

SOXAL Combined SO_x/NO_x Flue Gas Control Demonstration

Contract Number: DE AC 22-91 PC 91347

Contractor Name: AQUATECH Systems
7 Powder Horn Drive
Warren, NJ 07059-5191

Contract Period: 9/10/91 - 11/30/93

1. Contract Objective: No Change**Summary of Work -**

AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO_x/NO_x control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler #4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems' proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfur or sulfuric acid.

Additionally 90+% control of NO_x gases can be achieved in combination with conventional urea/methanol injection of NO₂ gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal.

The SOXAL demonstration Program began September 10, 1991 and is approximately 26 months in duration.

During the 6 months of scheduled operations, between January and July of 1993, data was collected from the SOXAL system to define:

- a. SO₂ and NO_x control efficiencies
- b. Current efficiency for the regeneration unit.
- c. Sulfate oxidation in the absorber.
- d. Make-up reagent rates.
- e. Product quality including concentrations and compositions.
- f. System integration and control philosophy.
- g. Membrane stability and performance with respect to foulants.

The program is expected to be concluded in November 1993.

2. Technical Approach Changes: No Change**3. Contract (by reporting element):**

Task 1: Program Definition - Complete

Task 2: Engineering, Design and Construction - Complete

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

QUARTERLY REPORT: JULY - SEPTEMBER '93

Task 3: Shakedown, Parametric Testing, and Disassembly

Sub task 3.1: Shakedown - Complete

Sub task 3.2: Parametric Tests

The final parametric and continuous process tests were completed in July. Analysis and evaluation of samples and data were mostly completed during August and September. A final report is currently being prepared.

Sub task 3.3: Disassembly

All equipment has been inventoried and the Completion Inventory Report is being prepared. All equipment and piping has been flushed for plant deconstruction.

Task 4: Conceptual Design and Economic Analysis

As provided by Contract Modification A006 (6/15/93), these tasks will not be performed.

Clifford M. Denker
Program Manager

CMD:cmd

Attachments:

Milestone Schedule - September 1993

Parametric Testing Summary - July 1993

1. TITLE		2. REPORTING PERIOD		3. IDENTIFICATION NUMBER																																
Combined SOx/NOx Control via SOXAL™ Process: Electrodialytic Regenerative Wet Scrubbing Process		September 1993		DE AC 2291 PC 91347																																
4. PARTICIPANT NAME AND ADDRESS		5. START DATE		6. COMPLETION DATE																																
Allied-Signal Inc., AQUATECH Systems 7 Powder Horn Drive Warren, NJ 07059-5191		September 10, 1991		November 1993																																
7. ELEMENT	8. REPORT- ING ELEMENT	9. DURATION		Page 1 of 4																																
		Fiscal Year 1993		Fiscal Year 1994		Fiscal Year 1995																														
		O	N	D	J	F	M	A	M	J	J	A	S	O	N	D	Q2	Q3	Q4	Q1	Q2	Q3	Q4	95	96	a.	b.	10. PERCENT COMPLETE								
1.1	Cost Management Plan	1992	1993																													100	100			
1.2	Test Plan/Design Basis																															100	100			
2.1	Engineering Contract																															100	100			
2.2	Procurement																															100	100			
2.3	Site Work																														100	100				
2.4	Installation																														100	100				
3.1	Shutdown																														100	100				
3.2	Parametric Test																														100	100				
3.3	Disassembly																														100	25				
4.1	Conceptual Design																														100	0				
4.2	Economic Analysis																														0	0				
11. SIGNATURE OF PARTICIPANT'S PROJECT MANAGER AND DATE		10/15/93																																		

PARAMETRIC TESTING SUMMARY - JULY 1993

June 28 - July 4, 1993

On June 28, the test at 60 ppm NO₂ was aborted after two hours due to a leak from a diaphragm valve serving the HCl Absorber. During this short duration, an oxidation rate of 68% was observed, with 69% of the NO₂ absorbed. On Tuesday and Thursday, this test was repeated, however precise control of the NO₂ concentration was difficult. Absorption of SO₂ was unchanged. Absorption of NO₂ averaged 84%, with an observed oxidation rate of 108%-126%. At the end of Tuesday's test, the injection of NO₂ was halted, and the absorption/oxidation characteristics rapidly changed toward baseline observations. This seemed to indicate that the increased oxidation only occurs in the presence of NO₂. An additional test during this week, performed at an elevated SO₂ concentration and no NO₂ confirmed previous results.

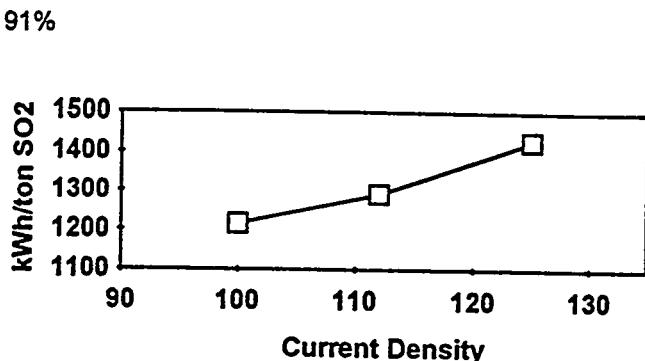
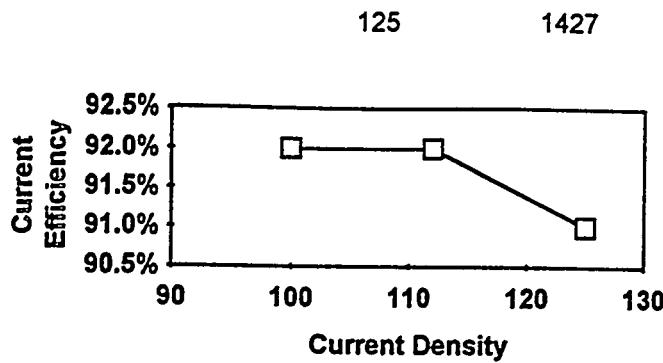
July 5 - July 11, 1993

A variety of tests were performed this week, all with 30 ppm NO₂ in the flue gas. The first test was performed at baseline conditions. High SO₂ removal (99.9%) was observed, with 58% oxidation.

<u>NO₂ Concentration</u>	<u>SO₂ Absorption</u>	<u>SO₂ Oxidation</u>	<u>NO₂ Absorption</u>
30 ppm	99.9%	58%	60%
60	99.9%	110%	82%
150	99.9%	190%	65%

Three tests were performed at elevated levels of SO₂. The first resulted in higher absorption of NO₂ (89%) and lower oxidation (33%). The second test, run with less sodium in the absorbent feed, showed slightly lower SO₂ absorption (99.4%) and similar NO₂ absorption (76%) and oxidation (44%). The third test combined 30 ppm NO₂, elevated SO₂, and decreased recycle rates (45 gpm vs. 90 gpm). Absorption and oxidation characteristics were unchanged (99.8% SO₂ absorption, 86% NO₂ absorption, and 44% oxidation). Therefore, changes in sodium concentration and recycle rate had little effect in the presence of NO₂. However, higher concentrations of SO₂ (~2000 ppm) appears to inhibit oxidation.

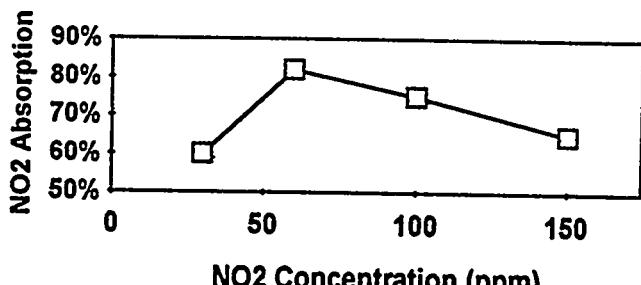
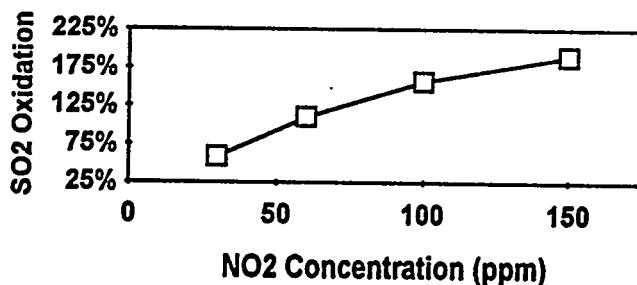
July 12 - July 18, 1993



During this week, we operated both the absorption and regeneration processes simultaneously and continuously on a 24 hour, 5 day schedule. During this period, we recycled a portion of the recovered SO₂ to produce flue gas with 1800 - 2200 ppm SO₂. Test data was taken during the same eight-hour time frame used during the decoupled tests. Absorption of SO₂ averaged 99.8%, with 5.9% oxidation. Regeneration at baseline conditions yielded a current efficiency of 93%, consuming 1217 kWh/ton SO₂. These results match closely with those of the related parametric tests.

July 19 - July 25, 1993

During this week, we operated both the absorption and regeneration processes simultaneously and continuously on a 24 hour, 5 day schedule. During this period, we recycled a portion of the recovered SO₂ to produce flue gas with 1900 - 2100 ppm SO₂. Test data was taken during the same eight-hour time frame used during the decoupled tests. Absorption of SO₂ averaged 99.8%, with 8.2% oxidation. Regeneration during this week was performed at 100 ASF (baseline condition), 112 ASF, and 125 ASF. Current efficiency for all tests averaged 92%, with little variance. However, power consumption varied between 1200 - 1500 kWh/ton SO₂. These results are similar to those of the related parametric tests. These measurements of current efficiency are considered more reliable than the tests during early June.

<u>Current Density</u>	<u>kWh/ton SO₂</u>	<u>Current Efficiency</u>
100 ASF	1214	92%
112	1291	92%



PARAMETRIC TESTING SUMMARY - JULY 19-3

July 26 - July 30

During the final week of testing, we investigated the effectiveness of using EDTA to inhibit NO₂-induced oxidation. These tests were performed with continuous operation at baseline conditions, except that the first day we used recycled SO₂ to obtain 1920 ppm in the flue gas (vs. 1013 - 1751 for the remainder). The first test two tests were performed without injected NO₂. The results for SO₂ absorption (99.7% and 99.3%) and oxidation (7.9% and 20.3%) indicate little effect from the presence of EDTA. Upon addition of 100 ppm NO₂ oxidation rose to 157%. Another test, run with double the concentration of EDTA, yielded 156% oxidation. Therefore, EDTA had no measurable effect on oxidation via the presence of NO₂.

NO ₂ Concentration	SO ₂ Absorption	SO ₂ Oxidation	NO ₂ Absorption
30 ppm	99.9%	58%	60%
60	99.9%	110%	82%
EDTA and 100	99.9%	157%	75%
150	99.9%	190%	65%

On July 30 (elapsed time = 2195 hours), cell stack modules 2-3 and 3-2 were removed after 490 hours of operation. These membranes will be analyzed at AQUATECH.