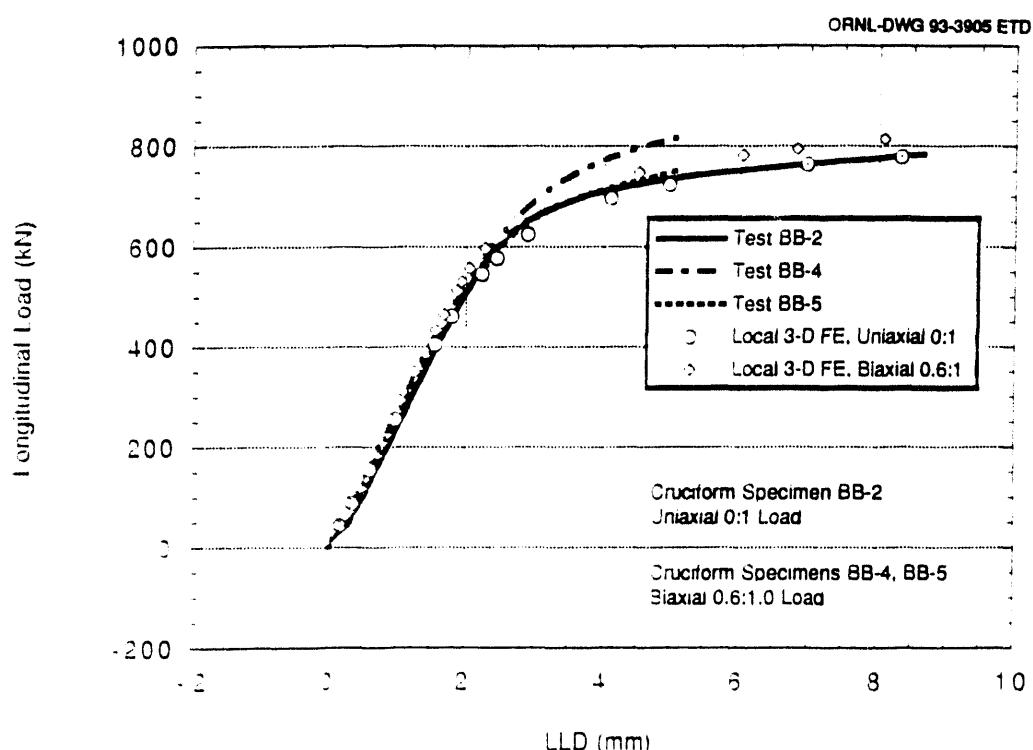
(b)

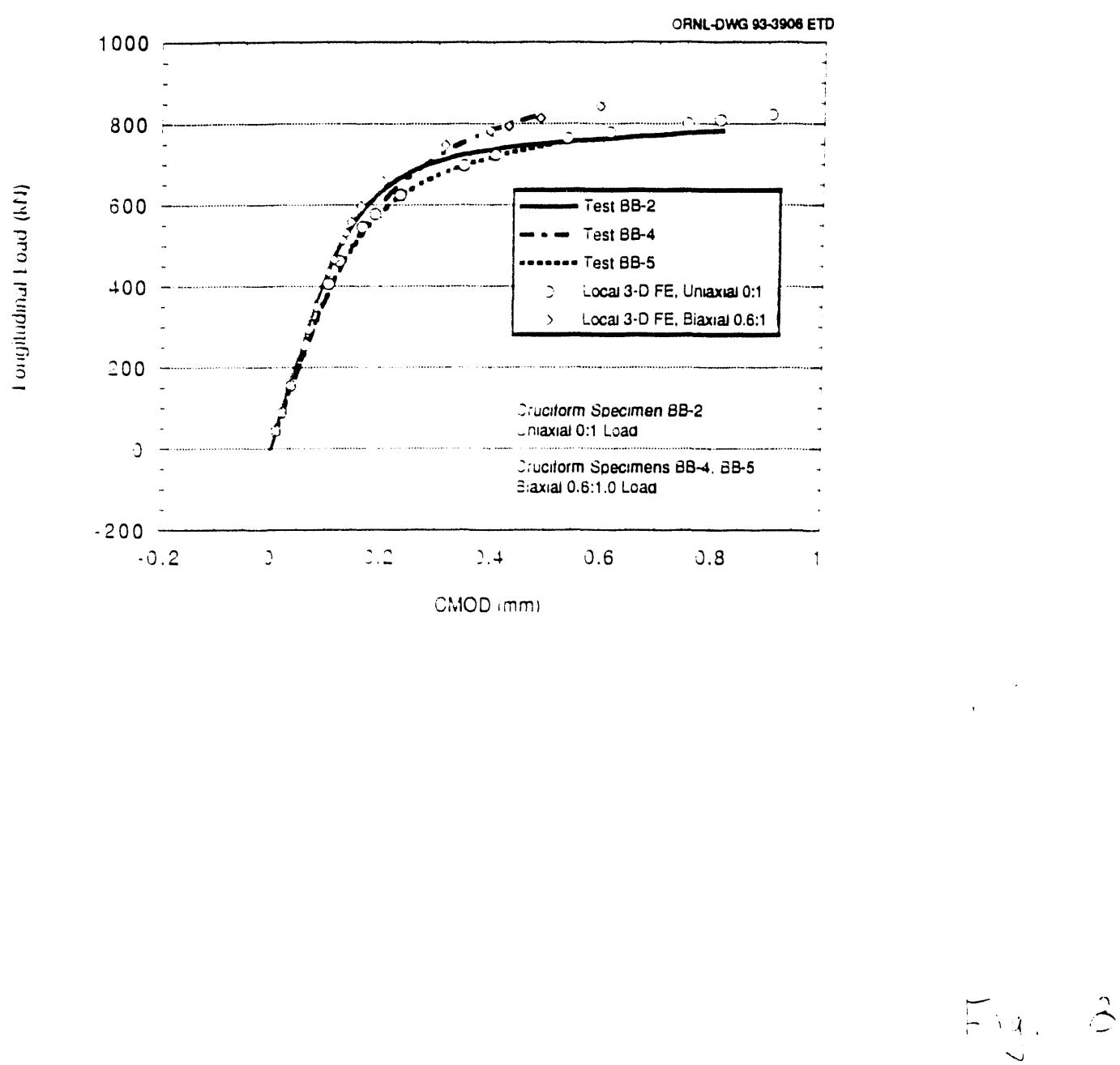
ORNL-DWG 93-3903 ETD



1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1







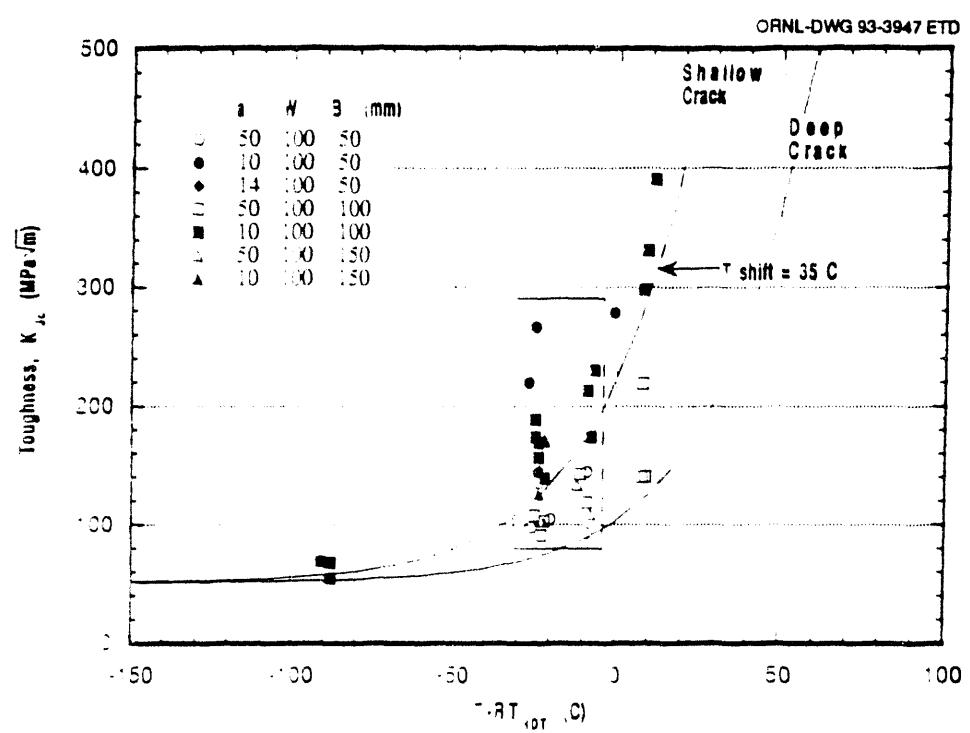


Fig. 1

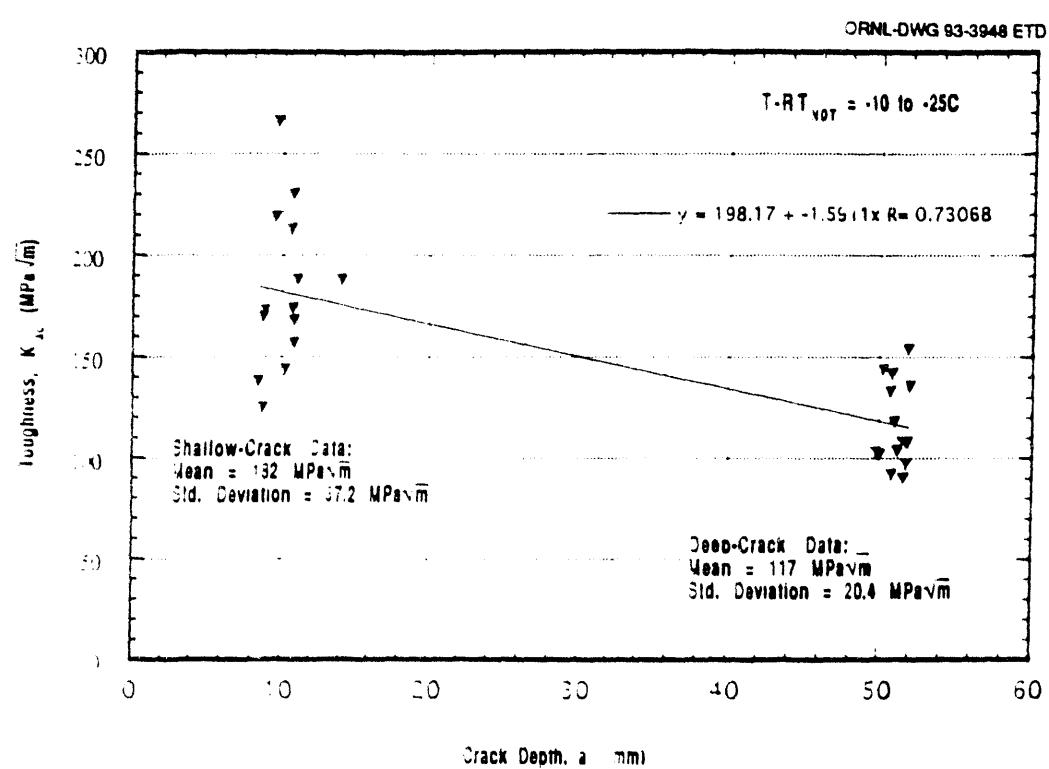
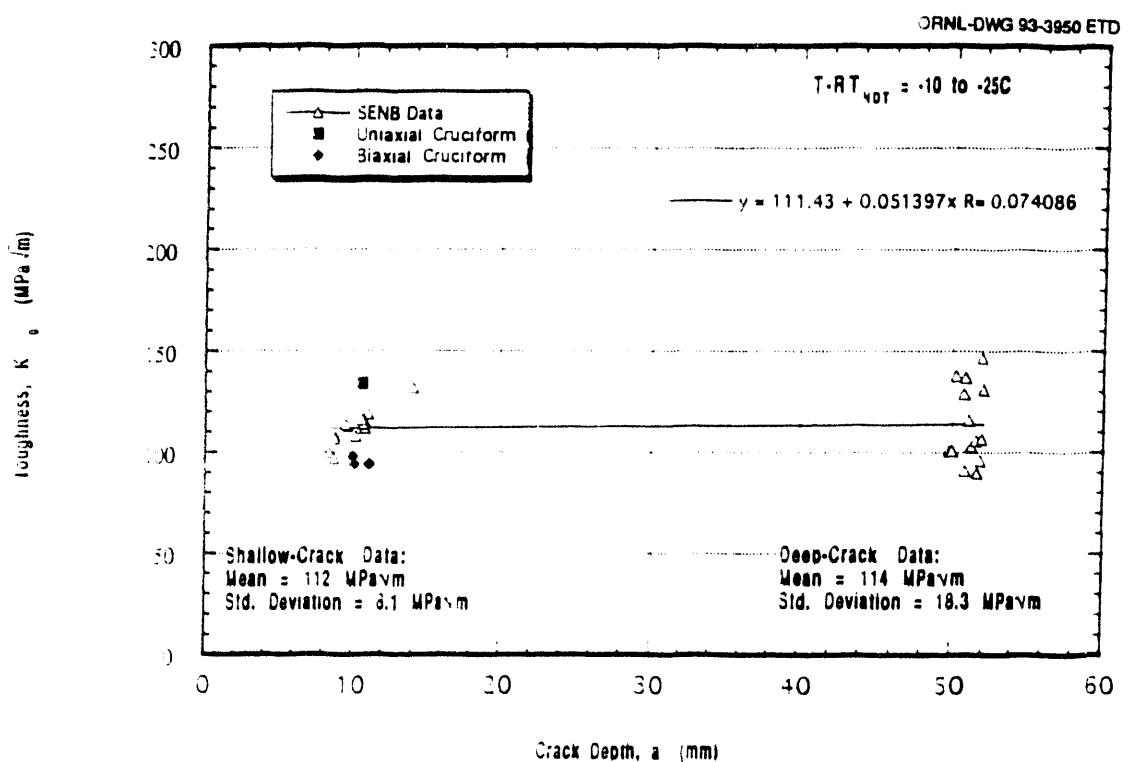
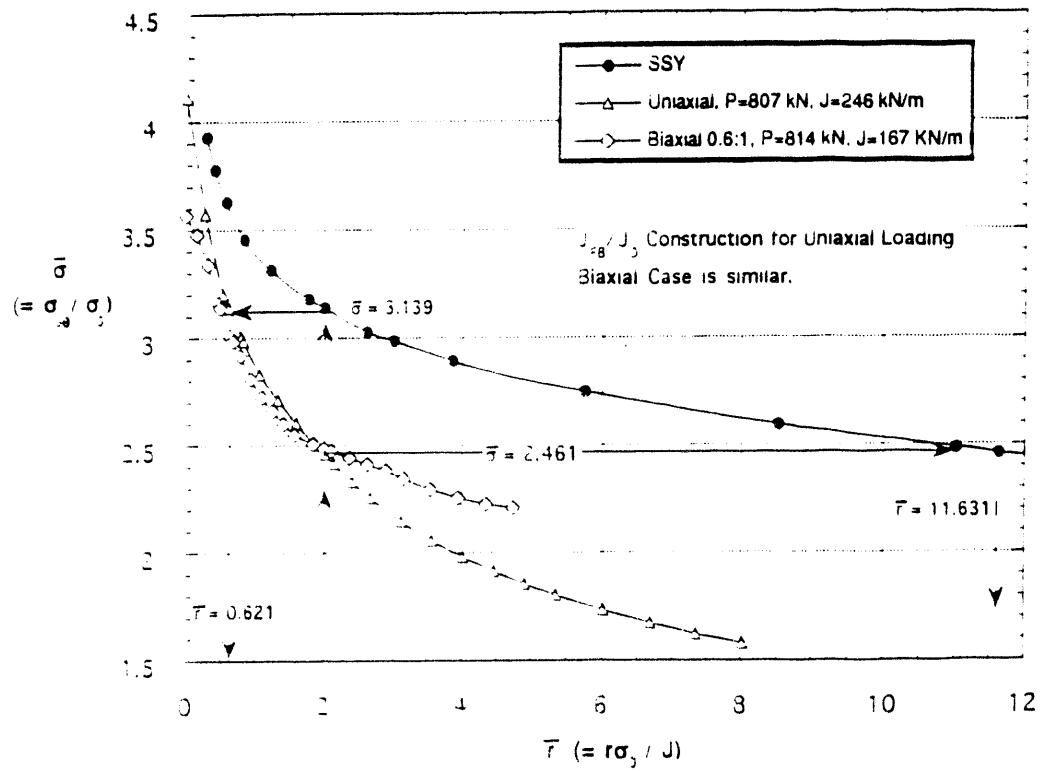
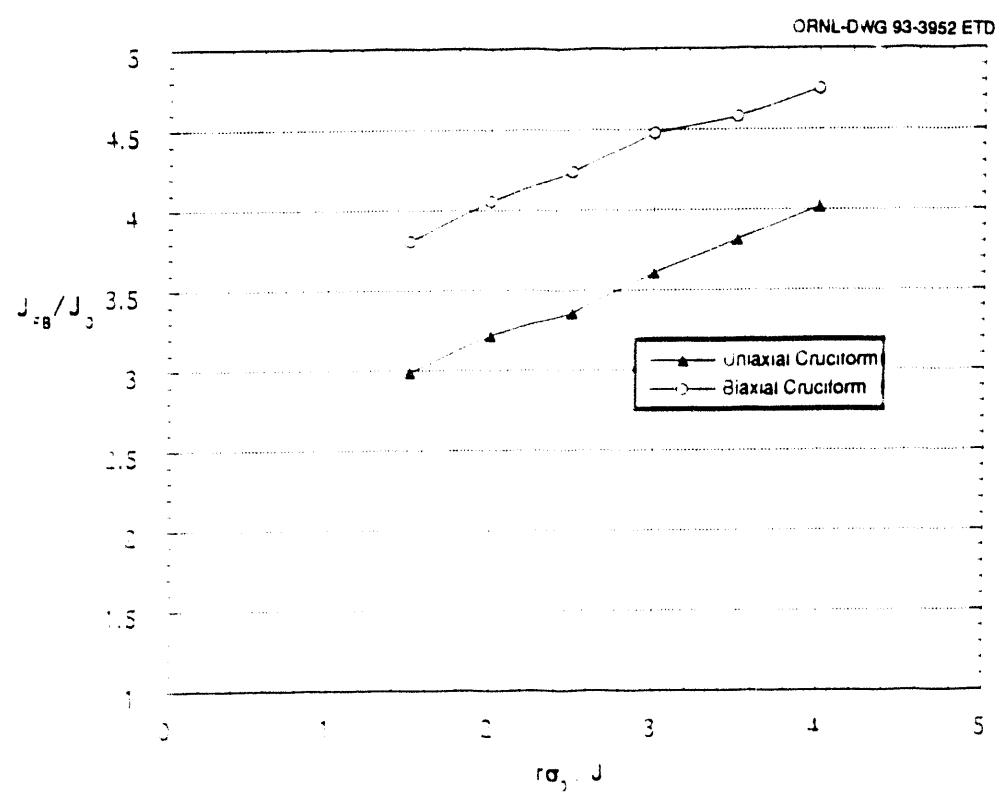


Fig. 10







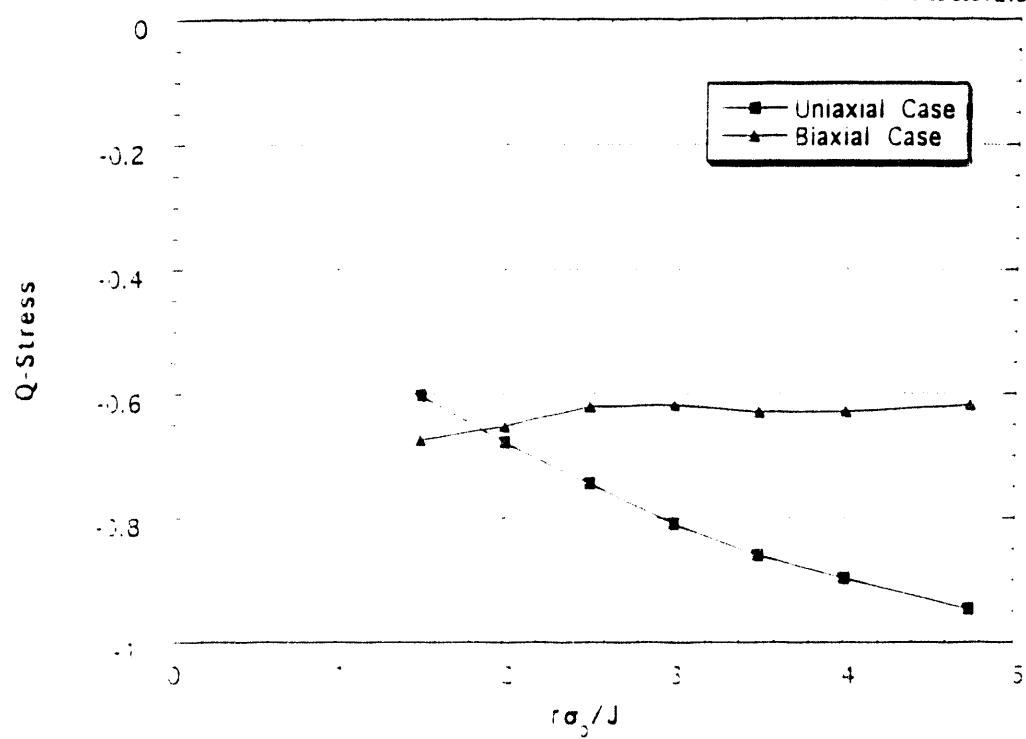


Fig. 14

The information contained herein has been developed for the U.S. Government purposes.  
The publication form of this document or any portion thereof, remains the property of the U.S. Government.  
Government retains rights to publish or reproduce.  
GSA GEN. REG. 1400, Accounting, the U.S.  
Government under contract No. DE-  
AC02-76ER021400, Accordingly, the U.S.  
Government under a contractor of the U.S.  
Government retains a nonexclusive,  
royalty-free license to publish or reproduce  
any portion of this document or any portion of  
the publication form of this document or any  
portion thereof, to do so for U.S. Government  
purposes.

1886-8011-9B with the U.S. Department of Energy under Contract DE-AC02-84OR21400 with Martin Marietta Energy Systems, Inc.  
Research sponsored by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission under Inter-Agency Agreement

---

November 17-18, 1993

2nd ASTM Symposium on Constraint Effects in Fracture  
Ft. Worth, Texas

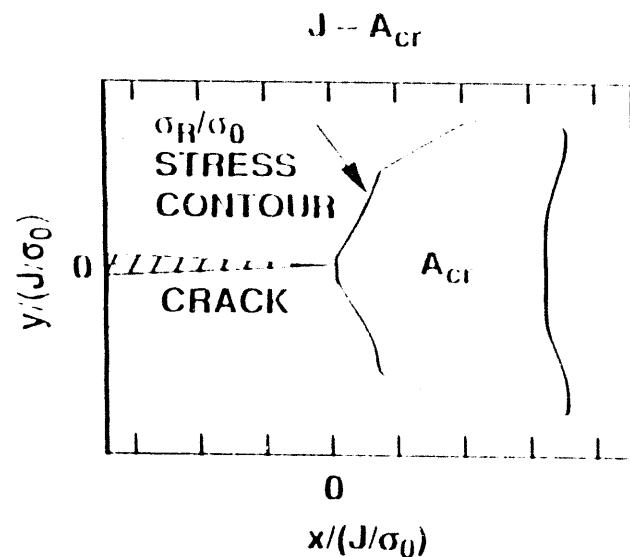
T. J. Theiss, B. R. Bass, & J. W. Bryson  
Heavy-Section Steel Technology Program (HSSP)  
Oak Ridge National Laboratory (ORNL)

EXPERIMENTAL AND ANALYTICAL COMPARISON  
OF CONSTRAINT EFFECTS DUE TO BIAXIAL  
LOADING AND SHALLOW FLAWS

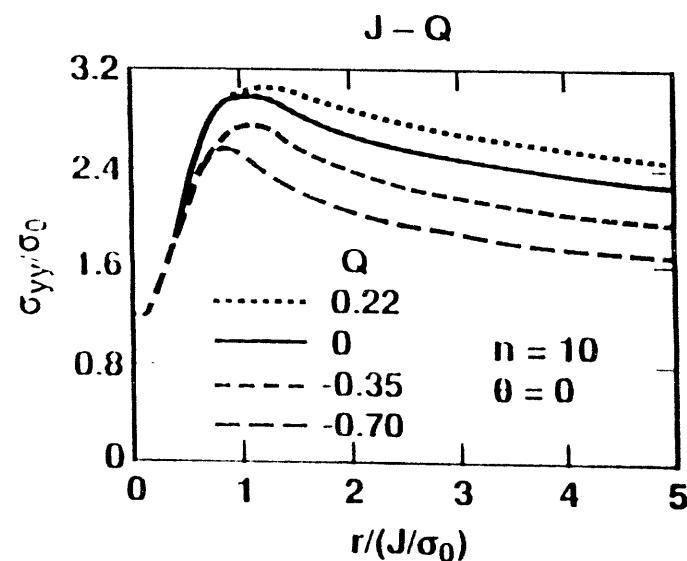
# **The HSST Program is Investigating Effects of Biaxial Loading Conditions and Shallow-Crack Geometries on Constraint Conditions and, Consequently, on Transfer of Toughness Data to RPVs**

- **Stress-based fracture characterizations**
  - J-Q methodology of O'Dowd and Shih
  - Constraint correction technique of Dodds and Anderson
- **Stress-strain-based characterizations, i.e. plane strain ductility techniques due to Clausing, Barsom, Merkle, and other researchers**
- **Alternative methodologies focusing on modified constitutive relations (eg. void-growth, strain-softening, etc)**

## Dual Parameter Fracture Correlations Provide a Measure of the Effect of Crack-Tip Constraint on Fracture Toughness



$A_{cr}$  is the area over which stresses exceed the reference stress ratio ( $\sigma_R/\sigma_0$ ) for crack initiation

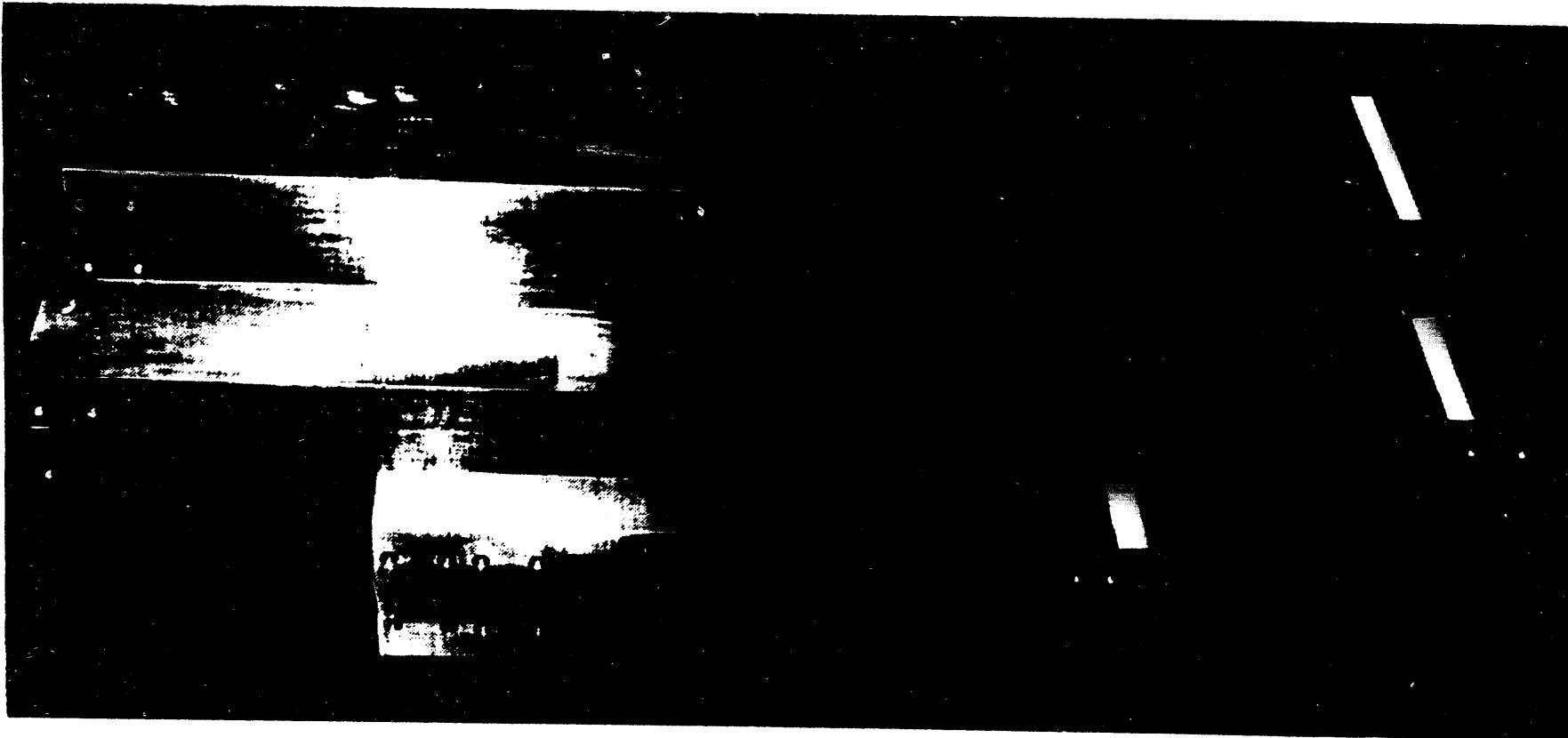


$Q$  is a parameter characterizing the hydrostatic stresses and therefore the maximum principal stresses ahead of the crack

ORNL DWG 91M 3220R ETD

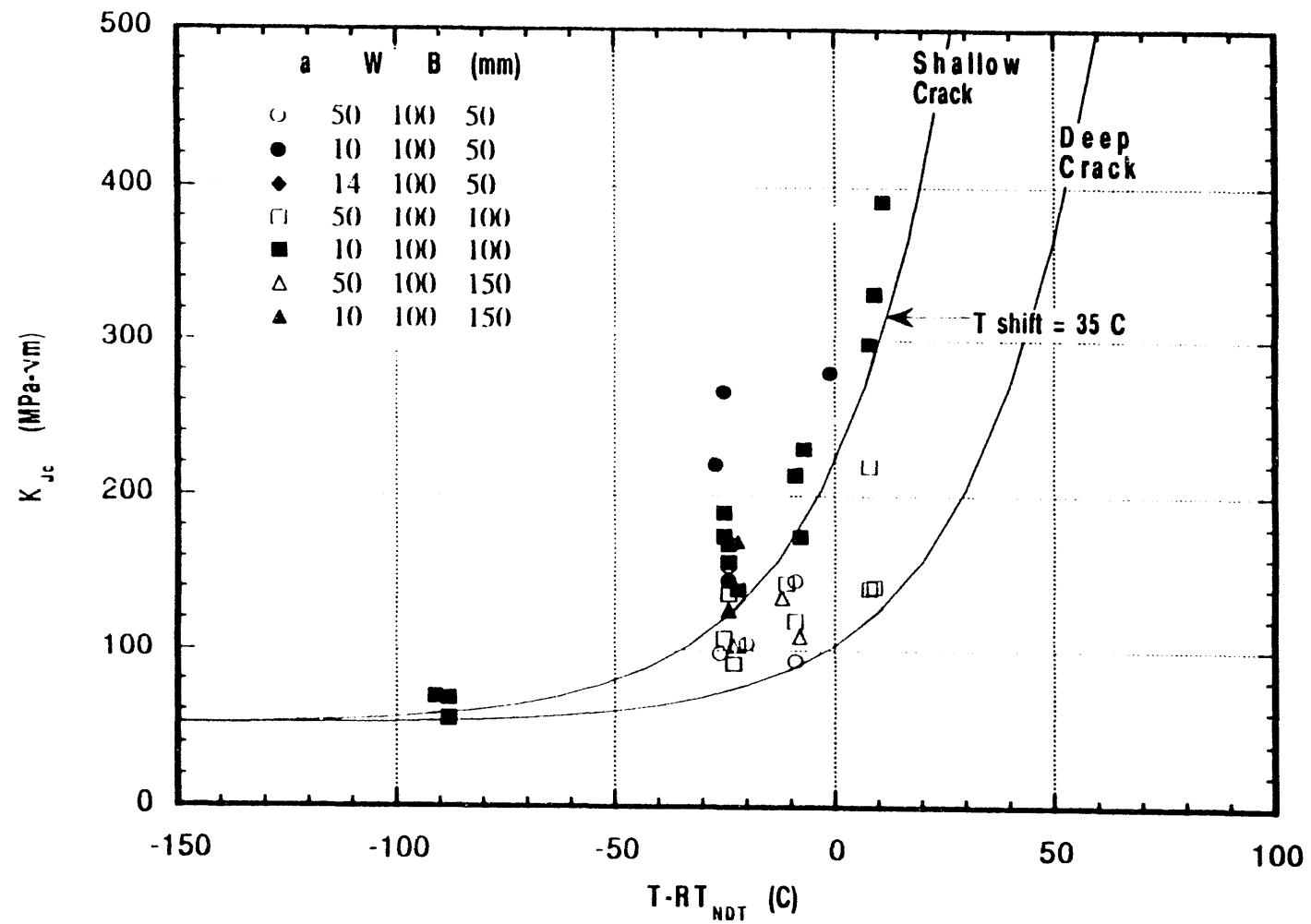
These methods are being applied to the shallow-crack and biaxial loading fracture toughness test data

**Prototypical Flaw Depths Were Tested in the  
100-mm-Deep Beams Used in the Shallow-Flaw Program**



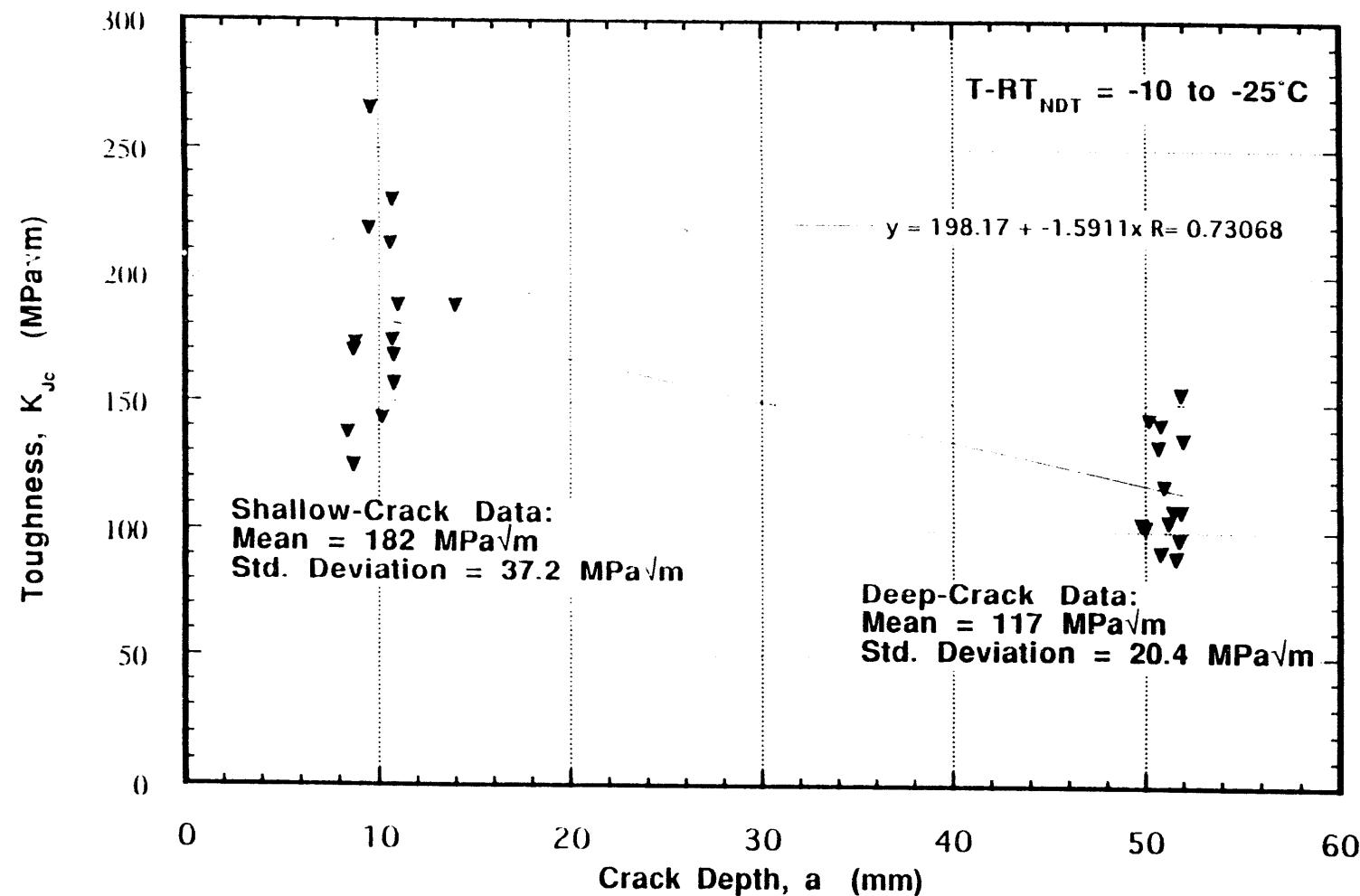
ORNL DWG 93M 3649 LTD

## Shallow-Crack Fracture Toughness Data Exhibits a Toughness Increase Over Deep-Crack Data

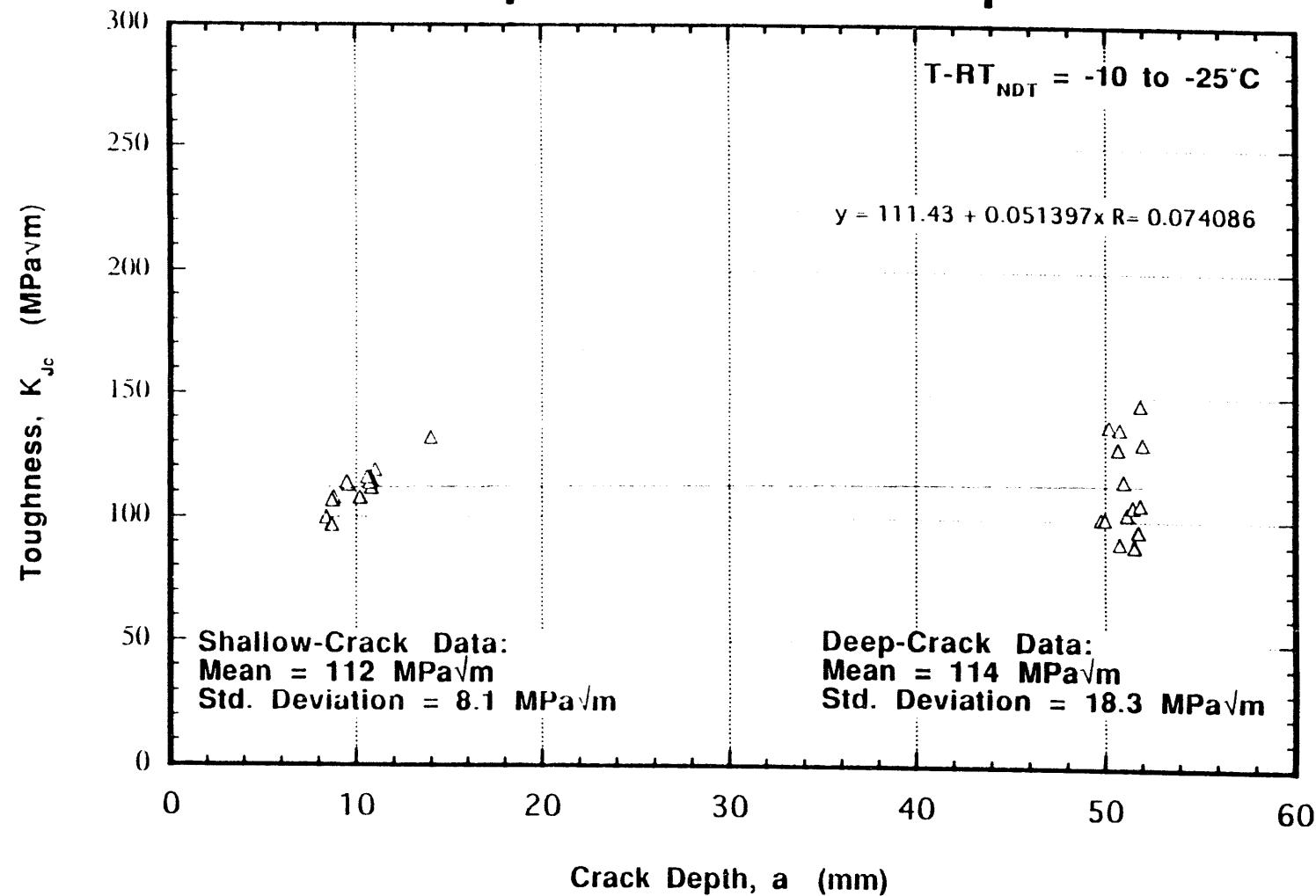


*Biaxial Loading Could Reduce the Shallow-Crack Toughness Increase*

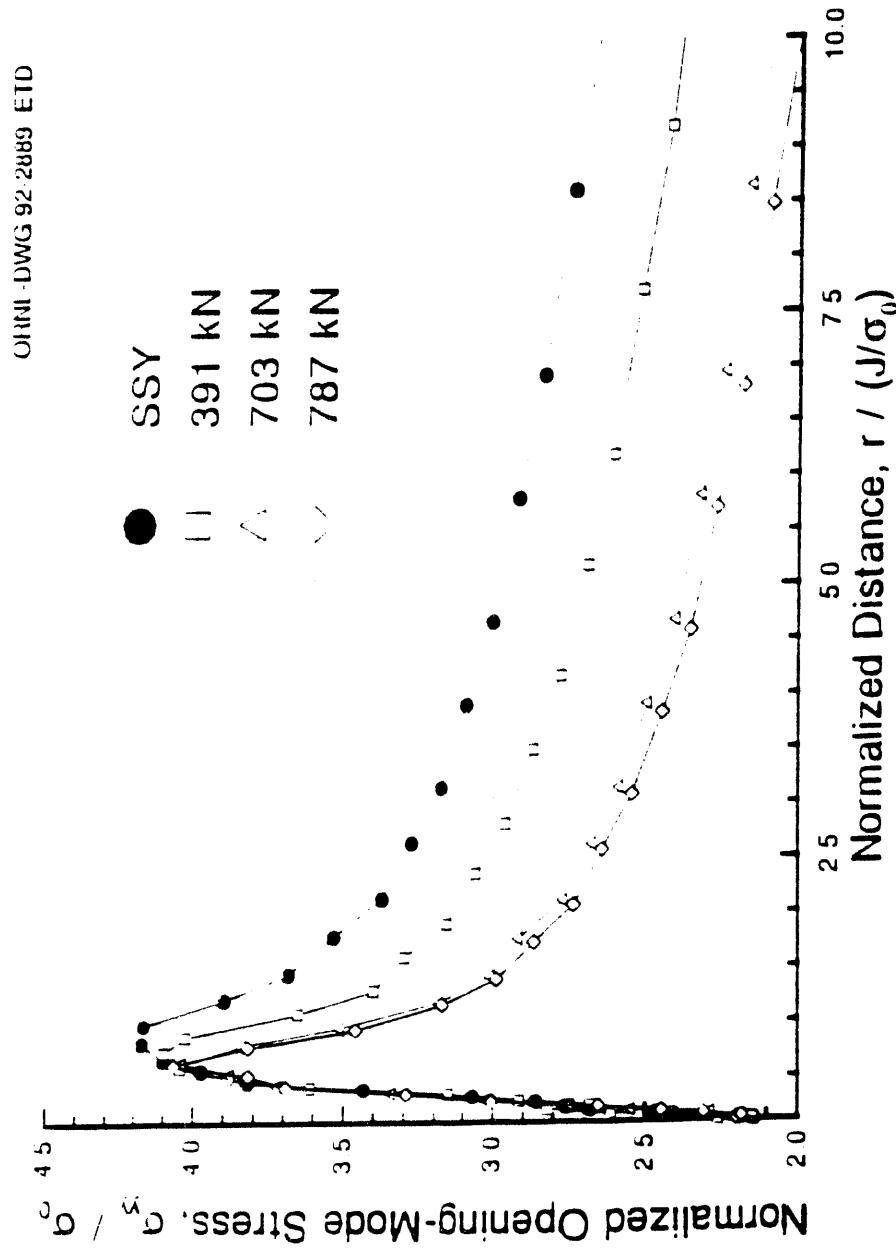
## SENB Data Show an Increase in Fracture Toughness and Data Scatter for Shallow-Crack Specimens Compared to Deep-Crack Specimens



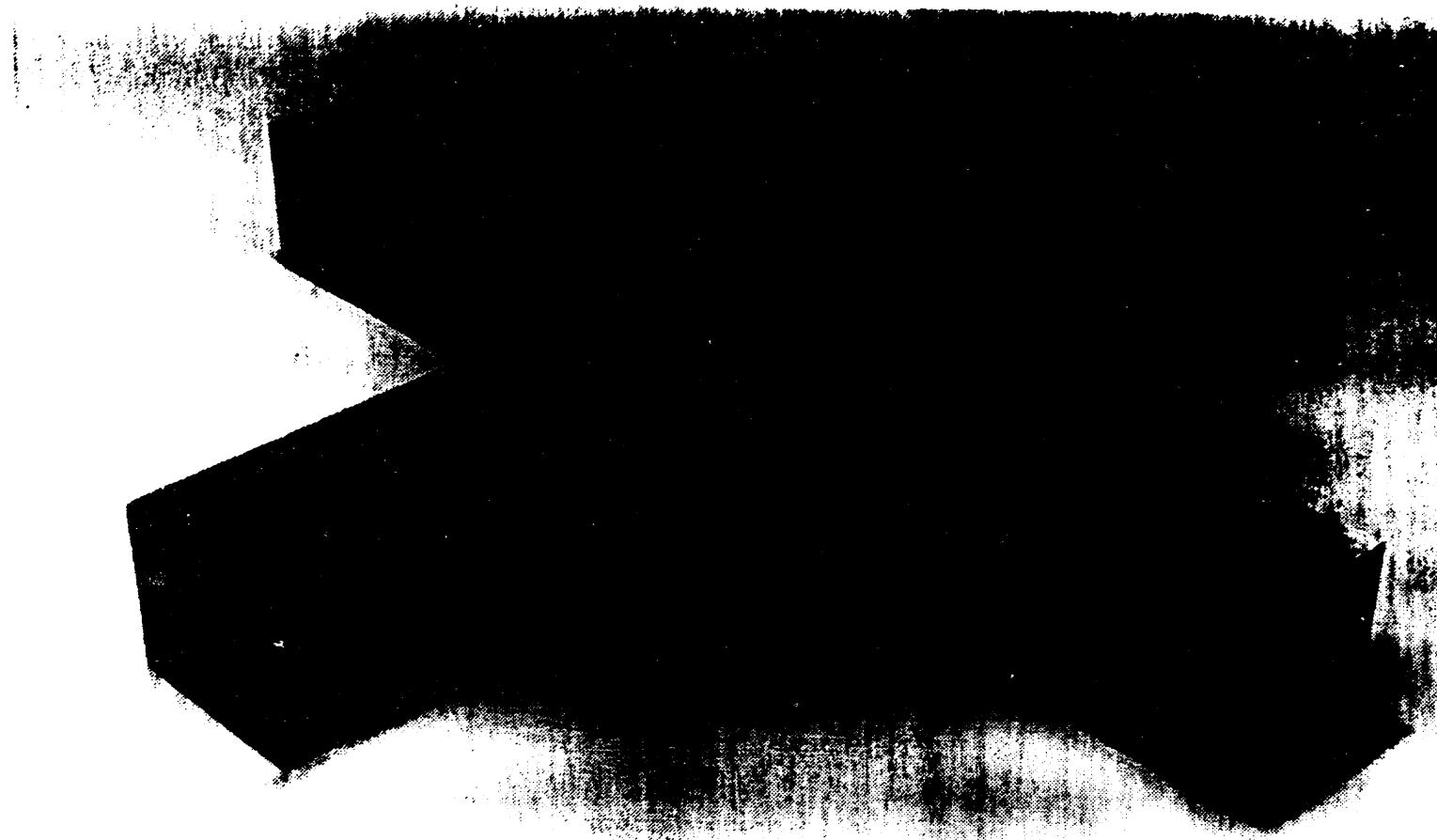
# Applications of The Dodds-Anderson Constraint Adjustment Procedure to SENB Data Produce Fracture Toughness Values Independent of Crack Depth



**The Shallow-Crack SENB Specimens Exhibit a  
Q-Stress at Failure of  $\sim -0.7$ , Which Represents a  
Significant Loss of Constraint**

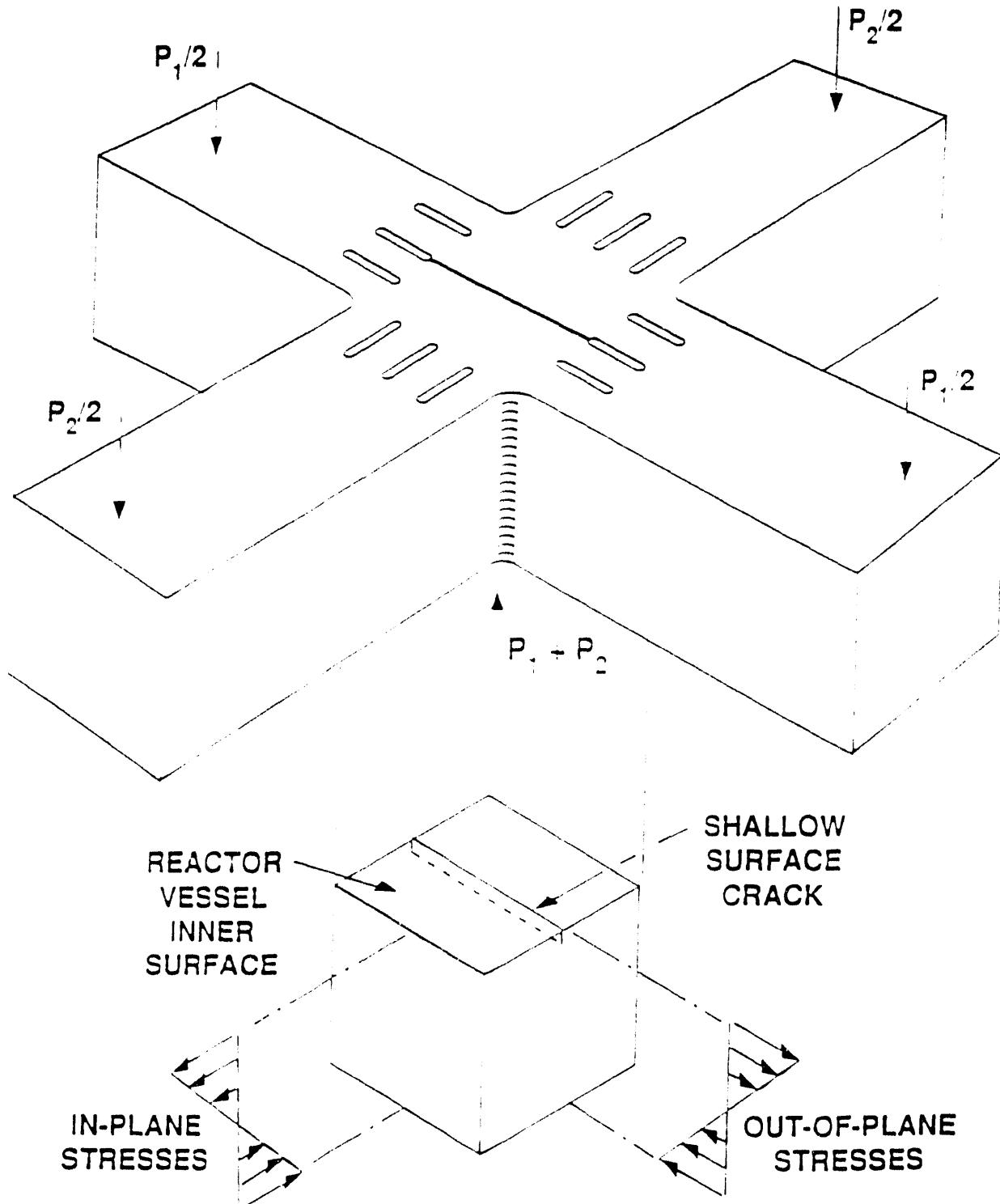


## **The 100-mm-Deep Cruciform Specimen Can Be Tested Under Either Uniaxial or Biaxial Loading**

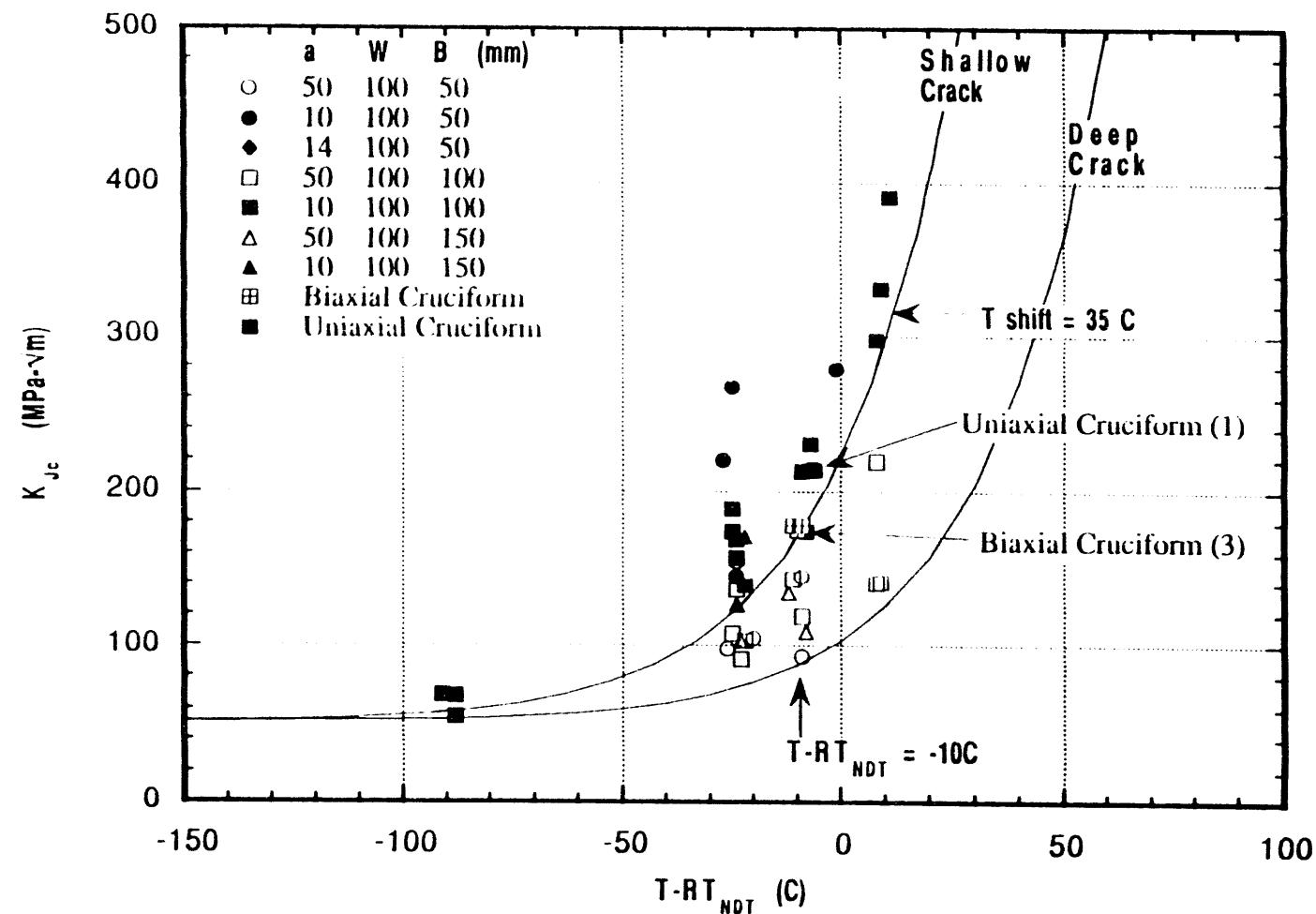


ORNL DWG 9-013051-1 TD

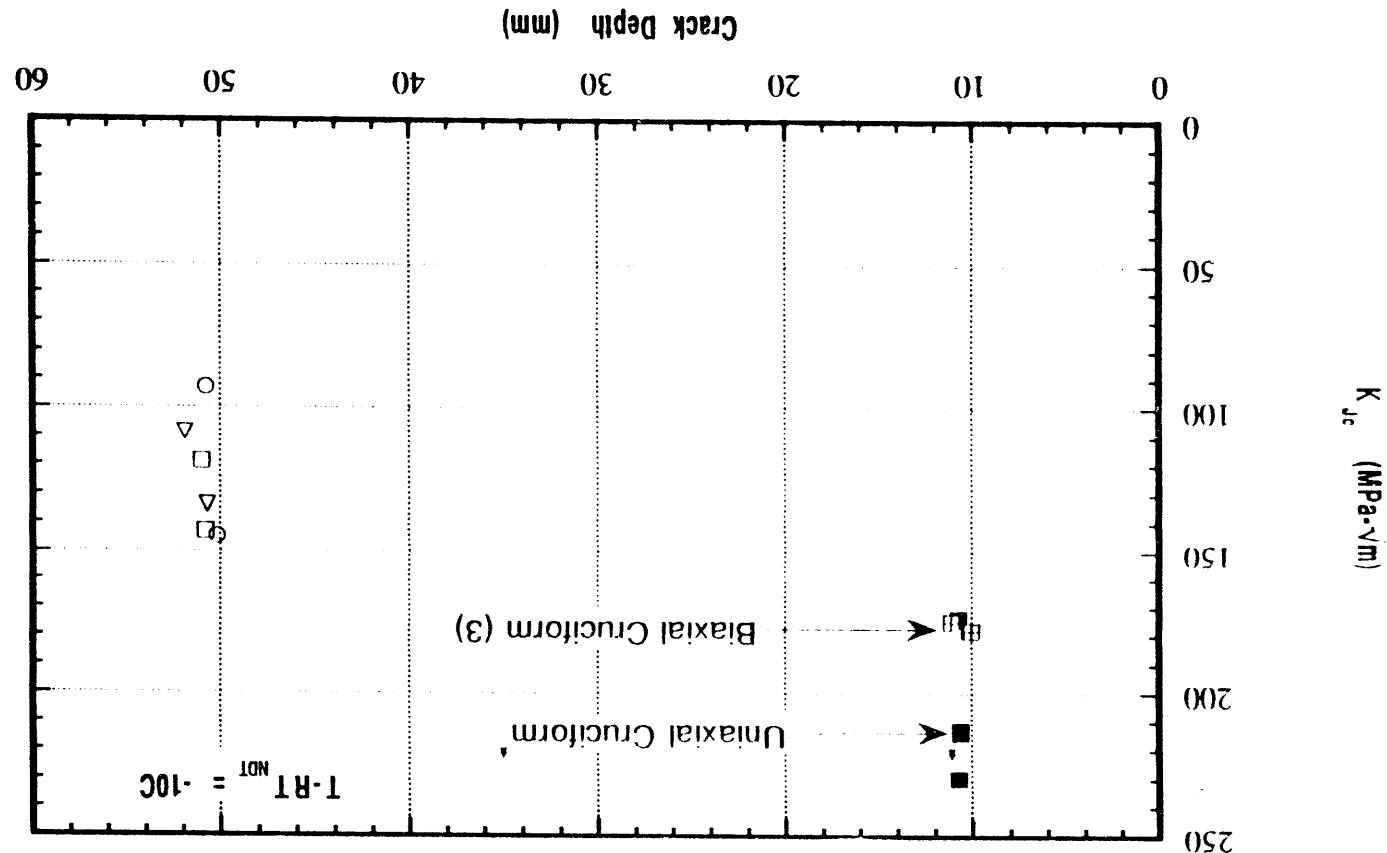
# Essential Features of the Infinite-Length Shallow Flaw Geometry and Biaxial PTS Loading are Simulated in the ORNL Biaxial Fracture Toughness Test



## Biaxial, Shallow-Crack Data Tends to Exhibit a Toughness Reduction Compared to Uniaxial, Shallow-Crack Data

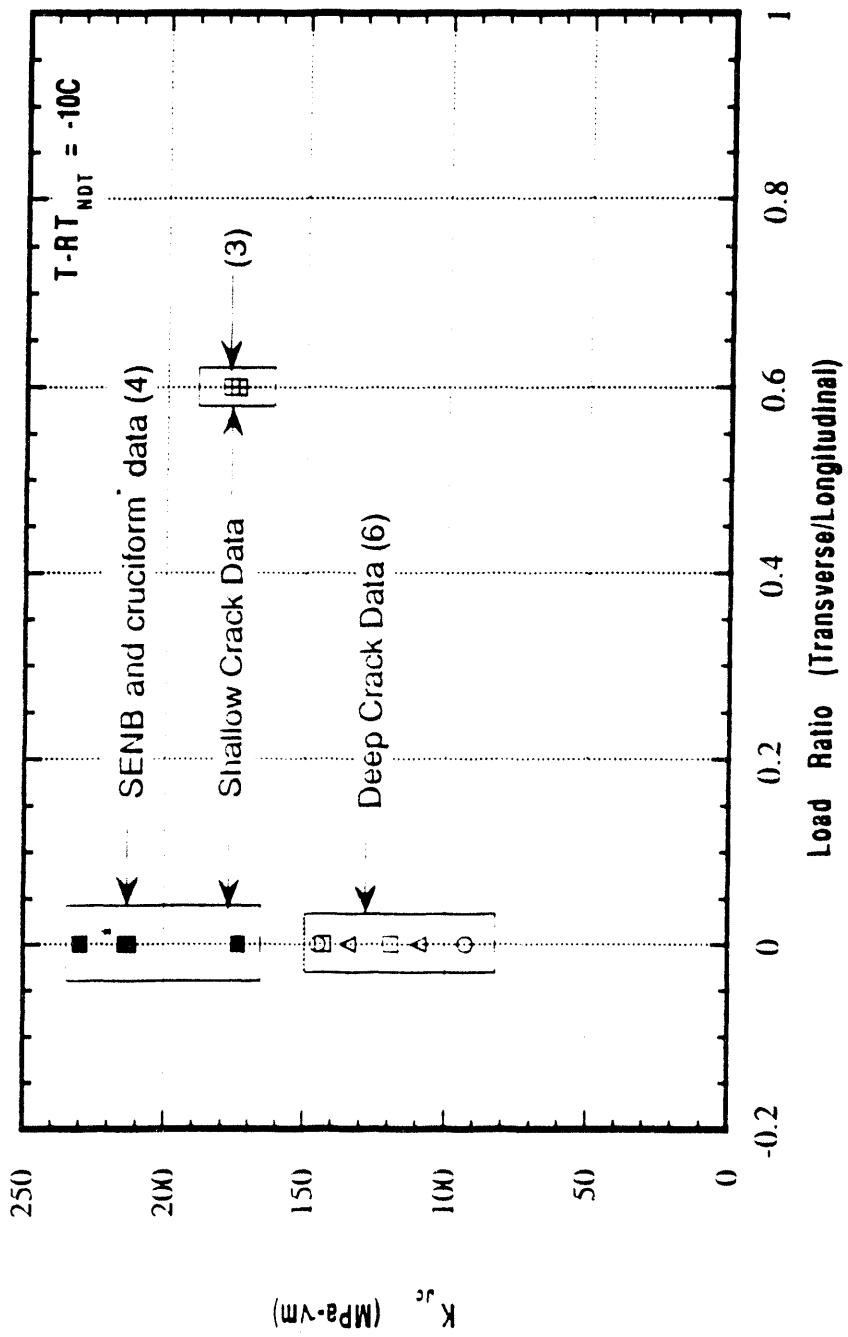


**Biaxial Loading (0.6:1) Appears to Cause a 20% Reduction in Fracture Toughness Data Compared to Uniaxial Data**



**1. Scatter of Biaxial Data Appears Reduced**  
**2. Uniaxial Cruciform Result Is Consistent With Uniaxial SENB Results**

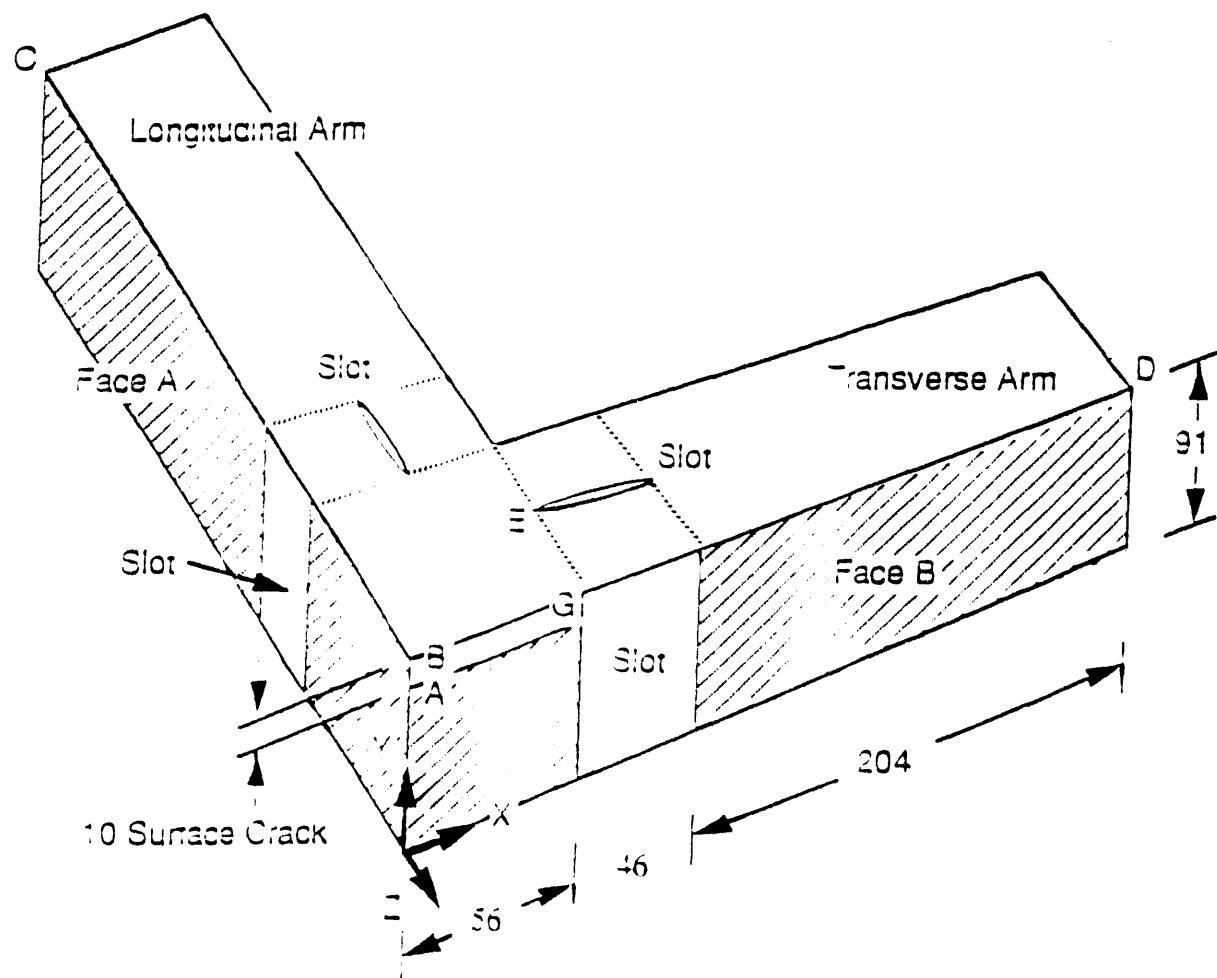
## Biaxial Loading (0.6:1) Reduces Some But Not All of the Shallow-Crack Toughness Enhancement



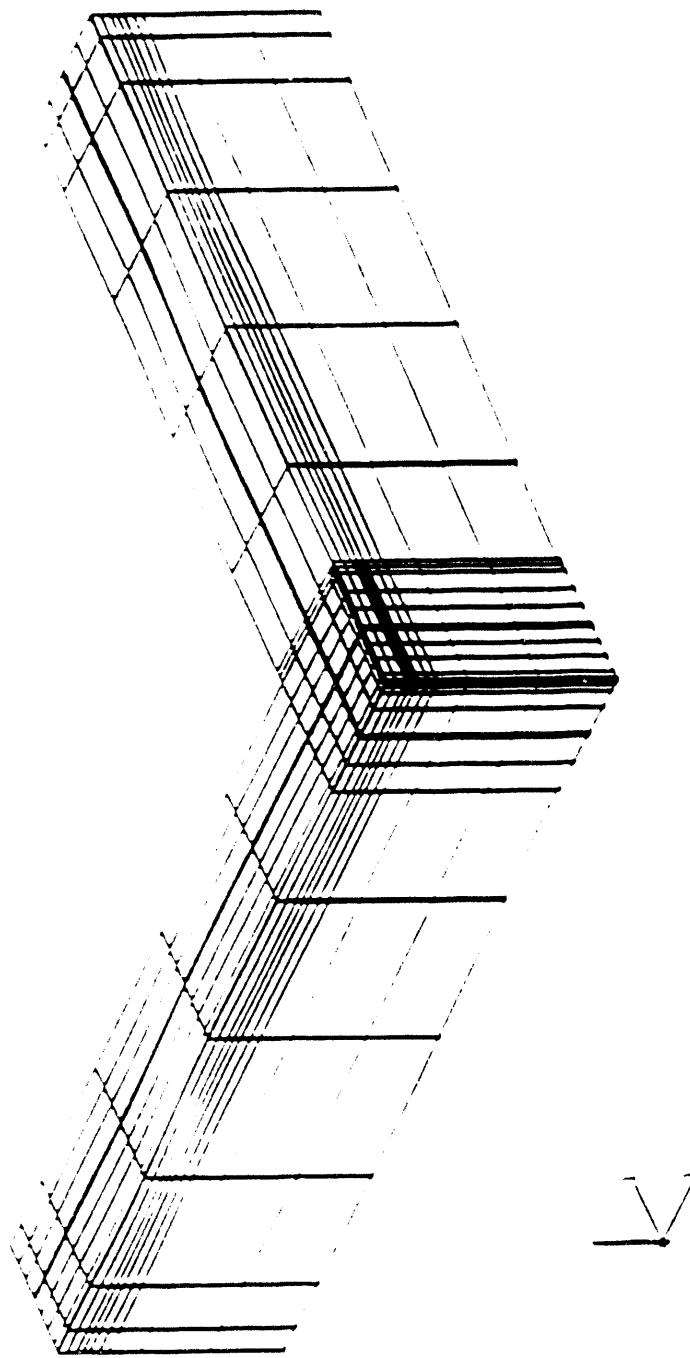
*Student's t test indicates three different populations of data*

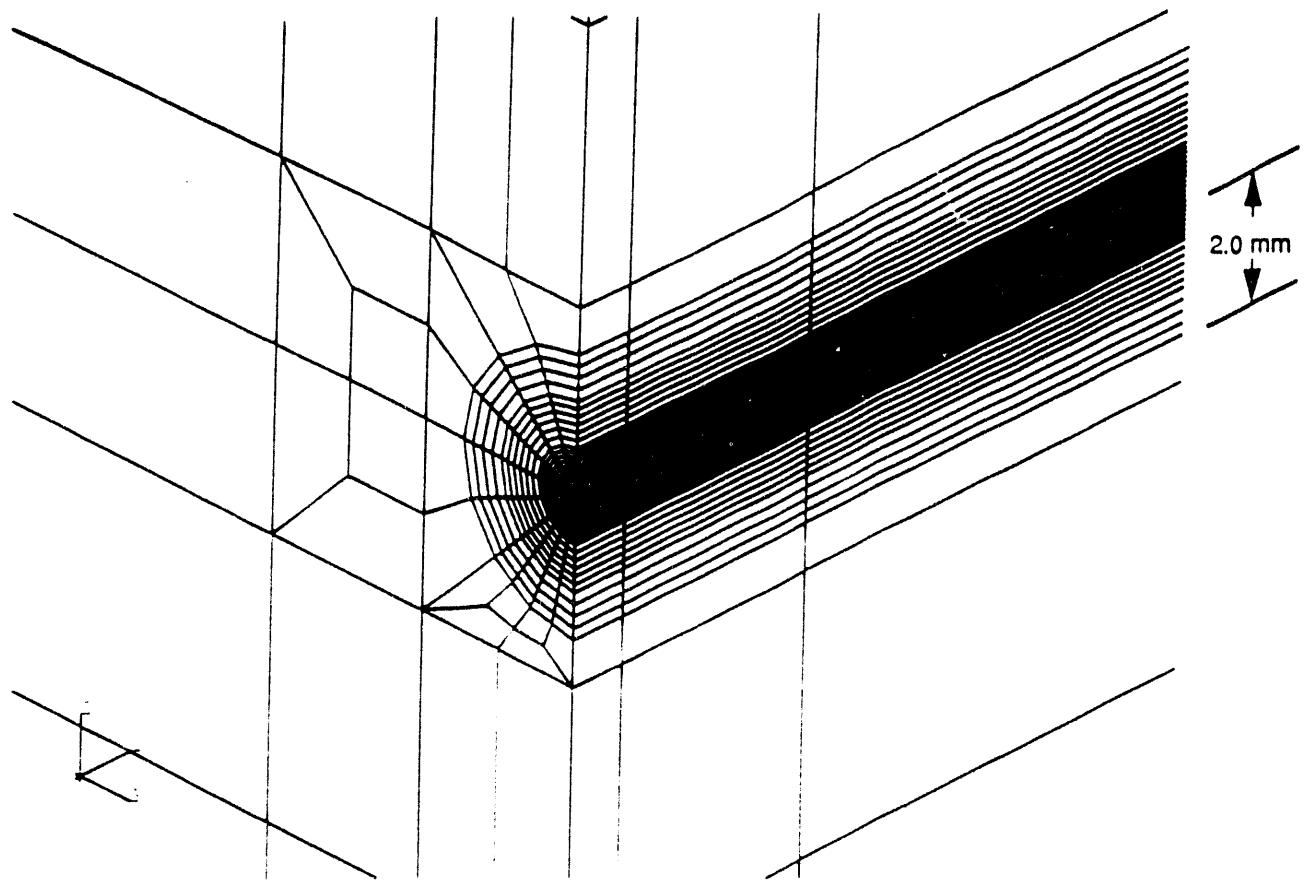
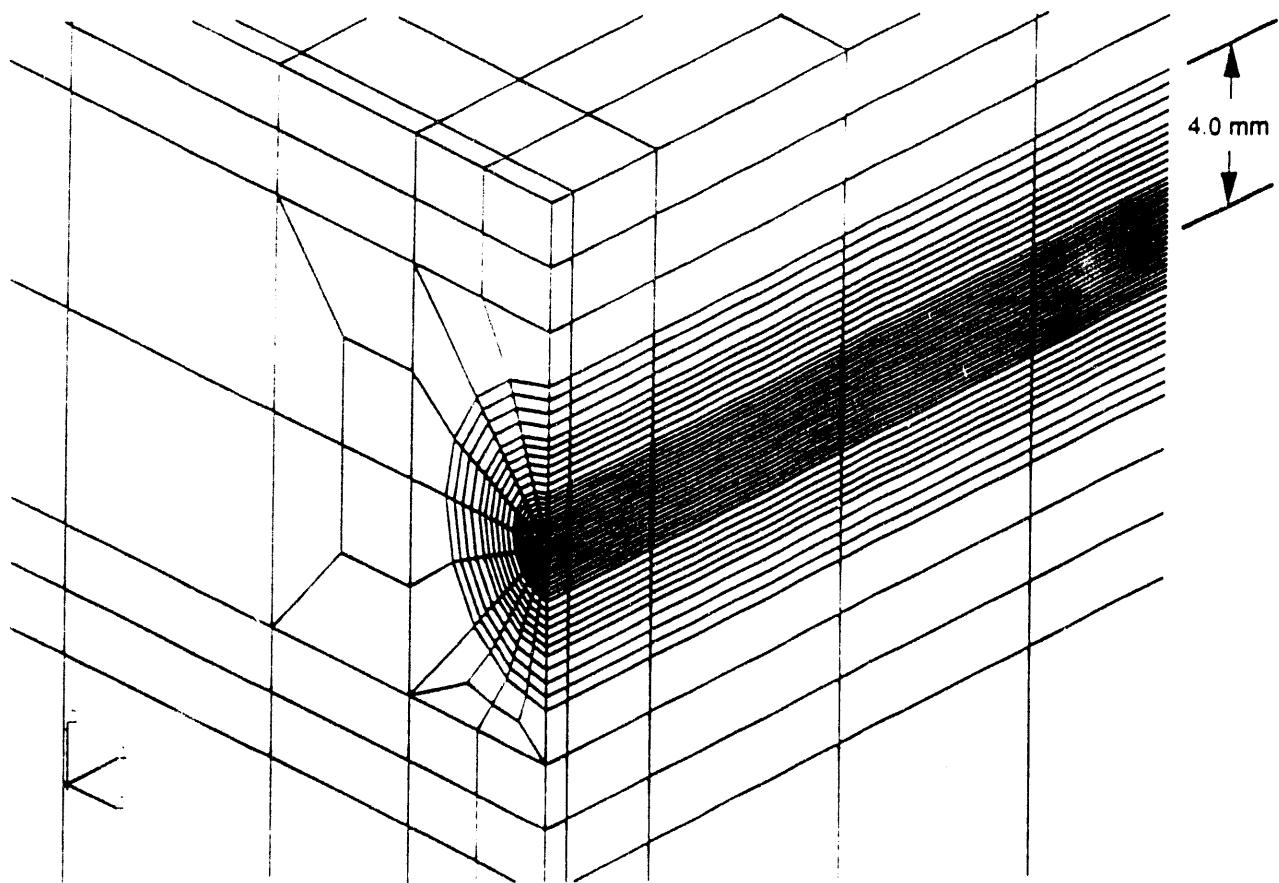
# Definition Of Coordinate System And Locations Of Interest For Interpretation Of Finite Element Results From Analysis Of HSST Cruciform Bend Specimen

DIMENSIONS IN mm

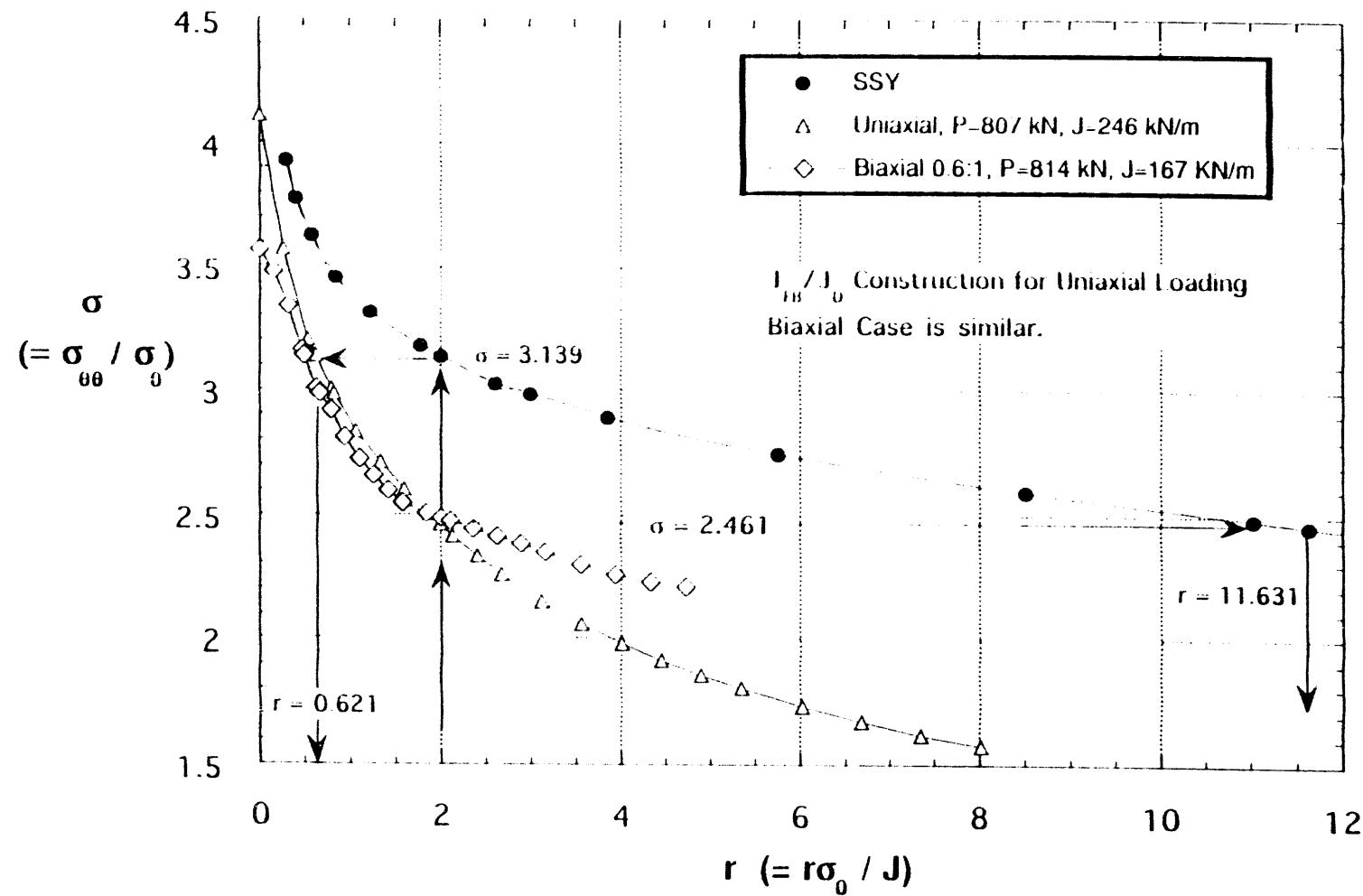


**A Cruciform Model Incorporating a Highly Refined  
Crack-Tip Region is being used for Local Crack-Tip  
Field Analysis**

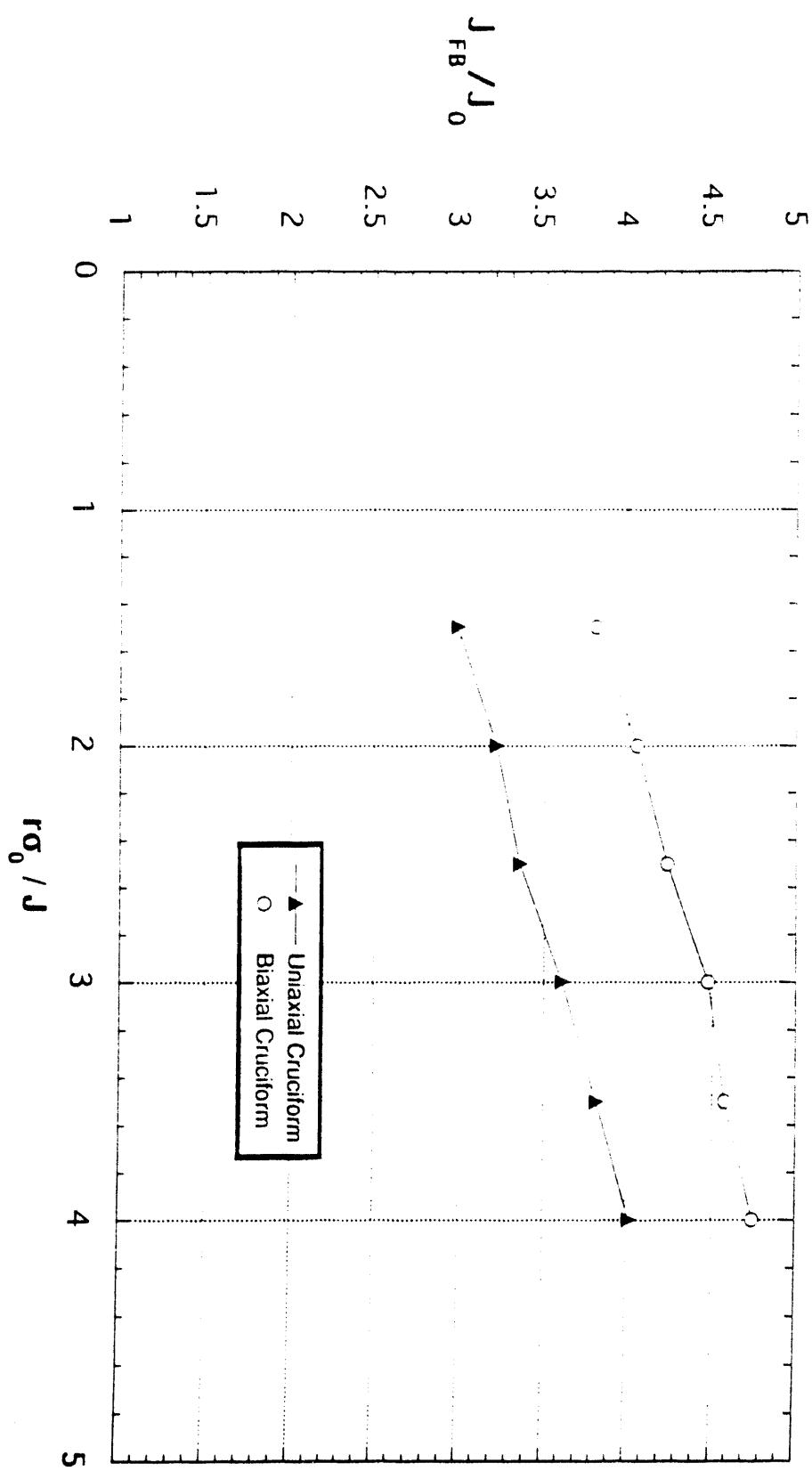




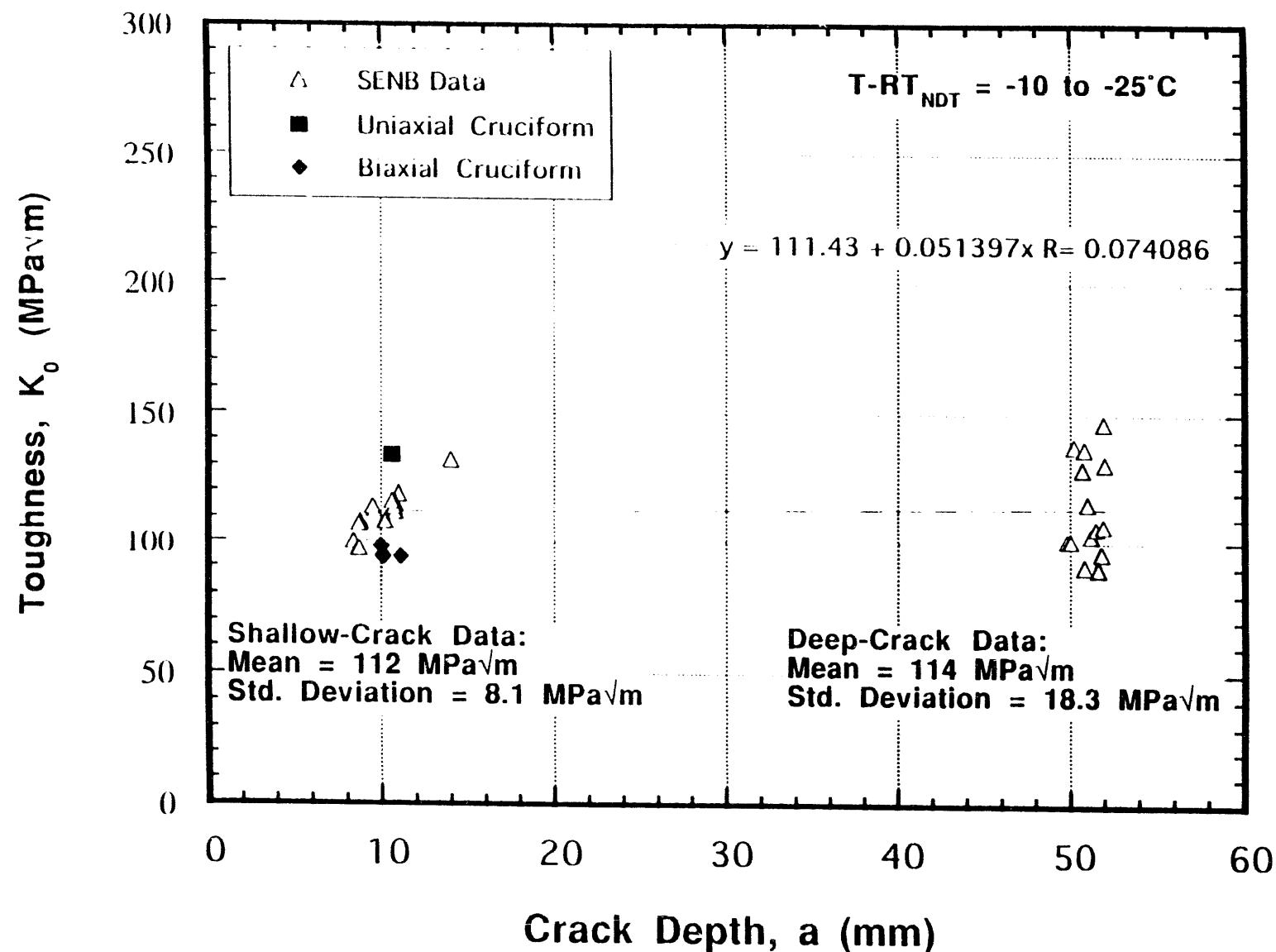
## Two Different Methods Were Used in Applying the Dodds-Anderson Constraint Adjustment Procedure to the Cruciform Data



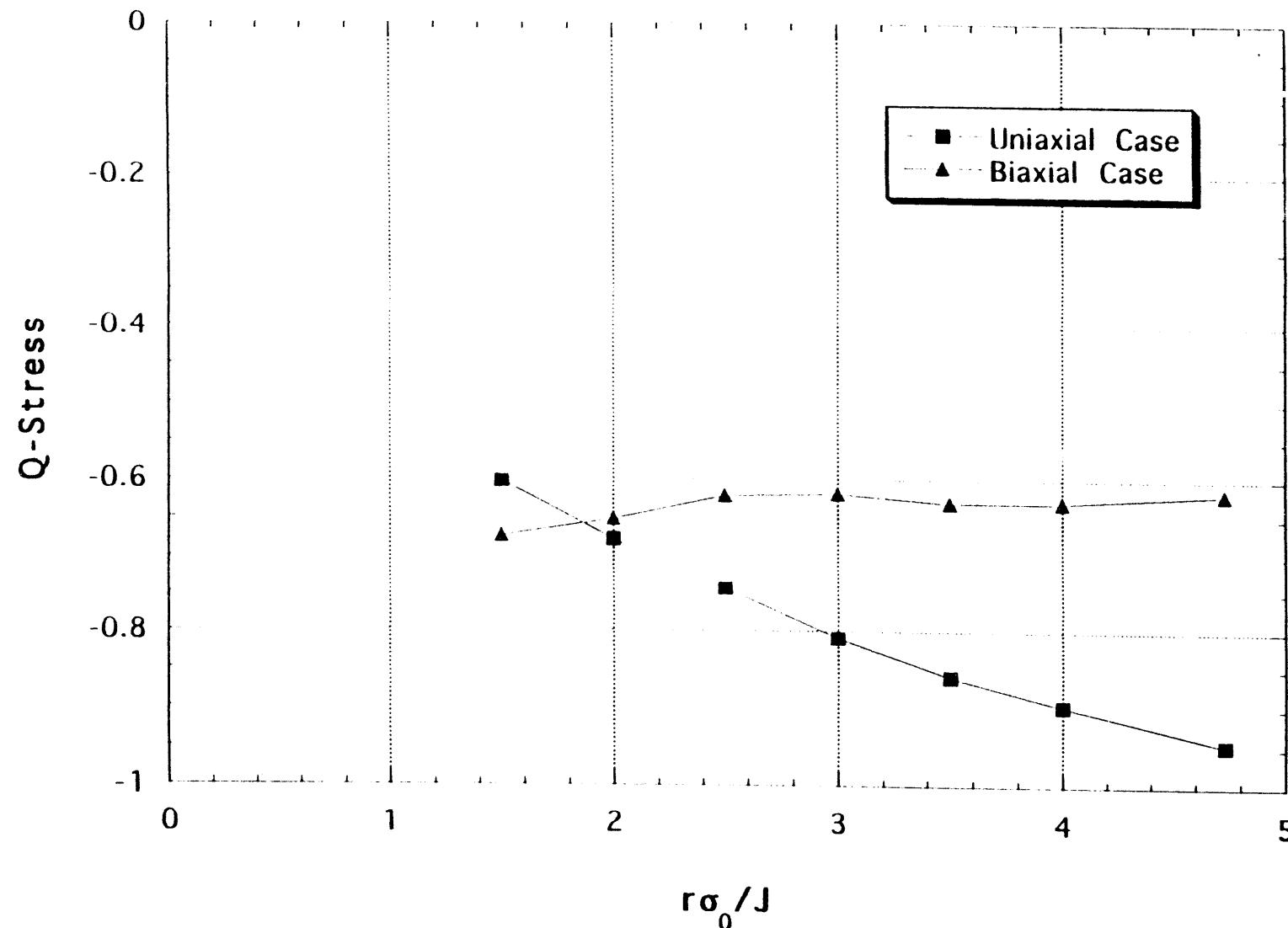
**The Constraint Adjustment (or Scaling) Ratios for Biaxial Loading Are ~25% Greater Than Those for Uniaxial Loading; Both Ratios Vary With  $\bar{r}$**



# The Cruciform SSY Toughness Values Are Within The Range of SSY Data From SENB Specimens



## Uniaxial and Biaxial Loading Produce Contrasting Q-Stress Distributions Within the Range $1.5 \leq \bar{r} \leq 5$



## CONCLUSIONS

- Applications of J-Q and Dodds–Anderson methodologies utilized data from specimens providing a contrast in analytical modeling requirements
  - SENB (2-D plane strain)
  - Cruciform beam (fully 3-D)
- Both methodologies were used successfully to interpret experimental data from shallow- and deep-crack SENB specimens.
- Both methodologies showed promising features in applications to cruciform specimens, but also raised several questions concerning interpretation of constraint conditions from near-tip stress fields.
- Unresolved issues identified from analyses require resolution as part of validation process for biaxial loading applications.

END

DATE  
FILMED

2/23/94

