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ABSTRACT

The Joint U.S.-Japan Seminar in the Environmental Sciences was based on the premises that
questions remain concerning the factors that control many of the regularities observed in ecological
communities and that increased collaboration between researchers in the United States and Japan can
contribute to answering these questions. The papers included in this report resulted from the
Seminar. These papers as well as workshop discussions summarized here outline the main issues that
face theoretical ecology today. The papers cover four different areas of theoretical ecology:
(1) individual species adaptations, (2) ecological community-food web interactions, (3) food web
theory, and (4) concepts related to the ecosystem.



REPORT ON A JOINT U.S.-JAPAN SEMINAR
IN THE ENVIRONMENTAL SCIENCES

BACKGROUND OF SEMINAR
The idea of a joint U.S.-Japan Seminar in the environmental sciences was based on the

following premise. Despite recent progress in understanding ecosystem behavior, questions remain
concerning the factors that control many of the regularities observed in ecosystems.

Fascinating general patterns have been noted, for example, in community structure (e.g.,
Cohen 1977, 1978; Pimm 1980a,b; Rejmanek and Stary 1979; Briand 1983; Briand and Cohen 1984),
but there is as yet no general theory that can explain the observed patterns. Theoretical ecologists
have been sharply divided in their views on what the basic factors are that control the structure of
ecological communities. Despite the recent publication of several edited volumes devoted to this
subject (e.g., DeAngelis et al. 1983; Price et al. 1984; Strong et al. 1984; Kikkawa and Anderson 1986),
gaps between competing viewpoints seem little closer to being resolved.

A new approach is needed to attain a generally accepted body of theory of ecological
communities (and more generally of ecosystems as well, since abiotic factors and flows of energy and
matter must be part of any general body of theory). We believed that a Joint United States - Japan
Seminar, structured along the lines described below, could be the beginning of a cooperative effort
to achieve a synthesis of alternative views.

The general theme of the workshop revolved around the following questions. Are there
regularities in ecosystem structure and, if so, do these regularities reflect constraints related to
dynamic stability, energy, or other factors on the ecosystem? How do ecosystem properties and the
characteristics of individual species change during succession and/or evolution? Finally, and most
importantly, can theoretical ecologists who approach the study of ecosystems from different viewpoints
achieve a unified theoretical perspective that will stimulate greater progress in understanding and
prediction? Some areas where a unified perspective would be particularly useful in resolving different
viewpoints are briefly described below.

A variety of regularities has been noted in the vertical and horizontal structure of trophic
webs (Pimm and Lawton 1977, 1978; Cohen 1977, 1978; Sugihara 1982; Briand 1983) and in the
numbers and types of connections between species (Rejmanek and Stary 1979; Pimm 1980a,b; Briand
1983; Briand and Cohen 1984). However, interpretations of the causes of these patterns have been
divided. The observed consistently short lengths (usually three or four Jinks at most) of trophic chains
in communities have been attributed variously to energy limitation (Yodzis 1980, 1981), interspecific
population dynamics (Pimm and Lawton 1977, 1978; Pimm 1982), and (in part, at least) probabilistic
considerations (Auerbach 1984). A wide variety of hypotheses has also been offered for the fact,
observed by Cohen (1978), that niche overlaps of species competing for resources can be represented
on a one-dimensional niche space (Yodzis 1982; Critchlow and Stearns 1982; Sugihara 1982; Cohen
1983). A synthesis is needed either to decide among alternative causal explanations or to show that
there is a synergistic interaction among the different proposed causal factozs, Other equally puzzling
patterns include the "species scaling law" (Briand and Cohen 1984), stating that the mean proportion
of numbers of basal, intermediate, and top species remain invariant at approximately 0.19, 0.53, and



0.29, and the "linked-species scaling law" (Briand and Cohen 1984), stating that the ratio of mean
trophic links to species remains invariant at approximately two over a whole range of variation of
numbers of species in food webs.

Another main area where regularities have actively been sought is in the phenomenon of
successional and evolutionary changes in ecological communities. Both Drake (1983) and Post and
Pimm (1983) studied the assembly of food webs by species invasions through time using computer
simulations of Lotka-Volterra systems. Drake showed that only a small subset of species is capable
of invading these food webs, while Post and Pimm showed that the rate of species turnover declined
with time. These results are only computer simulation results; a deep understanding of how species
composition should change through time may require mathematical analysis.

Other theoretical ecologists, studying ecological systems from the point of view of energy and
material flows rather than species composition, have proposed that deterministic trends should occur
in a number of energy, nutrient, and information relationships during the course of succession or
evolution. Some of the hypothesized trends are the following: (a) biomass and the amount of
biomass maintained per unit of energy input should increase (Odum 1969), (b) nutrient cycles should
become tighter through time (Odum 1969), (¢) utilization of energy in the ecosystem should become
more efficient through time (Margalef 1963), (d) ecosystems should evolve so as to maximize the
power (Odum and Pinkerton 1955), and (e) ecosystems should evolve to maximize the information
theory index called "ascendancy” (Ulanowicz 1986). Some of these generalizations have been
questioned (e.g., Drury and Nisbet 1973) and some may not be completely consistent with others.
These hypotheses should be examined systematically along with the hypotheses for changes in species
composition, using both computer simulations of the sort used by Drake (1983) and Post and Pimm
(1983), and more general mathematical analyses.

The above brief overview shows that there are many unresolved problems in the subject area
of ecological communities, concerning both their structural properties and successional or evolutionary
changes. An active search for new perspectives to help in attaining a deeper theoretical understanding
of community structure and dynamics has led to a diversity of modeling approaches. For example,
Abrams (1982, 1984) has attempted to relate community dynamics to optimal foraging strategies of
consumers. Cohen and Newman (1985) proposed a simple neutral model, the "cascade" model, of
food webs that requires only a knowledge of the numbers of functional species and links, plus the
assumption that species are ordered in a cascade-type hierarchy, to predict other empirically observed
food web characteristics. Ulanowicz (1986) developed an approach to ecological communities based
on mathematical matrices of nutrient and energy flows. Patten and his colleagues (e.g., Higashi et al.,
1989; Patten 1985; Patten and Auble 1981) have proposed a general theory of ecosystems as
hierarchically organized networks in which indirect effects play a major role. Pimm’s (1979a,b,
1980a,b, 1982) hypotheses concerning food web structure and resilience are based on computer
simulations of sets of Lotka-Volterra equations. The approaches have all been useful, but a more
unified perspective would clearly help in relating these approaches to each other.

The above outline of mathematical approaches mentions primarily U.S. scientists. However,
at the same time, Japanese theoreticians have developed a great body of mathematical theory. This
work appears to be relevant both to developing a unified mathematical framework and to helping



resolve some of the questions concerning ecological communities listed earlier. This body of
mathematical theory is not generally known in the United States, which was an important reason for
bringing together Japanese and U.S. scientists.

At the center of the Japanese contributions to mathematical ecology has been the work of
Professor Ei Teramoto of Kyoto University and a group of colleagues (H. Ashida, H. Nakajima,
N. Shigesada, K. Kawasaki, and N. Yamamura), known to many through their collective nom de plume
as "Mumay Tansky" (Tansky 1976, 1978). The basic objectives of this group have been to study
dynamic stability of food webs as a function of energy flow and trophic structure and to develop the
mathematics to describe successional processes in food webs. What is particularly important about
this work is that it is, in general, applicable to highly complex systems. For example, recent work by
Shigesada enables one to consider N species interacting through interference competition and to
determine which subset of these species will be eliminated and which will persist in equilibrium.
Nakajima has been able to predict mathematically what sort of community will develop through
successional (or evolutionary) time if new species having different characteristics continue to invade.
He found that a particular quantity, resource utilization, increases with successional change ia such
models. The techniques used by these theorists and other mathematical ecologists in Japan are
original and powerful. They have not in general been used to address the major questions that are
being confronted by U.S. ecologists.

In addition, Japanese empirical ecologists have developed their own conceptual theories,
emphasizing a holistic and phenomenological view of natural communities and ecosystems. A major
focus has been placed on life-style differentiation within communities.

Professor Teramoto had the original idea of holding this meeting to initiate a start towards
resolving the issues discussed above and to develop a unified perspective. He asked D. L. DeAngelis
to write a proposal to the International Program Section of NSF to secure funding for several
theoretical ecologists from the U.S. and Japan. The plan was for the seminar to have a workshop
format. Funding was granted and the meeting was arranged to be held at the East-West Center in
Honolulu. Appendix A lists the participants of the meeting and Appendix B lists the papers
presented. The papers and workshop discussions met the desired goal of outlining the main issues
that face theoretical ecology today.

SCIENTIFIC REPORTS AND DISCUSSION

An important aspect of the reports presented at the Seminar, besides their scientific contents,
were their relationships with one another. Do they relate as components of a unified perspective?

At the highest level one can divide approaches that center on a population dynamics point
of view from those centered around the flows of energy and matter. According to the traditional
"population dynamics" point of view, there is a hierarchy that extends from the smallest units, the
individual organisms, to single-species populations, then to single-trophic level communities made up
of populations, and finally to food webs made up of several trophic levels. Constraints due to natural
selection at the individual level affect all of these levels. Each of these topics has traditionally been
a field of study in its own right.



The task of attaining a unified perspective requires understanding the interfaces of these ficlds; for
example, understanding how the characteristics of individual organisms affects dynamics at the
population or food web level.

According to the "systems ecology” point of view, flows of energy and matter are of great
importance. These flows must obey physical constraints, such as the laws of thermodynamics. The
area where ecological theory is most in need of unification, or at least of more intense work is the
interface between population dynamics and the systems ecology of flow of energy and matter. This
should most naturally occur at the food web level, since it is only there that all the organisms of an
ecosystem are present for a complete cycle of nutrients through the biota.

Ideally, one should study all of the aspects of the ecosystem discussed above together.
However, in a practical sense progress is often best made by approaching the whole problem by
looking at only a few pieces at a time. The papers presented at the Seminar can be classified to fall
into four general categories.

1. The influence of individual adaptive strategies of individual species (as evolved through
natural selection) on population, community, food web, and ecosystem dynamics.

2. Community level theory, especially as it relates to the community as part of the larger
structure of the ecosystem. ("Community" is here taken to mean a set of species that occupy
a single trophic level and potentially compete.)

3. Food web theory.

4. Ecosystem theory, emphasizing energy and material flows and macroscopic indices of the
system derived from information theory and thermodynamics.
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Individual Adaptations:
Effects on Multispecies Systems

One of the clearest trends towards unification of different areas of ecological theory is the attempt
to build individual adaptive strategies of species, which have evolved through natural selection, into
models of populations, communities, and food webs.




REPRESENTING BIOLOGICAL COMMUNITIES CONTAINING
OPTIMALLY FORAGING HERBIVORES: IMPLICATIONS OF
ADAPTIVE BEHAVIOR FOR COMMUNITY STRUCTURE

Peter A. Abrams, Department of Ecology & Behavioral Biology, University of Minnesota, 318 Church
Street S.E., Minneapolis, MN 55455

INTRODUCTION

Pimm’s (1979, 1980, 1982) pioneering work on food webs adopted a simple Lotka-Volterra
representation for between-species interactions. This type of community modelling derives from
earlier representations of large communities using Lotka-Volterra equations beginning with
MacArthur and Levins. Similar models characterize many studies of food webs up until the present
time (e.g., Post and Pimm 1983, Yodzis 1982, Drake 1988). When very little is known of the details
of biological interactions, it seems reasonable to assume linear per capita effects on the growth rates
of species that eat or are eaten by a given species. However, we all know that the world is a very
nonlinear place, and are left with the nagging worry that conclusions based on Lotka-Volterra models
may be misleading us in important ways. The question of linearity is especially worrying when
considering theories that explain the lack of certain types of communities or food webs based on the
dynamical instability of corresponding models with linear per capita effects.

One important source of nonlinearities is adaptive behavior on the part of the species in the
community. The processes of finding food and avoiding being eaten both generally involve costs and
benefits, and a variety of organisms have been shown to adjust their behavior based on those costs
and benefits (e.g., Stephens and Krebs 1986, Kerfoot and Sih 1987). This has been shown to have two
types of effects in models of adaptive organisms: (i) interspecific effects of population density on per
capita growth rate tend to become nonlinear (if they are not already so), and (ii) a variety of
interactions (which are themselves generally nonlinear) arise between species that do not eat or are
not eaten by each other. Adaptive behavior by a species on one trophic level is likely to affect the
population growth rates of other species on the same trophic level which share predators or parasites
(Holt 1984, 1987; Holt and Kotler 1987; Abrams 1987c). This includes higher order interactions, in
which one species affects the interaction of two others. Adaptive behavior by either predators or prey
affects the stability of the predator-prey interaction (Abrams 1982, 1984; Sih 1984; Ives and Dobson
1987; Hassell and May 1985). Adaptive behavior by a species on one trophic level may result in
interactions between the species on higher and lower trophic levels (Abrams 1984, Mittelbach and
Chesson 1987). In spite of this diversity of effects, the influence of adaptive behavior on interactions
within communities has received relatively little theoretical, and even less empirical attention.

It is perhaps not surprising that the interactions produced by adaptive behavior are absent
from general models. In the case of higher-order interactions, for example, there has been
considerable documentation that such interactions exist in various communities, but there is no body
of theory predicting what sorts of higher order interactions will occur in what circumstances. If one
begins with a community description that includes only direct trophic relationships, one has no
guidance about what higher order actions will usually occur. By beginning with a model that assumes
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adaptive behavior, the higher order interactions arise as a natural consequence of adaptation, and no
special body of "higher order interaction theory" is required.

Rather than present a general survey of the effects of adaptive behavior in food web models,
I will concentrate on such behavior in a specific group of organisms that is present in most real and
model food webs: herbivores. Herbivores have traditionally received less attention from most
theoretical community ecologists than have other functional groups. In particular, very little is known
about the implications that adaptive foraging by herbivores has for the form of plant-herbivore
population models. In the majority of food web models, and the majority of review articles on plant-
herbivore models, herbivores are indistinguishable from carnivores except by their location in the food
web, and perhaps by their lower trophic efficiency. Because all non-detritus-based food webs contain
plants and herbivores, and because these two groups often comprise the vast majority of the
community’s biomass, understanding plant-herbivore interactions is often essential for understanding
community structure and dynamics.

A variety of models of plant-herbivore interactions have been discussed in recent reviews of
plant-herbivore dynamics (Caughley and Lawton 1981; Crawley 1983). A notable feature of these
models is that the form of the herbivore species’ functional response(s) has been similar to those used
in traditional predator-prey models. At the same time, the authors of these and other articles stress
that herbivores often face a very different set of foraging decisions than do carnivores, and this would
lead one to expect different functional responses, if herbivores forage adaptively. For many, if not
most, herbivores, edible items are abundant, but much of the potential food is undesirable due to:
(1) lack of specific nutrients or improper balance of different limiting nutrients; (2) low concentrations
of all nutrients; and (3) the presence of toxins or inhibitors of the digestive process. Low nutrient
concentrations constitute a problem because the size of the digestive system and the passage rate
through it are both limited. Some analyses of optimal diet in herbivores have considered how an
individual herbivore should behave when faced with these foraging problems (reviewed in Stephens
and Krebs 1986, Chapter 5). However, this work has not been extended in models of plant-herbivore
population dynamics. The purpose of the present article is to provide a foundation for that extension
by describing the functional responses that would be predicted for an adaptive herbivore species faced
with one or more of the above foraging problems. In addition, I will consider, although in a less
systematic manner, the implications that such functional responses have for the form of plant-
herbivore population dynamics. Because most of the models include 2 or more plant species, and
some include more than one herbivore, they may be viewed as simple food webs. Each of the three
foraging problems is treated in turn in the following analysis.

THE PROBLEM OF NUTRITIONALLY INCOMPLETE FOODS
Early in the history of optimal foraging theory, Westoby (1974) pointed out that many
generalist herbivores must consume more than a single plant type in order to obtain a diet that
supports survival andfor reproduction. Theory related to the optimal use of such nutritionally
complementary foods has been discussed by Covich (1972), Pulliam (1975), Leon and Tumpson (1975),
Rapport (1980), Tilman (1980, 1982), and Abrams (1987a,b). The problem of nutritionally incomplete
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resources is, of course, not restricted to herbivores, and is an important consideration in adaptive
resource exploitation by plants.

An extreme form of complementarity occurs when an individual’s fitness is solely a function
of the resource whose intake is lowest relative to requirements. This case serves to show especially
clearly the types of effects that can arise with less extreme forms of complementarity. Such
nonsubstitutable resources should usually be exploited in such a way that a constant ratio of intake
rates of the two forms is maintained (Abrams 1987ab). The case in which there are two
nonsubstitutable resources and there exists a tradeoff between abilities to consume each type, has been
analyzed in detail (Abrams 1987a,b); if the functional response on each resource is given by CR,, the
optimum values of C, and C, are those that maximize C\R, subject to the constraint that C\R, =
BC,R,, where B is the desired ratio of intake rates. If the maximum possible C, is a linearly
decreasing function of C,, k,C,+k,C,=1, then equal intake rates imply the following functional
response forms:

BR R
T—‘-Bf;—-— Jor resource 1, ____/__1_’_9___
kR, + B,R, k,R/+'Bk,R,

for resource 2 1)

These response differ from those used in most predator-prey or food web models in that they
imply negatively frequency dependent consumption. More effort must be devoted to obtaining a
resource as its availability declines in order to maintain a constant ratio of intake rates.
Christopher Kitting, who observed such constant ratio foraging by an intertidal limpet feeding on two
algal species (1980), suggested that such foraging should be destabilizing if the herbivore had a
significant impact on the population densities of the plants. However, until recently, there has been
no theoretical analysis of simple food webs in which the herbivores pursued such a strategy. Abrams
and Shen (1989) have recently examined the dynamics of one consumer-two resource, and two
consumer-two resource models in which resources are self-reproducing populations, and the
consumers pursue a constant ratio strategy of resource intake, with functional responses given by the
above formulas. If the resources are logistic and the functional responses are as given above, a one-
consumer version of such a model has the following form:

—1 = 7RIl ~ ﬁ - __ffl___""
1
d: K, K,R, + BkR,
dRr, R,R,N
-2 = r,R|1 - ._R.?. - 17 )
dr K kR, + BKR,

dN BRR,
= bNj—2 _ - D
[k—sz + Bk,R, ]



12

The dynamics of both one and two consumer species systems is surprisingly complex. Some of the
more notable features of these population dynamics are summarized below:

(1) Single-consumer systems are characterized by a single stable equilibrium at low rates of
resource exploitation, but have three equilibria at sufficiently high rates of exploitation ("high
exploitation rates" means that a small resource intake rate is required for zero consumer
population growth).

(2) Depending on parameter values, when three equilibria exist in a one-consumer system, there
may be either one or two attractors; if there are two attractors, there may be either two
locally stable points, or a stable point and a limit cycle. If there is a time delay in the
consumer’s numerical response to altered resource densities, there may be two alternative
limit cycles.

3 Two-consumer systems have a single equilibrium point, which is unstable when the resource
densities at that point are sufficiently low. Thus, high exploitation rates result in oscillatory
population dynamics. The correlations between the population densities of the competing
consumers are usually negative at moderate exploitation rates, but positive at high
exploitation rates. Figure 1 illustrates the range of dynamics that occur in a simple,
symmetrical case when the consumer’s resource requirement for zero population growth is
varied.

These and other related results are presented in greater detail in Abrams and Shen (1989).

Some less extreme forms of nutritional complementarity result in constant-ratio strategies of
resource exploitation (Abrams 1987b), and therefore can result in the same functional responses and
the same range of population dynamics described above. Any type of nutritional complementarity will
cause negatively frequency dependent predation to be adaptive in most circumstances.

Speculation about the form of many-species models leads to a number of possible differences
between models based on the above framework, and those with "Lotka-Volterra" herbivores. One of
the results that can be derived from Eqs. (2) is that increasing the herbivore’s (consumer’s) D value
by increasing its death rate can, depending on the attractor at which the system is located, result in
an increase in equilibrium or average herbivore population density (Abrams and Shen 1989). It is
possible that, in many-species models, an increase in total carnivore population or an evolutionary
increase in carnivore hunting efficiency might increase total herbivore population density. If the plant
species in a community can be separated into a small number of nutritionally complimentary groups,
then there will be mutualistic interactions between the plants within a group, as the result of their
effects on the herbivore’s functional response. An increase in one plant species will result in reduced
effort by the herbivore to consume all plant species in its nutritional group. At the same time, there
are negative interactions between plants in different nutritional categories. If these nutritionally
different plants also compete directly for resources, the indirect interaction arising from the
herbivore’s functional responses could affect conditions for coexistence, often making coexistence less
likely.

Omnivores are perhaps even more likely than herbivores to consume nutritionally
complimentary foods. The functional responses predicted for omnivores that feed on both animal and
plant food are especially likely to involve complementarity (example in Rapport 1980), and the
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adaptive responses may be similar in form to those discussed here. Preliminary analyses of 3-species
models in which an omnivore feeds on both a predator and its prey, suggests that dynamic instability
and large amplitude population cycles are very common when Egs. (1) specify the omnivore’s
functional responses. If there are unusually few omnivores (Pimm 1982), and if dynamic instability
has something to do with this fact (Pimm 1982), it may be because of the particular effects of
functional responses like those given by Egs. (1).

THE PROBLEM OF LIMITED GUT CAPACITY

There is considerable evidence suggesting that many herbivores are limited by the quality of
the available food, rather than the quantity. If they are not able tc digest sufficient amounts of low
quality food, herbivores may still be food limited while the world is green. Belovsky (1978, 1986a,b)
has amassed considerable evidence suggesting that many generalist herbivores are constrained in their
diet both by the limited time available for foraging and by their limited rate of processing low quality
food. The diet of many mammalian herbivores may be classified into high and low quality
components (often forbs 2nd grasses respectively), and a large part of the optimal diet problem
consists of adjusting the relative amounts of each type consumed (Belovsky 1986a,b). The optimal
diet problem may then be posed as follows: The herbivore has a maximum consumption rate D,
determined by its gut capacity and the passage rate of material through the gut. R, and R, are the
densities of nutritionally low and high quality foods respectively, and 4, and A, are the nutrient
contents per unit volume for these two types. (It is assumed that there are no nutritional interactions
between the foods; there is only one limiting resource, but it may be calories, nitrogen, or something
else.) C,and C, are the consumption rate constants for the two food types, so that C\R; is the volume
of food ingested per unit time while searching for food i. The C; are scaled in time units relative to
the length of the maximum foraging period. If the two food types are not consumed simultaneously,
the foraging strategy is defined by the amount of time spent foraging for resources i, ¢, The optimum
diet is the solution to the linear programming problem, maximize 7,4,CR, + 1,4,C,R,, subject to the
constraints: (i) ¢, 2 0; (ii) ¢, 2 0; (iii) ¢, + tfs I; (iv) C\R, + C,R; < D. The complete solution of
the problem is given in Egs. (5) below (see Abrams 1989a). Of interest here is the case in which both
foods are consumed in the optimal diet. This implies that constraints (iii) and (iv) are binding and
that the time allocations for foraging for each type of food are

D - CR, .. CGR-D

f = e————t 3
' CiR, - CR, : CiR, - C)R, ®
The functional responses are given by t,.C.R; , which yields
C.R(D - C C,R(CR, - D
(CR, - SR@ - GR) - pp . GRGR - D @
CiR, - G}, CR - C)R,
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These functional responses are unusual in that (i) the amount consumed of resource 1 (less nutritious)
decreases as the amount available increases, and (ii) the relative time spent consuming the two
resources cannot be described as either positive or negative frequency dependence; increases in R,
decrease time spent consuming R,, and increases in R, increase the amount of time spent consuming
R,. Because of the decreasing functional response on the less nutritious resource, when the responses
given by Eqs. (4) are incorporated in consumer-resource population models, limit cycles are a frequent
occurrence. Because extreme values of the resource densities result in consumption of a single
resource type being optimal, the functional response formulas given by (4) are only valid within a
certain range of resource densities. If the full set of optimal responses are incorporated into a
simulation model of a one consumer-two logistic resource system, the model has the following form:

% - BNA,Cyt,R, + A,CiLR, - D)
dR R
—L =Rl - L] - C{RN (5)
ds K,
dR, R,
T TRy 1 - 7(2‘ - CLRN

where t, =0 if A,C,R, > AC,R,orif C,R, > 0

t,=1 if A,CRR, > A,C;R, and C\R, < D

t, = (D-CRYI(CR-C)R)) if AC\R, > A,CR, and C;R,
<D < CR,
t, = DIC,R, if C;R, > D

t,=1if A,C,R, > AC\R, and C;R, < D
t, = (C\Ry- D)(CR-C;R,) if A,C\R,>A,C;R, and C\R,>D>C;R,

There is considerable work left to do before we have an adequate understanding of the
dynamic effects of all of the parameters in this model. Nevertheless, it is clear that this type of
community model differs from Lotka-Volterra food web models in many important ways. The
functional responses of the herbivores set up indirect interactions between resources that usually
involve positive effects of nutritious resources on less nutritious ones, and negative effects of poor
quality resources on better quality ones. Because of the decreasing functional response of adaptive
herbivores on poorer quality foods (when both foods are consumed), weak self-regulation of the
populations that constitute the poor quality food will generally result in oscillatory population
dynamics.

There are several unrealistic simplifications in the "linear programming” view of herbivore
foraging. There is no single inflexible limit on the amount of food that a given organism can process,
instead, the probability of mortality increases drastically as the amount consumed increases beyond
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some threshold density. There is also likely to be some flexibility in foraging time for any species that
does not spend 24.0 hours per day in foraging activities. In a more realistic model, increasing the
amount eaten would have some positive and some negative fitness effects, the latter depending on the
bulk of the food. As a result, the foraging problem becomes equivalent to the case of foods
containing a common set of toxins; the negative effects of t0o much food may be modelled using a
common framework whether the negative effects are due to toxins or simply to excess volume. Such
models are treated in the following section.

THE PROBLEM OF FOODS CONTAINING TOXINS

ONLY ONE FOOD TYPE AVAILABLE

A herbivore that consumes a single (homogeneous) food containing toxins or digestion
inhibitors must balance the positive effects of energy and calories against the negative effects of the
toxins. An individual’s intake depends on the amount of time or effort (denoted ) spent in obtaining
food (whose availability in the environment is denoted R). The rate at which food is ingested is given
by f(R)t, where f is the ingestion rate per unit energy or time expended on foraging, and is an
increasing function of R. The functional response of the species is given by f(R)t. Both the positive
and negative effects of ingestion are functions of f(R)r. The optimum ¢ is found by setting the
derivative of the expression for fitness with respect to ¢ equal to zero, and solving for ¢. Because ¢
enters into the expression for fitness only as the product f(R)t, the solution (assuming there is an
admissible value of ¢ that satisfies the equation and is a maximum) has the form f{R)t = constant.
This implies that the functional response is a constant. It is also possible that the optimum value of
t is its maximum or minimum value, the latter generally being zero. For example, if 7 represents
proportion of available time spent foraging, =1 may represent the optimum foraging strategy at low
food abundances, resulting in a functional response having the form f(R). However, for a large range
of food densities, the optimum ¢ lies between its extreme values, and the functional response will be
a constant. Functional responses that are constant except at low resource densities would also be
expected in the case of an organism with an inflexible gut capacity (as in the previous section) that
consumed a single food type.

It is straightforward to determine the local stability of a consumer-food model of the usual
differential equation form (May 1973, Rosenzweig 1971, Armstrong 1976) in which the consumer
species has a constant functional response at the equilibrium point. If the consumer is completely
food limited, the equilibrium will be unstable if and only if the equilibrium food density is lower than
the food density resulting in maximum food population growth (e.g., K/2 in the case of logistic food
population growth). Stability would be less likely than if the consumer had a Holling type 1, 2, or
3 functional response.

ONE TOXIC AND ONE NONTOXIC FOOD
In this and the following analyses of systems with two food types, it will again be assumed that
the two foods cannot be consumed simultaneously. This assumption applies if the two foods occur
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in different habitats or are consumed using different foraging methods, or if food handling (e.g.
chewing) consumes most foraging time, so that any additional time devoted to consuming one food
reduces by that amount the time used consuming the other. One or the other of these alternatives
seems to apply to most generalist herbivores. The modelled herbivore adapts by adjusting the
amounts of time and/or effort devoted to obtaining each of the two food types. To simplify the
discussion, 1 will refer to ¢ as the proportion of available foraging time devoted to consuming food
type number 1. An individual’s functional response on food type 1 will therefore be tCy(R;), where
C, is an increasing function of R,, and denotes the intake rate per unit time (or effort) devoted to the
first food type. (Note the difference in the meaning of C in this section and the previous one; here
it denotes a function rather than a constant.) Similarly, the functional response on the second food
type is given by (1-£)Cy(R,). C, is an increasing function of R,. Type 1 will be assumed to contain a
toxic or digestion-inhibiting substance. In a more general model in which both resources were toxic,
it would be necessary to include two time allocation variables, because it might be svtoptimal to
spend all available time foraging. Because resource 2 is completely nontoxic in the present case,
unused time can always be profitably spent foraging for that resource.

The positive effects of food consumption may be expressed as an increasing function of a
weighted sum of the two functional responses. If the nutrient or caloric value per unit mass of food
type i is A, the fitness-enhancing effects of food consumption will be some increasing function f of
the quantity,

tA,C,(R) + (1-0A4,C,(R) (6)

The negative effects will be expressed as an increasing function g ci the ingestion rate of resource 1
(the toxic food type). If the negative effects do not depend on total caloric intake, individual fitness
may be expressed as the difference between f and g. If tiie negative effect is a reduction in digestive
efficiency, this effect may be described by a decreasing function A of toxin intake, and fitness is more
appropriately expressed as the product of f and A. Both of these alternatives are considered below.

The optimum value of ¢ may be found by differentiating the expression for individual fitness
with respect to ¢, setting equal to zero, and solving for . It is also necessary that the second derivative
of fitness with respect to ¢ be negative. In the additive model, fitness is (f - g), and the optimum ¢ is
determined by

UGy - 4,C)f = Cg’ )
subject to

A,C, - A,CRf" - Cig" <0 @)

It is clear that unless the toxic resource yields a higher nutritional return (i.e. 4,C; > 4,C,), Eq. (7)
will have no solution, and resource 1 should not bc included in the diet (recall that f and g are
increasing functions). In the multiplicative model, ¢ is adjusted to maximize fh; the optimum ¢ is
therefore determined by
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fM'C, + hf'A,C, - ACy)) = O )

subject to

2[f(A,C, -A,C)R'C,] + fh"C} + hf"(A,C,~A,C)) < O (10)

In either case, it should be clear that the optimum ¢ will generally depend on both resource densities,
and consequently, both functional responses will be functions of both resource densities. It is possible
to reach a number of conclusions about the nature of the functional responses without making any
assumptions about the specific forms of the functions C,, C,, f, and g or A.

The following analysis examines the following questions from a general standpoint for the
additive model: (1) how does the optimum ¢ change with a change in the density of each resource?,
and (2) how do the two functional responses incorporating the optimum ¢ change as a function of the
density of each resource?

Formulas for &R, and &R, may be derived by implicit differentiation of expression (8),
yielding ‘

5 _ Ci{g"Cit + ' - AF - (AC, - AC)AY") ()
Rl (Alcl = Azcz)zfl /- Clz’g”

A AC + (1-0AC, - 4,0)")
R, (AC, - ACYY" - Clg”

(12)

It is possible for either of these expressions to be either positive or negative; they may have the same
sign or opposite signs. Biological considerations and consideration (8) suggest that g" is more likely
to be positive (than negative), and f* is more likely to be negative. Both of these conditions favor,
but do not insure, a negative d,/dR, and a positive & /aR,.

Of somewhat greater interest is the form of the functional responses, which are given by ¢,C,
and (1-t,)C,. The sign of the derivatives of the functional responses with respect to the two resource
densities may be determined using expressions (11) and (12). For resource 1, this yields

Azczcll -f - HAC, - 4G

3
—(C) = (13)
aR, 0™1 (AICI - Azcz)Zf'/ = C,zg”
3 C.Cif + (1-D(A,C, - A,C,)")
_a_'(tocl) = AZ 1>-2 21/ 1 22”2 (14)
R, (AC, - A,C)f" - Clg
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It is possible for the functional response on the toxic food (R,) to decrease as R, increases; Eq. (13)
implies that this occurs if and only if

f =HAC, - AC)"<0 (15)

Thus, if the positive effects of increased nutrient intake are rising slowly, at a decreasing rate, it is
possible for increases in the toxic food type to result in a decrease in its consumption rate. The
functional response on the toxic resource must increase with its density if the benefit function f is
increasing in an accelerating manner (" > O).

Increasing the density of the nontoxic resource may either increase or decrease the functional
response on the toxic resource, as shown by expression (14). The two terms in the numerator (14)
have signs opposite of the two terms in the numerator of (13). Therefore, under a wide range of
conditions, the effect of the nontoxic resource density on the toxic resource functional response is
opposite to the effect of toxic resource density.

The expressions analogous to (13) and (14) for the functional responses on resource 2 are:

X(1-0C) _ Cil-ACf - Cig"l-n) + AC(-0AC, - A4,CH"
oK, (A,C, - A,CYY" Clg"

(16)

A1-0C)  -CCilg’ - Af + Cyig” - AAC, - ACH"]
oR, (A,C, - A,CYY" - Clg"

a7

It is again possible for each of these derivatives to be either positive or negative. The biologically
more plausible functions (positive g" and negative f") favor a response on resource 2 that increases
with its own density, and with the density of the toxic resource. Nevertheless, exceptions to both of
these predictions are quite possible.

Although this analysis has not produced any general rules about the signs of the derivatives
of the functional responses, biologically reasonable forms for f and g seem much more likely to result
in a decreasing functional response on the toxin-containing food than on the nontoxic one.
Decreasing functional responses are also possible under the multiplicative model, and the signs of the
second derivatives of f and h that favor such responses are the same as the signs of /" and g" that favor
similar responses in the additive model.

TWO OR MORE TOXIC FOODS

It is simple to extend the above framework to the case of two toxic foods. As above, a
function f describes the positive fitness effects of resource consumption, and a function g describes
the negative effects. The model differs from that in the preceding section only in that g is an
increasing function of the intake rates of both resources. The argument of g may not be a simple



weighted sum of the intake rates of both foods if the different foods contain different toxins. It is
clear that the range of possible functional response forms is even greater than in the case of a single
toxic resource. Because the single toxic resource model is a limiting case of this more general
situation, it is also clear that decreasing functional responses may occur with this two-toxic resource
model also. The two-toxic resource case is treated in greater detail in Abrams (1989a). If f has the
same form as in the additive model of the previous section, g is a function of a weighted sum of the
intake rates of the two resources (B,Cyt, + B,C,(1-t,)), and resource 1 has the greater reward rate
(A,C, > A,C,), then the functional response on resource 1 decreases with its own density provided
that an intermediate optimum ¢, exists, and

(18)
ot,C) _ Cyg'B-f'A) + Ct[g"B(B,C\-B,C) - f"AfAC,-4,C)] _ 0
oR, A,C, - A,Cyf" - (BC,-B,Cg"

(where the second derivative condition for ¢, to maximize fitness ensures that the denominator will
be negative.) This condition links the discussion of bulky resources in section II with the discussion
of toxic resources in the present section. Bulk can be thought of as a form of toxin that leads to a
cost function whose second derivative, g", is very large (and positive) when intake rate fills the gut
completely. Expression (18) shows that this will favor a decreasing functional response on the
resource that yields a greater nutrient intake rate per unit time, as was true for the specific case of
the model considered in section II.

The population dynamics of models that explicitly incorporate adaptive foraging on toxic
foods have yet to be explored. The possibility of decreasing functional responses suggests that
oscillatory population dynamics will also occur frequently in these models. Almost any possible form
of indirect interactions between resources may be created by the consumers’ (herbivores’) functional
responses.

CONCLUSIONS

ADAPTIVE FUNCTIONAL RESPONSES OF CARNIVORES

Plant-herbivore community models that incorporate the functional responses described above
will clearly differ from Lotka-Volterra type models. However, because most community models do
not incorporate adaptive behavior of any kind, it may not be apparent that the functional responses
described above differ from the functional responses of adaptive carnivores. Most carnivores consume
nutritionally substitutable foods (many spiders may be exceptions; see Greenstone 1979). Abrams
(1987b) discusses adaptive variation in functional responses that may occur with nutritionally
substitutable resources; in general, such variation can be described as positive frequency dependence.
Carnivores should concentrate their searching efforts on the most available prey (unless the (energy
content)/(handling time) is too low.) This results in switching behavior, which has been incorporated
into some very simple community models (e.g. Murdoch and Oaten 1975, Matsuda et al. 1986). In
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general, switching stabilizes population dynamics. The short term effects between different food
species that arise because of the predator’s functional response are mutualistic (Abrams 1987c).

SUMMARY

The three foraging problems commonly faced by generalist herbivores all result in functional
responses that differ markedly from any that are frequently used in carnivore-prey models. It is
common for the amount eaten of some food types to decrease as the amount available increases, and
the relative time and/or effort devoted to obtaining different types is seldom describable by the
positive frequency dependence that characterizes many optimally foraging carnivores. Although
relatively few food-web models incorporating such functional responses have been studied, those that
have suggest that the functional responses may produce "unusual” population dynamics. The dynamics
may or may not be atypical of what occurs in nature, but they certainly differ strikingly from those
observed in analogous food webs with functional responses appropriate for carnivores. The results
provide an additional argument for the need to consider behavioral responses of species when trying
to understand community structure and/or dynamics. We are still a long way from knowing how
incorporating adaptive behavior would change the conclusions derived from Lotka-Volterra food web
models with many species, but preliminary results for very small communities suggest substantial
differences in dynamic behavior. Most of the problems addressed by Pimm (1982) and others using
Lotka-Volterra type food web models have yet to be addressed using models with adaptive foraging
by either herbivores or other species in the food web.

REFERENCES

Abrams, P. A. 1982. Functional responses of optimal foragers. Am. Nat. 120:382-390.
Abrams, P. A. 1984. Foraging time optimization and interactions in food webs. Am. Nat. 124:80-96.

Abrams, P. A. 1987a. The nonlinearity of competitive effects in models of competition for essential
resources. Theor. Popul. Biol. 32:50-65.

Abrams, P. A. 1987b. The functional responses of adaptive consumers of two resources. Theor.
Popul. Biol. 32:262-288.

Abrams, P. A. 1987c. Indirect interactions between species that share a predator: Varieties of
indirect effects. pp. 38-54. In W. C. Kerfoot and A. Sih (eds.), "Predation: Direct and
indirect impacts on aquatic communities". University Press of New England, Dartmouth.

Abrams, P. A. 1989a. Decreasing functional responses as a result of adaptive consumer behavior.
Evol. Ecol. In press.

Abrams, P. A, and L. Shen. 1989. Population dynamics of systems with consumers that maintain a
constant ratio of intake rates of two resources. Theor. Popul. Biol. In press.



Armstrong, R. A. 1976. The effects of predator functional response and prey productivity on
predator-prey stability: A graphical approach. Ecology 57:609-612.

Belovsky, G. E. 1978. Diet optimization in a generalist herbivore: The moose. Theor. Popul. Biol.
14:105-134.

Belovsky, G. E. 1986a. Generalist herbivore foraging and its role in competitive interactions. Am.
Zool. 26:51-70.

Belovsky, G. E. 1986b. Optimal foraging and community structure: Implications for a guild of
generalist grassland herbivores. Oecologia 70:35-52.

Caughley, G., and J. H. Lawton. 1981. Plant-herbivore systems. pp. 132-166. In R. M. May, (ed.),
Theoretical Ecololgy. 2nd ed. Sunderland, Mass. Sinauer Assoc.

Covich, A. 1972. Ecological economics of seed consumption by Peromyscus - a graphical model of
resource substitution. Trans. Conn. Acad. Arts and Sci. 44:71-93.

Crawley, M. J. 1983. Herbivory: The Dynamics of Animal-Plant Interactions. Berkeley: University
of California Press.

Drake, J. A. 1988. The assembly of ecological communities. In S. A. Levin, T. G. Hallam, and
L. J. Gross (eds.), Math. Ecol. London: World Press (in press).

Greenstone, M. H. 1979. Spider feeding behavior optimises dietary essential amino acid composition.
Nature 282:501-503.

Hassell, M. P,, and R. M. May. 1985. From individual behaviour to population dynamics. pp. 3-32.
In R. M. Sibly and R. H. Smith (eds.), Behavioural ecology: Ecological consequences of
adaptive behaviour. Blackwell, Oxford.

Holt, R. D. 1984. Spatial heterogeneity, indirect interactions, and the coexistence of prey species.
Am. Nat. 124:377-406.

Holt, R. D. 1987. Prey communities in patchy environments. Oikos 50:276-290.
Holt, R. D., and B. Kotler. 1987. Short-term apparent competition. Am. Nat. 130:412-430.

Ives, A. R., and A. P. Dobson. 1987. Antipredator behavior and the population dynamics of simple
predator-prey systems. Am. Nat. 130:431-447.

Kerfoot, C. W.,, and A. Sih (eds.). 1987. Predation: Direct and Indirect Impacts on Aquatic
Communities. Dartmouth: University Press of New England.

Kitting, C. L. 1980. Herbivore-plant interactions of individual limpets maintaining a mixed diet of
marine algae. Ecol. Monog. 50:527-550.

Leon, J. A, and D. Tumpson. 1975. Competition between two species for two complementary or
substitutable resources. J. Theor. Biol. 50:185-201.




26

Matsuda, H., K. Kawasaki, N, Shigesada, E. Teramoto, and L. Ricciardi. 1986. Switching effect on
the stability of the prey-predator system with three trophic levels. J. Theor. Biol. 122:251-262.

May, R. M. 1973. Stability and complexity in model ecosystems. Princeton: Princeton University
Press.

Mittelbach, G. G., and P. L. Chesson. 1987. Predation risk: Indirect effects on fish populations. In
W. C. Kerfoot and A. Sih (eds.). op. cit.

Murdoch, W. W,, and A. Oaten. 1975. Predation and population stability. Adv. Ecol. Res. 9:1-131.
Pimm, S. L. 1979. The structure of food webs. Theor. Popul. Biol. 16:144-158.

Pimm, S. L. 1980. Properties of food webs. Ecology 61:219-225.

Pimm, S. L. 1982. Food Webs. London: Chapman and Hall.

Post, W. M,, and S. L. Pimm. 1983. Community assembly and food web stability. Math. Biosci.
64:169-192.

Pulliam, H. R. 1975. Diet optimization with nutrient constraints. Am. Nat. 109:765-768.
Rapport, D. J. 1980. Optimal foraging for complementary resources. Am. Nat. 116:324-346.

Rosenzweig, M. L. 1971. Paradox of enrichment: Destabilization of exploitation ecosystems in
ecological time. Science 171:385-387.

Sih, A. 1984. Optimal behavior and density dependent predation. Am. Nat. 123:314-326.
Stephens, D. W,, and J. R. Krebs. 1986. Foraging Theory. Princeton: Princeton Univ. Press.

Tilman, G. D. 1980. Resources: A graphical-mechanistic approach to competition and predation.
Am. Nat. 116:363-393.

Tilman, G. D. 1982. Resource Competition and Community Structure. Princeton: Princeton Univ.
Press.

Westoby, M. 1974. An analysis of diet selection by large generalist herbivores. Am. Nat. 108:290-
304.

Yodzis, P. 1982. Compartmentalization of real and assembled ecosystems. Am. Nat. 120:551-570.



27

CHARACTERISTICS OF SPECIES INTERACTIONS OF MACROBENTHOS IN
TIDAL FLATS: A SUMMARY WITH A PERSPECTIVE

Akio Tamaki, Faculty of Fisheries, Nagasaki University, Bunkyo-cho, 1-14, Nagasaki 852, Japan

INTRODUCTION

For a long time, most patterns of abundance and distribution of invertebrate species in marine
soft bottoms have been explained by correlations with physical factors in the environment. Since the
1970s, species interactions have also become recognized as important agents generating patterns,
Among various habitats in marine soft bottoms, intertidal flats (both sand flats and mud flats) are
systems suitable for investigating species interactions, due to their accessibility and theii calmness for
maintaining field experimental equipment as compared with exposed sandy beaches.

In this paper, I outline characteristics of the species interactions which organize the benthic
communities in temperate-zone tidal flats, and point to several problems in our approaches to these
interactions for future research.

The main target organisms here in the size spectrum of tidal-flat benthos are macrofauna, on
which studies have been most intensively carried out. Macrofauna are usually defined as those
organisms whose adults are retained on a 0.5-mm mesh sieve (Eleftheriou and Holme 1984). Most
numerically dominant taxonomic groups of macrofauna are polychaetes, small crustaceans, and
mollusks (bivalves and gastropods).

SPECIES INTERACTIONS OF MACROFAUNA

Species interactions of macrofauna prevailing in tidal flats are classified in Tablc 1. First, the
interactions are divided into two categories: 1. those between non-carnivorous species (mainly deposit-
feeding, suspension-feeding and grazing benthos) and IL. the effects of predators on the abundance
patterns of prey species. Interspecific interactions in Part I are subdivided into (A) repressive and
(B) promotive relationships. Although mutualistic symbiosis (mutualism) and parasitism may be
potentially very important interactions in structuring soft-bottom communities, their contributions to
the overall dynamics of the benthic communities have received little attention in community-oriented
soft-bottom studies; thus, they are not taken up here.

Hereafter, I will give a brief summary of the results of studies for each process of the species
interactions listed in Table 1. Most interactions cited in this paper come from those found in tidal
flats, but examples from exposed sandy beaches and shallow subtidal soft bottoms are also included.
Furthermore, 1 will point to what I feel to be most serious problems in these studies and give a
proposal for better understanding the organization mechanisms of tidal-flat benthic communities.

NICHE DIFFERENTIATION
It may be implicit in most writings on community ecology that most species should interact
strongly with only a few other species and mainly those with comparative body sizes (Fenchel 1987,
p. 97). Furthermore, it may also be a common belief in the ecological literature that differentiation
of niches and/or morphologies through competition in the past should have reduced the intensity of
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Table 1. Species interactions in tidal-flat macrobenthos

1. Between non-carnivorous macrobenthos

A. Repressive relationships --- Competition
(a) Reduced competition via niche differentiation (? Past competition)
(b) Severe competition (Current competition)

(1) Inhibition of larval recruitment by adults
- Direct ingestion or exclusion of larvae
- Indirect exclusion through changing the sediment properties

(2) Competition between adults
(2-1) Interference competition
- Direct exclusion
- Indirect exclusion through changing the sediment properties
(2-2) Exploitation competition for food

B. Promotive relationships ---- Commensalism

II.  Influences from predators

A. Intermittent predators
(1) High-tide carnivores
(2) Low-tide carnivores

B. Resident predators
(1) Epibenthic carnivores
(2) Infaunal carnivores

competition and thus brought about coexistence of competitors in the present, although some persons
disagree with this view (Connell 1980). For marine soft-sediment benthos, a number of studies have
been done in this context, and they often deal with relationships among taxonomically closely related
species or those within the same feeding guild; see Branch (1984, pp. 490-508) for examples of such
relationships. The partitioned resources involve habitats (horizontal segregation or vertical
stratification in the sediment), food resources (particularly for deposit feeders), and time (e.g. breeding
seasons), and these partitionings are at times accompanied by character displacement (Fenchel 1975a,
b; Fenchel and Kofoed 1976).

However, these niche-differentiation studies are not without problems. The most serious
pitfall seems that we are apt to overlook large influences of some species which are operationally
removed from the target system for the very simple reason that they are taxonomically remote or
belong to different feeding guilds. As shown in the subsequent sections, interphyletic interactions
(those between distantly related competitors or those between hosts and commensals) are often
prevalent in the benthic communities in tidal flats. Under such large influences, how can we evaluate
the significance of resource partitioning between closely related species or between members of a guild
to the population dynamics of each species (in particular, for the smaller macrobenthos) and to the
organization of the whole benthic community? So far as [ know, none of the niche-differentiation
studies for tidal-flat macrobenthos have been done bearing this point in mind.
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INHIBITION OF LARVAL RECRUITMENT BY ADULTS

Inhibition of larval recruitment by established adults has been considered important in
structuring marine soft-bottom communities (Thorson 1966; Woodin 1976). Both laboratory and field
manipulative experiments have demonstrated that adults of many macrobenthos, which are non-
carnivorous to other adults, can depress recruitment directly by ingesting settling larvae and newly
settled juveniles (Highsmith 1982; Tamaki 1985) and indirectly by burying juveniles with sediment
displaced by burrowing, feeding, and defecating (Brenchley 1981; Wilson 1981). Ingestion of larvae
and juveniles by "non-carnivorous” macrobenthos should make the structure of benthic food webs
more complex (Feller et al. 1979). These influential adults may be expected to target or unconsciously
involve all larvae and juveniles that they can encounter regardless of the species, including those of
their own (Thorson 1966; Woodin 1976). In support of this, several studies have demonstrated that
larvae of many species are depressed indiscriminately (Crowe et al. 1987; Hunt et al. 1987), and
combined information from various sources on the effects of "villains" on "victims" (Thayer 1983;
Woodin 1983) may also support this accidental nature. However, the outcome of the actions of adults
varies depending on the functional types (feeding and mobility types, etc.) of the adults and on the
size, escaping ability, and susceptibility of the recruits (Woodin 1976, 1983).

Most of the efforts to test the negative influences of established adults on larval recruitment
with field enclosures and exclosures could confirm the effects only ambiguously because they do not
check, at the same time, the following two other possible causes: the juveniles of a species are absent
from an experimental plot because (1) the settling larvae have actively avoided the substrate of this
plot due to the lack of attractant cues (Highsmith 1982) or the presence of repellent cues (Woodin
1985), which are associated with the sediment; (2) the larvae have been passively transported to some
other places by hydrodynamic forces (i.e. waves, currents, and turbulent flows)(Eckman 1983; Butman
1987). A far more difficult task in the adult-larval interaction studies is to quantitatively evaluate, in
the natural conditions, what portion of the population of the planktonic and newly settled larvae is
eliminated by established adults and what significance this elimination has for the whole population
dynamics of the affected species. The deletion of planktonic larvae in one locality may be replenished
from the neighboring localities through the exchange of the waters, but it is also difficult to determine
with what certainty this occurs.

INTERFERENCE COMPETITION BETWEEN ADULTS

Recently, studies relating to "interference competition” have remarkably increased in number
for soft-sediment benthos. However, as pointed out by Barnes and Hughes (1988, p. 89), many studies
only deal with the outcomes of accidental "collisions” resulting from bioturbation (biological
disturbance of sediment) caused by the locomotory, feeding, and defecating activities of organisms;
identification of the contested resources is often unclear. Interference competition in the strict sense
can be seen in several forms of competition for space: (1) In systems composed of taxonomically
related, highly mobile crustaceans, inferior competitors are either driven to less preferred habitats
(Croker 1967; Rees 1975; Grant 1981) or experience reductions in survival rates, individual growth
rates, and fecundity (Croker and Hatfield 1980); (2) Several instances have been presented on systems
comprised of species with limited mobilities (e.g. bivalves, polychaetes). Intraspecific competition
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often causes even spatial patterns in micro-distributions (Holme 1950; Levin 1981). However, caution
must be used in explaining the meso-scale distribution patterns; some studies ascribed horizontal
scgregation of competitors to emigration of adults of inferior species (Levinton 1977; Peterson and
Andre 1980), but the more plausible mechanisms may be habitat segregation such as through
competition in the past, or through inhibition of larval recruitment by adults, or through spatially
different . survival rates; (3) Sediment-stabilizing species (e.g. a dense assemblage of tube-building
species) and destabilizing species (e.g. a dense assemblage of burrowing species) are sometimes
incompatible with each other, and members of each group of species involve a variety of taxa and
trophic modes (Woodin and Jackson 1979; Thayer 1983)(but see Sect. 8). The horizontal segregation
of these two groups may be brought about through interactions between adults (Brenchley 1982) as
well as adult-larval interactions (Brenchley 1981; Wilson 1981).

In demonstrating that adults of species A are absent due to competitive exclusion by species
B, we must check possibilities of not only emigration and mortality but also habitat selection and
hydrodynamic transportation of species A. Furthermore, competition may result in reductions in
individual growth rates and fecundity. No studies have examined all the above demographic
population parameters at the same time.

EXPLOITATION COMPETITION FOR FOOD

There are two major feeding modes in marine soft-sediment macrobenthos: deposit-feeding
(including grazing of microfiora) and suspension-feeding. Many researchers have suggested that
natural populations of macrofaunal deposit feeders are food limited. In particular, Levinton (1972)
argued that deposit feeders have competed for this limiting resource (bacteria, microalgae, and detrital
material) over evolutionary time, resulting in the specialization of feeding niches. Most of the
effective demonstrations of the occurrence of current competition for food in deposit feeders are for
intraspecific competition (reductions in survival rates, individual growth rates, fecundities, and increase
in emigration rates), and the majority of these studies have been done in the laboratory (Tenore and
Chesney 1985; Forbes and Lopez 1986; Zajac 1986, Morrisey 1987) with only a few successful
experiments carried out in field enclosures (Branch and Branch 1980; Olafsson 1986; Morrisey 1987).
Evidence for current interspecific competition for food is far less (Fenchel and Kofoed 1976; Alongi
and Tenore 1985). This scarcity of documented examples of interspecific competition for food may
support Levinton’s (1972) hypothesis of the trophic specialization between coexisting species.
Alternatively, however, most deposit feeders may not actually face shortages of food either owing to
its ample supply or owing to the effective regulation of population densities by intraspecific
competition, predatic:n (Sect. 9), and/or physical disturbance precluding interspecific competition from
taking place.

Levinton (1972) also argued that the supply of phytoplankton, the major food source for
benthic suspension feeders, is spatially and temporally variable in terms of quantity and the species
present, and that as a consequence, suspension feeders are unlikely to compete for long enough to
reach exclusion which can lead to niche specializations. It has been shown that soft-sediment
suspension feeders tend to compete for space (Hancock 1973; Peterson and Andre 1980); however,
only a few studies showed the operation of intraspecific competition for food (Stiven and Kuenzler
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1979; Peterson 1982; Fréchette and Bourget 1985---all for bivalves in the field enclosures), and to my
knowledge, no convincing evidence for current interspecific competition for food has appeared on
both the micro- and meso-scales except for only a few suggestive results (Peterson and Black 1987).

Thus, it is likely that food limitation is, if anything, more common among deposit feeders than
suspension fecders. However, this may simply reflect the difficulty in demonstrating the abundance
pattern of foods suspended near the seabed as compared with those deposited in the sediment (cf.
Fréchette et al. 1989). Diiiiculties underlying these exploitation-competition studies -- to identify the
food items of each species, to present quantitative data on the extent of depletion of these foods by
this species in the natural conditions, and to link this to detrimental influences on other species -- will
be hard to overcome.

COMMENSALISM

Although, for a long time, promotive relationships received little attention in community-
oriented ecological studies for marine soft bottoms (Dayton and Oliver 1980), the situation has
recently been changed. Most of the studies on interspecific promotion deal with commensalism, in
particular various effects of the activities of larger macrobenthos on smaller macrobenthos or
meiobenthos. Commensalism found so far may be categorized as follows: (1) Body cavities and
surfaces, underground burrows, and tubes of large benthos often accommodate uninvited guests within
them (e.g. Ricketts et al. (1985) and Nybakken (1988, Ch. 10) for many instances); (2) Large
bioturbating infauna irrigate and fertilize the surrounding sediment simultaneously. This alteration
of the physico-chemical conditions of the sediment causes attraction of meiobenthos or smaller
macrobenthos directly through enlarging underground, habitable oxidized space for them or indirectly
through stimulating growth of microorganisms (bacteria, microalgae, ciliates, etc.) which are food of
grazing and deposit-feeding benthos (Hylleberg 1975; Reise 1985, Ch. 11; Flint and Kalke 1986);
(3) Sediment reworking and tube irrigation by a deposit-feeding polychaete reduces the quantity of
particulate organic matter (POM) at the sediment-water interface and increases concentrations of
dissolved nutrients in the water column, and these effects cause an increase in the individual growth
rate of a smaller filter-feeding bivalve (Weinberg and Whitlatch 1983). The beneficial mechanisms
involved may be stimulation of microfloral populations as food for bivalves and preclusion of clogging
of the feeding structures of bivalves with POM; (4) Myers (1977) suggests that some burrowing species
benefit from decreased compaction and/or cohesion of the sediment which have beforehand been
excavated by other burrowing infauna; when they occur in looser sediments, burrowing species should
be less subject to epibenthic predators because they quickly hide themselves in the sediment, and
hence are able to allocate more energy to life processes other than escape (e.g. growth and
reproduction). Such an advantageous behavior of choosing looser sediments is likely to evolve. But
only a few examples exist which are suggestive of this behavior (Levinton 1977; Dayton and Oliver
1980, p. 107; Brenchley, 1982; Tamaki 1988); (5) Disturbed patches such as feeding excavations and
fecal casts created by large benthos and demersal fish are utilized as suitable microhabitats often with
favorable resources (such as detrital food) for smaller benthos (Rhoads and Young 1971; Thistle 1980;
VanBlaricom 1982; Tsuchiya et al. 1989; see also a review in Probert 1984); (6) Dense assemblages
of protruding tubes of macrobenthos provide suitable microhabitats not only for clinging epibenthos
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but also for sediment-dwelling benthos (Mills 1967; Gallagher et al. 1983), probably because tubes
increase the topographic complexity of the area and because sediments around tubes can have greater
abundances of potential food for macrobenthos (bacteria (Eckman 1985); diatoms (Sanders et al.
1962); meiobenthos (Eckman 1983)). Furthermore, dense tube mats provide stable substrata to
function as refuges for smaller macrobenthos against epibenthic predators/disturbers (Mills 1967,
Woodin 1981) or wave disturbance (Bailey-Brock 1979).

The connection between commensals and their hosts may be strict in some cases (e.g.
(1) above) (obligate commensalism), but in many cases commensals seem to be loosely dependent on
the "functions" of the life processes of the Losts (in other words, "types" of microhabitats (or
sometimes on larger scales) created by the hosts’ bioturbating activities) irrespective of the identity
of the host species (facultative commensalism). Colonization by commensals (larvae and/or adults)
of these secondary habitats has both active and passive (hydrodynamic accumulation) components, and
studies on these processes are now growing. Furthermore, analyses will be needed which pinpoint the
life stages that are most important in determining the population growth of commensals and which
rank several possible effects of hosts according to their demographic importance. Such an attempt
(e.g. Weinberg et al. 1986) has rarely been made.

FUNCTIONAL GROUPS

In the current competitive and commensal relationships among macrobenthic species shown
so far (in particular, Sects. 4, 5, and 7), indiscriminate or accidental encounters between species have
often been found; in some cases, however, the resultant response types were well predicted in terms
of functions of the interacting species (feeding and mobility types, effects of life processes on sediment
properties, etc.) irrespective of their taxonomic positions (e.g. Woodin 1976, 1983). But this does not
necessarily mean that a group of macrobenthos with a similar function behave as a functional unit.
For analysis of the structure of any animal community, it may be fascinating and of great practical
value to be able to find infrastructures within it (see Paine 1980). In macrobenthic communities of
tidal flats, a burrowing species group (sediment destabilizers) and a tube-building and other sedentary
species group (sediment stabilizers), each including a variety of taxa and trophic modes, seem to be
incompatible with each other, and to form spatially segregating distinct patches; members of the one
group exclude or reduce densities of those of the other group by way of the contrasting effects on
sediment characteristics, and within the same group, "help” each other in competition with the
opponent group (Woodin and Jackson 1979; Brenchley 1981, 1982; Wilson 1981). But this view,
which postulates symmetrical competition and mutualism, is only partially true if at all. As pointed
out by Thayer (1983) and Posey (1987), most of the examples which seem to support the above
functional-group hypothesis involve asymmetrical interactions in which large or active species exclude
smaller forms or exclude organisms that individually have little effect on sediment characteristics.
Although a time-delayed reciprocal competition seems potentially possible via adult-larval interactions
(e.g. Highsmith 1982; see Sect. 4), few field examples exist where smaller animals, no matter how
dense, exclude larger active species (Posey 1987). Also, mutualistic relationships have only been partly
demonstrated (e.g. Brenchley 1982). Since the population dynamics of smaller macrobenthos in tidal
flats are often organized undcr the overwhelming hierarchical influences of the larger macrobenthos



33

either positively (commensalism) or negatively (asymmetrical competition), it may be difficult to detect
if any mutualistic beneficial interactions or current reciprocal competitions are occurring among
smaller macrobenthos.

Thus, at present, the functional groups as originally suggested may be rather an abstraction;
in order to correctly test this hypothesis, it will be necessary to consider at least the following three
problems: (1) We should quantitatively measure rates at which each species stabilizes and destabilizes
sediments under different regimes of waves and currents (e.g. Jumars and Nowell 1984). But, except
for the simplest system in which effects of multiple species on sediments are additive (Peterson 1980),
how can we reconstitute a group’s total bioturbation rate from each measure?; (2) It must be noted
that the component species belonging to one functional group should not only be in "cooperation”
with each other against the opponent group but be more or less in competition for limited resources
because of the similarity of their niches. These antagonistic interactions will be reflected in benefits
and costs, respectively, which may be measured in terms of various demographic population
parameters (survival, growth, fecundity, emigration, etc.). Thus, before acknowledging any one set of
two opposing functional groups, we must establish a standard with which we can compare these
benefits and costs for the component species in each group; (3) These benefits and costs should not
be judged only within one locality. For example, inferior competitors in the one functional group may
still enjoy benefits by the group’s action against the opponent group if they are effectively replenished
from the neighboring localities through the exchange of their planktonic larvae. But how can we know
these exchange rates?

Despite the limited predictability of the above functional-group hypothesis in the ecological
time-scale, competition between sediment destabilizers and stabilizers might have significant
evolutionary consequences for the determination of the macrobenthic community structure in soft
bottoms. Thayer (1983) summarized the strategies for winning the "war" in sediments as follows:
(1) be large; (2) be mobile and/or disturb sediment rapidly; (3) occur in dense populations. Based on
this asymmetrical manner of competition, he suggested that biological disturbance of marine sediment
has increased over geologic time, especially in causing the reductions of the dominant Paleozoic
benthos, the immobile organisms that lived on unconsolidated substrate (bulldozing hypothesis).

INFLUENCES FROM PREDATORS

It is difficult to remove predators from soft-sediment habitats because they are either large
and mobile or infaunal and cryptic. Thus, to assess the influences of these predators (both predation
and disturbance of sediment) on the structure of macrobenthic communities, enclosure or exclosure
cages are usually established in the field. The problems with such caging studies come from the
difficulties (1) to separate predator effects from cage artifacts (Virnstein 1978; Dayton and Oliver
1980) and (2) to apply results obtained in a narrow caged area to a far wider natural area without
detailed knowledge of the behavior and abundance patterns of predators in time and space.
Furthermore, identification of the whole food webs, including consumption of larvae by adults of non-
carnivorous macrobenthos (see Sect. 4), is very difficult for soft-bottom communities (see Feller et
al. 1979). As a result, only a portion of the predator-prey system can be manipulated.



Predators appearing in tidal flats can be divided into intermittent and resident predators.
Intermittent predators include high-tide carnivores (demersal fish and large decapod crustaceans) and
low-tide carnivores (birds). Resident predators include epibenthic carnivores (nurslings of demersal
fish (e.g. gobiids), shrimp, and crabs, etc.) and infaunal carnivores (turbellarians, nemerteans,
polychaetes, gastropods, etc.).

One of the most extensive works to assess the effect of predation in structuring benthic
communities in tidal flats has been carried out in the German Wadden Sea (Reise 1985). By means
of cages with various mesh sizes installed in several kinds of habitats in the tidal flat, Reise examined
the impact of various sizes of epibenthic predators and revealed that (1) intermittent, large predators
prey on the older, large-sized individuals, affecting the benthic community only moderately, and that
(2) carnivorous nurslings of fish, crabs, hermit crabs, and shrimps, which remain in the tidal flat or
migrate back and forth with the tides, indiscriminately consume both meiofauna and juveniles of
macrofauna, and hence usually prevent many of macrofaunal species from attaining the carrying
capacity of their habitat. However, these effects of predators could be reduced by internal predation
within the predators’ group, by the presence of refuges (e.g. seagrass) in the sediment surface, and by
different physical conditions.

From the above results and a review on the caging experiments to exclude epibenthic
predators (Peterson 1979), three tendencies appear general for macrobenthos within cages that exclude
predators (Barnes and Hughes 1988, p. 93): (1) an increase in total density; (2) an increase in species
richness; (3) no significant tendency toward competitive exclusion by some dominant species. The
latter two contrast markedly with results of some predator-exclusion studies conducted in rocky shores
(e.g. Paine 1971, 1974), although the data from soft sediments and rocky shores are not really
comparable due to the disregard of the smaller benthos in rocky-shore studies. Peterson (1979)
suggests a number of explanations for such "anomalies" of soft-sediment macrobenthos:
(1) ineffectiveness of both interference competition (the types as seen on rocky shores) and
exploitation competition; (2) reduced competition due to vertical habitat partitioning in the sediment;
(3) effectiveness of inhibition of larval recruitment by adult macrobenthos to maintain populations
at low levels (see Sect. 4), at which adult competition is not likely to be severe. In soft bottoms,
however, some top predators may be able to organize the benthic community structure by regulating,
for example, the density of large bioturbating infauna (= sediment destabilizers) such as arenicolid
polychaetes and thalassinidean decapod shrimps which themselves have large influences on the other
macrobenthos (Posey 1986); in such cases, these predators may play a role comparable to a keystone
predator (starfish) in rocky shores (cf. Paine 1971, 1974), although large bioturbating infauna are less
susceptible to epibenthic predation because of their habitats deep in the sediment. Also, predation
within the epibenthic predators’ guild can have positive indirect effects on some components of non-
carnivorous benthic communities (Kneib 1988).

The roles of infaunal predation in controlling the structure of soft-bottom communities have
not been as extensively studied (see Commito and Ambrose 1985). The present interest of the most
active researchers seem to detect three-level (epibenthic predators, predatory infauna, other infauna)
or more multiple interactions, stressing an indirect positive effect of epibenthic predators on non-
carnivorous infauna (Ambrose 1986).
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CONCLUSIONS

Among the several categories of species interactions in macrobenthos inhabiting tidal flats
(Table 1), inhibition of larval recruitment by adults (Sect. 4), current interference competition between
adults (Sect. 5), commensal relationships (Sect. 7), and epibenthic predation of juvenile macrobenthos
(Sect. 9) appear to be prevalent, although this may rather reflect the ease with which we can treat and
demonstrate the occurrence of these processes as compared with other kinds of interactions.
Furthermore, despite the still insufficient data amassed in the benthic studies so far, I predict that the
following tendencies will be general concerning these prevailing processes: (1) In predacious aspects
of these interactions including consumption of larvae or juveniles by adults of macrobenthos,
predators often indiscriminately prey on everything which is small and is present close to the sediment
surface; (2) In the other aspects of adult-larval interactions and in interference competition between
adults, encounters between species are often accidental; (3) In adult-adult competitions, asymmetrical
rather than reciprocal competition is prominent; (4) In commensal relationships, facultative rather
than obligate combinations of species are more often found. Based on the results of his extensive
work on the benthic community in a tidal flat, Reise (1985) has similarly pointed out the
characteristics of the species interactions in macrobenthos, particularly stressing the importance of
indiscriminate epibenthic predation in keeping the macrobenthic assemblage below the carrying
capacity of its habitat.

If it is true that such loosely connected interactions should prevail over strict or refined
relationships between macrobenthic species or between macrobenthos and their predators, several
reasons may be proposed for this: (1) Because the environment of tidal flats is variable and marginal,
constituting a narrow ecotone between land and sea or between fresh and sea waters, specific
interactions between organisms of tidal flats and those either from land or from subtidal seas are
unlikely to develop (Reise 1985), and broad-niched species may have been selected (Levinton 1982,
p. 388); (2) Tidal flats often occur in an insular pattern interacting with each other through the
exchange of planktonic larvae which are unlikely to adapt to local sources of facilitation and mortality
(Reise 1985; Underwood and Fairweather 1989). Adaptations of organisms over evolutionary time-
scales are more likely to be in response to diffuse, collective processes (Underwood and Fairweather
1989); (3) Tidal flats are geologically young, precluding the development of refined relationships
(Reise 1985). To these may be added another reason: in particular, intertidal sandy mud (or muddy
sand) flats constitute an ecotone between exposed sandy beaches and protected mud flats, containing
species primarily adapted to shifting sedimentary environments and those primarily adapted to very
stable substrata. Encounters between these differently adapted organisms will be facultative. In
addition, most species primarily adapted to an unstructured and physically controlled habitat of
exposed sandy beaches tend to be unspecialized generalists with broad niches (McLachlan 1983). Of
course, some of the reasons may be attributable to the characteristics of species interactions which
soft-sediment benthic communities in shallow waters in general share.

In contrast to the low connections between species prevalent in tidal flats, outcomes of the
interactions between life types or functions of benthic species appear predictable to some extent. In
this context, efforts to seek out functional groups (Sect. 8) as an infrastructure of the whole tidal-flat
benthic community may not be vain. However, these analyses should not be made in disregard of the
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characteristics of the component species. To substantiate analyses of the community organization of
macrobenthos based on their functions, at the least it is desirable that changes in the various
demographic parameters of each species population caused by the species interactions should be
measured in the natural conditions as well as in the laboratory and the field experimental plots.
Moreover, using the results of these experiments, simulation studies will be feasible to approximate
to the phenomena observed in nature and to rank the importance of the various interactions for the
critical life stages in regulating the population dynamics (cf. Weinberg et al. 1986).

I feel that there are three major serious deficiencies in our approaches to the roles of species
interactions in shaping the tidal-flat macrobenthic communities. The first problem is in studying
various aspects of the interactions separately as if each process proceeds singly; this may miss some
more important interactions. The second problem is in synthesizing an image by gathering results
obtained in different localities each having different background habitat structures (geomorphological,
hydrodynamical, sedimentary, and other physico-chemical conditions, etc.) or obtained at different
occasions in a same locality each experiencing different seasonal and episodic events. The third
problem comes from our poor knowledge of the ecological links between tidal flats and their adjacent
subtidal seas and between neighboring tidal flats; in some cases, the tidal-flat macrobenthic community
structure may be determined mainly by the rates and timing of recruitment of macrobenthos from the
water column (cf. Underwood and Fairweather 1989) or of the arrival of their predators from land
or offshore sea (e.g. Reise 1985, p. 106). In order to overcome these problems, two kinds of
approaches will need to be addressed in our empirical research programs: (1) attempts to detect a set
of tidal-flat communities with their adjacent subtidal communities which interact via both the
exchange of planktonic larvae of macrobenthos and the movement of their predators; (2) studies
aiming at elucidating the dynamics of each of these regional communities, taking up as many species
interactions as possible.
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Community - Food Web Interactions

By community we mean here a set of species occupying a single trophic level and po:entially
competing for resources (although often the term is used to refer to all the biota in an ecosystem, and
we will make a note of it when the term is used in this way in later discussion). Theoretical
community ecologists seldom study communities independently of other aspects of the ecosystem, since
abiotic aspects, such as disturbances and nutrients, and bijotic aspects, such as predators, are almost
crucial in shaping communities. Hence, community ecology by nature has a somewhat wider
perspective, as exemplified by the papers at the Seminar dealing with ecological communities.
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SOME THEORETICAL APPROACHES TO COMMUNITY ASSEMBLY

George Sugihara, Scripps Institution of Oceanography, University of California, San Diego,
La Jolla, CA 92093

INTRODUCTION

Rather than restrict attention to modelling classical secondary succession per se, I propose
to consider the broader question of community assembly and development, for which secondary
succession may be but a single important case. This survey, therefore, will concentrate on generic
approaches to studying the temporal evolution of communities while omitting the details of classical
succession.

As reviewed by Usher in this volume, considerable effort has already been invested in
developing predictive models of secondary plant succession (see also Shugart 1984). These range from
simple Markovian plant replacement models, suitable for short time predictions (Usher 1979, Horn
1975) to the highly detailed dynamic replacement models designed to simulate long-term histories of
vegetation at specific sites (Shugart 1984, Solomon 1986). By contrast, despite having similar roots,
the deeper problem of community assembly has not benefitted from such a concentrated or unified
modelling effort. Indeed the approaches that exist appear fragmentary, drawn for the most part from
several classical topics in population and community ecology. One purpose of this essay will be to
begin to survey some of these fragments as they relate to community development in order to suggest
the assembly problem as an interesting focus for future research.

I shall organize this review into two parts, statics and dynamics. The section on statics will
discuss semi-deductive procedures for extracting process information from static patterns and will
include releval.. aspects of studies on the topological structure of food webs, the species abundance
problem and island biogeography. The section on dynamics will explore a general framework for
studying the process of species additions to a system, and will discuss the notion of climax, the
invasion problem and the evolution of simple predator-prey systems.

STATICS OF COMMUNITY ASSEMBLY

Each of the approaches below attempts to derive assembly rules from some static aspect of
the final structure of an ecological ensemble. These results may be very general or specific depending
on the chosen level of analysis: from broad statements such as "gears must mesh according to size",
1o specific statements such as "part A attaches compatibly to part B in a certain sequence.” Although
the term "assembly rule” was originally coined in this latter sense, to describe rules for coexistence for
exclusion for a specific species assemblage (Diamond 1975), I shall extend its usage here to include
fundamental generic constraints on system development.

TOPOLOGY OF NICHE SPACE
This section will discuss a general rule for community assembly deduced as necessary and
sufficient from empirical regularities in the topological structure of food webs.



Euler conceived of the generalized graph as a simple way of representing the topological
structure of a complex system. A generalized graph consists of a set of vertices, and a set of edges
joining vertices. Two useful graphical representations of ecological systems may be constructed from
food web data by choosing either the consumers or the resources, as the vertex sets. Here vertices
represent subsets of either resources or consumers; pairs of vertices arc connected by edges if and only
if the subsets that they represent intersect.

If each vertex corresponds to a consumer species, Or more precisely, to the subset of resources
used by a given consumer species, then we have the consumer overlap graph G(C) (Cohen 1977). On
the other hand, if each vertex corresponds to a resource, or to the subset of consumers which use a
given resource, then we have the community resource graph G(R) (Sugihara 1983, 1984). The n-
pointed "cliques” or fully connected constellations of vertices (resources) in G(R) correspond to n-
dimensional trophic niches for consumers. If we inflate G(R) in a higher dimensional space so that
each species n-dimensional niche now becomes an n-pointed convex polyhedron or simplex, we can
generate the so-called simplical complex model of the communal niche K(R) (Atkin 1974, Casti 1979,
and independently Sugihara 1983). K(R) is similar to G(R) but gives a more robust geometrical
portrait of how the n-dimensional species niches are packed together.

As suggested at the outset, the importance of these representations rests in their practical
ability when applied to real data to detect deep order in the construction of ecological systems. Such
order is revealed in the following temporally robust structural regularities (Sugihara 1984). These
patterns were extracted from more than 60 real data sets for natural systems, and place natural
systems in an exceedingly narrow subset of mathematical possibilities.

P1) G(C) can often be collapsed down to a particular 1-dimensional representation known as an
interval graph (Cohen 1977).

P2) G(C) and G(R) have the triangulation or rigid circuit property, i.e., all circuits are effecnvely
paved with triangles (Sugihara 1983).

P3) K(R) lacks holes. Intuitively, species are packed densely over the space of resources so that
K(R) appears as a simple topological solid rather than a multidimensional swiss cheese
(Sugihara 1983).

Although the full significance of these patterns has yet to be appreciated, it has been possible
to use them to deduce a generic necessary and sufficient rule for sequentially assembling ecological
systems. The technical details of this deduction are discussed elsewhere, but the intuitive essence of
the rule is that species tend to enter a system (if successful) conservatively, by attaching to single
trophic guilds rather than by bridging multiple trophic guilds. That is, insofar as ecological systems
develop by the sequential addition of species, their consumer overlap graphs G(C) should tend to
grow in a connected tree-like fashion radially, rather than by bridging isolated clusters of species or
forming large loops. Ecological assembly, therefore, mirrors the typical case in evolution if
convergence is rare, and tends to produce tree-like hierarchically structured systems (Sugihara 1983).
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NICHE PARTITIONING THEORY

The tradition of niche partitioning theories, used to explain certain species abundance
patterns, is another plausible approach to the assembly problem. The basic idea here is to compare
various rules for partitioning the total abundance (biomass or individuals) of an enscmble with the
observed pattern of species relative abundance. At the appropriate phenomenological level, it may
be rcasonable to expect a correspondence between the manner in which abundances are apportioned
and underlying system structure. On a more mechanistic level, these different apportionment rules
should produce corresponding differences in the distributions for determining the parameters of a
dynamic model. Of particular interest here is the presence of ubiquitous empirical regularities in
species relative abundances; namely, Preston’s canonical lognormal distribution (y =1) and the related
species-area constant (z=%). Such robust empirical regularities in static distributions of commonness
and rarity could point to the operation of equally general rules of community assembly (Sugihara
1980, however see May 1975, Connor and McCoy 1979, Sugihara 1981).

The three main hypotheses of niche apportionment are Motomura’s (1932) geometric series
model, MacArthur’s (1957) broken stick model, and the niche hierarchy model (Sugihara 1980). In
the geometric series or niche preemption model, the community is assembled sequentially by allowing
each successive species to preempt a fraction k& of the resources left by the previous species. The
broken stick model is essentially a null assembly or spontaneous creation hypothesis in that no order
or sequence is involved. Rather, abundances are apportioned by simultaneous random subdivisions.
Although neither of these apportionment hypotheses produces the observed canonical lognormal
distribution, the niche hierarchy model which is intermediate between these two extremes, does
produce this distribution and generates the consequent species-area exponent as well. The specific
motivation for this model was to duplicate the hierarchical structure seen in a niche overlap
dendrogram. Each branch of the dendrogram, therefore, corresponds to a subdivision of abundance,
with different subdivisions possibly involving different sets of niche factors. Here communal biomass
is sequentially subdivided by randomly choosing (without regard to size) one branch at each step for
further subdivision.

Of interest to the previous section is that this simple model for dividing abundances follows
consistent from the conservative assembly rule deduced from topology (both contain a suggestive
parallel with evolution). A new species does not stem simultaneously (break with) separate branches
of an ecological (or evolutionary) tree, but rather arises as a bud from a single branch. That is, new
species do not usually enter as a bridge or concatenation of branches. Therefore, it is possible that
this rule for sequential breakage of abundances in taxocenes may be an expression of same
topologically conservative assembly rule deduced as necessary and sufficient for larger ecosystems.

BIOGEOGRAPHICAL EXPERIMENTAL ASSEMBLY RULES

Darwin established an excellent precedent for using static biogeographical observations to
direct thinking about the temporal process of single species evolution. In similar vein, it has been
productive to use biogeographical information on the composition of different multispecies
assemblages to derive constraints for communities.



Jared Diamond, who originally coined the term "assembly rule” for communities (1975),
gathered extensive data on species distributions of birds inhabiting a series of islands in New Guinea.
He observed that only certain combinations of species ever occurred together and that others
appeared to be forbidden in a statistically significant way (but see Connor and Simberloff’s 1979
criticism, and Gilpin and Diamond’s 1984 defense). He was thus able to construct, by inference,
several partial tables of compatible and forbidden combinations of species t0 generate a set of
empirical exclusion/coexistence rules for birds on these islands. Moreover, he observed that the ability
of specific combinations to occur together seemed to depend on the context of the other species in
the assemblage. This led Diamond to the following generalizations about community assembly.

1) Some stable communities may consist of unstable subcommunities.
2) An unstable whole may be produced from stable (subcommunities).
3) The invisibility of a subensemble (e.g., guild) may depend on the presence or absence of other

species (e.g., from other guilds) in the system.

These properties have a simple dynamic interpretation that will be discussed in section 2.

It is worth mentioning that assembly taken as a compatible parts problem has a long history
in experimental and field manipulations (e.g., Dayton 1971, Paine 1966, Davidson 1985). More
recently, Philippi et al. (1985) has completed an extensive controlled laboratory study of a 30 species
Drosophila system designed to produce assembly rules from the combinatorial patterns of coexistence
and exclusion (see also Drake 1985). This is the most complete study of its kind that I know of, and
verifies many of the phenomena listed above that Diamond inferred circumstantially from
biogeographical data.

DYNAMICS OF COMMUNITY ASSEMBLY
This section will explore a heuristic framework for studying the dynamics of community
development and will survey some results obtained from simple models of relevance to the assembly
problem.

HISTORY INDEPENDENCE AND CLIMAX

The dynamics of community development will depend critically on whether the final
composition of the system of interest is or is not dependent on global initial conditions. These global
initial conditions describe the inputs in the historical trajectory of the system; i.e., initial population
values and the specific timing and order of species introductions.

Let

8,02 (3, () Xy (8),... % (8)

be the ordered inoculation vector for the system describing the particular order, the initial population
sizes, x;, and the timing, ¢, of species introductions to the system. Note that if species i and i+1 are
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added simultaneously, then 1, = r,,,. At the other extreme, suppose each i* system generated by the
sequential dynamic operator F(S(')) has a unique positive global stable equilibrium, x;'(nj>0,
consisting of some n-sizes subset of {x,,.., x;}, then we may speak of adding each i+1 species
sequentially to the positive equilibrium determined by F(S,('). Hence, F(S,() may be thought of as
sending an initially unordered set of species {x,,., x,}, where initially for each invader x,(*)=e,
through a sequence of p equilibria finally to a unique positive globally stable equilibrium consisting
of an n species subset of {x,,..., x,}. That is,

F(S,(#) : {xpseX,) = X%(0)
P

where after p steps the dimension of the equilibrium is n, na<p x(020 , and x+ is an e
14

neighborhood of the p* equilibrium that can be reached in finite time. Furthermore, within each step
of F(S,(*)), if a species goes extinct (x; = 0) it remains so for all time unless reintroduced at a later
stage in S. Unless otherwise stated, for ease of exposition, we shall only consider the case of p distinct
species each appearing only once in S.

In general, and in particular for Volterra systems, for a given unordered set of species {x,...,

x,} and a given F, different S,(r) may produce different x+. This property, as we shall see in section
4

22, underlies Diamond’s assembly rules. If however, xx(n) is unique for {x,,..., x,} and F, then it is
14

independent of S;V ; i.e., independent of all feasible global initial conditions on the set {xl,...,x,,}.

In classical secondary succession, if there is a unique climax that can be reached from all
feasible starting points, then it must be independent of S. Such a climax system may be modelled, for
example, by a Markov process (Horn 1975) since it is history independent. In this case, it is irrelevant
to the assembly of the climax whether the initial floristic composition is complete (Egler 1954, Drury
and Nisbet 1973) (i.e., S,(0); #; = 1, = ... = t,) or whether species are added sequentially (, < 7, < ...<
1,). Such differences may affect the transient dynamics and the sequence of extinctions, but they will

not affect the final stationary state x* .

A convenient tool for characterizing the idea of sequence dependence versus independence
is a variation of Siljak’s (1975) notion of connective stability. An n-species dynamic system is said to

be connectively stable if all subsystems generated by the set of all 2" distinct interconnection

matrices is stable. That is, if all possible ways of eliminating specific pairwise interactions among
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components is stable. This condition, however, is unrealistically robust and does not address the
assembly problem.

A milder and more useful condition may be obtained if we consider, rather, only the subset
of interconnection matrices generated by the n! ways of eliminating "whole" species (not just pairwise
interactions). A dynamic system is elimination stable if all possible subsets of species are stable.

For example, consider the system:

X = 3% (1)
and its stability matrix A whose elements
x ™)
a, =
(]
a‘]

and where xx* is the independent equilibrium of the n™ subset of species. A new stability matrix
n

BA' is formed by zeroing out corresponding rows and columns defined by the interconnection matrix
E, leaving on the n™ subset of species. That is, {A’ = EAE + D} where E and D are diagonal
matrices such that the diagonal elements of E and D respectively, aree; = Qor 1,and d; = ( if ¢;
# 0 or-1ife; = 0. Notice that the elements of A will, in general, depend on the new equilibrium
defined by E. The system (1) is elimination stable if it is stable for all n.

It is easy to see that if F is a feasibly restricted family of n Volterra equations such

that B=(A+A D)f2 is negative definite, and x*(n) is a locally stable positive n-species equilibrium

generated by

FS,@) : {xp%,} = X°(0) @

then the system defined by x ‘(n) is elimination stable if and only if it is independent of S,’(?) for

a given unordered set of n species {x,, .., x,}. That is, because of the global stability of Volterra
systems for which B is always negative definite, if one can take them apart in any order, one can
reassemble them from the equilibrium components {x,, ..., x,} in any order.

In the above system, an n-component climax community is independent of global initial

conditions S"(?) if and only if it is elimination stable. This ceases to be true, however, with the

insertion in S of transient species. If, however,
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FS,(0) ¢ {xp,} = %),

having p-n transient species, is independent of S, then the system defined by x ‘(1) must be

elimination stable. That is, with transient species included in the sequence, elimination stability is a
necessary but not sufficient condition for sequence independence. Nonetheless, it should be possible

to eliminate the n climax species in any order for X (1), to generate n! equilibrium sequences S,(),

x() = e, all leadingto x ‘(n).

HISTORY DEPENDENCE AND ASSEMBLY
Suppose a globally stable n-species equilibrium x “(1) generated by (1) is not elimination

stable. That is, there are subsets of {x,,..,, x,} for which a stable feasible equilibrium does not exist.
This implies that some or possibly all of the ordered additions S,(*) under F will fail to produce

X *(n). Denoting the subset of successful sequences as {S’,(*)}, it is clear that the degree to which

{8’,(*)} is small compared with n!, is the degree to which history dependence or the uniqueness of
the assembly sequence is important.

In the sense used by Diamond (1975) and Gilpin and Case (1976), the small size of {S,(*))}
gives definition to their use of the term assembly rule. The extent to which a system or subsystem is

not elimination stable, measures the narrowness of possible pathways leadingto * °(n). That is, the

smaller {S‘,(*)}, the more precise the assembly rules.

In random simulations of competitive Volterra systems, Gilpin and Case (1976) found that
arbitrary removals of single species from stable n-species systems left the remaining n-1 species
systems stable at a frequency rapidly diminishing as n increased. Therefore, in such randomly
generated systems, assembly rules may become more restrictive in the later stages of system
development, forming an ever increasing bottleneck. This follows, in part, from the fact that randomly
generated dynamic systems are more difficult to stabilize with size (May 1973).

DENSITY MEDIATED FACILITATION AND INVASION RESISTANCE
The results of Gilpin and Case (1976), Pimm and Lawton (1978), May (1973) and Drake
(1985), indicate the possibility that a given n-species Volterra system with a stable positive equilibrium

sequence of these n stable species {x,, ..., x,} will produce x ‘(n), ie., {FS’,(*)} = ®. Rather, as
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has been demonstrated in simulation experiments (Drake 1985) it may be possible to achieve x ‘(n)

only by inserting transient species into S(*) so that
FS,(#) ¢ (Xpk,} = Ty(m)  n<p 3)

It may be shown that the effect of adding the transient species is to alter the equilibrium
densities in the sequential systems in a manner that allows sequential stable coexistence and invasion.
This effect may be called density mediated facilitation to distinguish it from physiological facilitation.

It should be noted that even if no equilibrium sequence S,(*) will produce x ‘(n) there is

always some sequence Sn(t-) that will yield x ‘(n). That is to say that the timing and not just the

order of species additions may be important in system assembly.

It is possible that a given finite set of species {x, , .., x,} may contain a subset which is
resistant to invasion by all other members of this set. Invasion resistance may be the case in some
climax systems and it is easy to construct simple examples using Volterra equations where this is true.
Although it is clearly not true in general (e.g., no-transitive species replacement cycles (Buss and
Jackson 1979)), simulation studies using Volterra equations have found that long invasion sequences
(p > 1000) with species drawn redundantly from a fixed randomly generated species pool tend to
produce invasion resistant communities (Drake 1985). It should be emphasized, however, that this
result clearly depends on having a finite species pool whose interaction parameters do not change.
Because one can always "create” a species which can invade any given Volterra system, no natural
system will ever be non-invisible in an evolutionary sense.

INVASION SUCCESSION AND EVOLUTION

In the preceding discussion of F(S(*)) with x,(*) = e we considered sequential invasions to
stable positive equilibria. At each step in F(S(*)) an invasion will either fail or it will produce a new
equilibrium system possibly not including the invader itself. What are the conditions for successful
invasion?

MacArthur and Levins (1967) studied the conditions for the successful invasion of a
symmetrical two-species Volterra competition system

i = k=Y X))

i X 4)

where
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a;20; aj=a,=ap
and
ky=k,=kp
for the resident species 1 and 2; and for the invader /
Cy=ey=0p=e;

They found that the invading species, /, can increase when rare (i.e., invade) when the foilowing
inequality is satisfied:

2
K > 22k )
l+ag

Clearly, the ability to increase when rare is necessary for invasion, and in this particular case,
it is also sufficient (condition (5) guarantees a stable 3-species equilibrium). Numerical simulations
of generalized Volterra predator-prey systems show that the condition "ability to increase when rare”
is sufficient in over 80% of the cases (Post and Pimm 1984). That is, an invader which can initially
increase when rare will seldom exit the system without indelibly altering the equilibrium.

It is easy to extend the condition (5) of MacArthur and Levins to the n-species case where
competition among the n residents «y is equal, kg equal and oy = «; = @, i = (1,.,). Condition
(5) then becomes

k > __'fil_k_“_..
! 1+(n-1)a,

If the number of residents, n, is large, we can relax the equality requirement on a;and a; and

replace them by their expectations &, and &, to obtain

na&,
1+(n-1)&,’

(6)
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where k; = k. Theterm &, in the numerator is the expected competitive effect between the invader

and the residents, and the term &, in the denominator is the expected competitive interaction among

the residents themselves. This condition shows that it is easier to invade if inieractions among
residents are stronger (results in smaller resident populations) and/or if the competition between the

invader and the residents is weaker. Clearly,as &, decreases, then &, will eventually decrease and

invasion will become more and more difficult with time.

Although illustrated in this special case, invasion difficulty in F(S,(*)) as n increases has been
observed in a number of computer studies in both linear and Volterra predator-prey systems (Post
and Pimm 1983, Drake 1985) and appears to be a robust property.

A criterion similar to (6) for the "ability to increase when rare” has been proposed by
Shigesada, Kawasaki, and Teramoto (1984) for Volterra systems with interference competition. Of
special significance is their discovery that for special systems like (4) whose interspecific coefficients
can be rewritten as a; = ¢;6;, where ¢; > 0 and 6; > 0 is the coefficient of interspecific interference,

the quantity G,=)_ B ~* will always increase with each successful invasion. Nakajima further showed

that for equation (4) the quantity Gz‘E Kx;+ will increase with succession [i.e., F(S(*))] if each i

system’s stability matrix is symmetric and negative definite. In general, it is possible to show how for
a globally stable sequence of equilibria produced by F(S(*)) one can measure the development of the
system (i.e., shifts in x*) by a sequence of liapunov functions whose sum is strictly increasing.

A general derivation of the necessary condition for invasion, "ability to increase when rare",
may be conveniently obtained from a non-equilibrium neighborhood stability analysis evaluated at the
point where the invader population is zero (x,(*)=0) and the resident’s populations are at

' N
equilibrium (x*) (Czapleski 1973, Allen 1976). It can be shown that if the augmented system is

unstable at this point, then the invader’s population will always increase.
Denoting Ay as the n x n stability matrix of the resident system Eq. (1) whose elements are

L )]
xx( r™ )

J

it follows that because s,(*)=0, then a; = 0 for i (1,..,n). This simplification allows the determinant
of the augmented (n+1) x (n+1) system having the general form of equation (1) to be expressed
conveniently
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4,1 = |Ag |layl.

Hence, the eigenvalues for the augmented system {A,} are simply the eigenvalues for the original
system {Az} plus the new eigenvalue for the invader, A, = a;. Therefore, the condition "ability to
increase when rare" is the condition that the invader’s eigenvalue at this point have a positive real
part, or that

a < 0! (7)

which for the general system (1) means that f(x) < 0. Because Volterra systems are a special case

of (1), we can use (7) to derive MacArthur and Levin’s condition (5) from (4).

Condition (7) has been called the evolution condition because it is required for a newly
evolved species to enter the general system (1). A qualitative analysis of this condition for the two
species Volterra predator-prey case suggests that such systems tend to evolve toward higher
predator/prey biomass ratios (Allen 1975). A more careful analysis (Hirata 1982) confirmed this result
by showing how selective drift in parameter values will occur with successive evolutionary
replacements of both predator and prey species, moving the system monotonically toward higher
predator/prey biomass ratios.

MULTIPLE STABLE STATES AND ORDER THROUGH COLLAPSE

At the other extreme from sequential equilibrium invasions F(S(*)), is the idea of building
systems from the top down, with the entire n-species pool {x,,...,x,}, initially present. As in Egler’s
(1954) "initial floristic composition hypothesis", assembly here may be thought of as occurring through
a process of selective extinctions or dynamic decay. The generated dual under F of the inoculation

vector, S,(0), is the extinction vector, §
Ek (‘)‘{d),xj(tj ’---yxk(‘g)]: k"[l,2,,7l]

which records the order and timing of species departures from the system. If £ # ¢, then F(5,(0))
n-k

does not lead to a stable positive n-species equilibrium, and we have a sequential collapse of the n -
k system, x * (n-k). What are some properties of x * (n-k) and § ?

Gilpin and Case (1976) used simulations to study the collapse of F (5,(0)) in randomly
initialized systems of Volterra competition equations (S,(0) chosen uniformly from an n-dimensional



56

simplex). Although they did not study & directly, they estimated an empirical rule for the number

of distinct x * (n-k) equilibria, so called "multiple stable states”, as a function of n. They found that

although there are potentially n! combinations of species, the number of observed stable combinations
grew much more slowly ( < exp(0.2(n-1)) ). Furthermore, even though the starting conditions were
random, certain outcomes were more likely to occur than others.

Both of these results suggest selectiveness in the dynamics of decay, and the possibility,

therefore, of a bias toward specific orderings of & . It is clear that without singularities, a given

system and initialization of these Volterra systems will produce a unique x '(n-k) and § .

Section 1.1 listed the triangulation property of niche overlap graphs G(C) as a nonrandom
property of natural systems (no G(C) contains minimal circuits of length greater than 3). It is worth
noting that the connectance structure of a system of Volterra competition equations may also be
described by a consumer overlap graph, G(C). To what extent could the observed triangulation
property be selected for in the dynamics of decay?

Numerical simulations of randomly structured (non-triangulated) Volterra competition
systems, initialized with all population sizes starting at 1, [FS(0) with s(0) = (1,1,1, .., 1)] show a
marked tendency for the collapsed n-k systems to become triangulated (Sugihara 1983). Therefore
independent of the topological assembly rule described earlier for the sequential addition of species,
it may be possible to obtain topological order from the sequential collapse of randomly structured
systems. The basis of this behavior must be due, in part, to the fact that triangulation in G(C) tends
to be dynamically stabilizing (Sugihara 1983).

There should be a tendency, therefore, for £ to contain species involved in non-triangulated

(large) circuits.

The triangulation property of real systems, and its relation to stability has a suggestive link
with another discovery by Lawlor (1979) and Yodzis (1982) that such natural systems, when modelled
by empirically fitted Volterra equations, tend to be more stable (faster return to equilibrium) than
equivalent randomly structured (non-triangulated) ones. Here, the triangulation property is seen to
be present at all thresholds of interaction strength (Sugihara 1984). This property of real systems,
therefore, may be responsible for their high dynamic stability.

SUMMARY
A variety of theoretical approaches for understanding the assembly of ecological systems are
surveyed. Among the static approaches, both the topology of real trophic niche spaces and the
observed patterns of species abundances suggest a very conservative method for successful species
additions to a system. This conservative assembly rule echoes the normal case in evolution in that
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it requires that systems grow in a tree-like fashion rather through the concatenation (convergence)
of distantly related branches (guilds). On a more tactical level, static biogeographical information on
species presence and absence in an area may be used to derive assembly rules as a compatible parts
problem. The dynamic basis of compatibility rules is discussed in terms of the concepts of global initial

conditions S(t) sequential dynamics F(S) and elimination stability. This preliminary framework is

intended to focus discussion for future mathematical studies of assembly in dynamic systems.

ACKNOWLEDGMENTS
The author expresses thanks to Prof. T. Fukao, Dr. H. Hirata, Dr. Y. Sugai and
Dr. N. Shigesada for stimulating discussions and helpful comments on this paper. Mr. Denis Chang
helped greatly in the final preparation of the manuscript.
This research was supported by a Japan Society for the Promotion of Science Senior Research
Fellowship awarded by the Japanese Ministry of Education (Mombusho).

REFERENCES

Allen, P, M. 1976. Darwinian evolution and a predator-prey ecology. Bull. Math. Biol. 37:389-405.
Atkin, R. H. 1974. Mathematical Structure in Human Affairs. Crane-Russak, New York, New York.

Buss, L. W, and J. B. C. Jackson. 1979. Competitive networks: Nontransitive competitive
relationships in cryptic coral reef environments. Am. Nat. 113:223-234.

Casti, J. 1979. Connectivity, Complexity and Catastrophe in Large-Scale Systems. John Wiley &
Sons, Chichester, England.

Cohen, J. E. 1977. Ratio of prey to predators in community food webs. Nature (London) 270:165-
167.

Connor, E. F., and E. D. McCoy. 1979. The statistics and biology of the species-area relationship.
Am. Nat. 113:791-833.

Connor, E. F.,, and D. Simberloff. 1979. The assembly of species communities: Chance or
competition? Ecolcgy 60:1132-1140.

Davidson, D. W. 1985. An experimental study of diffuse competition in desert harvester ants. The
Am. Nat. 125:500-506.

Dayton, P. K. 1971. Competition, disturbance and community organization: The provision and
subsequent utilization of space in a rocky intertidal environment. Ecol. Monog. 41:351-389.

Diamond, J. M. 1975. Assembly of species communities. pp. 342-444. In M. L. Cody and
J. M. Diamond (eds.), Ecology and Evolution of Communities. Harvard University Press,
Cambridge, Massachusetts.



58

Drake, J. A. 1985. Some Theoretical and Empirical Explorations of Structure in Food Webs. Ph. D.
Thesis, Purdue University, West Lafeyette, Indiana.

Drury, W. H,, and 1. C. T. Nisbet. 1973. Succession. J. Arnold Arbor., Harvard University 54:331-
368.

Egler, F. E. 1954. Vegetation science concepts. I. Initial floristic composition - a factor in old-field
vegetation development. Vegetatio 4:412-417.

Gilpin, M. E,, and T. J. Case. 1976. Multiple domains of attraction in competition communities.
Nature (London) 261:40-42.

Gilpin, M. E., and J. M. Diamond. 1984. Are species co-occurrences on islands non-random, and are
null hypotheses useful in community ecology? pp. 296-315. In D. R. Strong, IJr.,
D. Simberloff, L. G. Abele, and A. B. Thistle. 1984. Ecological Community: Conceptual
Issues and the Evidence. Princeton University Press. Princeton, New Jersey. 613 pp.

Hirata, H. 1982. Evolution of predator-prey Volterra-Lotka ecosystem with saturation effect. Bull.
Math. Biol.44:697-704.

Horn, H. S. 1975. Markovian properties of forest succession. pp. 196-211. In M. L. Cody and
J. M. Diamond (eds.), Ecology and Evolution of Communities. Harvard University Press,
Cambridge, Massachusetts.

Lawlor, L. R. 1979. Direct and indirect effects of n-species competition. Oecologia 43:355-364.

MacArthur, R. H. 1957. On the relative abundance of bird species. Proc. Natl. Acad. Sci. 43:293-
295.

MacArthur, R. H,, and R. Levins. 1967. The limiting similarity, convergence, and divergence of
coexisting species. Am. Nat. 101:377-385.

May, R. M. 1973. Stability and Complexity in Model Ecosystems. Monographs in Population
Biology 6. Princeton University Press, Princeton, New Jersey.

Motomura, 1. 1932. A statistical treatment of associations (in Japanese). Jap. J. Zool. 44:379-383.
Paine, R. T. 1966. Food web complexity and species diversity. Am. Nat, 100:65-75.

Philippi, T. E., M. P. Carpenter, T. J. Case, and M. E. Gilpin. 1985. Drosophila population
dynamics: Chaos and extinction. Ecology 68:154-159.

Pimm, S. L., and J. H. Lawton. 1978. On feeding on more than one trophic level. Nature (London)
275:542-544

Post, W. M., and S. L. Pimm. 1983. Community assembly and food web stability. Math. Bio. 64:169-
192.

Shigesada, N., K. Kawasaki, and E. Teramoto. 1984. The effect of interference competition on
stability, structure, and invasion of a multi-species system. J. Math. Biol. 21:97-113.




59

Shugart, H. H. 1984. A Theory of Forest Dynamics. Springer-Verlag, New York, New York. 278 p.
Siljak, D. D. 1975. When is a complex ecosystem stable? Math. Bio. 25:25-50.

Sugihara, G. 1980. Minimal community structure: An explanation of species abundance patterns.
Am, Nat. 116:770-787.

Sugihara, G. 1981. § = CA’,z = 1/4: A reply to Connor and McCoy. Am. Nat. 117:790-793.

Sugihara, G. 1983. Holes in niche space: A derived assembly rule and its relation to intervality. pp.
25-35. 137 p. In D. L. DeAngelis, W. M. Post, and G. Sugihara (eds.), Current Trends in
Food Web Theory: Report on a Food Web Workshop, ORNL-5983. Oak Ridge National
Laboratory, Oak Ridge, Tennessee.

Sugihara, G. 1984. Graph theory, homology and food webs. Proc. Symp. Appl. Math. 30:83-101.
American Mathematical Society, Providence, Rhode Island.

Solomon, A. M. 1986. Transient response of forests to CO, induced climate change: Simulation
modeling experiment in eastern North America. Oecologia 68:567-579.

Usher, M. B. 1979. Markovian approaches to ecological succession. J. Ani. Ecol. 48:413-426.

Yodzis, P. 1982. The compartmentation of real and assembled ecosysterns. Am. Nat. 120:551-570.




61

THE ROLE OF MULTIPLE INVASIONS OF PREDATORS
IN ORGANIZING BIOLOGICAL COMMUNITIES

Nanako Shigesada, Department of Biophysics, Kyoto University, Kyoto 606, Japan

Kohkichi Kawasaki, Science and Engineering Research Institute, Doshisha University, Kyoto 602,
Japan

Osamu Tsumura, Department of Biophysics, Kyoto University, Kyoto 606, Japan
and

Ei Teramoto, Faculty of Science and Technology, Ryukoku University, Otsu-shi, 520-21, Japan

INTRODUCTION

Much field and laboratory work has suggested that competition and predation have profound
effects on shaping community structures. In some communities, a single trophic level in isolation can
not sustain many species owing to competition, but the presence of predation from other levels can
lead to0 a community of a higher species richness. For instance, Paine (1966, 1574) showed that
removal of the top predator from an intertidal community of marine invertebrates resulted in a
decrease in the number of major space-utilizing species. Similar effects have been widely observed
in aquatic (Slobodkin 1964; Paine 1966; Dayton 1971; Porter 1972) and terrestrial systems (Darwin
1859; Summerhayes 1941; Connell 1961; Harper 1969). Such a phenomenon is referred to as
predator-mediated coexistence. Conversely, it has also been observed that addition of extra predator
species can lead to a decrease in the number of constituent species, and we call this situation
predator-induced instability (Harper 1969; Paine and Vadas 1969; Hurlbert et al. 1972; Adicott 1974;
Janzen 1976; May 1971; Lubchenco 1978).

The Lotka-Volterra models for a 2 prey-1 predator and a 2 prey-2 predator system have been
extensively investigated to elucidate mechanisms of predator-mediated coexistence (Cramer and May
1972; Roughgarden and Feldman 1975; Fujii 1977; Caswell 1978; Vance 1978; Teramoto et al. 1979,
Freedman and Waltman 1984; Hallam 1986) and predator-induced instability (May 1971, 1973).
However, a general analysis of multiple species systems consisting of more than four species has not
been fully explored, although there are a great deal of computer simulations based on real
communities (Gilpin 1975; DeAngelis 1975; Gilpin and Case 1976, Goh and Jennings 1977, Pimm and
Lawton 1977; Yodzis 1978, 1981; Pimm 1984). In multiple species communities, further complicated
interactions are expected to occur among prey and predators. Consider a community consisting of
multiple competing species. If a predator specializing on one particular prey species invades the
community, it may cause a decrease in the density of that species. Subsequently, some of the species
not preyed upon may increase their population sizes, being relieved of competition from the prey
species. This in turn could lead to a decrease in some other competing species. Furthermore, if
more than two predator species feed on competing species, one predator may influence other
predators, either detrimentally (indirect competition between predators) or beneficially (indirect
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mutualism between predators), through altering the structure of the competition community
(Lubchenco 1978; Milton 1947; Dodson 1970; Dungan 1987; Kerfoot 1983; Levine 1976; Vandermeer
1980). Thus the direct and indirect effects of predation and competition may result in various
community structures if the number of constituent species is large.

1n this article, we focus on a community consisting of multiple interfering competitive prey
species, and a number of specialists that consume the prey species. To describe the dynamics of the
prey species in isolation, Shigesada et al. (1984) previously presented a simple model using the Lotka-
Volterra equation, in which certain restrictions were imposed on the parameters representing
interspecific interference competition. They showed that the system in general has multiple stable
equilibria and the structure of these equilibria are classified into two types, depending on what
characteristic properties the constituent species have in terms of two parameters: the relative strength
of intraspecific interference to interspecific interference and the relative intrinsic growth rate
(intrinsic growth rate divided by susceptibility to interference from other species). To examine the
effect of predation on the structure of this competition community, we assume that a number of
predators (specialists) immigratc one after another into the community. If a given invasion is
successful, the community will attain a new stable equilibrium state, whose structure is also
characterized in terms of the above parameters. By comparing the community structures before and
after each invasion, the effects of the invading predator are evaluated. In this analysis we deal with
two situations in which the competition community is either closed or open with respect to
reimmigration of the species once extinct in the initially isolated competition community. The effect
of predation on a closed community is analytically investigated in §3, while an open community needs
computer simulations as shown in §4. In both cases, we show under what conditions predator-
mediated coexistence or predator-induced instability result and how indirect mutualism or indirect
competition arise between predators specializing on different prey species.

’

STRUCTURES OF COMMUNITIES WITH INTERFERENCE COMPETITION
The competitive community has been extensively studied using a Lotka-Volterra model for
N competing species:

dx, ud
— - (¢, - Z; p X)X, for i=12,.N, (1)
Jj=

where X; is the population size of species i, ¢, is the intrinsic rate of growth and y; is the coefficient
of competition of the jth species on the ith species.

Here we assume that prey species interact mostly through interference competition. Typical
examples of interference competition have been observed in sessile animals and plants that live on
rocky shores, and in motile animals that defend territories by aggression or poisoning (Case and
Gilpin 1974; Gilpin et al. 1986). To describe interference competition, Shigesada et al. (1984) have
previously presented a simple model which adopts the Lotka-Volterra equation. In that model, the
competition coefficients y; are assumed 1o be given as a product of two factors as follows:
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o, (i=),

= 2
"o, G, @

where B, represents the intrinsic interference of the ith species to other species and is termed the
interspecific interference coefficient. We use «; to distinguish intraspecific interference from interspecific
interference, B, 0,(<1) is termed the susceptibility, wherein we assume that species i can reduce the
effect of interference from other individuals of any species by a factor of a;, owing to its defensive
ability.

Substituting u; defined by (2) for the Lotka-Volierra equation (1) and changing units of
variables, we have the following basic equations:

dx N
— = ofe, - ¥x - Y XX, for iel, (3)
ds J=1Ged
where I ={1,2,...,N}, and
x = BX, ¢ =¢jo, and y, = a/B, 4

For the convenience of discussion, we assign subscripts to each species according to rank in decreasing
order of e(=¢€j/0)):

e, >e,>..>e, ®)

Thus a species with a higher intrinsic growth rate or a smaller susceptibility occupies a higher rank.
Each species is further classified depending on whether its intraspecific interference is larger than its
interspecific interference (y;=a;/B,>1), or vice versa (y; <1). Hereafter, we call a species with y;>1
an auto-competitor, and a species with y; <1 a hetero-competitor.

Equations (3) have been extensively analyzed; all the equilibrium states are expressed in
explicit forms and their stability properties analytically examined (Shigesada et al. 1984; Kawasaki et
al. 1990). Here, we briefly introduce some results of the analysis.

An equilibrium point of (4) is obtained by setting x; = 0 or f;(x)=0 for all i, and this
procedure provides 2" equilibrium points:

x/ = (e, - C(P)}§, for ieP, x/ =0 for icl-P, (6)

where I = {1,2,..,N}, P is an arbitrarily chosen subset of I, and

E; = "—1'; cwp) = Ecgek/(l + E Eg) (7)

Yi~ keP keP



Among these equilibria, biologically meaningful solutions should be nonnegative (i.e., x; >0 for ieP).
Stability properties of these nonnegative equilibrium points can be analyzed by means of the standard
linearized method together with a Liapunov function, leading to the following stability criterion:
Stability Criterion Any solution of (3) which starts from an arbitrary positive initial point always
approaches an equilibrium state having either of the following structures, I or II:

I. X * = (xl"x‘:l bx;’oﬁol --~’0)9 (83)

where x;’ is given by (6) for P=P, = {1,2,..,5}, and 5 (1 < 5 < N) is an integer for which

£, >0 for ieP, (8b)
e, > C(P) > e, (8¢)
1. x* = (%)%, %,0,.,0%,0,..0), (9a)

where x;" is given by (6) for P=P,, & {1,2,..1} + {w},andrand w (0 s ¢ < w < N) are integers for
which

§, >0 for ieP, § <0, (%b)
e, > C(P) > e, (9¢)
1+ ¥ g <o (9d)

ieP,,,

Since species i with >0 is an auto-competitor and species i with §;<0 is a hetero-
competitor, relations (8b) and (9b) indicate that in case 1, all surviving species are auto-competitors,
occupying ranks from 1 through s. On the other hand, case II consists of srviving auto-competitors
occupying the ranks from 1 through ¢ and one surviving hetero-competitor (species w) whose rank is
lower than 1. Note that the top rank may be occupied by a hetero-competitor; in such a case none
of the auto-competitors can survive (i.e, w =1, s=0). Figure 1 schematically illustrates the
community structures of types I and IL

To summarize the characteristics of stable equilibrium states of interference competition
communities: (1) Among all the auto-competitors, survival is hierarchically determined in the rank
order of e, (2) The number of surviving hetero-competitors is at most one. (3) If a hetero-competitor
of rank w can survive, it will exclude all species whose ranks are lower than w.

EFFECTS OF INVASIONS OF PREDATORS ON A CLOSED COMPETITION COMMUNITY

Let us now proceed to analyze the effects of predation on an interference competition
community as described in the previous section. Consider an isolated competition community that
has already reached a stable equilibrium state having either of the two structures, type I or Il as shown
in Fig. 1. We then assume that a number of specialist predators immigrate into this competition
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I

rank: 1 2 ... s ... w,o... W, ...w ... N
OOO0O0O0OX XX XX XXX

II.

rank: e L oW, LW LW N

1 2 .
OO OO0OX XX ®@X X XX

Figure 1. Possible structures of stable communities with interference competition.
N species are ranked in decreasing order of e/a,. These species are further classified
into auto-competitors (y; = a;/p; > 1) and hetero-competitors (y; < 1). The ranks
of hetero-competitors are indicated by ww,,...,w,. 1. All the surviving species are
auto-competitors which occupy ranks from the top down to s. II. Auto-competitors
occupy the ranks from 1 through ¢ and a single heterocompetitor occupies a lower
rank. O, auto-competitor; @, hetero-competitor; X, extinct species.

community one after another. Suppose that the time intervals between successive immigrations of
predators are long enough so that pre-occupant species have already reached a stable equilibrium state
before each new predator immigration. We regard a predator as a successful invader if the
community colonized by a small propagule of the predator moves into a new stable equilibrium state,
in which the predator becomes a constituent member. Once a predator invades successfully, the
population sizes of pre-occupant species will change and some may become extinct, thereby altering
community structure.

Hereafter, we focus on two situations in which a competition community is either closed or
open. We define a competition community as closed if, once competing species in the initially
isolated community become locally extinct (species assigned by x in Fig. 1), they are never allowed
to reimmigrate into the community at those times when a new predator invades. On the other hand,
the resident species in the initial community (species assigned by O in Fig. 1) can reimmigrate, even
if they become temporarily extinct upon invasion of predators. We might regard such a closed
competition community as a functional group or a guild as termed by Root (1967). We define a
competition community as open, if reimmigrations of initially extinct competitors (species assigned
by x in Fig. 1) are also allowed during successive invasions of predators. In this section we treat
invasions of predators in a closed competition community. Invasions in an open competition
community will be treated in the next section.



Consider a stable equilibrium community, which has been established after successive
invasions of the (n-1)th predator. When the n-th predator immigrates to this community, the
dynamics of the community are given by the following equations:

ﬁx‘ = (¢ - Z:puxj)xi (iel-G),
dr jel

Ly = (€ - TuX - x0)X, (€0, (10)
dt jel

%Y,. = (-1, + ¥X)Y, (i€G),

where I is the set of species that can stably survive in the closed competition community in isolation:
I=P,={1,2,.,s} for case 1 and I=P,,={1,2,..tw} for case II, and G is the set of n predators, each
of which specializes on a competitor of rank k; (i=1,2,.n); i.e.,, G={kk,..k,}. X, (iE]) is the
population size of competing species of rank i. Y; ((€G) is the population size of the predator
specializing on competing species of rank i. p; and e/o; (Je; ) satisfy (2) and (5), respectively. «x;
is the predation rate of predator i and x; is the product of x; and the conversion rate of the prey to
the predator. v, is the death rate of predator i.

Changing units of variables by (4) and

Y = (xf0)Y, d; = "‘iB/“l” K, = “t,/pfr (11

we express (10) in the form:

-:—r ) = ofe, - ;f?x Y%, = Fiax,  (i€l-G),

L, = ofe, - T3 - Y- 9 = Gy GeG) (12)

%yi = K(-d, + x)y, = H@y, (G),

where z=(x%,y) = (XX XndirdinVin).  Since we assumed that the preexisting community has attained
a stable equilibrium state,, the initial condition of (12) is given by z(r=0)=Z+8, where & is an
arbitrarily small vector. If the n-th predator which specializes on a competing species of rank k,

(called predator k,) can successfully invade the preexistent communityZ, the following should be
satisfied:

H,@) =K (-4 +%)>0 (13)
We can show that when (13) holds, system (12) always approaches a globally stable equilibrium point,
= (£,),which is given by (Shigesada et al. 1989),
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i = {e, - CEO)NE, (eS), % =d; (i€G), % =0 (eb),

Vi = ¢ - dJE, - CE6) (i€G), ¥, =0 (eE), 9
where
CES0) = (Lek + L d)a + Y &) (15)
ies i€G ies$

G is a set of competing species that serve as prey. Since predator , is capable of invading, G always
contains k, but not necessarily the preoccupant predators, because the presence of predator k, may

cause extinction of some resident predators. § is a set of competing species that survive but are not
preyed upon. E (=I-§-G) is a set of competing species that go to extinction, and E, is the set of
predators that survive in the preexisting community but go to extinction in the resulting community.

These sets §, G, E and E, are uniquely determined from the requirements that equilibrium £ should
be nonnegative and locally stable:

2>0 (ieS), ¥>0 (i€G), F(D<0 (icE), H(H)<0 (icE). (16)

If we denote by Z, S, G, and E the quantities corresponding to the preexisting stable state,Z
is given by (14) in which ° is substituted for . Thus the change in the population size of each
species after invasion of the n* predator is calculated by subtracting 7 = {£,5) from £ = {£y):

@& - BIE, (e NS . = i
«t = C5,0 - C(S, 17
G, - ) (iem)} $.6) - €806 (17)
= (Y% + HQIK, - Y F@jo, - Y H@IK) I 1+ Y E)
0N nE E $-é

’ 14

From (8), (9) and (16),
%20 (ieSNE), F(DE<0 (ieSNE), H, (D>0 and H(D<O (icE),

and hence the numerator in the r.A.s. of (17) is always positive. On the other hand, the denominator

becomes negative if the set of surviving competitors that have never been preyed upon(i.e., §-$NE,)

includes a hetero-competitor, and positive if otherwise. Summarizing the above analyses, we obtain
the following (see also Fig. 2):

Remark Consider a closed competition community that has been invaded by a number of specialist
predators and has reached a stable equilibrium state. When a new predator (the n* predator) invades
this community, the resulting community has the following properties:



(a)

(b)
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Figure 2. Changes in the community structure by invasion of the n* predator on a
closed competition community. In the lower row, the species in a closed competition
community are arranged in decreasing order of rank. The surviving species after
invasion of the n* predators are indicated by circles (O, auto-competitor; @, hetero-
competitor) and extinct species by cross X. The circle with an arrow in the upper
row designates a predator: the dotted version of the circle is a newly invading
predator (the n* predator); the solid version is a pre-occupant predator. Signs +,
0 and - indicate an increase, no change and decrease, respectively, in the population
sizes compared before and after invasion of the n* predator, all pre-occupant species
except the prey species increase their population sizes. Thus predator-mediated-
coexistence and indirect mutualism between predators are induced. (b) If there
remains a hetero-competitor not preyed upon after invasion of the n* predator, the
hetero-competitor increases, while all other pre-occupant species except the prey
species decrease their population sizes. Thus predator-induced-instability and
indirect competition between predators are induced.

If there exists no hetero-competitor that is not preyed upon in the resulting community, all
the pre-occupant species except prey species increase. Furthermore, some previously extinct
species become able to survive in the resulting community. Therefore, predator-mediated

coexistence and indirect mutualism between predators are induced (Fig. 2a).

If there remains a hetero-competitor not preyed upon in the resulting community, the hetero-
competitor increases its population size, while all other preoccupant species except prey
species decrease. In particular, some preoccupant prey species with lower ranks and their
predators may become extinct. Therefore, predator-induced instability and indirect

competition between predators are induced (see Fig. 2b).

oo,
P
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The above results are explained as follows: because the prey species attached by the newly
invading predator decrease, interference from that prey species will be reduced so that all other
species tend to increase (case (a)). However, if there remains a hetero-competitor not predated upon
as in case (b), it obtains the greatest advantage from this effect, preferentially increasing its population
size. As a result, other species present will be exposed to strong interference from this hetero-
competitor, and hence tend to decrease, some occasionally driven to extinction.

INVASIONS OF PREDATORS IN AN OPEN COMPETITION COMMUNITY

In the previous section, we dealt with a closed competition community in which any species
initially extinct in the isolated competition community is never allowed to reimmigrate afterward.
However, if the community is always exposed to immigration of previously extinct species (an open
community), the organization of the community upon each invasion of a predator will take a different
course from that of a closed competition community.

To address the above question, we again consider Eq. (10) for /={1,2,..N} and
G={kk,...k,}. Note that in the present case, / is the set of all the competitors as defined in Sect.
2 ranked from 1 through N in contrast to the case of the closed community in which I is the set of
competitors excluding the initially extinct ones.

Let us first consider the case that a single predator, say predator k,, invades a competition
community, which has already attained a stable equilibrium state having either of the two structures,
type I or Il, as shown in Fig. 1. The dynamics of such a community is given by (10) for I={1,2,..N},
G=1{k,}, which has been investigated by means of local stability analysis of equilibrium states
(Shigesada et al. 1989). The results of the analyses show that the predation effects predicted in the
closed communities also appear in the open communities; a predator specializing on a hetero-
competitor acts to increase the population sizes of other species, while a predator specializing on an
auto-competitor leads to decrease or increase of species richness, depending on whether or not the
community contains surviving hetero-competitors not preyed upon. Moreover, some properties
specific to the open community are revealed; predation on a hetero-competitor sometimes induces
the survival of another hetero-competitor that was previously extinct, and this newly surviving hetero-
competitor also acts to change species composition. Therefore, the direction of change of each
population size, in this case, is not necessarily fixed as in closed communities.

These properties specific to the open community generally seem to become more prominent
with successive invasions of multiple predators. However, if the number of invading predators is
greater than two, stability analysis of (10) will no longer be feasible without the help of simulation.
Here we carry out a preliminary computer simulation for the special case that I=G={1,2,...,N} and
parameters are restricted to the following particular values:

The set of prey consists of 10 species (/={1,2,..,10}) with parameters

€ = 10 - 0.5x(i-1); «,=0,=1 (i€l),

142 for i € (6791,
B, = {0.6 fori el - (619}). (18)
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Predators have the following parameters:

K =x =1 1, =1 (@i=12,..10). (19)
Among the 10 prey species, species 6, 7 and 9 with «;<f; are hetero-competitors and other species
are auto-competitors. Applying the stability criterion presented in Sect. 2 to the prey community
shows that this competition community has the following three locally stable equilibrium states,
(a), (b) and (c):

Equi. X, X, X X,
State
(@ 515 390 265 140 015 0 0 O 0 O
®) 0 o0 0 0 0 75 0 0 o0 O
¢) 041 0 O O O O 67 O O O

XX X X XX Xy

According to the prior classification scheme, equilibrium state (a) is of type I, and (b) and (c) are of
type II (see also Fig. 1).

The 10 predators are assumed to have the identical predation abilities and death rates. Each
predator may survive if its food (prey) is abundant enough so that its growth rate exceeds its death
rate.

We choose three different initial conditions: The prey species start from the neighborhood
of either of the three locally stable states, (a), (b) and (c). For each equilibrium state X°, we actually
set X(t=0)=X"+8, where §=(107, 10°,..., 10?), and the predators initially have the same small size,
Y, (t=0) = 0.1 (iel).

Starting from these initial points, solutions of (10) are numerically calculated for various
death rates n. Figure 3 demonstrates an example of numerical data of z(¢) for n=2. The species
compositions finally attained after a sufficiently long time are shown in relation to the initial
conditions and the death rates n in Fig. 4. When the death rate is large (n>7.5), none of the three
initial states allow invasion of the predators, because the growth rate of each predator does not exceed
its death rate (i.e. - n + X *<0 for all §). Let us look at the case of smaller v, for instance, n=6.
When the prey community is at equilibrium (a) in the beginning, no predator can yet invade. On the
other hand, if the prey community starts from either (b) or (c), one predator specializing on the
hetero-competitor can invade. As a result, some auto-competitors in higher ranks (species 1 and 2
in case (b); species 2 in case (c)) are able to reimmigrate and survive, raising the species richness of
the community. These characteristic effects of predation pressures are essentially similar to those
exhibited in closed communities as was shown above. When the death rate n becomes still smaller,
a new feature emerges. For the case of n=3, the prey communities starting from either (b) and
(c) will approach to the same final state as that from initial state (a), in which the hetero-competitor
is excluded, even though it was most abundant initially. This result is explained as follows; among
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Figure 3. The temporal changes of population sizes of an open community. The
solution of (10) with parameters given by (18), (19) and n=3 with initial condition
(b) is presented. Solid curves numbered (1 through 6) represent prey species, and
broken curves with circled number (1,2,3 and 6), predators. Predator 6 diminishes
its prey (species 6), finally leading to extinction of this prey-predator pair, which in
turn stimulates survival of prey and predators of higher ranks.

the invading predators, the one specializing on the most dominant hetero-competitor grows most
rapidly at first, and exhausts its prey to a low level. Thus, the interference previously exerted by the
prey (the hetero-competitor) will diminish, and auto-competitors in higher ranks will be allowed to
grow. As a result, interference from these auto-competitors is intensified so much as to exclude the
hetero-competitor along with its predator. When v is further reduced to 1, this tendency is
emphasized even more; 7 predators can always invade successfully irrespective of the initial states, and
will approach the same equilibrium state in which the 7 prey-predator pairs and a competitor not
preyed upon (species of rank 8) can survive. Note that not only auto-competitors but also hetero-
competitors which were previously extinct can survive, and that all the prey species retain their sizes
at the same level, X;'=v (ieG). Therefore, the diversity of the community increases in the sense of
both species richness and evenness of species abundance. In summary, as the multiplicity of invading
predators increases, more competing species are allowed 1o coexist, leading to higher community
diversity .

As demonstrated in the present work, a closed competition community always has a unique
stable equilibrium state for a given set of species, so that the dynamical behavior can be completely
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Figure 4. Changes of community structures by invasions of multiple predators into
open competition communities. The lower trophic level (consisting of 10
competitors) is initially at either of three stable equilibrium states, (a), (b) or ().
Then small propagules of predators (specialists) and the competitors simultaneously
immigrate into this lower trophic community. The dynamical change of the
community structure is examined by solving (10) with the aid of a computer. At the
ultimate time, each species either persists or goes to extinction; O, surviving auto-
competitor; @, surviving hetero-competitor; i, surviving predator. +,-and 0 indicate
the direction of size change of a competitor compared before and after simuitaneous
invasions of predators. n denotes the death raie of predators. As n decreases, more
predators can successfully invade at the same time. As a result, more competitors
which were previously extinct become able to survive, leading to an increase in the
species richness of the community.
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predicted. In contrast, an open competition community generally possesses multiple stable equilibria;
which equilibrium will be actually realized depends on the initial population size of each species. The
initial sizes of reimmigrating species play a particularly important role in organizing community
structures, because even if they finally become extinct, their temporary invasions may cause the
community to shift to another stable state among the multiple equilibrium points. Furthermore,
although any solution of (10) for the present case approaches asymptotically a stable equilibrium
point, there may exist some unstable equilibria that involve limit cycles or chaos, if the parameter
values or initial points are set in differcnt ways. Indirect mutualism or competition between
predators will also arise in the open community, although we did not examine it, because we have only
dealt with simultaneous invasions of multiple predators (not successive invasions of predators as in
the case of the closed community).

Finally, in the present model, we assumed (2) to describe interference competition among
prey species. Although this assumption may be t00 restrictive to represent a real community, it allows
us to deduce qualitative features of stability and structures of a competition community.
Furthermore, we are only concerned with the case that predators are specialists. The actual
community, however, should be more complex, in general including both specialists and generalists.
Predation by generalists would operate in a more complex manner compared with that of specialists
(May 1973; Vandermeer 1980). Further studies of mixed invasions of specialists and generalists are
in progress.
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COMMUNITY STRUCTURE AS A CONSEQUENCE OF
COEVOLUTION OF MULTI PREDATOR SPECIES
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and

Toshiyuki Namba, School of Commerce, Senshu University, Higashi-Mita 2-1-1, Tama-ku, Kawasaki
214, Japan

SUMMARY

Coevolutionarily stable community (CSC) structures are studied when predators search for
several species of prey distributed in a number of patches. A community is called a CSC when no
mutant predator with different food preference have a selective advantage over the individuals of the
wild type of the same species. We consider not only the equilibrium structure but also the dynamic
structure of a CSC, in a food web of two trophic levels. In a CSC, (1) the number of predator species
which simultaneously utilize two common patches does not exceed the sum of the numbers of prey
species in the two patches. In a simpler model, in which only one species of prey lives in each patch,
(2) the number of connections indicating predatory interactions between prey and predator species
does not exceed the sum of the numbers of species in the two trophic levels. Especially, when all
handling times of predation are sufficiently short, (3) two predator species rarely utilize two common
prey species simultaneously. Finally we discuss the relationship between our results based on
Darwinian coevolution, Joel Cohen’s *non-interval® food webs and George Sugihara’s *hole® in
the resource graph.

INTRODUCTION

Classical competition theory (MacArthur and Levins 1964, 1967; Levin 1970) predicts that
the number of consumer (or predator) species does not exceed the number of resource (or prey)
species and that two consumer species cannot be too similar in their resource utilization. Taese
predictions are based on feasible (non-trivial) steady states as a necessary condition for existence.

Whereas a homogeneous resource distribution is assumed in the classical competition theory,
Tilman (1982) showed that the number of predator species persisting in a patchy (or heterogeneous)
environment may be greater than the number of prey species. Classical theory assumes the system
to be at equilibrium, but several authors have developed nonequilibrium theories incorporating
nonlinearities in resource utilization (Koch 1974; Levins 1979; Armstrong and McGehee 1980). They
pointed out via computer simulations or analytically that two or more species can coexist on one
biotic resource.

Classical competition theory is based on the individual selection paradigm. MacArthur and
Levins (1967) implicitly considered evolutionary convergence of resource utilization patterns in a
niche space. Their idea virtually coincides with the concept of the evolutionarily stable strategy
introduced by Maynard Smith and Price (1973; see also Lawlor and Maynard Smith 1978). Matsuda
and Namba (1989) considered a community to be coevolutionarily stable. A coevolutionarily stable
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community (CSC; termed by Roughgarden 1979, 1983) is a community in which no mutant predator
with a different food preference has a selective advantage over individuals of the wild type of the same
species. They elucidated an upper limit of the numbers of predator species coexisting in a CSC.
Their result shows that the number of predator species which simultaneously utilize two common
patches does not exceed the sum of the numbers of prey species in the two patches.

The structure of food webs is an important problem in community ecology. Some authors
discuss the relation between ecological stability and the number of species assuming that a food web
is randomly connected (May 1972). Gardner and Ashby (1970) used "connectance” (C) as a measure
of community complexity. C is defined as the ratio of the actual number of interspecific interactions
to all possible combinations of interactions. They and other authors argue that the probability that
a steady state is stable decreases as the connectance increases (see Pimm 1982).

However, the connecting pattern of a food web is not random but is directly determined by
prey choices of predator species. A predator species may have developed an efficient way to use prey
in a patchy environment in the course of Darwinizn evolution. Some authors studied the relationship
between ecological stability of a prey-predator system and the optimal (or evolutionarily stable)
foraging property of one or a few predator species (Comins and Hassell 1979; Matsuda et al. 1986,
1987). In this paper, we examine necessary conditions for a pattern of prey choices and patch uses
of some predator species to be coevolutionarily stable. We further discuss the relationship between
the CSC structure and Joel Cohen’s *non-interval community food webs® or George Sugihara's
*hole” of the resource graph.

DOES THE NUMBER OF PREDATOR SPECIES EXCEED THAT OF THE PREY SPECIES?
We assume that many species of prey live in a patchy environment and that predators of some
species can move widely and frequently between patches and feed in many patches. We express by
I, K and M the numbers of prey species, predator species and patches, respectively. Each prey species
lives in some patches. Although an individual predator can search for any prey in any patch, we
assume random searching with respect to search for a particular prey in a patch.
We use the following notations:
x*: the density of the i prey species in the p® patch,

x* = (0 ke xt).
y,: the density of the k* predator species, (¥ = (¥y, Yo --¥1))-
I*: the set of prey species in the p* patch,
F={i|lxt>0}, E=12..M).
b,*: the encounter rate of an individual of the &% predator species with individuals of the i*® prey
species in the
p® patch, (i=1,2,...], k=1,2,..K).

h,: the handling time of the k% predator species to the i* prey species.



79

u,: the net energy gain of the k™ predator species when it feeds on an individual of the i*® prey species
(we assume that h, and u, are constants independent of p).

f;*: the fractional allocation of searching effort (patch use) of the k™ predator species to the u* patch,
(0sfr<sLEfi¥=1)
g.*: the attacking probability (prey choice) when the k' predator species encounters the i prey
species in the
p®patch (0<gt<1).
E,*: the per capita prey intake rate of the k' precator species in the u* patch.
R,: the per capita total prey intake rate of the k' predator species.

r*: the growth rate of the i* prey species in the p* patch.

a;*: the intra- or inter-specific competition coefficient measuring influence of the j** prey species to
the i*® prey species in the p* patch.

3,: the intrinsic death rate of the k* predator species.

A.(y, 2): the mortality of the k* predator species due to competition between predators and predation
by the higher  predators.

We assume that R, is described as the sum of prey intake rates in M patches (E,*) weighted by patch
uses (f,*). Namely,

M
R, = Y RE{(xY), )
p=l
where
Z&;bl:“w‘t“
Elx*) = , o (k=12,..K, p=12,..M). )
1+ Eg&b,:hux‘"

ieg*

Therefore, we can describe the prey-predator system as

‘ixﬂ K
— =0l - T alx - SAFN My, el p=12,..M),
dt jel“ I=1

dyt M Vo oy

“"it"' = [_bk - A,,(Y.Z) + Ef:Ek(x )]yp (k=1,2,...,K), (3)

vs]
Hl’ﬂ

Fiahy = — 508 Gep k12, K, p=12,..M).

1+ Y gubihyx!

el




To elucidate the coevolutionary change in patch use f,* and prey choice g,* of predators,
suppose that a community, in which a wild type predator feeds on prey in a manner specified by
coefficients { f;* } and { g;* }, is invaded by a sufficiently small number of mutant individuals of the
k™ predator (k=1,2,...,K). We assume that the mutant may differ only in patch use f,* and prey choice
g.* from the wild type.

For a community described by system (3) to be a coevolutionarily stable community (CSC),
it is necessary that any mutant of any species of predator has no larger per capita prey intake rate
than the wild type of the same species. Since we have assumed that no loss of searching effort occurs
( Lf* = 1), the predator should use only the patch in which the prey intake rate is the highest (f,”
=0 if E* > E.), becawse if f* andf;* are positive when E)* > E,*, a mutant with paich we (%} ) = (f + £.0)
has a selective advantage over the wild type f,*E* + f,*E." < (fi* + fi)E*. Thus, in a CSC,
both f,* and f,** are positive only when E* = E,* (Matsuda and Namba 1989). It would also be
related to the "ideal free distribution" of Fretwell and Lucas (1970) in which a population of a
predator species distributes among patches so as to keep the instantaneous rates of gain equal at any
time for all members of the population (Parker 1984).

Since £ f,* = 1 and E;* takes the same value for any patch satisfying f,* > 0,

R - X, RE! - BY £ = B}, @

Thus, the per capita prey intake rate is the same in any patch so long as the predator uses the patch,
and it coincides with the mean per capita prey intake rate of the predator species, R,.

By the same reasoning as in the optimal diet theory introduced by MacArthur and Pianka
(1966), the k* species of predator should i i* species of prey (gu* = 0) if uy/h, is smaller
than the mean per capita prey intake ratc 4" patch (E,*). Conversely the former should
always attack the latter (g% = 1) if uy/hy > &, .

Joining the result that E,* = R, for every k satisfying f,* > 0 with the one that g;* = 1 if
and only if uy/h, > E,*, Matsuda and Namba (1989) concluded that g,* = 1 if and only if uy/h, >
R,. Since it is assumed that u; and h, are independent of p, then g,* also becomes independent of
p in a CSC. Namely, if members of a predator species do not attack members of a prey species upon
an encounter in a patch, then the predator also ignores the prey in other patches. On the contrary,
if a predator species feeds on a prey species in some patch, then the predator should in fact exploit
the prey in any patch so long as it contains the prey and is utilized by the predator.

To investigate further properties of patch use and prey choice in a CSC, we assume that a
CSC is at steady state. Although system (3) can exhibit a stable limit cycle in which the number of
predator species exceeds the number of prey species (Waltman, Hubbell, and Hsu 1980), we may
expect that it has a dynamically stable steady state if the handling time and the interspecific
competition coefficients are sufficiently small, while the intraspecific competition coefficients are
sufficiently large. If we ignore competition between predators and assume absence of higher predators
(A, = 0), then E* = 3, at a steady state in a CSCif f,* > 0.
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Since E,* = 3§, must be satisfied for every k satisfying f,* > 0, g,* can be uniquely
determined;

i = 1 if uyhy > 8y
()
8 =0 if uyh, <8,

E} = 8, is transformed into a system of linear equations with respect to prey densities in the p*
patch x¥,

Y bluyxi = 8,01+ bihyx!s, Gor all k satisfying f; >0) (6)

where the sum is taken for all i satisfying wu,/h, > &, The number of unknowns x* is equal to or
smaller than the number of prey species in the p® patch. On the other hand, the number of
equations is the number of predator species that utilize the p® patch. Thus, if these equations are
independent, then a necessary condition for existence of positive equilibrium densities (x,* > 0) of
prey species to exist is that the number of predators utilizing the p* patch (f,* > 0) does not exceed
the number of prey species in the p* patch. Thus, as shown in Figure 1, the number of predator
species which utilize a particular patch does not exceed the number of prey species in the patch
(Matsuda and Namba 1989).

Therefore, the result of classical competition theory (MacArthur and Levins 1964; Levin 1970)
holds in every patch, while there remains a possibility that the total number of predator species in the
whole system exceeds that of prey species.

ARE THERE "NON-INTERVAL" FOOD WEBS IN A CSC?
In the previous section, we have assumed that A, = 0 and that the system rests at a steady
state. If either of these assumptions is relaxed, the above results may require some alterations.

Even if A, > 0 and/or prey densities fluctuate permanently, the following relation must be
satisfied in a CSC:

ga) =1 if wylh, > R@® and i) = 0 if uylh, < R,

E;@® = R® if ff(® > 0. ©)

Thus, g,* is independent of p in general, while the number of predator species using a particular
patch can exceed that of prey in the patch if R, is not constant. However, if two patches p and v are
simultaneously utilized by K predator species, then the densities of prey species in the two patches
must satisfy K equations, E,* = E,*. Thus, the number of predator species which simultaneously
utilize the two common patches does not exceed the sum of the numbers of prey species which are
attacked by at least one predator species among K predator species in the two patches (Matsuda and
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Figure 1. A sketch of CSC structure when A, = 0 and the community is at a steady
state. Two and three prey species live in patches I and II, respectively, as well as
four predator species. If the patterns of patch use denoted by solid lines are given,
then the connection designated by dashed lines are forbidden in a CSC, since the
number of predator species utilizing a patch cannot exceed the number of prey
species in the patch.

Namba 1989; see Fig. 2 in this paper). Note that if a prey species lives in both patches, the species
is doubly counted. '

To acquire further information on patch use, we consider a simpler case in which each patch
is occupied by only one prey species. We focus on two trophic levels in a food web and concentrate
upon K particular predator species and J particular prey species. There may be another predator
species which utilizes one of the J prey species, another prey species which is utilized by one of the
K predator species, and some other species in the higher or lower trophic levels which interacts with
one of the K predator species or one of the J prey species, respectively. If the k* predator species
utilizes S, species of prey (k=1,2,...K, 0 < S, sJ), then the number of unknowns (x;) is at most J and
the number of equations (E,;/ = R,) is equal to L,(S,~1) . The total number of connections which
indicate actual predatory interactions between predator and prey satisfies
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Figure 2. A sketch of CSC structure in the case of A, > 0 and/or in the non-
equilibrium case. Two and one prey species live in patches I and II, respectively. If
predators A, B, and C utilize both patches, then predator species D cannot use both
patches.

K
Y s, sk+J 3)
k=]

since X,(S,~1) s J. The maximum number of interactions between the J species of prey and the K
species of predator is equal to JK. Thus, the connectance C is not more than (J+K)/JK in a CSC.
If the handling times are negligible, then E,/ = E/ becomes a linear equation. There always exists a
trivial solution, ¥(t) = ¥(¢) = 0. For the existence of non-trivial solutions, the CSC condition must
be replaced by

x
;Sk<K + J, &)

(see Fig. 3). This means that the number of connections is smaller than the sum of the numbers of
predator species and prey species. Note that the connectance C in a CSC decreases as the numbers
of species J and K increase.
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Figure 3. A sketch of part of a CSC and its resource graph, when only one prey species lives in each
patch and handling times are negligible. Prey species i and ii are eaten by predator species A, ii and
iii are eaten by B, and so on. (a) The number of connections among these eight species is 7. Adding
another connection is forbidden in a CSC. (b) The resource graph representing the same structure
as (a). A line segment (indicated by B) connecting i and ii means that these prey species are eaten
by predator B. In a CSC, any set of segments in a resource graph does not make a "circle".
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Cohen (1978) introduced the terms "interval” and "non-interval” (see also Cohen and Palka
in press, for some examples of a non-interval graph). Resource utilization of a predator species can
be specified by a line segment joining prey species belonging to the predator. For example, if
predator A and B eat prey i, B and C eat ii, and C and D eat iii, then four line segments can be
arranged along a line (see Fig. 4(a)). Such a food web is called an interval. In addition to these niche
overlaps, if both D and A eat a prey species, iv, then this pattern cannot be expressed by segments on
a line. However, the pattern can be expressed by overlapping lines in a plane as shown in Fig. 4(b).
This is an example of non-interval food webs. Cohen (1978) demonstrated that a fraction of non-
interval webs is larger in random webs than in natural webs (see also Cohen and Palka, in press). In
a non-interval food web, the number of connections between prey and predators is often (but not
always, see Cohen 1978, p. 107, his Fig. 24) greater than or equal to the sum of the numbers of prey
and predator species in the web. Thus, we can argue that a non-interval food web is rarely found in
a CSC.

Sugihara (1984) used some ideas from graph theory in the study of food web structures. His
resource graph, G(R), consists of vertices representing prey species and undirected edges which
indicate that the two prey species are eaten by a single predator. In the resource graph, G(R),
Sugihara introduced some concepts; a "2-simplex" consisting of three or more vertices is a graph in
which all of the prey are utilized by at least one common predator species, and a "one-dimensional
hole” is a hollow polygon in which every pair of neighboring prey species (vertices) is utilized by at
least one predator, but no predator eat all prey species (see Fig. 5; hereafter we will simply call the
2-simplex and one dimensional hole by "simplex" and "hole", respectively). Sugihara (1984) showed
that, of the sixty communities that could possibly have holes, only two in fact did. Thus, he argued
that holes are extremely rare in real food webs.

We predict some properties of a CSC in this paper and the previous paper (Matsuda and
Namba 1989). Our results are similar (but not exactly the same, as shown by Cohen, personal
communication) to Joel Cohen’s assertion with respect to non-intervality of the niche overlap graph
and also similar to George Sugihara’s argument. However, our predictions are derived from
coevolutionary stability of a prey-predator system, while the latter two authors based theirs on static
analysis of food webs.
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prey species i and iii, B eats i and ii, C eats ii, iii, and iv, respectively. Since prey ii, ii
simplex. Prey i, ii and iii make a hole. A community characterized by this graph is not coevolutionarily stable.
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A NOTE ON THE SPECIES ABUNDANCE RELATION:
THE GEOMETRIC SERIES DISTRIBUTION

Ei Teramoto, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-21, Japan

ABSTRACT
The geometric series distribution has been proposed by several authors as one of the
mathematically representative distribution functions of the species abundance relation (May 1975,
Pielou 1969). As a supplementary note, we present here several kinds of models of interacting multi-
species systems which similarly lead to the gcometric series distribution.

INDEPENDENTLY GROWING COLONIES FORMED BY IMMIGRATION
We consider a number of growing colonies on an island which are successively established by
a pioneer immigrant from the main land. We assume that the immigration of a new founder occurs
in time interval Ar with probability AAr and each colony independently grows with the same
Malthusian growth rate e. If the primal colony is established at time =0, the probability that k
colonies are found on the island at time ¢ is given by

P(ky) = e ™An* (k-1 1)

Then the k™ colony which is established in the time interval (#,¢+ Ar) with probability p(k-1,/)A At has
population size e*™ at time T (>r), while the size of the primal colony is n,=¢*’. Therefore the
expected relative value of population size of the k& colony at time T can be calculated as

T
<n/n> = fe' 'p(k-1,0)Adt
0

@

= AYk-2) [ere Pt = (afer ),
0
where a sufficiently long time T is assumed.

Thus, in this case, it has been shown that the population sizes of colonies are given by a
geometric series distribution. On the other hand, if the colonies are formed by the pioneers from
members of preexisting colonies on the island, the population sizes are given by a hypergeometric
series distribution, as already shown by Yule (1924) in his discussion on the speciation process in
general.
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THE LOGISTIC GROWTH OF COLONIES
Here, in the same model, let us consider the case that the growth rate of colonies diminishes
as the total population on the island increases. The equations of the population growth of colonies
are given by

i
dngdt = (e-vY_nn, = (1-NJK)ny,  k=12,..,i, )
i1

where i and N, are the number of established colonies and the total population on the island at time
t, respectively. K = e/v is the carrying capacity for the total population. Summing Eqs. (3) gives

dNJdt = (1-NJK)N, @
and the solution

N@) = KN@QINGy) + (K-Nle ™1, (5)

Notice that this solution can be used until an additional new colony is formed. Comparing (3) and
(4), we have the relation

In{n®In, )} = IM(N@IN)). 6

Thus the solution of Eq. (3) can be obtained as

n(®) = {n(OIN(x)}n ()
@)
= Kn(t)IN(t) + (K-N}e *""®1 L.

Now, we shall consider again the formation of colonies at times ¢, = 0,t,,1,,...,L;,... successively.
If the i* colony is formed at time 7, then clearly there exist i colonies in the time interval 1., s ¢ <
1, By Eq. (7), the population size of the k* colony n,(z;) for k=1,2,....; at time ¢ is given by

ng(z,') = Kng(’;-])[N‘(tg-l) + {K'N‘(t|_1))e-«lr".l)]-l- ®
and the total population of i colonies N(z;) at time ¢ is
N(@) = KN DING, ) + (K-Ng,_)le "1, ©

In the next time interval (¢,1;,,), we must take into account the supposition that the (i+1)th
colony with population size n,,,(t;) = 1 is newly added at the instant ¢, so that the initial value of the
total population in this time interval is




N.@) + NG + 1. (10)

Thus, using the following notations

N(t_) = NI, B, = et

we can obtain the coupled recurrence formulae

NS =1+ KNYINS, + (K-N2 B, 1™ i=12,.. (11)

nt) = Kn(_DIN; + (K-NDBY?Y, k=12, (12)

where N, = 0 and n,(t,.,) = 1.

The formation of new colonies can successively occur until the total population reaches the
carrying capacity K. Therefore, the upper limit of the possible number of colonies i, = S is decided
by the condition N;' < K < N;,,’ and the last colony is formed at time #;,. Then, using the
recurrence formulae (11), (12) and (7) with #,=t,,, we can obtain the population sizes of colonies at
time t > 5, as

S-1
n(@ = KIN; + (K-N)BI"[ KIN; + (K-N))B)1,

ik
k=12, (13)
where B = ¢ ", Thus, taking the limit 1+, we finally obtain
. S-1
n=) = (KIN,)[] KIN; = (K-N;')B,]". k=1,2,..,8 (14)
ek

where Nj' can be evaluated by the recurrence formula (11).

Now, as we assumed previously, if the colonies are formed by a Poisson process, the average
time ¢; of the formation of the (j+ 1) colony becomes 1; = j/A and, using these average vaiues we have
B; = e**. Figure 1 shows the growth of the total population calculated by Egs. (11), where the
parameter values are e* = 1.2 and 1/A = 5. In this case there are 19 colonies (S = 19) at the final
stage. In Fig. 2, the logarithm of population sizes n,(«) is plotted as a function of rank k (rank size
relation), which shows a linear relation that is a geometric series distribution in the wide range of &
values, excepting cases in which population sizes are small.
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A STRONG COMPETITION MODEL

In 1932, Motomura showed that the data of population sizes of bottom fauna obtained by
Miyadi (1931) can be fairly represented by a geometric series distribution, and a possible explanation
was given by Uchida (1943) and Motomura (1947), using a simple competition model.

They considered that each of S species (1,2,...,5) ranked in descending order of competitive
dominance has n individuals and these nS individuals are randomly distributed over the area 4. It is
assumed that each individual occupies its own habitat area @ << 4, but in each of these habitats only
one individual of the most dominant species can survive.

The probability that this unit habitat area contains no individual of species 1 is

(1 - alA) =r’, (15)

where r = 1 - a/A and the probability that at least one individual of species 1 occupies this area is 1 -
r'. On the other hand, the number of available habitat areas is A/a; therefore, the average number
of survivors of species 1 is given by

<n> = (1-r"Afa = (1-r"(1-r)

=l+r+rt+ . +rlcn (16)

The probability that no individual of species 1 but at least one individual of species 2 is found
in this area is 7'(1-r"); thus, the average number of survivors of species 2 is given by

<n> = r"(1-r™Afa = r"(1-r®/1-n. (17

Similarly, the probability that no individual of species 1,2,..., k-1 but at least one individual of species
k is found in this area is #*""(1-r"), and the average number of survivors of species k is given by

<n> = r&D(1-rm(1-r). (18)

This Motomura-Uchida model may be the simplest intuitive model which exhibits the geometric series
distribution.

Now we show a stochastic version of the above model. Let us again consider a unit habitat
area which can be occupied by only one individual. From the species pool consisting of S species, an
individual invades this area with probability A4t in the time interval At and the success of invasion
occurs only when the former habitant is one of the lower-ranked species.

The probability that this area is occupied by an individual of species k at time ¢, P,(¢), satisfies
the equation
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k
dP(n/dt = A(1 - EP;'(’)} - Ak-1DP®, k=12,..,S, (19)

j=1

where the first term represents the probability that the former inhabitant of lower rank is replaced
by the invasion of an individual of species k, and the second term is the probability that the individual
of species k which already occupied this habitat is replaced by an invader of higher rank.

If we introduce the generating function

F(zr) = Y Pyr)zt, (20)
ksl
where v = At, we have
oF oF Z
o 2L L a-p. 21
relhi l—z( F) (21)

The solution with initial condition P(0) = 6%, F(z,0) = z" can be obtained as
F(z,t) = 1 - (1-2)(1-z% *%)/(1-ze~%)
= 1 = (1-2)[1+ze " +22%e 2+ 425 e @0, (22)

The probability P,(¢) is given by the coefficient of 2%, and we have

Pt) = (1-e™e &k =12,.-1,
= M k =iy (23)
=0, k> i,

Therefore, if there are M available unit habitat areas, the expected population size of species
k at time ¢, <n,(t)> = M P,(t) is given by a geometric series distribution, though due to the
assumptions all habitats are occupied by the most dominant species 1 at the final stage.

A LOTKA-VOLTERRA MODEL OF ONE-SIDED COMPETITION
In this section, in order to re-examine the above competition model from the standpoint of
population dynamics, we shall consider a Lotka-Volterra competition model of S species ranked again
in descending order of competitive dominance. Here we assume that each species suffers competitive
interference only from species of higher rank. Then the dynamical change of a population of the k*
species is given by
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k
dnjdt = (r, - Ea,qnj)nk, k=12,.8. (24)
i1

Here, for mathematical simplicity, we assume that the coefficients a,; can be written as

a; = 0., forj =k, @)
=oB, Sforjek,

where a; and B, are intrinsic factors of intra- and interspecific interference respectively, and these
effects on the k" species are reduced by a factor o, (<1) owing to the defensive ability of the k*
species. Then Eq. (24) can be rewritten as

k-1

dejdt = oe, - x, - v, k=125, (26)
j=l

Where xk = akl‘l‘., ek = r‘/ak and Vi, = ﬁ,\/ak.
Here let us consider the positive stationary state which can be obtained as a solution (x,'s >
0) of the equations

&-1
€ - X - Ev,t; =0, k=12..5, 27

j=1

from which we can readily have the relation

=l -+ (1 -v ), k=12.95, (28)

where €, = 0. Thus we can obtain the solution of Egs. (27) in a form
k-1
x=(g - )+ Y ALe-¢€), k=125, (29)
is1

where

k-1
Ay = TTA-v). (30)
isj

Therefore, if we consider a special case such that
v;=PB/e; <1 and ¢ 2¢., foralli

the Eqgs. (29) give a positive stationary solution and its global stability can also be shown; the
Lyapunov function is given by
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s
H (X %% = 3 (vJelx, - xp - xlog(xy/xp)].
k=1

Furthermore, if €; = ¢ for all i, we have

k-1
x, =€¢ and x, = H(l—v,.) k=12,..,5. (31)

i

Hence, the population size distribution is given by a geometric series distribution, where a; = a and
v; = v for all i:

n, = (ela)(1-v)*L. (32)

SUMMARY

As a supplementary discussion on the species abundance relation, we present severai kinds
of models which similarly lead to the geometric series distribution. It has been shown that, in the case
of size distribution of growing colonies, the geometric series distribution is derived from a compound
process of the Poisson process of immigration of new pioneers, and the Malthusian growth of
established colonies. It is also shown that a similar rank-size relation can be obtained even when
taking into account logistic growth of the total population.

On the other hand, populations of a multi-species system with a strictly ordered rank of
competitive dominance seem to show the characteristic pattern of the geometric series distribution,
as shown by the original model given by Motomura and Uchida, and by its stochastic version given
in Sect. 3. This supposition has also been supported by considering the solution of Lotka-Volterra’s
equation of a one-sided competition model.
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Food Web Theory

At the level of the food web a broad array of research directions exists. In recent years, the ecological
theory of food webs has to some extent broken away from the classical equilibrium theory approach
and is more oriented towards studying the dynamical implications of detailed mechanisms at lower
levels (e.g., interactions between populations or subpopulations) without making prior assumptions
about stability at the system level. This is reflected in the emphasis on spatial scale, temporal
variability and disturbances in some of the talks. The search for general unifying principles is still a
driving force behind much of the work in food web theory, however.
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THE TEMPORAL VARIABILITY OF SPECIES DENSITIES

Andrew Redfearn, Graduate Program in Ecology, University of Tennessee, Knoxville, Tennessee
37996, USA,

and

Stuart L. Pimm, Department of Zoology, University of Tennessee, Knoxville, Tennessee 37996, USA,
Department of Ecosystem Management, University of New England, Armidale, N.S.W. 2351, Australia

INTRODUCTION

Ecologists use the term ’stability’ to mean a number of different things (Pimm 1984a). One
use is to equate stability with low variability in population density over time (henceforth, temporal
variability). Temporal variability varies greatly from species to species, so what affects it? There are
at least three sets of factors: the variability of extrinsic abiotic factors, food web structure, and the
intrinsic features of the species themselves.

We can measure temporal variability using at least three statistics: the coefficient of variation
of density (CV); the standard deviation of the logarithms of density (SDL); and the variance in the
differences between logarithms of density for pairs of consecutive years (called annual variability,
hence AV, by Wolda 1978). There are advantages and disadvantages to each measure (Williamson
1984), though in our experience, the measures are strongly correlated across sets of taxonomically
related species. The increasing availability of long-term data sets allows one to calculate these
statistics for many species and so to begin to understand the various causes of species differences in
temporal variability.

THE VARIABILITY OF THE ENVIRONMENT

Temporal variability will depend on the variability of the abiotic factors that directly
determine a species’ survivorship and reproduction. We might expect a population’s temporal
variability to be higher where key abiotic variables are themselves more variable. British bird
populations, for example, have densities determined, in part, by the severity of cold winters (Pimm
1984b). So we might expect communities experiencing more variable abiotic conditions to have
species whose densities are similarly more variable. Malicky (1976), for example, found that the
numbers of emerging caddisflies were more variable from year to year in a stream that varied in
temperature from 0 to 19°C, than in a nearby similar one that varied from only 6.0 to 6.3°C.
Similarly, McGowan and Walker (1985) noted the high similarity of species composition of plankton
samples taken years apart from the Central Pacific Gyre. The Gyre is a gently-circulating, well-mixed
body of water. These high similarities contrast with the low similarity of plankton samples taken only
hours apart from turbulent areas in the California current. Salinities were much more variable in the
Current than in the Gyre.

Not all such comparisons succeed. Wolda (1983) tested Elton’s (1958) assertion that tropical
species have populations that fluctuate less (are "more stable”) than those of temperate species. Using
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data on a variety of insect taxa, Wolda concluded that "tropical insects are about as stable, ...as
temperate insects, even insects from a relatively undisturbed tropical forest".

Pimm (1984b) suspected that resident species of British birds, which experience occasional
hard winters, should be more variable than migrant species. For whatever reasons, migrant species
are marginally more variable than resident species.

FOOD WEB EFFECTS

While changes in physical variables may affect a species’ density directly, they must also affect
density indirectly by changing the density of the species’ food supply, competitors, predators and
parasites, and mutualists. We should expect the patterns of interactions within a community, i.e. the
food web, to affect population variability. Comparisons have involved different systems of putatively
different food web complexities: tropical systems versus simple temperate systems and natural systems
versus simple agricultural systems. These systems differ in ways other than just complexity, however,
and so differences in population variability may be due to other causes. As already noted, there do
not appear to be obvious differences in variability between tropical and temperate populations. Insect
species in agricultural systems, however, do appear to be more variable than those in forest
communities (Wolda 1983, Rejmanek and Spitzer 1982).

An alternative way to explore the role of food web structure on temporal variability is to
consider the arguments that relate temporal variability to the diet breadth of a species. MacArthur
(1955) argued that species exploiting many food species should be less temporally variable than more
specialized species. If one food species failed, then a polyphagous species could switch to alternative
supplies, while a more specialized species could not. In fact, host switching is not necessary for this
argument. Some polyphagous insect species may be composed of separate sub-populations that each
specialize on different local hosts (Fox and Morrow 1981). The failure of one of these hosts may
severely affect the sub-population, but the total population may be little affected.

Interestingly, Watt (1964) suggested a diametrically opposite affect to MacArthur’s. Consider
species that are usually rare -- held there by inclement conditions or effective predators. During rare
favorable conditions, polyphagous species have the potential to exploit a larger proportion of the
environment and to spend less time searching for suitable resources than specialized species. Thus,
polyphagous species may increase more rapidly, attain higher densities, and so be more temporally
variable. Specialized species living in monocultures of their prey will also be able to increase quickly
and be highly variable. (Perhaps this explains why insect herbivores in agricultural communities are
so variable.)

These two opposing arguments are summarized in Fig. 1. MacArthur’s idea relates to the
effects of deviations below the norm (crashes), while Watt’s idea relates to deviations above it
(outbreaks). There may be data to support both MacArthur’s and Watt’s arguments. For aphids and
moths in Britain, we (Redfearn and Pimm 1988) have found either no correlation or negative
correlations between temporal variability and the degree of polyphagy (Fig. 2a). Rejmanek and
Spitzer (1982) found a positive correlation between temporal variability and the degree of polyphagy
in Noctuid moths in South Bohemia (Fig. 2b).
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Figure 1. Caricature of the two opposing arguments of MacArthur (1955) and Watt (1964).
MacArthur suggested that specialist species may be more variable because they are likely to be more
susceptible to population crashes. Watt said that polyphagous species may be more variable because
they may be able to attain higher numbers during favorable periods. (After Redfearn and Pimm

1988.)
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Figure 2. Variability versus polyphagy for (a) 26 species of British aphids analyzed by Redfearn and
Pimm (1988) and collected by the Rothamsted Insect Survey at Silwood Park, England (see Redfearn
and Pimm, 1988 for references to the raw data) and (b) 72 species of Soutli Bohemian Noctuid moths
analyzed and collected by Rejmanek and Spitzer (1982). Variability is measured as the standard
deviation of the log,,(N,), where N, is the annual density in year ¢, calculated over (a) 13 to 16 years
and (b) 12 years. Polyphagy is estimated a) by the logarithm of the number of recorded host plants
and (b) as the following categories: 1-on one plant genus, 2-on one family, 3-on two to three families,
and 4-on more than three families of plants (Rejmanek and Spitzer 1982).
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Parallel arguments may be applied to the diversity of predators a species suffers: more diverse
communities might be predicted to provide more reliable control of a set of prey species, which would
then have less variable densities. Hansson and his colleagues (Hansson 1987, (and see review in
Hanski 1987) have shown that voles (C/zthrionomys and Microtus species) are more variable in the
north of Scandinavia than in the south. High variability is associated with multi-annual cycles, which,
moreover, are synchronous across species, including insectivorous shrews and birds. These latitudinal
differences, Hansson argues, stem from there being only one important (and specialized) vole predator
in the north (the least weasel, Mustela nivalis). In the south, there are a variety of generalized
predators (e.g. the fox, Vulpes vuipes). These predators, though important to the voles gain most of
their food from other herbivores (e.g. rabbits, Oryctolagus cuniculus). Thus, it is the greater diversity
of predators in the south that ultimately result in the voles being less variable there.

INTRINSIC SPECIES DIFFERENCES

Species differ in many ways that could affect the responses of their densities to abiotic
variables and the densities of the species with which they interact. One approach to investigating
these species differences is to examine the relationship between body size and temporal variability.
We have assembled 202 previously published population studies of terrestrial animals that were
conducted at least annually and for at least 15 years. The data comprise 116 bird studies, 43 mammal
studies, and 43 insect studies. The majority of the bird data were collected by the British Trust for
Ornithology’s (B.T.O) Common Bird Census and are published annually in Bird Study. The data were
supplied to us by the Trust’s director, R. J. O’Connor. Many of the insects are British moths and
aphids collected by the Rothamsted Insect Survey. References to the annual reports presenting these
data are given in Redfearn and Pimm (1988). Most of the remaining studies were used or referred
to by two other comparative studies of population dynamics (Tanner 1966, Peterson et al. 1984),
Finally, 19 miscellaneous studies were assembled by Stuart L. Pimm’s graduate ecology class of 1986.
Both references and data for all but the B.T.O. studies are available on request on IBM-compatible
5.25" discs.

We have calculated three indices of variability (CV, SDL, AV) for each population over just
15 years. Temporal variability increases continuously as more years of data are included in the
estimate of temporal variability. Whatever the measure of temporal variability, small-bodied species
were significantly more variable than large-bodied species (P < 0.0001, in all cases; Fig. 3). This
correlation was probably anticipated by most of our readers, but it is not inevitable, nor is its
explanation obvious. The correlation may be due to body size directly or through correlations of body
size with reproductive rate, longevity, or other factors.

BODY SIZE

Small-bodied species may be more vulnerable to inclement weather and so be more
temporally variable than large-bodied species (Lindstedt and Boyce 1985). Data on the percentage
decline of British bird species, of various body sizes, during hard winters support this idea
(Cawthorne and Marchant 1980).
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RATE OF POPULATION INCREASE

The rate of population increase, r, has a strong correlation with body size (Southwood 1981):
large-bodied species have low rates of increase. Rate of increase may affect temporal variability in
diametrically opposite ways (Pimm 1984b).

(i) Populations with high r will recover from population crashes more rapidly than those with
lowr. Thus, following the same initial decline, high r populations will spend less time at low densities
and may, therefore, be less variable than low r species. This relationship holds for British bird
populations (Pimm 1984b), in which temporal variability depends on the decrease in abundance
following hard winters and the rate at which normal abundances are recovered.

(ii) Populations with high r may be more temporally variable than those with low r, for one
of two reasons. (1) If there are time delays in mortality and natality, populations with sufficiently high
r may first overshoot, then undershoot equilibrium, leading perhaps to simple two-point cycles, or to
much more complicated dynamics as r increases (May et al. 1978). In our collection of population
studies, obviously cycling species were not always small-bodied (hence high r). But, cycling species
tended to be more temporally variable than non-cycling species of the same body size (Fig. 3). This
suggests that if high r causes cycling and this contributes to high temporal variability, the effects are
independent of, and additional to, the main effect of body size in determining temporal variability.
Small-bodied species are highly variable even when no cycles are apparent. We have an important
caveat: many of the populations may show simple cycles, but these may not be apparent in only 15
years of data. (Many of the species for which we did detect simple cycles were counted for much
longer than 15 years.) Nor can we exclude the possibility that populations show complex, yet
deterministic changes of density; the analyses of Schaffer and Kot (1986) show that such populations
may be much more common than once thought. (2) The second reason for a positive correlation
between reproductive rate and temporal variability, involves our supposing that the equilibrium
density of a population is itself variable. Species with high r will track this variable equilibrium, while
populations with low r will respond more slowly, and not tend to track the equilibrium. This
possibility may hold for Noctuid moths, in which high r species are the more variable (Spitzer et al.
1984). (This is the opposite resu!t from that which we have discussed for British birds.)

Whether one finds a positive or a negative correlation between r and temporal variability may
reflect the time-interval between counts and the time over which the population is counted relative
to the life-span of the organism, as much as species-to-species differences. Thus, we would expect all
populations to track very long-term environmental changes, and to have corresponding changes in
density. Over short periods, high r populations may track better than low r populations, and so low
r populations will vary less. And over intervals dominated by rare, but severe population crashes,
high r species will vary less.

LONGEVITY

Large-bodied species also tend to be long-lived (Bonner 1965), so large-bodied species might
be expected to vary less in density, because, in the extreme, it may be the same individuals that are
counted in each of the years of the study. In contrast, small-bodied species may have gone through
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several generations in each of the years. A hypothetical population of adult redwood trees might
show no density variation at all over, say, 15 years!

In order to evaluate this effect, we would need to calculate temporal variability from
generation to generation rather than from year to year. There is a simpler alternative though.
Animals that weigh less than 0.1kg (small birds, small mammals, and insects) are likely to complete
their lives within a year, or to have generation times on the order of a year (Bonner 1965). The
negative relationship between temporal variability and body size not only holds for this subset of the
data (Fig. 3), but the associated regressions have even more negative slopes than for the combined
data. For this subset, the different years of data must generally involve different individuals, and so
large-bodied species averaging out fluctuations cannot be the reason for why there is a negative
correlation.

OTHER FACTORS

Small-bodied species may be more variable because they are more specialized than large-
bodied species. This seems the least likely explanation for the overall negative correlation. First, as
we have already mentioned, polyphagy does not necessarily decrease variability, and when it does, the
correlation is rarely a strong one. Second, although within taxa, large-bodied species tend to be more
polyphagous (Wasserman and Mitter 1978), it seems unreasonable to suggest that mammals are less
variable than insects because they are sufficiently more polyphagous than insects.

There must be many other correlates of body size that also affect temporal variability.
However, the species that contribute to the relationship in Fig. 3 are diverse both trophically and
taxonomically. The very smallest species (aphids) are herbivorous as are the very largest species
(mammals). So the negative relationship is not due to trophic differences.
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Figure 3. Three measures of population variability versus body weight. All estimates are calculated
for 15 years of estimates of annual density, N, AV is the variance of (log,(N,) - 10og;o(N,,,)), CV is
the coefficient of variation of the N,, and SDL is the standard deviation of the log,,(N,). Solid circles
are species that show pronounced cycles of abundance. For each measure of variability, separate
regression lines are given for small species (weighing less than 0.1 kg), and all species combined.
Small species might be expected to have life spans of about a year or less.
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PERFECT AND APPROXIMATE AGGREGATIONS IN MODEL ECOSYSTEMS
Yoh Iwasa, Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan

SUMMARY

Simple ecosystem models sometimes work much better than complex and realistic ones both
in understanding and in predicting an ecosystem’s behavior. Here I report a recent advancement in
the theoretical study of simplification of models by the aggregation of variables. First, the necessary
and sufficient condition for perfect aggregation of nonlinear dynamics is presented and applied to
several examples of ecological models, including the growth of a cohort, an exploiter and its resource,
a population with spatial structure, a stage-structured population, and a multi-species system. The
perfect aggregation condition can be extended to stochastic dynamic models. These support the
aggregation of similar or substitutable variables. Next, the best approximate aggregation of dynamical
systems is studied, which minimizes a certain criterion of inconsistency between aggregated and
original systems. Aggregation giving the least square deviation of a vector field is obtained for any
nonlinear dynamical system. Best aggregations of linear systems around the equilibrium is then
examined by using various criteria to minimize, such as (1) difference in vector field, (2) difference
in variables at a certain point in time, (3) difference in temporally averaged variables, and (4) the
temporal average of the square difference in variables. In short, the best aggregated dynamics greatly
depend on the choice of criterion, in particular the selection of the time horizon and of the weighting
according to the initial state.

INTRODUCTION

The reduction of dimensionality of models by aggregating variables is a fundamental aspect
of ecological modelling. Every ecological description includes some degree of aggregation, because
any model, no matter how large and detailed it is, is made possible by neglecting further details within
each component.

A realistic model includes all the processes that potentially affect the system we study, in
order to explain and predict as many aspects of the system’s behavior as possible. As the model
becomes more complex, the parameter estimate from available data becomes increasingly difficult and
unreliable.

Even when computation. capacity allows us to deal with a large and realistic model, an
aggregated or otherwise simplified model may work better than a corresponding complex one. For
example, Ludwig and Walters (1985, and also Ludwig 1983) constructed optimal fishing policies using
different mathematical models whose parameters were calculated from simulated data. They
demonstrated that a small and highly aggregated model may be much better in estimating the true
optimal fishing policy than a large model, even for data generated using the latter model. In addition,
smaller models are easier to comprehend, and thereby give better intuition about the systems they
describe. Small models also have an obvious economic advantage.

The study of general properties of model aggregation is therefore an important issue in
theoretical systems ecology, and has been studied for conservative flow systems (O’Neill and Rust
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1979; Gardner et al. 1982; Cale et al. 1983), and also in more general systems (Luckyanov et al. 1983;
Luckyanov 1984; see Sugihara et al. 1984 for a general discussion).

In this paper 1 summarize recent theoretical studies of the aggregation of dynamics in
ecological modelling (Iwasa et al. 1987, 1989; Gard 1988). If a detailed model as a system of
(nonlinear) differential equations and the manner of combining the variables into a smaller number
of macrovariables are given, the perfect aggregation condition tells us whether there exists a simplified
dynamical system for the macrovariables which is consistent with the original system (Iwasa et al.
1987). The perfect aggregation condition can be extended to stochastic dynamic models (Gard 1988).
When the perfect aggregation is not possible, the best approximate aggregated dynamics may be
searched, which minimizes a given measure of the inconsistency (Iwasa et al. 1989).

PERFECT AGGREGATION
PERFECT AGGREGATION THEOREM

The general framework of the aggregation problem for dynamical systems is as follows
(Fig. 1). There exist microdynamics which describe the full behavior of the system:
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Figure 1. Scheme for aggregation of nonlinear dynamics. Here microdynamics f,
(active) aggregation function g, and aggregated dynamics F are all regarded as
mapping. Together with passive aggregation function (g tilde), which is naturally
induced by g, the consistency of these four mappings is equivalent to the perfect
aggregation condition.
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dXjdr = f(Xp-X,), M

where i = 1,..n. There are m macrovariables calculated from the microvariables using the aggregation
function g(X,,..X,).

Y, = g(X,X,), )

where j=1,.,m, with m < n. One then wonders whether there are aggregated dynamics for these
macrovariables, such that

avjdt = F(Y\u.Yo), 3)
where j=1,..,m, and these could be consistent with the microdynamics (1). If so, we say that perfect
aggregation is realized in the scheme of microdynamics (1) and aggregation function (2).

The study of when exact aggregation is possible gives a general idea of what the systems are

which allow us to aggregate without large mistakes in macrovariables. The aggregated dynamics give
the rate of change in macrovariable Y; (j=1,.,m) as

(@Ydt)sygepues = F18:1(X),-8m(X)), )

where X = (X,,..X,), while the microdynamics combined with the aggregation function (2) yield
@Y)d),,, = Y (083X )f(X). ®)
i=]

Two dynamics are perfectly consistent if (4) and (5) are the same for all X (Luckyanov et al. 1983;
Iwasa et al. 1987).
Theorem 1 (Perfect Aggregation Theorem) Suppose the functions f; and g; are continuously

differentiable on an open set D. Assume for each Y, the set g'(Y) = {XED: g(X)=Y} is connected.
Define the mxn matrix-valued functions B = {B;} and 4 = {4;} on D by

B, =3g/ox, and A, = a(g B,fplox,. (6)

Then perfect aggregation of (1) is implemented by (2) if and only if

AB*B = A on D, ™
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where B* is the generalized inverse of the matrix B.
See Iwasa et al. (1987) for proof. The generalized inverse B* of an mxn matrix B is an nxm matrix
defined by the symmetry of both B*B and BB* and by the equation

(BB* -I)B = 0 = B*(BB* - I), 8)

where I is the mxm identity matrix (Penrose 1955). When the matrix B has full row rank,
B*=B"(BB")" (superscript T denoting transpose).

ECOLOGICAL EXAMPLES OF PERFECT AGGREGATION

To illustrate how to apply the perfect aggregation theorem, / now examine several examples
from ecological modelling.
(1) A community of competitors

The most familiar model for interacting species is the Lotka-Volterra system. For three
competitors, the dynamics may be written:

3

dxjdt = rX(1 - Y aX/K), ©)

i

where i = 1, 2, 3, and X; indicates the abundance of species i. Assume a; = 1, for each i. Suppose
we are interested only in the abundance of one of the species, say X;, and ask whether we can
aggregate the abundance of the other two into a single variable. Namely, we are asking about the
possibility of perfect aggregation with the aggregation function:

In examining this system we are led to set

110 12 0
B = , and therefore B* = [1/2 0}
001
01
The condition Eq. (7) becomes:
rl = rb KI = Kb a:" = aw aB= az‘, and (au+021)ﬂ = 1- (11)

The first four equalities indicate that the two species to be lumped must be functionally similar, for
no error to result. However, the last equality in (11) implies that there may be asymmetry in inter-
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specific competition between the two species if their average effect is the same as for intra-specific
competition.
(2) A size structured population

The second example is the dynamics of a stage structured population. Individuals are
classified into several life history stages or size classes, N}, N, .., N,, which follow the dynamics:

le/dt = Em(Ni - (“1 + VN|)N1 - 81N1’
is2
aNJde = 8Ny -, - 8Ny (23,m-D), 12

dNJd‘t = gn-an-l = unNn’

where m; and g; are the fertility and growth rate, respectively, of an individual of stage i. Only the
youngest stage is assumed to receive density dependent mortality (u;+vN)).

Let us consider separating the juveniles into their own class but lump all the older stages into
a single group:

Y, = b,N1, (13)
Yz = sz2+..+b.N..

Here we have weighted each class by its biomass b; so that Y; and Y, represent the total biomasses of
juveniles and adults,
Theorem 1 tells us that the aggregation (13) can be perfect if and only if

mafb, = myby = .. = m b, (14a)
and
(by/b-1)g; - uy = (bybs-1)gs - Uy = .. (14b)
= (bbpi-1)Ba1 - Uny = - Uy

Equation (14a) indicates that the fertility of an adult at various stages must be proportional to the
weight, and (14b) says that relative growth rate minus mortality loss is common to all the adult stages.
The aggregated dynamics are:

dYyjdt = (bymb,)Y; - (uy+(vb,)Y)Y, - gY, (15)
dYyjdt = (bgyb)Y, - u,Y,

(3) Cohort dynamics

Both examples above are linear aggregation. The theorem can apply to nonlinear aggregation
too. Consider the following dynamics of the number of individuals X, of a cohort and the average
individual weight X:
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dX /dt = -(u+v(X)X,)X, (16)
dXyjdt = rX,(1-X,JK(X,)).

Now we examine the possibility of aggregating into 1-dimensional dynamics with the total biomass Y
= X X,. The necessary and sufficient condition for perfect aggregation is

V(X)) = v.X, and K(X) = KX, 17
The aggregated dynamics are then:
dY/dt = Y((ru) - (r+v K,)Y/K)). (18)

(4) Exploiter and resource
Another example of nonlinear aggregation is a population of size X, and its resource species
X

dXdt = rX,(1-X/K(X,)), (19)
dX,/dt = mX, - Xa(X,).

X, grows logistically, with a carrying capacity K(X,) that depends on the abundance of the resource.
The resource X, multiplies with Malthusian parameter m, but is consumed by the species X, whose
per capita rate of resource consumption is a(X,). Calculations show that the ratio Y = X /X, lead to
perfect aggregation if and only if

K(X,) = rXy/(a(X))+c), (20)
where ¢ is an arbitrary constant. The aggregated dynamics are:
dYjdt = ((r-m)<Y)Y. (21)

(5) A spatially structured population

One of the most common applications of variable aggregation is neglect of spatial
heterogeneity in population dynamics. As the simplest example, consider a species living in two
subhabitats (indicated by i=1,2). Suppose that the organisms interact within each subhabitat and
migrate randomly between them. The population sizes of organisms in two subhabitats, u; and u,,
follow:

dujJdt = fi(u,) + D(uyuy), (22)
dug/dt = f(u) + D(usi),

where f(u;) is the rate of population growth in the i-th subhabitat, and D is the migration rate.
Under what conditions can we neglect spatial structure without incurring error? We usually
assume that, if the migration rate between habitats is sufficiently large, the size of the whole
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population can be treated as a single variable instead of following the population size within each
subhabitat. Perfect aggregation, however, is not possible in the realistic situation. Consider the
aggregation into the total population size U = u,+u, Theorem 1 tells us that perfect aggregation is
possible only when both f(u) and f,(u) are linear with the same coefficient for the first-order term,
which is severely restrictive.

From these studies, we conclude that similar or substitutable variables may be aggregated
without causing a large error, and that perfect aggregation condition is sometimes too stringent to
hold widely.

A STOCHASTIC DYNAMICS AGGREGATION MODEL

Recently Gard (1988) extended the above perfect aggregation theorem for deterministic
models to models expressed as stochastic differential equations. For example, cohort dynamics (16)
become

dX jdt = -+v(X X)X, + XdB,/dt, (23a)
dXydt = rX,(1-X,/K(X,)) + XAB,dt, (23b)

where dBj/dt is the white noise indicating purely random stochastic fluctuation without autocorrelation.
Consider the aggregation into a 1-dimensional model with the total biomass Y = X\X,. Following the
chain rule of stochastic differential equation (Ito integral), we can derive the set of stochastic
differential equations for the macrovariable Y, and the perfect aggregation holds if the latter can be
written using macrovariable(s) only.

Perfect aggregation now requires conditions for stochastic terms in addition to those for
deterministic terms. Gard (1988) shows that the perfect aggregation of stochastic model (23) is not
more restrictive than that for the deterministic model (16), because the conditions for stochastic terms
are automatically satisfied. In general, however, the perfect aggregation of stochastic dynamics is more
restrictive than that of a corresponding deterministic model.

APPROXIMATE AGGREGATION

AGGREGATION OF MINIMUM DIFFERENCE IN A VECTOR FIELD

_ The study of perfect aggregation made it clear that the perfect consistency requirement is
unpractically restrictive. In the following, we study the best approximate aggregation of dynamical
systems which attain the minimum inconsistency between aggregated and original systems.

The perfect aggregation condition is derived from the consistency of the vector field. As a

measure of the inconsistency between two dynamical systems, we might use the difference in vector
field:

© = [14Y/dN) yprequsea = AYIAK) iy PWAXIX, (24)
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where || indicates the Euclidean vector norm, and w(X) is a positive function (w(X) > 0)
indicating a weighting with respect to variables X=(X,,...X,), and is normalized as [w(X)dX = 1. The
measure (24) is zero when perfect aggregation is realized.

The optimally aggregated dynamics (or the best aggregated dynamics) corresponds to the
choice of functions Fy(Y,,..,Y,,) which minimize (24) for given microdynamics, f(X,..,.X,), and given
aggregation functions, g(X,....X,). When perfect aggregation is impossible, the dynamics which give
the best fit in one part of the state space may not give a good fit in other regions; then weighting
factor w(X) is necessary to specify the desired compromise.

Let h(X) be an m-dimensional vector whose jth element is the right hand side of Eq. (5), the
rate of change in Y, by microdynamics. From (4) and (5), we can rewrite (24) as

® = [IFEX) - hOPWX)dX. (25)

Then we have the following:

Theorem 2 Let F(Y) be the best aggregated dynamics, i.e. those that minimize F as given by (25).
At every point Y at which F(Y) is continuous,

F(Y) = lim [ hOOW(OdS] [, po0dx (26)

holds, where U, is the set of X for which g(X) is in 8-neighborhood of Y, U, = {X | Ig(X)-Yl <
8},
This theorem says that the best aggregation, if no constraint is placed on the choice, can be calculated
as the appropriately weighted average value of h(X).

A more convenient expression is obtained if we regard the weighting function w(X) as the
probability distribution of a random variable X, although there is no element of stochasticity in the
original formulation. Then Eq. (26) can be expressed in terms of the conditional expectation of A(X):

F(Y) = E[h(X) | gX)=Y]. @7

The measure of deviation F for the best aggregated dynamics (27) can be interpreted as the variance
of microdynamics 4(X) remaining after that explained by the value of macrovariables g(X).

For a given point in time ¢, the difference between aggregated dynamics and microdynamics
for general nonlinear dynamical systems can be made small if the difference in the two vector fields
is sufficiently small. The minimum difference in the rate of change in variables implies the best fitting
of macrovariables on a short time scale. However, the difference in macrovariables produced by a
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small difference in vector fields grows exponentially with time ¢, indicating that the aggregation is
accurate only for the finite time horizon.

Good fitting in vector fields does not in general preserve important features of the dynamical
systems after aggregation of variables. In Iwasa et al. (1989) this is illustrated by two examples: In
the first example, the best vector ficld fitting around the origin causes the shift of the equilibrium.
In the second example, the best vector field aggregation keeps the location of the equilibrium
consistent with the original dynamics but its stability is now changed. Both the location of equilibria
and their stability are related to the system’s behavior in the far future, and may not be guaranteed
by the best vector field fitting.

AGGREGATION CRITERIA WITH DIFFERENT TIME SCALES

Sometimes, prediction of models in the far future, for example, may be more important than
those in the near future, when we discuss the long term consequences of continued application of
stress. In other circumstances, it may be the short term which is of interest. In this section, we
investigate systems aggregated according to several criteria which emphasize different time scales.

Unlike vector field fitting (Theorem 2), mathematics here requires the explicit solution of the
dynamics, and therefore we restrict our attention to linear dynamical systems with a steady state at
the origin:

dx/dt = iM,,X,; (28)

k=1

such a system could arise from linearization around a singular point in a nonlinear system, with X
representing deviations from that point. We assume that the matrix M is stable, ie., all the
eigenvalues have a negative real part. We further assume that the aggregated dynamics are also linear:

dyds = g Ca¥y (29)

If the main objective is to predict the state of the system at some future time ¢, then we
require that Y(r), as produced by the aggregated dynamics, be close to the vector predicted by the
microdynamics. We may regard a dynamical system as a mapping from an initial state X(0) to a future
state X(¢) at time ¢ with matrix exp(Mt), and the aggregated dynamics with matrix exp(Ct). In the
aggregation scheme illustrated in Fig. 2, the same linear aggregation, with matrix B, is used for
mapping from X(0) to Y(0) and that from X(#) to Y(z). At time ¢, the aggregated dynamics give:

Yawcpxed(’) = exP(C‘) BX (0)’ (303)
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Figure 2. Scheme of the aggregation of a linear dynamical system. The
microdynamics translate the initial state X(0) to the state X(¢) by multiplication by
the matrix exp(Mr), whereas the aggregated dynamics replace M by C. Perfect
aggregation requires that Be* equal eB; the best approximate aggregation minimizes
a weighted difference between these when perfect aggregation is impossible.

and Y(r) calculated from the microdynamics is:
Yoerolf) = B exp(Mt) X(0). (300)

If these two are the same for all initial states X(0) for all ¢, the aggregated dynamics provide a perfect
surrogate according to the given criterion.
(1) Minimum difference in vector field

First, we apply the vector field approximation developed in the last section. If the weighting
w(X) is a spherically symmetric normal distribution centered at the origin, the best aggregated
dynamics which minimizes (24) are with matrix

C=BMB". (1)

This is the case in which the consistency of aggregation in the immediate future is of large importance.
(2) Minimum difference in variables at a particular time

A candidate for the measure of inconsistency between two dynamics is the difference in the
variables calculated by the two dynamics at a particular point in time #;



121

e - f IY"“"!""J&) - Ymro(r)lz”'(xo)dxo, (32)

where w(X,) is a normal distribution spherically symmetric about the origin. A particular aggregated
dynamical system which is very good if the original system starts from one choice of initial conditions,
may be quite poor along another trajectory. The weighting w(X,) in (32) defined a compromise which
gives acceptable consistency for various initial conditions.

The dynamics C which achieve the minimum of (32) are:
C = log(B exp(Mt) B*)/t, (33)
which depend on the specified point in time ¢.
(3) Minimum difference in the temporal average of variables
We may be interested in predicting variables suitably averaged over time rather than those

at a single time point. For example, the average value of variables X(r) weighted according to a
negative exponential distribution:

<X>_ = f X(Dexp(-t/t)dt/x, (34)
0

will emphasize the behavior of the system on a time scale of order ¢. Then, the optimal aggregation
which minimizes the difference

® = fI<Yaggnganf v <Ym>c|zw(xo)dxo

is:
C = (I - [BU-M1)'B*T Y. (35)
If we let ¥-0, we obtain
ug C=BMB, (36)

which is the same as (31), the best dynamics when the short time scale is emphasized. In contrast,
for a very large ¢, the optimal C in (35) tends to the limit



122

lim C = (8 M~ B*)™L. (37)

Tum

(4) Minimum temporal average of difference in variables
We may use, as a measure, the time average of squared distance in macrovariables:

¢ = f f 1Y ggregased® - Y pirlOPP(O)dW(X )dX,, (38)
[
where p(t) is a weighting factor over time,

p@®) > 0, and fp(t)dt =1
0

Equation (38) is zero if and only if the aggregation is perfect. A set of conditions determining the
best aggregated dynamics can be derived (Iwasa et al. 1989), but unfortunately they are too
complicated to be practical.

To illustrate the difference between the best aggregatec Jynamics corresponding to the various
criteria above, we consider the special case in which M is real and diagonal, and the aggregation
matrix B is of size lxn:

M - | B = by, (39)

We assume 0 > 1, > .. > A,. The aggregation is the lumping of the n variables into a weighted sum;
hence C is a scalar (1x1 matrix). The problem is to approximate a summation of n exponential
functions with different exponents by a single exponential function, provided that the initial condition
is consistent.

The results are summarized in Table 1. The best coefficient depends on the criterion to
minimize: (1) The vector field fitting gives the arithmetic mean of eigenvalues as the optimal
aggregation. The same result is obtained for other criteria if weighting over time emphasizes the short
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term (either r~0 or ¢-0). (2) In contrast, if the long term horizon is of concern, the result depends
on the particular choice of criteria. The optimal coefficient may be the dominant eigenvalue, the
harmonic mean of eigenvalues, or something clse. (3) The result for minimizing the average of the
difference in macrovariables is too difficult in computation to be practical.

CHOICE OF AGGREGATION FROM A RESTRICTED CLASS

For the best aggregation in Theorem 2, we assumed that the aggregated dynamical system can
be freely chosen, provided only that it is autonomous. However, often one must restrict the choice.
For example, when the best linearly aggregated system is sought for a given linear dynamical system,
usually the aggregated dynamics are also assumed to be linear. Similarly, the search for aggregation
in the Lotka-Volterra system is often restricted to models of the same Lotka-Volterra form, with a
smaller number of components. In these cases, Theorem 1 may not be useful except when the best
aggregated dynamics happen to be in the restricted class of systems.

One approach for finding the optimally aggregated dynamics from a restricted set is to search
for the best (set of) parameters. The general theorem for this procedure is given in Iwasa et al.
(1989), which is too complicated to be useful.

A more practical way to find a reasonably good aggregated system is to determine free
parameters by using either the consistency of the location of equilibria or of the linearized dynamics
at several different points sequentially, in a suitable order according to the importance of
characteristics of the model. For example, the location of a particular equilibrium may be regarded
as the most important characteristic of the given model; after satisfying this, one can add other criteria
to guarantee consistency of the second steady state, or of the linearization about the first, etc.

DISCUSSION

In the present paper, I reviewed recent theoretical studies of the perfect aggregation and the
best approximate aggregation of dynamical systems used in ecological modelling. By regarding a
system of differential equations as mapping from space variables to their rate of changes, we can
extend the aggregation theory of linear functions developed in economics and statistics (Theil 1954,
1957, 1959; Ijiri 1968, 1971; Chipman 1976) to that of nonlinear dynamical systems.

The condition for perfect aggregation is here presented in a form comparable to the one for
linear dynamics in automatic control theory (Aoki 1968, 1978) and that for linear functions in
economics (Ijiri 1968, 1971; Chipman 1976). The theory for aggregation in ecological systems now
fits well to the framework of general aggregation problems.

Analysis of examples for linear aggregation seems to support the idea that lumping of
variables which are functionally similar or substitutable produces good aggregation (e.g. Vemuri 1978),
which in turn may justify "natural” ways to aggregate variables, based on concepts such as the guild,
trophic level, block, and clique.

In practice, however, it is rare for a given nonlinear system to satisfy the condition for perfect
aggregation, although it may be approximately so. The perfect aggregation condition is often too
stringent to deal with all the practically important applications of variable aggregation, as
demonstrated in particular by the aggregation of the spatially structured population.
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Table 1
(1) Vector Field Approximation
c=Y bIAJY b}, [the arithmetic mean of A}
(2) Approximation at a Time Point
C = (1)logly blexp(r )Y b]1.
i i
When t-0, C = Y 573/ b}, [the arithmetic mean of A)
When t-e, C = A, [the dominant eigenvalue]
(3) Approximation of Temporal Average
When -0, C = Y b/3/3 b}, [the arithmetic mean of A]]
. i i
When t-=, C = Y b)Y bl(1/A). [the harmonic mean]
i i

(4) Minimum Temporal Average of Difference in Variables

Let the weighting with respect to time be
p(t) = exp(-t/t)/ix, (for ¢ > 0).

C is a positive solution of a polynomial

0 = S b2(1(1t - 20 - 1(Ufx - ¢ - AP}
k

When -0, C = Y b73/3 b}, [the arithmetic mean of A}
i i
When t-x, C is the solution of

2c[* = Y bp / );bf AfCIA] + el
k

A more practical problem is to find the approximate aggregated dynamics which minimize
some measure of inconsistency between the aggregated and the true dynamics. The approximate
function problems in economics (ljiri 1971; Chipman 1976) are extended to the best aggregation with
the least square deviation in a vector field in nonlinear dynamics (Theorem 2).
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In spite of the generality of Theorem 2, however, the shortcoming of the vector-field fitting
is evident. The location of equilibria and their stability may be changed as the result of best
aggregation of vector-field fitting, in spite of the fact that these are often considered to be the most
important feature of dynamical systems (e.g. Zeigler 1976; O’Neill and Rust 1979; Cale and Odell
1979; 1980).

We therefore studied other criteria for inconsistency. Our study shows that, when perfect
aggregation is impossible, the best aggregated dynamical system depends on (1) the time scale and
(2) the region in which high accuracy of approximation is required.

Procedures used in previous studies on aggregation in ecological modelling can be examined
from the general theoretical framework of aggregation developed here. The nature and magnitude
of inconsistency produced by aggregation of variables in model ecosystems have been examined
extensively either in linear systems (O’Neill and Rust 1979; Cale and Odell 1979, 1980), or in
conservative flow systems (Gardner et al. 1982; Cale et al. 1983). In population genetics, Cohen
(1985) considered the aggregation of "fitness in each environment" rules giving rank among genotypes.
Hirata and Ulanowicz (1985) developed aggregation of a system of steady flows between compartments
by evaluating the performance of aggregation using an index based on information theory.

Another technique to simplify model ecosystems is to separate fast and slow dynamics, in
which variables changing much faster than the ones concerned are regarded as being at the quasi-
equilibrium, while variables changing very slowly are treated as constants. This method is widely used
in ecology (e.g. MacArthur 1972; Schaffer 1981; Ludwig et al. 1978; Mangel 1982). Such time scale
differences often accompany hierarchical structure of interaction (Simon and Ando 1961), and graph
theoretical techniques are sometimes useful in finding suitable way of aggregation and decomposition
of models. Simplification using time scale difference is also related to aggregation (see Iwasa et al.
1989).

In the present paper, we searched for the aggregated dynamics assuming the set of
macrovariables given. In some cases, however, the number and identity of macrovariables may also
be left at the modeler’s discretion. In that case, a much larger dimensionality is often needed, than
the number of variables to predict by the model. In automatic control literature, aggregation of linear
dynamical systems is discussed when the aggregated system is used to predict the "output” (Aoki 1968,
1978; Hickin and Sinha 1975a, b; Sinha and Kuszta 1983). We can examine the question of model
dimensionality in the context of ecological modelling if the model is used to predict a given set of
aspects from a given set of data (Iwasa and Levin manuscript).
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The Ecosystem and
Macroscopic Concepts

The ecosystem level unites the biotic components of populations, communities, and food webs
with the abiotic components of energy flux, nutrient flux and other physical factors related to these
flows (e.g., temperature, weather events) into a total system perspective. Few of the papers classed
as dealing with the ecosystem level actually deal with all of these things simultaneously. They do,
nevertheless, shift the emphasis away from the purely biological phenomena to the concomitant flows
of matter and energy. They also attempt to understand total system behavior through analogies from
information, cybernetic, or thermodynamic theory through macroscopic indices borrowed from these
fields. Hence, theoreticians approaching ecological systems from this viewpoint attempt a unified
perspective by integrating ecology into the physical sciences (whereas theoreticians beginning from
individual adaptations attempt a unified perspective oriented ar~und the concept of natural selection
at the individual level).
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PRODUCER-DECOMPOSER MATCHING IN A SIMPLE MODEL ECOSYSTEM:
A Network Cocvolutionary Approach to Ecosystem Organization

Masahiko Higashi, Ryukoku University, Seta, Otsu 520-21, Japan

Norio Yamamura, Saga Medical School, Nabeshima, Saga 840-01, Japan
Hisao Nakajima, Ritsumeikan University, Kita-ku, Kyoto 603, Japan
and

Takuya Abe, Kyoto University, Sakyo-ku, Kyoto 606, Japan

ABSTRACT

The present note is concerned with how the ecosystem maintains its energy and matter
processes, and how those processes change throughout ecological and geological time, or how the
constituent biota of an ecosystem maintain their life, and how ecological (species) succession and
biological evolution proceed within an ecosystem. To advance further Tansky’s (1976) approach to
ecosystem organization, which investigated the characteristic properties of the developmental process
of a model ecosystem, by applying Margalef’s (1968) maximum maturity principle to derive its long
term change, we seek a course for deriving the macroscopic trends along the organization process of
an ecosystem as a consequence of the interactions among its biotic components and their modification
of ecological traits. Using a simple ecosystem model consisting of four aggregated components
("compartments") connected by nutrient flows, we investigate how a change in the value of a
parameter alters the network pattern of flows and stocks, even causing a change in the value of
another parameter, which in turn brings about further change in the network pattern and values of
some (possible original) parameters. The continuation of this chain reaction involving feedbacks
constitutes a possible mechanism for the "coevolution" or "matching” among flows, stocks, and
parameters.

ECOSYSTEM ORGANIZATION AND CONSTITUENT BIOTA COEVOLUTION

A general question of concern is: What are the characteristic properties of ecosystem
organization, and how does the ecosystem work? More specifically, how does the ecosystem maintain
its energy and matter processes, and how do those processes change throughout ecological and
geological time? Or, from a different point of view, how do the constituent biota of an ecosystem
maintain their life, and how does the ecological (species) succession and biological evolution proceed
within an ecosystem? As for trends in the developmental process of ecosystems, several alternative
hypotheses have been proposed in terms of various optimality principles, such as maximum energy flux
(Lotka 1922a,b), power (Odum 1971), maturity (Margalef 1968), and ascendancy (Ulanowicz 1986).
Tansky (1976) investigated the characteristic properties of the developmental process of a model
ecosystem, applying Margalefs maximum maturity principle to derive its long-term change. To
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advance further Tansky's approach to ecosystem organization, we now seek a course for deriving the
macroscopic trends along the organization process of an ecosystem as a consequence of the
interactions among its biotic components and their modification of ecological traits.

To make a first step in this direction, we will consider a simple ecosystem model consisting
of four aggregated components, referred to as the ecosystem "compartments®, connected by flows of
nutrients to each other. Using this simple system, we will illustrate a new general idea for
investigating how a change in the value of a parameter alters the network pattern of flows and stocks,
even causing a change in the value of another parameter, which in turn brings about further change
in the network pattern and values of some (possible original) parameters; the continuation of this
chain reaction involving feedbacks constitutes a possible mechanism for the "coevolution" or
"matching" among flows, stocks and parameters.

A SIMPLE ECOSYSTEM MODEL WITH A PRODUCER-DECOMPOSER CYCLE
Consider a simple ecosystem model depicted in Fig. 1, which consists of four compartments,
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Figure 1. A model ecosystem consisting of four compartments which are connected to each other
by flows of nutrient transfer.

primary producer (compartment P), litter and detritus (compartment L), decomposer (compartment
D), and nutrient pool (compartment N), connected by flows of nutrient transfer. Let P, L, D, and N
also be used to denote standing stocks of nutrients in the corresponding compartments, and f,, denote
the flow to compartment X from compartment Y. Then, the dynamics of this model system are given
by the following set of differential equations:
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L - fon - fr (1a)
L -t fo - o (1b)
L« fo - fio - fuo (19

DB« fuo = fon (14)

We assume that the flows are determined by (are functions of) the standing stocks in several
compartments and some parameters that characterize local (compartment level) processes such as the
nutrient uptake rate of the primary producer. Specifically, we will assume that the flows have the
following functional dependencies:

fon = foPN:a), fip = fip(Pia), fpy = [p (D.L;D), @)
f;_p = fw(D;b)v fnp = pr(D),

where a and b are parameters that represent the coefficients of some local processes and satisfy the
conditions that

Fpda 2 0, O da 20,
& p,Jb 2 0, &f,db 2 0. ©)]

For example, parameters a and b may be considered to represent the nutrient uptake rate of the
primary producer (P) and the decomposition rate for the decomposer (D), respectively. Furthermore,
we assume that

f /0 > 0 4)
for all flows, i.e., any flow increases as its donor increases in stock.

STABILITY AND SENSITIVITY ANALYSES OF THE MODEL SYSTEM

Equations (1), representing a closed system, imply % + % + —%’- + % = 0, from which

we have P+L+D+N = c (constant). Thus, for instance, substituting ¢ - (P + D + N) for L in
fo(D.L;b), we have a closed form for the dynamics of three variables P, D, N:
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i’f = foP.N:a) - f,p(Pia) ® fy(P.N:a) (53)
% = fou(D, c=(P+D+N)b) - f,,(D;b) - fyp(D) ® fo(P.D,N;b) (5b)

dN PN: ™ P, " S

= = fwD) = f(PN:a) = f\(P.D.Na) (5¢)

The dynamics of L is determined from the other variables’ dynamics through the equation L = ¢ - (P
+ D + N).

Given values of parameters a and b, let P,(a,b), D,(a,b) and N,(a,b), respectively, be values
for variables P, D, and N at a steady state of the dynamical system defined by Eqs. (5); then (P(a,b),
Dy(a,b), Ny(a,h)) is a solution for a set of algebraic equations:

fo(PN:a) = Ofy(P.N:a) = 0 (6a)
fo(P.DN:b) = 0 (6b)
f{P.D.N:a) = 0 (6¢)

The local stability condition for this steady state can be readily derived by linearizing the
system (5) around the steady state; a simple form of sufficient condition for stability is that

P < 0, & ,JaD < 0, 0

i.e., the biotic compartments P and D are both self-regulatory. In the following we assume that the
model system under consideration satisfies this stability condition for steady states, and further that
the changes in values of the parameters are slow relative to those of the variables so that the system
traces its trajectory on a "slow" manifold consisting of points that "map" different values of the
parameters into the corresponding stable steady states.

The sensitivities of the steady state (P,(a,b), D\(a,h), Ny(a,b)) with respect to changes in the
values of paraneters @ and b can be evaluated in terms of the sets of partial derivatives
(oP,/da, OD,/3a, ON,/da) and (3P,/db, OD,/db, ON,/db), respectively. Taking the partial derivatives with

respect 1o a of the functions Py(a,b), Di(a,b) and N,(a,b) of a and b which are implicitly defined by
Eqgs. (6), we have
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aP"/da ¥ plda
R|oD"/éa| = - |%f,/da ®)
ON*/da o,/da

where R is the linearization (community matrix) of the system (5) around the steady state (P,(a,b),
D(ab), Ny(a.b)):

FJOP D I JON
R = |3fpfoP /oD  ofJoN )
¥JOP /D & N

Thus we have

oP‘/3a %pla
aD"(3a| = § | Of Joa (10)
oN*[oa oF Joa

where S = -R"!. This result may be interpreted as follows [for a full development of this point, see
article by Nakajima in this volume]: change in parameter a may directly cause a change in the net
inflow (growth) for each of compartments P and N, which may in turn bring about changes in the
value of P’(a,b) directly and indirectly through a causal chain; these chained influences together
constitute the change in the value of P,(a,b) due to a change in parameter a. Likewise, we have for
parameter b

P [ab b
aD[ob| = § |f,/ob (11)
aN"/ab o,Jab

THE BASIC IDEA
ESS-LIKE VALUES OF PARAMETER A4 GIVEN PARAMETER B
Given a specific value for parameter b, let a"(b) denote an ESS-like value for parameter a
[ESS stands for evolutionary stable strategy (Maynard Smith and Price 1973)}, i.e., a value of a such
that once the primary producer with a’(b) prevails, a primary producer with any value for parameter
a other than a'(b) can not invade; then a'(b) must satisfy the following conditions:
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afr - a(fnv 'fu) -
il (12)

% - ____~az(f,,;a; /T (13)
fora = a'(b), P = Py(a’(b),b), D = D,((a’(b),b), N = N,(a'(b),b). Therefore, a’(b) is given as the
fourth component of the solution (P'(b), D" (b), N"(b), a’(b)) of the set of Egs. (6) and (12) for a given
value of parameter b. These four equations, each defining a surface, together determine a curve as
the intersection of the surfaces they define in the five-dimensional Euclidian space of (P,D,N,a,b).
(P'(b), D'(b), N'(b), a'(b)) constitutes a one-parameter expression of the curve with b the parameter,
and function @ = a'(b) represents the projection of this curve onto the (a,b)-plane (Fig. 2).
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Figure 2. The curve determined as the intersection of the surfaces each of which is
defined by one of four equations (6) and (12) in the five-dimensional Euclidian space
of (BD,N,ab), and the projection of this curve onto the (a,b)-plane, which is
represented by the function a = a'(b).
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To investigate the dependency of the ESS-like value of a on the value of b, we consider the

derivative da‘/db. By taking derivatives of the functions P'(b), D'(b), N'(b), a'(b) of b defined
implicitly by equations (6) and (12), we have

dP*/db of /b
. ab

o |9P71db] o/ a4)
dN"/db fJ3b

da’|db X3 p/3a)/3b

where R’ is the linearization of Egs. (6) and (12) around the solution (P'(b), D'(b), N'(b), a’ (b)), thus
& oP df /oD o JON df/da
of,,/oP of,,/oD of JoN of /da
o JoP of,JoD % JoN of,Jaa

Pf/3adP  FfJ3adD FfoadN  &f,/3ada?

R =

0
400R 0

= o Joa (15)
FfJ3adP 0 FfoadN  Ffda?

By multiplying R*? from the left to both sides of this equation, we get

dP*|db /b 0
dD"/db /b 3 /b

=S/ =8 16
dN*/db o, job 0 (16)
da*|db &f,/3adb 0

where §* = - R*\. Thus, derivative da’/db can be expressed as follows:
a1 WGF %)Y a
db |R!| 9D\ 0P GadN  ON 3adP ] db
where |R’| denotes the determinant of matrix R’.
Note in (17) that da’/db equals zero when dfy/db is zero. Further, using this formula (17)

the following can be proved. Assume that |R,|[(af,/ap)(a2f,/aaam - (af,laN)(a’f,/aaaP)] < 0, Then,
because ofy/dD > 0, the sign of the derivative da'/db coincides with that of afp/ab; thus, as far as
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a larger decomposition coefficient b is favored for the decomposer (D), the ESS-like value a'(b) for
the producer’s parameter a increases with b. Within the value range of b where da"/db is positive, a
lower level of b would induce a lower level for a', while a higher level of b would select a matched
higher level of a*; that is, the ESS-like value of the producer’s parameter a matches the decomposer’s
parameter b (Fig. 3).

ESS-LIKE VAILUES OF PARAMETER B GIVEN PARAMETER A4
We can make a similar analysis for a dual case in which, given a specific value for a, we
consider the ESS-like value b'(a) for parameter b. First, consider the following set of equations:

gD(D,L;b) e f, DL(D,L;b) - [ w(D;b) - fND(D) =0 a 83)
ORNL DWG 93-13725
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Figure 3. An illustration of the ESS-like value a° of parameter a matching to the
level of parameter b within the value range of b where da®/db is positive; that is, a
lower level of b would induce a lower level for a’, while a higher level of b would
select a matched higher level of a”.

8p(D,P.L;a) & fp{P.c-(P+L+D),a) - f p(Pia) = 0 (18b)
8,(D,P.Liab) = f,,(Pia) + f,,(D;b) ~ fp,(D,L;b) = 0 (18c)
% Mo - _ | (18d)

ab ob
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Let (D,(a,b), P,(a,b), Ly(a,b)) be a solution of the set of equations (18a), (18b) and (18c), representing
a steady state of the dynamical system (1) for a given pair of values of parameters a and b. The ESS-
like value b'(a) for a specific value of a is given as the b-component of the solution (D'(a), P'(a),
L’(a), b'(a)) of the set of four Egs. (18).

Using the same method used in the case for a'(b), we have the following formula for the
derivative db*/da:

(19)

da oP 52 oP da

dbr 1 (%% %> Fer |3 %3
da |T'|\ oD obal oL 8baD

where |T,| is the determinant of the matrix that represents the linearization of equations (18)
around the solution (P'(a), L'(a), D'(a), b"(a)).

PRODUCER-DECOMPOSER MATCHING: COEVOLUTIONARY PROCESS OF THEA AND
B VALUES

An intersection of two curves a = a'(b) and b = b'(a) of the ESS-like values for parameter
a and b, respectively, represents a pair of CSS-like values (aqb,) for parameters a and b [CSS stands
for coevolutionary stable state (Roughgarden 1983 Matsuda and Namba 1989)), i.e., a pair of values
(@gby) for a and b such that once the parameters a and b attain those values, a primary producer with
any a value other than a, or a decomposer with any b value other than b, may not invade, and thus
the parameters a and b remain at those values.

Depending on the shape of, and the relationship between, two curves @ = a°(b) and b = b'(a)
of the ESS-like values, there may be alternative patterns, and two cases of particular interest here are
a stable or unstable CSS-like state (a,b,) such as that illustrated in Fig. 4. In the case of a stable
CSsS-like state (Fig. 4a), an initial state (anb,) on the curve a = a'(b) is stable (ESS-like situation)
with respect to parameter a of the producer, but it is not stable with respect to parameter b of the
decomposer, which, with the stable parameter a unchanged, would seek a new value b, = b*(a,), the
ESS-like value of b given a = a,. This new state (ab,), however, is no longer stable with respect to
parameter a, thus it is now the producer’s turn to seek a change in the value of parameter a to a, =
a’(b;), while the stabilized parameter b remains unchanged. Repeating the same process again and
again will finally lead to a CSS-like state (a_b,), as illustrated in figure 4a.

THE ROLE OF INDIRECT EFFECTS IN THE COEVOLUTIONARY PROCESS

PROPAGATION OF EFFECTS FROM B TO 4°

Given a value of N, the solution sets of Eqs. (6) and (12) provide an alternative one-
parameter expression with N the parameter for the five-dimensional curve discussed above (Fig. 2);
combining the two alternative one-parameter expressions allows us to derive the following
relationship:
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Figure 4. Illustration of a (a) stable and (b) unstable CSS-like state (ayb,).

dL/oa

dL/db
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1S
g
&

- 2827 (20)

&8
B8

where each derivative is the derivative of a function that represents a projection of the curve in terms
of either of these two one-parameter expressions. Further, from the relationship N°'(b) = Ny(a’(b),b),
we have

dN* ON, da *(b) oN;

= . 21
db  a db = db @
Egs. (20) and (21) yield the following relationship:
da*(b) _ SN, da 1

db ob dN 1 oN; da

da dN

2
= .aﬂ‘._dﬁ 1+ jaNl da . jaN‘ da 4 | (22)

3b dN |da dN| | aa dN

Figure 5a illustrates an interpretation of this relationship from the viewpoint of direct and
indirect influence propagation. Note that given N, the ESS-like value a’ for parameter a (a trait of
the primary producer) is determined completely from two equations:

fp =0 and [%] = 0. (23)

The derivative da/dN represents the direct influence of a change in available nutrient level N upon
the ESS-like value a’ for parameter a. & /,/3b and aN,/aa, as already mentioned, represent the total
(direct plus indirect) influence of a change in the b and a values, respectively, propagated upon the
available nutrient level N through all available paths in the functional network. Therefore, Eq. (22)
indicates the following: A change in the parameter b value will cause some change in nutrient

PROPAGATION OF EFFECTS FROM 4 TO ESS B
In a similar way as we derived Eq. (22), for the dual case we have the following:
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db(a) _ 9L db 1
da da dL ’ oL, db

ob dL
(b | [Aan] | [l 4
da dL ob dL db dL

Figure 5b explicitly indicates the causal chains (or paths) connecting a cause (a change in the
parameter a value) to its effects on the ESS-like value b".level N, which will in turn directly cause a
change in the ESS-like value a". But this change may cause a further change in the N value, which
will again change the a’ value. This process will repeat again and again until the influence dissipates
completely. The effect da’/db caused by a unit change in parameter b upon the ESS-like value a’ is
thus the sum of these indirect influences propagated through all available paths.

NETWORK COEVOLUTION AS A MECHANISM
FOR SELF-ORGANIZATION OF THE ECOSYSTEM

If we look at the producer-decomposer matching represented as a matching race between the
two parameters a and b, in the scope of the whole ecosysiem it may appear as the ecosystem
organizing itself.

As the two parameters evolve ir such an interactive fashion so that one parameter’s change
triggers the other’s and this interaction repeats with alternate directions, the biomasses of the
producer and decomposer may both grow up under certain conditions, but because of indirect effects
that a change in parameter a (or b) causes upon the value of P,((a,b) (or D,(a,b)), an increase in the
value of the parameter does not imply an unconditional increase in biomass of the producer P (or
decomposer D). Also, the stocks of the non-living compartments as well as all the flows in the
ecosystem would change accordingly, constituting a "network coevolution” of the whole ecosystem.
If we imagine an ecosystem that starts with a very low level of biomasses and parameter values of
biota, this network coevolutionary process would appear as a process of building up the system toward
a biologically richer regime. Since the process does not require any external force to cause changes,
but instead is proceeded through an internal mechanism built in the system in terms of its biotic
components’ evolution of interaction, it may be viewed as a self-organizational process. To generalize,
therefore, a coevolutionary process at the system components’ level, exemplified here by the network
coevolution of a simple ecosystem model, may provide a mechanism for the self-organization of a
system.
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a a*(b)

b*(a)

a b
Figure 5. Diagram to illustrate an interpretation of (a) relationship (22) and (b) relationship (24) from the viewpeint of direct and indirect
influence propagation.

1141
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APPLICATIONS OF THE IDEA
TO SPECIFIC THEORETICAL PROBLEMS ON ECOSYSTEMS

The approach based on the notion of network coevolution as described above is in principle
applicable to a general class of ecological networks that are defined in terms of a set of differential
equations of n variables with m parameters, though involving a larger number of variables and
parameters elevates the difficulty in carrying out the analysis. It may therefore provide a unified
framework for dealing with the following theoretical issues in ecosystems study:

(1) The issue of tropical versus temperate ecosystems in terms of their characteristic structure. The
case in which the producer-decomposer matching takes place to grow the biota of the system, thus
reducing the level of the nutrient pool, may correspond to the well known fact that the tropical
rainforest is, while rich in standing stock of its biota, very poor in soil nutrients. Further, high
productivity of the tropical forest may not be solely the product of the rich physical conditions such
as high solar input and temperature, but may be achieved in part as the result of coevolution with the
decomposer. For, should the decomposer not be able to change its parameter b in response to an
increase in value of the producer’s parameter a, the producer would not be able to further increase
its parameter a. By the same token, the decomposer is expected to have a higher decomposition rate
or a decomposing system with a higher decomposition rate tends to be favored than the level
estimated solely from a curve that represents the physiological response to primary physical condition
factors such as temperature.

(2) The issue of food web structure, in particular grazing versus detrital food chains, regarding their
relative state of growth (in terms of their length, richness in biomass, species diversity, and so on) in
aquatic versus terrestrial ecosystems,

(3) Among terrestrial systems, the issue of forest versus grassland ecosystems, in particular the cause
for their bifurcation, i.e., what makes a forest a forest and not a grassland, and vice versa. The case
with an unstable CSS may serve as a model for explaining this bifurcation such that a system should
either lead to a forest or a grassland depending on its initial condition (ab,); with values too low for
ay, b, the system should be reduced to a grassland, while with large enough values for ay, b, it should
build up a forest.

The exploration of each of these issues requires further elaboration and extension of the

simple model and its analysis than we have presented.
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Takuya Abe, Department of Zoology, Kyoto University, Sakyo-ku, Kyoto 606, Japan
and

Masahiko Higashi, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-21, Japan

INTRODUCTION

How can the earth, which teems with plant-eating animals ranging in size from aphids to
elephants, be so green? Plant-eating animals kill more plants than drought or logging does, yet they
do not wipe out all the plants (Howe and Westley 1988). Why is it so? Approximately half of the
ca. 800,000 species of insects are phytophagous, and they account for onc-quarter of all living species
excluding algae and microorganisms (Strong et al. 1984). As for the evolution of plants in relation
to phytophagous animals, especially insects, much attention has been paid to the chemical defenses
that plants exert by use of their secondary compounds (Ehrlich and Raven 1964; Whittaker and Feeny
1971; Feeny 1975; Rosenthal and Janzen 1979; Strong et al. 1984; Howe and Westley 1988). In
contrast, very little attention has been paid to another important aspect of plant-animal interactions
that is no less relevant to the green coverage of the earth; most animals lack the ability to produce
the enzymes necessary for decomposing cellulose, the primary cell-wall component of higher plants
and the most abundant organic compound on earth, whereas various kinds of microorganisms are able
to produce these enzymes (Nielsen 1962; Janzen 1981; Begon et al. 1986). For the earth to be so
green, it is "ideal" that a plant should not be consumed by heterotrophs when it is alive, but that it
should be consumed promptly when it is dead, to return nutrients back to the living portion of plants.
Thus, the spatial distribution pattern of the organisms that can digest cellulose plays a crucial role
here; in terrestrial communities, microorganisms, which can produce cellulase, the cellulose-
decomposing enzymes, are 1o large extent confined in the soil, to decompose the cellulose not in living
plants but in fallen dead plants.

Cellulose, long viewed as the master construction material of plants, was probably
evolutionarily selected for the same reason that we choose concrete to construct houses in areas of
high termite activity (Janzen 1985). The distribution of cellulose is directly related to the morphology
of plants, thus that of forests and grasslands. But, cellulose is also a major energy resource,
potentially available and explicitly so when this hard substance encounters cellulose-digesting
organisms such as microorganisms in the soil. In view of its super-abundance and dominance in
quantity, its physical robustness and the restricted distribution of its consumers despite its potentiai
as an energy resource, cellulose may be a "key substance” for understanding community structure.
Furthermore, differences in the distribution pattern of cellulose and its digesting organisms may
explain differences in community structure between forests and grasslands, such as those in the relative
significance of grazing and detritus chains (Odum 1953; Begon et al. 1986).

One of the primary consumers of cellulose and the most abundant animals in tropical
terrestrial communities, termites are conspicuous in that they can produce cellulase partly by
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themselves (Yokoe 1964; Mishra 1980; O'Brien and Slaytor 1982) and have a symbiotic association
with the other organisms that produce enzymes to decompose cellulose and sometimes lignin, an even
harder substance (Grasse and Noirot 1959), and they may play a significant role, especially in tropical
regions a deterministic role, in structuring the community in which they reside.

In the present essay, we examine the relationship of cellulose to animals, especially insects,
to provide a new perspective for understanding terrestrial communities based on cellulose dynamics,
and highlight for tropical ecosystems the role that termites play in determining community structure.

CELLULOSE AND COMMUNITY STRUCTURE
TWO TYPES OF FOOD: CELL WALL AND CYTOPLASM

One of the most significant differences between plant and animal cells is the presence of a
cell wall. Although the cell wall and cytoplasm of plant cells are both potential food sources for
heterotrophs (consumers), they are quite different in their chemical compositions.

The celf wall of higher plants, containing little protein and lipid, consists mainly of cellulose,
hemicellulose (complex polysaccharides) and lignin (complex phenolic polymer), which are inversely
located almost exclusively in the cell wall. These three cell-wall substances in weight compose about
47%, 22% and 22%, respectively, of deciduous wood, 16%, 13% and 21% of deciduous leaf, and 30%-
33%, 18%-24% and 11%-14% of grass (Swift et al. 1979). Therefore, cell wall is the primary
component of trees (ca. 90%) and grasses (60%-70%) in biomass. Because most plant material (98%)
on earth is terrestrial, and 75%-90% of it is located in forests (Whittaker 1975), cell-wall components,
especially cellulose, are the most abundant organic matter on earth. Further, noting that cellulose
is degraded int~ glucose, we may state that cell wall provides the most abundant food resource, if only
potentially, on this planet. Except for some types of molluscs, silverfish and a few earthworms,
animals cannot directly utilize this abundant food resource, because they cannot produce a complete
set of cellulases (Nielsen 1962; Begon et al. 1986; Martin 1987). Therefore, animals must have direct
or indirect associations with microorganisms to make it available.

On the other hand, cytoplasm, which is abundant in pollens, seeds and new leaves, is rich in
proteins, lipids and starches, thus potential high quality food for animals. Higher plants produce,
however, various kinds of toxic secondary substances such as alkaloids, terpenoids and hydrogen
cyanides, and keep them in cytoplasm (Howe and Westley 1988). Therefore, animals that feed on
plant cytoplasm must solve the problem of the chemical defences plants devise using these secondary
compounds.

CELL-WALL CONSUMERS AND CYTOPLASM CONSUMERS

On the basis of the foregoing observations, we propose a new categorization for the
heterotrophs or consumers of plants: cell-wall consumers and cytoplasm consumers. The former
category of consumers, having acquired a means to manage the hard construction materials of cell
wall, utilize a food of low quality but of high quantity, whereas the latter, having acquired a means
to manage toxic secondary substances in the cytoplasm of plant cells, utilize a food of low quantity
but of high quality.
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How effective is this categorization of heterotrophs when applied to insects? As stated above,
phytophagous insects make up approximately half of all insect species, including nine of 29 orders:
Coleoptera (Scarabaeidae, Languridae, Coccinellidae, Tenebrionidae, Mordellidae, Chrysomelidae,
Cerambicidae, Curculionidae and Apionidae), Collembola, Diptera (Cecidomyidae, Dolichopodidae,
Drosophilidae, Ephydridae, Anthomyiidae, Agromysidae, Chloropidae and Tephritidae), Hemiptera,
Hymenoptera (Xyelidae, Cephidae, Blasticotomidae, Diprionidae, Tenthredinidae), Lepidoptera,
Orthoptera (Tettigoniidae, Acrididae and Eumastacidae), Phasmida and Thysanoptera. Hemiptera,
Lepidoptera, Orthoptera and Phasmida are almost entirely phytophagous, but only about one-third
of Coleoptera and one-tenth of Hymenoptera feed on the living tissues of higher plants (Strong et al.
1984).

On the other hand, as Martin (1987) reviewed, cellulose-digesting insects have associations
with microorganisms to obtain acquired enzymes: Thysanura, Isoptera, Plecoptera, Trichoptera,
Blattaria, Orthoptera (Gryllidae: Acheta domesticus), Diptera (Tipulidae: Tipula abdominalis),
Hymenoptera (Siricidae: Sirex spp.), Coleoptera (many species of Buprestidae, Coccinellidae,
Anobiidae, Scarabaeidae, Cerambicidae and Curculionidae).  Although there is insufficient
information on cellulose-digesting insects, the comparison of phytophagous and cellulose-digesting
insects at the family level shows that no cellulose-digesting insects are phytophagous except for some
Coleopterans and probably Orthopterans. Therefore, we may summarize that most insects that
consume plant materials have succeeded in solving either but not both of two problems: (i) the
detoxification of secondary substances in cytoplasm, and (ii) the degradation of cell-wall components
with the aid of microorganisms.

From the point of view based on this fundamental classification of heterotrophs into cell-wall
consumers and cytoplasm consumers, an insect that utilizes the seeds of two plant species is more
specialized than an insect that feeds on stem and seed of a single species of plant. This idea can be
extended to all animals. Cell-wall consumers include dead plant feeders of great variety besides
termites (LaFage and Nutting 1978), while cytoplasm consumers include most animals feeding on
plants, especially human beings, ants, and bees. Herbivorous ruminant mammals, which can utilize
both cell wall and cytoplasm (Dobson and Dobson 1988), are called "generalists”. It is notable that
eusociality has evolved in both classes of consumers; termites have developed their eusociality based
on quite different food resources from those for ants, bees, and wasps.

A NEW PERSPECTIVE ON COMMUNITY STRUCTURE AND
EUCARYOTES MACROEVOLUTION

The new categorization of heterotrophs leads to an alternative view of community structure.
A division of a plant cell, representing the primary producer space (or the resource space), into cell
wall and cytoplasm, is projected into the classification of consumers into two corresponding categories,
cell-wall consumers and cytoplasm consumers (Fig. 1a). The overlap of cell-wall consumers and
cytoplasm consumers corresponds to generalist consumers such as herbivorous mammals with rumens,
which transmit into grazing food chains some portion of cell-wall components. The rest of the cell-
wall components flow into detrital food chains, because it is consumed as dead organic materials by
proper cell-wall consumers which are not cytoplasm consumers, such as bacteria in the soil, fungi, and
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Figure 1a. An alternative view of the community structure that is derived from a new categorization of (primary) heterotrophs that classifies
them into cell-wall consumers and cytoplasm consumers.

Figure 1b. Flows from the cell-wall and cytoplasm components of plants into grazing and detrital food chains.
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insects with symbiotic microorganisms. Most of the consumed cytoplasm flows into grazing food
chains through cytoplasm consumers (Fig. 1b).

This new view on community structure suggests the following clear-cut perspective on the
macroevolution of eucaryotes. After the emergence of eucaryotic life, three kingdoms of plants,
animals and fungi evolved from protists, the most primitive form of eucaryotes supposed to have
evolved through intracellular symbiosis of prokaryotes (Margulis 1970). The emergence of animals,
super-active and effective consumers, might have selected plants, the emerging eucaryotic autotrophs,
to devise a harder structure of cell wall, by using not only cellulose but also other hard substances
combined with it to produce a harder new material. The enzymes for decomposing the hard cell-wall
substances including lignin are mainly produced by fungi. Therefore, it may be said that planis have
evolved as the producer of two distinct types of food resources, cell wall and cytoplasm, and that
animals have evolved as cytoplasm consumers, while fungi evolved as cell-wall consumers (Fig. 2a).
The macroevolution of eucaryotes is thus a process of specialization or "speciation” into three
directions based on the trophic interactions among the three groups of organisms, each of which has
come to occupy a unique trophic niche (Fig. 2b).

VARIATIONS IN COMMUNITY STRUCTURE

The community structure of forests and grasslands are different in the relative significance
of detrital and grazing chains. The quantitative signiticance of detrital chains relative to grazing chains
is greater in forests than in grasslands (Odum 1553; Begon et al. 1986).

Comparing grass and trees, the major piant components of grasslands and forests, respectively,
the former contains more cell-wall components and less nitrogen contents than the latter (Swift et al.
1979; Martin and Martin 1978). Nitrogen contents of grasses and wood (in parenthesis, tree and
shrub foliage) are 1.2%-4.5% and 0.04%-0.3% (0.6%-6.6%), respectively. Thus, in the context of the
basic structure that Fig. 1b depicts, the relative availability of cell-wall components is higher in forests
than in grasslands. In terrestrial ecosystems, microorganisms, th» major cellulose decomposers, are
located on the ground surface and in the soil, thus cell-wall components are mainly decomposed after
they are dead and have fallen down on the ground, to flow into detrital food chains (Fig. 1b). These
two facts alone would suggest that the quantitative significance of detrital food chains relative to
grazing food chains is greater in forests than in grasslands.

This basic scheme can, however, be modified by the animals, in particular various kinds of
insects and mammals, that depend on plants. In forests, the insects which can decompose celiulose
with the aid of microorganisms usually do not attack living plant tissues, while most phytophagous
insects, having no association with microorganisms for cellulase, are restricted to consume only
nutritious portions of plants such as fruits, seeds, pollens and young leaves, and do not destroy major
parts of trees, such as old leaves, branches and stems. Herbivorous mammals, which harbor
microorganisms in their guts and decompose cell-wall substances, and other generalist consumers
(Fig. 1b) are scarce in forests (Fittkau and Klinge 1973). On the contrary, in grasslands herbivorous
mammals represented by ungulates are abundant, and sometimes consume much of living grasses, to
increase the flow into grazing chains. But, herbivorous mammals with rumens can not digest cellulose
completely but only in the range of 43%-73%, mainly due to the presence of lignin and silica, and
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further the inclusion of cellulose, lignin and silica in grass places a utilization limit on herbivores
below the availability level of this potential food, because their feeding ecology can be explained to
large extent by the behavioral adaptation to maximize protein consumption and minimize consumption
of tough lignified or silicated fiber (Howe and Westley 1988). The scarcity of generalist consumers
in forests, and the contrasting abundance in grassland only increases the difference between forests and
grasslands in the relative significance of detrital and grazing food chains, because generalists redirect
some portion of cell-wall components flow toward grazing food chain (Fig. 1b).

Another structural comparison can be made between communities in tropical regions and
those in temperate regions. A key for this comparison lies in the interaction of cell-wall substances
with the termite, one of the most abundant animals with the greatest consumption of plant products
in tropical terrestrial communities. Therefore, we will start with a summary of termite ecology
focusing on the role of termites in the community in which they reside.

TERMITES AND COMMUNITY STRUCTURE
ABUNDANCE OF TERMITES AND THEIR LITTER CONSUMPTION

Termites (Isoptera containing 2200 living species) are widely distributed in tropical and
subtropical regions, and their number of species and biomass are especially large in the tropical zone,
where they play a major role in the decomposition of dead plant materials rich in cellulose,
hemicellulose and lignin (Lee and Wood 1971; Wood and Sands 1978; Josens 1985; Wood and
Johnson 1986). Termites are largely classified into two groups: lower termites (Families
Mastotermitidae, Kalotermitidae, Termopsidae, Hodotermitidae and Rhinotermitidae) and higher
termites (Termitidae). Major differences between the two groups are in the symbiotic organisms they
are associated with; the former’s symbionts are protozoa, and the latter’s are bacteria.

The maximum density and biomass of termites are roughly the same in the tropical rain forest
and wet savanna: 4,000 to 5,000/m? and ca. 10 g.w.w./m? (Table 1). The relative abundance of humus
feeders increases with an increase in precipitation, whereas that of fungus growing termites (in Africa
and Asia) is higher in savannas and dry forests.

Termites are predominant among all animals in the tropical terrestrial ecosystems. In a
Brasilian rain forest, about 80% of total biomass of animals (21 gw.w/m? was due to soil
invertebrates, 30% of which were termites (Fittkau and Klinge 1973). In a Malaysian forest, the
density and biomass of all soil macrofauna and termites (in parentheses) are as follows: 5387/m’
(3485/m?) and 12.5 g.w.w./m? (9.4 g.w.w./m?), respectively (Abe 1979;). In East Africa savannas, the
biomass of termites roughly equals that of wild ungulates.

If we take 10 g.w.w/m? as a criterion for an abundant animal, only four groups pass this
criterion: herbivorous mammals in African savanna termites in tropical regions, human beings
(250/km? and 40 kg/person) and earthworms in the temperate regions (Edwards and Lofty 1972). Ants
seem everywhere abundant, yet rarely exceed this criterion.

Some attempts have been made to measure the role of termites in energy flow and material
cycling in tropical forests (Matsumoto and Abe 1979; Abe 1980, 1982; Collins 1983, and savannas
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Table 1. Density (number/m?) and biomass (g wet weight/m?), indicated in parentheses, of termites
in tropical ecosystems.

ecosystems Tropical rain forests Savannas

Locality Mulu Pasoh Lamto Mokwa Fete-Ole
Country Malaysia Malaysia Ivory Coast  Nigeria Senegal
Rainfall (mm) 5107 2000 1290 1175 375
Latitude 4N 3N 6N 9N 16N
Authors* (1) 2) 3) @ 5)
Humus feeder 621(1.02) 1505(2.52) 100(0.16) 163(0.66) 0

Fungus growers 5(0.03) 960(6.12) 554(0.64) 2193(6.39) 93(0.72)
Others 909(1.35) 1020(0.78) 213(0.93) 1652(3.54) 138(0.24)
Total 1526(2.4) 3485(9.41) 867(1.75) 4001(10.59)  231(0.96)

*(1) Collins (1983), (2) Abe (1979), (3) Josens (1972), (4) Wood and Sands (1978), (5) Lepage (1974).

(Josens 1972; Lepage 1974; Ohiagu 1979; Ohiagu and Wood 1979; Collins 1981, 1983; Buxton 1981;
Gentry and Whitford 1982), as reviewed by Wood and Sands (1978) and Josens (1985). Estimates of
litter consumption by termite populations are shown in Table 2. Ecological impacts of termites in
savannas seem to be greater than those in tropical forests. In Southern Guinea Savanna of Nigeria,
termites consume 63% of annual grass litter supply, consuming 36% of all litter supply.

INTERACTION OF TERMITES WITH OTHER ORGANISMS

In the lower termites, cellulose is digested by enzymes secreted by termites themselves and
their gut protozoa, while in the higher termites (about 75% of all species), cellulose digestion is
mediated by cellulase secreted by termites, their gut bacteria and the fungi in their nests (Grasse and
Noirot 1959). The fungus growing termites among the higher termites (Macrotermitinae), which are
dominant in tropical Asia and Africa, cultivate fungi of Termitomyces placing their faeces on fungus
gardens in their nests, and obtain cellulase mainly from the fungi (Abo-Khatwa 1978; Martin and
Martin 1978). Furthermore, the fungi of Termitomyces also produce lignin-degrading enzymes
(Rohrman and Rossman 1980), and the repetition of the cyclic process formed by the cultivation of
fungi by faeces and the reingestion of old portions of fungus gardens, which contain plant materials
partially degraded by fungi, results in a complete decomposition of plant litter.

In the tropical forests, termites consume mainly dead plant materials such as fallen trunks,
branches, leaves and humus, and they rarely attack living parts of trees (Abe 1979). The process of
wood decomposition by termite activity is an interesting one. Termites transfer into wood a lot of
soil that contains microorganisms with cellulases and probably lignin-decomposing enzyme. The part
of
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Table 2. Estimates of consumption by termite populations derived by combining field measurements
and calculation from mean weight-specific rate of consumption, based on Josens (1972), Lepage
(1974), Wood and Sands (1978), Wood and Sands (1978), Matsumoto and Abe (1978) and Collins
(1981, 1983).

Locality Annual Total Litter consumed by termites
(Subregion) rain fall litter Field measurements Calculated
Sources of litter (mm) (gm?) (gm?) (% of (g/m?) (% of
total litter) total litter)

Sahel savanna, 375 125 125 100 184 147
Senegal :
S. Guinea savanna, 1115 533 189 353 179 33.5
Nigeria

Wood 139 84 60.1

Leaves 239 68 28

Grass 155 98 63.2
Derived savanna, 1290 480 135 28.1 242 50
Ivory Coast
Rain forest, 2000 1276 155-173 12.2-13.6
West Malaysia

Leaves 703 150-200 24-32

Wood 573
Rain forest
East Malaysia
(Kerangas) 5698 1050 : 35 34
(Alluvial) 5087 1280 11 0.9
(Dipterocarp) 5107 960 20 2.1

wood in contact with the soil becomes soft enough to be easily removed by termites. Most of fallen
trunks and branches seem to be decomposed rapidly by a termite-microorganism complex (Abe 1980).

In temperate forests and grasslands, plant litter is decomposed in several stages (Burges 1967;
Dickinson and Pugh 1974; Collins 1981). After development of phylloplane microflora, the litter is
colonized by saprophytic microorganisms and the degradation of plant polysaccharides by them is
essential for soil invertebrates to begin to feed. The litter is then comminuted and ingested by soil
invertebrates, and litter fragments and invertebrate faeces are incorporated into the soil, where further
microbial actions result in the formation of humus. In other words, the litter decompositions by
microorganisms and soil animals proceed "sequentially” in temperate regions. In contrast, the ability
of many termites to feed on fresh litter opens up a completely new pathway in the tropical
decomposition process (Wood 1976; Collins 1981). Litter decomposition by microorganisms and soil
animals proceeds "concurrently” in the tropical regions where fresh litter feeding termites are
abundant and this may enhance the rate of litter decomposition, although the accelerating effect of
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high temperature on microorganisms’ activity in these regions must also be taken into account
(Anderson and Swift 1983).

In spite of their ability to consume cell-wall components, few termites attack living trees in
the forest, although in the savanna, a significant proportion of termites consume living grasses (Lee
and Wood 1971; Abe 1979;). In this context, it is noteworthy that some species of termites are serious
pests of agricultural plants (Harris 1961). For example, in Malaysia termites are pests of rubber trees
and tea bushes (Dhanarajan 1969; Tho 1974), and in Zambia they are pests of Eucalyptus trees
(Nkunika 1980). Interestingly, those agricultural plants attacked by termites are all introduced species.
Although little is known about whether the same plant species are attacked by termites in their native
habitats, an observation by the first author of this essay suggests that Eucalyptus trees in Australia,
their native lands, are not attacked so severely as in Africa and India. Abe and Watanabe (1983)
showed that two species of termites which consume only dead wood and/or fallen leaves in a
subtropical rain forest began to attack cassava (an introduced plant) in cultivated areas adjacent to
the forest. Although chemical information is lacking, one possible explanation to this phenomenon
is that a native tree species which coexists with a species of termites has developed a chemical defence
against that species of termites.

NESTED SYMBIOSIS: THE ROLE OF THE TERMITE IN COMMUNITY STRUCTURING

The trophic interactions (i.e., interactions of nurturing) surrounding termites, as have been
discussed, constitute two cycles of different scales: the larger one is the nutrient (mineral) cycling of
the entire ecosystem scale formed by the primary producer (autotrophs, plants), the litter, the
decomposer, including termites, and nutrient pool, whereas the smaller one is the cycle formed by the
termite and its symbionts (protozoa or bacteria and fungi) in their exchange of cell-wall materials
gradually decomposed in the transfer (Fig. 3). The larger cycle might be developed, to increase flows
and build up the standing stocks of its living components, the primary producer and decomposer,
through the coadaptation or coevolutionary process between these two components (for more details
on this point, see Higashi et al. in this report). The smaller cycle may be also developed through an
analogous process of coevolution between the termite (host) and its symbionts (guest), to enhance
their symbiotic (mutualistic) interaction. Then, the termite would play the conjunctive point through
which the development of these two cycles are interrelated.

As an example of this linked development of the two cycles, we might consider the following
situation: An increase of the symbiotic reward from the termite’s guest (symbiont) to the host
(termite) induces (or evolutionarily favors or selects) an increase of the litter processing effort by the
termite, which in turn enhances the primary producer’s production effort (or evolutionarily selects a
producer with a higher production rate). This would further enhance the decomposer (termite)’s litter
processing effort, which would in turn induce an increase of the symbiotic reward from the termite’s
guest to the host termite. In this example, tracing the temporal development along an evolutionary
causal chain, we find ourselves in the smaller cycle at first, then switch into the larger cycle, and later
comes back to the smaller cycle again. It illustrates a typical manner in which the coevolutionary
development of the two cycles are interconnected.
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Noting the scale and magnitude of the impact that the termite has in terrestrial communities,
particularly in tropjcal regions, these two interconnected cycles, "nested symbiosis”, appear to
constitute the infrastructure on which an entire terrestrial community is built up in the tropics. A
central feature of the infrastructure of a community is represented by the larger cycle formed by the
primary producer, the litter, the decomposer, and nutrient pool. In comparison between temperate
and tropical regions, we have pointed out that the internal structure of the decomposer subsystem in
this cycle serves for a clear distinction; it has a "sequential” structure in decomposition of dead plant
materials by microorganisms and soil animals in the former, whereas a "concurrent" structure in the
latter, due to the smaller cycle of decomposition made by the soil animals, mainly termites, associated
with symbiotic microorganisms, beside other decomposers, resulting in higher total decomposing
efficiency of the decomposer subsystem, which might in turn lead, through the coevolutionary
mechanism between the primary producer and the decomposer, to a greater primary production than
would be expected solely from physiological response of the plant to a higher temperature and solar
radiation.
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Figure 3. The two cycles of trophic interactions involving termites. The larger cycle represents the
nutrient cycling of the entire ecosystem scale formed by the primary producer, the litter, the
decomposer, including termites, and nutrient pool, whereas the smaller one is the cycle formed by the
termite and its symbionts in their exchange of cell-wall materials gradually decomposed in the transfer.
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NON-NEWTONIAN CAUSALITIES IN ECOSYSTEM DEVELOPMENT

Robert E. Ulanowicz, University of Maryland, Chesapeake Biological Laboratory, Solomons, MD
20688-0038 USA

Ecodynamics differ from the more familiar Newtonian dynamics in that they result in part
from causes that are not wholly mechanical or material in nature.

In the aftermath of Newton there followed a concerted effort by natural philosophers to limit
consideration of the causes of phenomena to only mechanical (efficient) and material agents. The
neo-Darwinian view of evolution and development remains within these Newtonian confines, but only
at the expense of assuming that the developing system is cybernetically decoupled from its
environment. As ecology is concerned specifically with the interaction between the biological system
and its environment, one might ask whether causes of ecological events are strictly newtonian in
nature and, if not, whether one can describe ecodynamics in a rational and quantitative fashion?

Prior to Newton one of the most influential Western thinkers to write about causality was
Aristotle, who suggested that causes in nature are usually not simple. A single event may have several
simultaneous causes, and Aristotle taught that any cause could be assigned to one of four categories:
(1) material, (2) efficient, (3) formal, and (4) final. For example, in building a house the material
cause resides in the bricks, lumber and other tangible elements that go into its structure. The efficient
cause is provided by the laborers who actually assemble these materials. The design or blueprints are
usually taken as the formal cause, and the need for shelter on the part of those who contracted for
the construction is considered to be the final agent.

Autocatalytic feedback is an example of formal cause at work in living systems. By
autocatalysis is meant a cyclical configuration of two or more processes or entities wherein the activity
of each member positively catalyzes the activity of the next element in one direction around the loop.
At first glance it might appear that autocatalysis can be readily decomposed into its material and
efficient components, but further reflection reveals otherwise. Autocatalysis (AC) possesses at least
six properties that reveal its stature as a formal agency. (1) As the prefix "auto” suggests, AC is to
at least some degree autonomous of its composite parts. Whenever the network of causal influences
can be mapped, it becomes feasible to identify and enumerate all the circular causal routes.
Furthermore, if the individual links can be somehow quantified, it is then possible to separate
abstractly the autocatalytic nexus from the supporting tree of causal events upon which it remains
contingent (Ulanowicz 1983). (2) If one observes only a subset of the elements in an autocatalytic
cycle, these components form a distinctly nonautonomous chain. However, if one increases the scale
of observation to include all the members of the cycle, AC is seen to emerge as a phenomenon. (3) By
its very nature AC serves 10 accelerate the activities of its constituents, i.e., it is growth-enhancing.
(4) Chance perturbations in any element of a loop that enhance AC are themselves enhanced, and
vice-versa. That is, AC exerts selection pressure upon deviations in the loop to foster only those
characteristics which contribute to the ensemble behavior. It is a short step from selection for
character traits to selection among possible replacement components. Once one recognizes that the
ensemble exerts selection upon its replacement parts, it becomes clear that the characteristic lifetime
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of the configuration exceeds that of any of its parts, and selection becomes a key element of the
autonomy mentioned in (1) above. In particular, changes in any element that result in its drawing
increased resources into the loop will be rewarded, giving rise to a central tendency, or, as Denbigh
put it, a form of "chemical imperialism". (5) Both selection and central tendency result inevitably in
competition for resources among multiple AC loops. The result is an ever-more streamlined, or
articulated topology of interactions. (6) Finally, AC is manifestly the result of a dynamical structure,
thereby making it formal in nature. The six properties of AC constitute a strong case that it be
considered a formal agent. In the absence of major, destructive perturbation AC serves to increase
the level of activity of the system (an extensive effect), while at the same time it prunes the less
effective causal pathways from the network (an intensive result). It remains to quantify the dual
effects of this unitary agency. Towards this end it is useful henceforth to confine discussion to
networks of material or energy transfers as they occur in ecological communities or in other systems
of interest. Thus, the activity level of the system becomes synonymous with the magnitude of the
aggregate transfers occurring in the network. This latter sum is known in economic theory as the total
system throughput (TST), a term which has carried over into ecology (Hannon 1973).

Quantifying the tendency towards an ever more articulated network topology is a slightly more
difficult proposition. Suffice it here to note that in more articulated, or highly defined networks there
is less uncertainty as to which medium at any given mode will flow next. Less uncertainty implies
more information, and Rutledge et al. (1976) show how the average mutual information (AMI), as
estimated from the relative magnitudes of the flows, captures the degree of articulation inherent in
the flow topology.

However, the AMI, being an intensive attribute, lacks physical dimensions. It is, nonetheless,
multiplied by a scalar constant which can be used to give dimensions to the measure (Tribus and
Mclrvine 1971). Thus, scaling the AMI by the total system throughput gives rise to a quantity known
as the network "ascendency"--a surrogate for the "efficiency” with which the system processes the
medium in question. Because any increase in the level of activity can be characterized as growth (e.g.,
the increase in the gross national product of a country’s economy), and because the augmented
definition of its topology may be termed development, an increase in the product of the TST by the
AMI (the ascendency) serves to measure the unitary process of growth and development (Ulanowicz
1986).

Of course, growth and development can never continue unabated, and the limits to a system’s
rise in ascendency can be quantified using similar quantities from information theory. The AMI, for
example, is bounded from above by the Shannon-Wiener index of uncertainty. Scaling this latter
measure by the TST yields a quantity called the development capacity--a measure of the size and
complexity of the network. The limits to rising development capacity (and also to ascendency) are
recognizable from the mathematical form of the development capacity. One constraint is the finitude
of external sources available to the system. A second limitation exists on the number of compartments.
Disaggregation cannot continue beyond a point where the finite resources become spread over 100
large a number of categories. Otherwise, some compartments would come to possess so little resources
that they would be highly vulnerable to chance extinction by the inevitable perturbations to which any
real system is always subjected.
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Even if the development capacity has leveled off, the ascendency may continue to increase by
diminishing the amount by which it falls short of the capacity, a difference called the "overhead". The
overhead in turn can be traced to four sources: (1) the multiplicity of external inputs, (2) the exports
of usable medium from the system, (3) the dissipations inherent in the activities at each node and
(4) the redundancy among various pathways joining any two arbitrary compartments. Rather than
being an unmitigated encumbrance upon the system’s performance, the overhead is seen at times to
be essential for system persistence. That is, diminishing any term in the overhead beyond some
unspecified point will eventually place the given system at risk. For example, relying completely upon
a single external source of medium makes the system highly vulnerable to chance disruptions in that
source. Similarly, it would be counterproductive to cut back on exports which might be coupled
autocatalytically to the system’s inputs at the next higher hierarchical level. Furthermore, the
resources that are dissipated at each node often underwrite structural maintenance at a lower level
of the hierarchy. It would be detrimental to decrease such support to very low levels, even if such
arbitrary cutbecks were thermodynamically feasible (which they are not). Finally, a channel of flow
between two nodes or species having no redundant backup is susceptible to disruption by perturbation
in the same way as discussed above for the external sources.

The quantitative description of growth and development is far from complete, and there are
numerous opportunities for US-Japanese collaboration in extending the theory. For example, the
AMI is estimated using only direct interactions, and investigators such as Patten argue that indirect
influences are cardinal to any description of ecodynamics. To incorporate indirect influences into the
ascendency measure Magahiko Higaski (personal communication) has suggested using information
theory as applied to fuzzy sets. Other expansions upon the ascendency narrative include how to define
the measure for a system in which more than one medium is circulating (as is inevitably the case), or
how best to implement the principle of increasing ascendency s a problem in operations research
(Cheung 1985).

Finally, it should be acknowledged that ascendency theory stands upon a very sparse inventory
of data. A comparative study of selected Japanese and American ecosystems would be a very desirable
objective for a cooperative research program and should further test the suitability of this still
unconventional way to describe living phenomena.
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SENSITIVITY AND STABILITY OF FLOW NETWORKS

Hisao Nakajima, Department of Physics, Ritsumeikan University, Kita-ku, Kyoto 603, Japan

ABSTRACT

The input sensitivity is defined by the ratio of the steady state change to the amount of an
extra input added to the system. This sensitivity gives us information relating to dynamical properties
about steady states, because the input sensitivity matrix has a simple relation with the coefficient
matrix obtained by linearization of the dynamical system. The interactive structures of the system are
reflected in the input sensitivity of steady state introduced here, thus the analysis of this sensitivity
offers a key to understanding other sensitivities; for example, parameter sensitivity, inter-flow
sensitivity, etc. Indirect effects among elements can also be estimated in the context of input
sensitivity as the accumulation of effects along all possible paths of interactive links from one
compartment to another. The relationship between two cnncepts of stability, resilience and resistance,
is discussed in terms of input sensitivity. For donor-dependent systems, it is found that these stability
properties are closely related to each other.

INTRODUCTION

Dynamical system approaches have attained great success in the analysis of systems consisting
of small numbers of elements. For example, the population dynamics approaches have had fruitful
results (e.g., on periodic phenomena, catastrophic change, and stability of steady state) for simple
ecological systems (e.g. May (1973)). However, dynamical system approaches are not the most
suitable for complex systems, because we cannot get enough information about interactions among
elements of a system to describe its precise dynamical behavior.

Cohen (1978, 1989) discussed the structure of food webs in terms of feeding relations without
requiring knowledge of flow amounts from prey to predators. He used a topological rule in the
structure of prey-predator relations and derived from a simple model scale invariant laws which many
food webs satisfy.  His work gives us an idea about underlying laws relating to predator-prey
connections in food webs. On the other hand, flow analysis of ecological systems was developed by
Patten et al. (1976) and Finn (1976) to estimate how elements of the system control each other
through flows. An extension of the analysis given by Patten and Higashi (1984) and Higashi (1986a)
took into account storage as well as flow to get information on the interaction between storage and
flow. Results associated with residence time (Higashi 1986b) and degree of cycling (Finn 1976,
Patten and Higashi 1984) were obtained from these analyses, though the analyses were concerned only
with steady states. However, these analyses contain no information about dynamic aspects such as
dynamic control and dynamic stability.

Knowledge of dynamical properties of a system is useful for understanding the interactive
structure of the system, beyond that gained through the study of steady states. Element controls and
stability are important characteristics of an ecological system in steady state, since these factors affect
the formation of interactive structure in the succession or evolutionary process of the system
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(Nakajima 1985). Puccia and Levins (1985) developed loop analysis which provides the bridge
between networks and their representations as dynamical systems.
As an extension of their work, we here introduce the input sensitivity analysis of steady states,
which measures the change of a steady state due to an extra input added to one element of the system.
From this sensitivity, knowledge can be obtained on dynamical properties about the steady state of
the system. This analysis may give us insight into dynamical properties for complex systems.

INPUT SENSITIVITY ANALYSIS
We consider a flow network consisting of n compartments, and the interflows, inputs, and
outputs associated with each of them. Let x; denote storage of compartment i. We denote interflow
from compartment i to j by f;. It is assumed that each flow f; depends on storage x,,...x, and
parameters p,,...p,. We have the following dynamical equation for each storage,

dx n
"d?l =Y 5 -t G=l..m), (1)

=0 j=0

where f, and f, are input and output of the i compartment, respectively (i.e. compartment 0
represents the environment of the system). At a steady state, total inflow equals total outflow for
each compartment; that is,

SheYh Gl ®

j-o jlo

Now, we add a small amount of input Az; to compartment j. When this extra input is added to the
system, the steady state storage for each compartment changes to x;+ Ax; (i=1,...,n), according to the
following steady state condition,

n R
Yot Ak, +AX )+ Az, = Y £i(x,+ AXy X, + AR,
j=0 j=0

©)

n n
53‘ [+ Axpp %, +AX,) + Az, = g Suls;+ Axyx, + Ax,),
J= J
(k#i).

We call the ratio Ax;/Az; the sensitivity of x; with respect to the change of input z. Let 5; denote this
sensitivity; that is,
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. Ax,
Sy = lim —, @Jj = 1,..,n), )

and let S be the matrix whose (i,j) element is s;; i.e., S = (s5;). We can also add an extra output to
the system, which is treated simply as a negative extra input; ie., Az; < 0. We assume here the
following continuity of Ax;/Az;

Ax | ym A% [=umfi], Gj = 1,..n). )

8200 AZ; 87087 | 470 Az

Let matrix 4 be the coefficient matrix deduced from the linearization of dynamical system
(1) about the steady state; i.e., elements of this matrix, a,, satisfy the following equation:

i

aij = EQ‘[qu - kz..;fh.} (IJ = 1,'~-sn)v (6)

xj k=0

where partial derivatives are evaluated at the steady state. This matrix 4 is usually called the
community matrix in community ecology. When an extra input is added, steady state conditions
(3) are satisfied, thus we have

d(:f,‘k - th) = _aiidzf @ = 1,..n). )]
k=0 k=0

From the Taylor expansion of the left-hand side of Eq. (7), we get

n
gaadxk = -9dz, (i = 1,...n). ®)
Thus, we have the following simple relationship between the input sensitivity matrix S and the
community matrix A4:
S =-A1 ©)

The influence of an extra input spreads throughout the whole system until the system reaches
a new steady state. Thus, sensitivity is the accumulation of influences made by the extra input at every
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moment on each compariment. Therefore, Eq. (9) can be interpreted in the following way: If an
extra input Az is added during the small time interval A¢, its influence on storage x; is equal to

(e*); Az; At (10)

after time interval . The change of storage x; due 10 an extra input Az can be expressed as the
integral of Eq. (10) from the infinite past to the present, thus we have

Ax, = f(e‘ )y = (-4, Az, (11)

This relationship means that sensitivity equals the total effect of an extra input added to the system
throughout the infinite time interval. From Eq. (11), Eq. (9) follows.

According to Eq. (9), the community matrix can be obtained from the sensitivity matrix. The
sensitivity s; can be obtained from the measurement of change in storage x;, when a constant input
to compartment j is introduced for a long period compared to relaxation time. The change in x; is
measured after the influence of this injection spreads over the system. These measurements are
easier than the measurements of the elements of community matrix, because in the latter case,
measurements should be made before the influence of injection spreads to other compartments of the
system; i.e., before compartments other than i get no influence from compartment j.

When a system has more than one extra input, we have

dx = S dz, (12)
where
dx, dz,
dx = Pl dz = HE
dxn dzll
(13)

When one of the system parameters is changed by a small amount, the steady state is also
altered. We get the following relationship between the change of parameter p, and the steady state
change,

dx = Sdf, (14)
where
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This equation means that the storage changes due to a parameter change are expressed by the
products of the sensitivities of storage with respect to the extra input and the flow changes due to the
parameter change. The sensitivity matrix S reflects the structure of connections among elements, and
has nothing to do with the sensitivities of flows with respect to parameters. Flow changes d , f are
caused by parameter change dp, and have no influence from any storage changes. Equation (15)
implies that effects of the flow changes due to parameter change dp, spread into the system, and that
this propagation is described by the sensitivity matrix S, so that the storage changes are equal to the
product of S and d , f.

When a parameter p, has an influence on only interflow f;, we obtain the sensitivity with
respect to interflow from Eq. (15):

dx, = (su - s,d)-a—fﬁ, *k = 1,..n). (16)
op,
Interflow f_{ij} has direction from j to i, thus compartment i has a positive effect from this interflow
and compartment j has a negative one.

DIRECT AND INDIRECT EFFECTS
Input sensitivity gives us a better understanding of mutual effects among elements, especially
in systems which have cycles of effects, because this sensitivity consists of total effects among

compartments including direct and indirect effects. Here, we define the direct effects in the sense
of steady state,

ax,

ox, . ‘
d” = ’ (lJ = 1,...,”; l#j), (17)
j zl"“l""'tl-l'tld"""/-l'x/»l"""u .
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When an extra input is added to compartment j, storage of this compartment changes, and other
compartments receive the effects of this storage change. The suitable extra inputs (positive or
negative) are added to compartments other than i and j, to keep storage levels of those compartments
constant. These extra inputs absorb the effects of compartment j on compartments other than i and
J, thus compartment { has no effect from other compartments except j. If no extra input is added to
compartment {, then compartment i has the effect only from compartment j. We consider Eq. (17)
as the direct effect from j to {, in the sense of the steady state.
We say that

d; =0, (i =1,..n). (18)

Every compartment has the temporal direct effect on itself, which corresponds to the diagonal
elements of the community matrix, a;. However, every compartment has no direct effect on itself in
the steady state, because storage of a compartment does not change without the effect of an extra
input to this compartment and the effects of all other compartments. From Egs. (7) and (18) for
compartment i with conditions dx, =0 (k = i,j), we have

aij ..
dU = -—2 + a,.,, (y = 1,..,n). (19)
i
If every compartment has self regulation, that is, a,;<0 for all i, then each steady state direct effect has
the same sign as the corresponding temporal direct effect. In this case, the structure of the steady
state direct effects preserves the sign relationship of interactions in general dynamical systems. Direct
effect matrix D consists of elements dj.

The direct effects from the environment of a system can be estimated in the same way as
direct effects among compartments. We define d ;, as

G o= Lean). (20)

] ]"l'“"’l-l"hl"""-

From Eq. (7) for compartment j with conditions dx,=0 (k+j), we have

1 .
dy = o G = 1,..n). (21)
i
The matrix of environmental direct effects D is a diagonal matrix whose elements are d, We have
a relationship among community matrix A4, direct effect matrix D, and the environmental direct effect
matrix D,
D=Db"A+1 (22)



175

Matrix D represents the direct effects of extra inputs added to the system on the
compartments having the extra input. Matrix product D D represents the effects of extra inputs on
each compartment through a link from the compartment having an extra input to the compartment
unde- consideration. Matrix D*D represents the sum of the effects from an extra input along all
paths having two links, say j - k& - i, where compartment j has an extra input, / is the compartment
under consideration, and compartment £ has a link from j and a link to i. Thus, the total effects of
the extra input is the sum of the power series,

D+DD +D*® + DD+ ..=(-D)'D (23)
From Eqs. (22) and (23), we get
D+DD +DD+DD+..=-A1=5§ (24)
In the previous section, the input sensitivities are interpreted as total effects with respect to time [cf.
Eq. (11)]. Another interpretation of the input sensitivities can be given here; namely, the total effects
along all possible paths from one compartment to another.
We have direct effects from extra input itself and from other compartments due to extra
inputs, as follows
D + DD. (25)
From Eqgs. (24) and (25), we get indirect effects due to extra inputs
D} + DD +..=8-(+D)D. (26)
Applying the operator D! tothe right-hand side of Eq. (26) from the right, we have indirect effects
sbt -1-D. 7)
Equation (27) can be also interpreted as the indirect effects between one compartment and another,

which can easily be compared with direct effects defined by Eq. (17).

INPUT SENSITIVITY OF DONOR-DXPENDENT SYSTEMS
In donor-dependent systems, all flows depend only on the storage of donors; that is,

fU = f‘/(xj): (i = 0,1,...,n;j = 1,...,"). (28)
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Inputs depend on the state of environment, but this state is assumed constant so that all inputs are
assumed constant. We also assume that the amount of each flow increases when storage of the donor
increases; i.e. the flows fy(x,) are increasing functions of x;, Therefore, we have

df;

bU = -a—x— 20, (i =01,.,mj=1,..,n), (29)

J

where equalities hold when the flows are identically equal to zero. From Eqgs. (6) and (29), we obtain
the community matrix, as follows:

-Y by by by,
k=0
b, - b b
A= 2 il » | (30)
bu bn2 - Ebbu
k=0

Diagonal elements of this community matrix are negative, and its off diagonal elements are
nonnegative. This community matrix is diagonal dominant, because the sum of all elements in each
column is negative. Thus, -4 is the so called M-matrix (cf. Chapters 6 and 9 of Berman and
Plemmons (1979)). According to a theorem on M-matrices, matrix S = -4 is nonnegative and the
following relations hold:

S 2 8 (ij = 1,...n). (31)

From the above nonnegativity of sensitivity matrices and Eq. (31), we have the following results:
"There is no negative sensitivity in donor-dependent systems"; "The compartment having an extra input
receives the greatest influence of this extra input among all compartments in the system, so that
influences decrease along the paths of interaction links".

Now, we analyze the effects of interflow changes on each storage. Let p; be the parameter
in a function of interflow from j to i, namely f;. From Eq. (16), we have

o,
dx, = (s; - sy)—~dp, (k = 1,..n). (32)
Bp‘.j
The storage change of compartment i has the same sign as the interflow change (af‘., 13p; ) dp;s

because s; - s5; is positive according to inequality (31). On the other hand, the storage change of
compartment j has the opposite sign to the interflow change, because s; - 5; is negative according to
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inequality (31). When the interflow is increased by the parameter change, the direct effect of this
interflow change on compartment j decreases the storage of compartment j, since compartment j is
a donor of this interflow, and the outflow of compartment j increases. The compartment j as indirect
effects through other compartments. However, the total effects on j decreases storage of compartment
j, even if indirect effects on compartment j increase storage of compartment j. The storage change
of other compartments depends on the difference of the sensitivity from i and j to each compartment
under consideration.

In donor-dependent systems, the input sensitivity matrix agrees with matrix -(4")" in the
environ analysis proposed by Matis and Patten (1981). The storage of every compartment is divided
by the portion originally coming from each input, in the following way:

x = ~(A")z, where x = (x,..x.), 2 = (fige )" (33)

RESILIENCE AND RESISTANCE

There has been much discussion on the relationship between the complexity and stability of
ecosystems, since MacAthur (1955) and Elton (1958) and especially May (1973) came to a conclusion
conflicting with earlier studies. However, confusion arose through use of the same word in different
senses. Pimm (1984) listed several concepts on stability and complexity to clear away this confusion.
Here, we focus on two stability concepts, resilience, and resistance.

The resilience of a system refers to how fast the system returns to an original steady state
following a perturbation. This stability concept is a characteristic of the system, and can be defined
as the reciprocal of the time taken for the system to damp the deviation from the steady state by 1/e.
Resistance is defined as the degree to which a state variable is changed following a perturbation.
This stability is concerned with each state variable in the system and not with the whole system. It
also depends on what parameter or component of the system is perturbed. = We now derive
mathematical expressions for these stability concepts. Let A, be the eigenvalue having the maximum
real part in all eigenvalues of community matrix 4. Let the left and right eigenvectors of 4, be
denoted by u' and v, respectively. These eigenvectors satisfy the foliowing equations:

u'dA = Au', Av =21 (34)

Let T,, denote return time of the system. We have the following relationship between A,, and T,,

1
T = - . 35
m Rel,, 33)

Equation (35) represents resilience, since resilience can be estimated by the return time, T, of the
system.  Another type of stability, resistance, can be interpreted as the reciprocal of the input
sensitivity; i.e., 1/s; represents the resistance of compartment i to the input change of compartment

j. From Eqs. (14) and (15), the resistance of compartment i to the change of parameter p, can be
defined as
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(36)

Resilience and resistance express the degree of stability, and the changes of these degrees of
stability are calculated from the above results. Taking the derivative of the first equation of Eq. (34)
and multiplying vector v to both sides of the equation from the right, we have

(duDAv + u'(dAy = (dr)u'v + A, (du)v. (37

From the second equation of Eq. (34) and simple algebra, we get

d, = uldd v (38)
u'y

From Eq. (9), it is clear that if A, «', and v are an eigenvalue of the community matrix, and left and
right eigenvectors of this eigenvalue, respectively, then -1/ is an eigenvalue of the corresponding
sensitivity matrix, and u' and v are also left and right eigenvectors, respectively, of the sensitivity matrix
for eigenvalue -1/A. In donor-dependent systems, -4 is the M-matrix. From Kellogg’s (1972)
theorem, A, is real, and T,, (= -1/A,,) is the maximal eigenvalue of sensitivity matrix S. We have the
following equation, corresponding to Eq. (38),

dr - WdSv 39)

-m
u'y

From the Perron-Frobenius theorem of nonnegative matrices (see €.g. chapter 2 of Berman and
Plemmons (1979)), all elements of eigenvectors u' and v are positive. Therefore, in donor-dependent
systems, if one or more elements of the sensitivity matrix decrease, then the return time of the system
also decreases. This means that a more resistant system is more resilient, in donor dependent systems.
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THERMODYNAMICAL ENTROPY IN ECOLOGICAL SYSTEMS

Ichiro Aoki, Department of Physics, Osaka Medical School, 2-41 Sawaragi-cho, Takatsuki-shi, Osaka
569, Japan

ABSTRACT
The thermodynamical entropy concept is applied to ecological systems.

(1) Although entropy content of living systems has not been measured so far, entropy flow
and entropy production - process variables - can be estimated from corresponding energetic data by
use of some physical methods. Examples of entropy flow and entropy production in nature (white-
tailed deer, plant leaf, lake, and the earth) are presented.

(2) Ecological systems can be considered to be composed of a number of compartments;
flows among compartments constitute networks. The entropy concept is applied to the input-output
flow analysis of ecological networks at steady state, and entropy laws in ecological systems are
presented; these laws are stated in terms of network theory, that is, throughflow, total system
throughflow, path length, and cycling index.

(3) The study of large and complex systems, such as lakes, may be approached in two
diffcrent ways: holological (holos = whole) and merological (meros = part). As a holological study
of lakes, monthly entropy productions of Lake Mendota (eutrophic) and the northern basin of Lake
Biwa (oligo-mesotrophic) are investigated, and holological and entropic indices which characterize the
lakes are determined. A comparative study of the two lakes suggests that processes of eutrophication
or succession of lakes are accompanied by an increase in magnitude of these entropic indices. A
hypothesis for the whole span of ecological succession is proposed.

INTRODUCTION

The energy concept, originated in physics, has been intensively employed in natural (and even
social) science. In biological sciences, we can speak of bioenergetics, ecological energetics, or more
specifically energy-flow analysis in ecosystems, as examples of the use of the energy concept. However,
little has been known about implications of entropy in nature, although entropy is as important as
energy from a thermodynamical viewpoint: the First Law of Themiodynamics is concerned with the
concept of energy and the Second Law with entropy. Hence, the importance of the study from an
entropy viewpoint should be emphasized.

The Second Law of Thermodynamics is the law of the entropy concept. It states for an
isolated system that the change of entropy content of the system in irreversible processes (AS (irrev))
is always larger than that in reversible processes (AS (rev)), and the latter is zero:

AS (irrev) > AS (rev) = 0. (1)
Since biological objects are not isolated systems, Eq. (1) can not be applied to biology. Biological

systems are open systems which exchange energy and matter with their surroundings. For open
systems, the change of entropy content of a system (AS) is the sum of two terms: entropy flow (A,S)
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and entropy production (ASS). The entropy flow is the entropy that is brought into or out of the
system associated with flows of energy and matter, and the entropy production is the entropy that is
produced by irreversible processes occurring within the system. The Second Law for open systems
asserts that the entropy production in irreversible processes (A S (irrev)) is always larger than that in
reversible processes (AS (rev)), and the latter is zero:

AS (irrev) > AS (rev) = 0. (2)

Thus, the Second Law for open systems is formulated in terms of entropy production.

Entropy is produced anywhere at any time when processes are irreversible. The higher the
irreversibility of a process, the more entropy produced. Hence, entropy production is a measure of
the extent of irreversibility of processes. Since all motions and reactions actually occurring in nature
are irreversible, entropy production is also a measure of the extent of activity of natural processes,
which consists of physical activity (the strength of processes of heat flow and transportation of
matter), chemical activity (the strength of chemical reaction) and biological activity (the strength of
biological interaction).

Thermodynamical variables are divided into two classes: state variables and process variables.
With regard to the entropy concept, the state variable is entropy content and the process variables
are entropy flow and entropy production. As for the state variable, entropy content, it should be
noted that no one has yet been able to measure it in living systems. It is questionable whether or not
it will be measured in the near future. Hence, at present it is impossible to develop thermodynamical
discussions based on measured entropy content of biological systems. However, entropy flow and
entropy production - process variables - can be quantitatively estimated by use of some physical
methods from observed energetic data of biological objects. Thus, we can develop entropy
considerations based on values of entropy flow and entropy production obtained by calculations.
Some exaraples of entropy flow and entropy production in nature are given in the next section.

EXAMPLES OF ENTROPY FILOW AND ENTROPY PRODUCTION

Figure 1 shows the entropy flows and the entropy production for a 50 [kg] white-tailed deer
on a maintenance diet during a winter night (Aoki 1987a). The values are in units of [J s”' K™}
The infrared radiation from the sky and from the ground is incident upon and absorbed by a white-
tailed deer. The entropy inflow into the deer due to this infrared radiation is 1.66 units. The entropy
of 0.46 units is produced by irreversible processes within the body of the white-tailed deer. The
entropy outflow from the deer is 2.12 units, which consists of 1.82 units by emission of infrared
radiation from the deer, 0.21 units by convection to the surrounding air, 0.07 units by evaporation of
water from the skin and the lungs of the deer, and 0.02 units by heat conduction to ingested food.

The entropy flows and entropy production for a deciduous plant leaf under sunlight (the
energy flux of solar radiation is 1.20 [cal cm™ min™']) are shown in Fig. 2 (Aoki 1987b). Units are
10* [J ecm™ 57" K'). The entropy inflows into a leaf due to absorption of solar radiation and
absorption of infrared radiation are 0.30 units and 2.87 units, respectively. The entropy production
in a leaf is 1.79 units. The entropy outflow from a leaf is 4.96 units, which consists of 3.88 units by
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Figure 1. Entropy flow and entropy production for a white-tailed deer during a winter night.
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Figure 2. Entropy flow and entropy production for a deciduous plant leaf under sunlight.



emission of infrared radiation, 0.47 units by heat conduction and (.61 units by evaporation of water.
On the other hand, the entropy production in a leaf is nearly zero at night (Aoki 1987b, 1987c). It
is shown that the entropy production in leaves is proportional to the solar radiation energy absorbed
by leaves, which oscillates with a period of one day. Hence, the entropy production in leaves also
oscillates, keeping pace with solar radiation. Since entropy production is a measure of activity as
stated in the introduction, the activity of leaves is high during the day and almost zero at night. That
is, a large portion of the activity in plant leaves is "on" during the day and "off" at night (except
perhaps for CAM plants). Most of the activity in leaves may be triggered by solar radiation.

The annual values of entropy flow and entropy production per unit surface area of Lake Biwa
(Japan), as an example of an ecosystem, are shown in Fig. 3 (Aoki 1987d). Units are [MJ
m-tyear' K-']. This work is intended to treat a lake-ecosystem as a whole (holistic approach) from
an entropy viewpoint. More detailed entropic studies of lakes are given in a later section. Figure 4
shows results of the entropy study of the whole earth (Aoki 1988a). Units are [J cm™year” K™].
The earth is considered here to consist of two compartments: the atmosphere and the earth’s surface.
The entropy inflow to each compartment is due to incident solar radiation, and the entropy outflow
from each compartment is due to reflected solar radiation and infrared radiation emitted by each
compartment. There is an extensive circulation of entropy between the two compartments. The ratio
of the incoming entropy into the earth to the outgoing entropy from the earth is 1:18; the earth
amplifies incoming entropy by 18 times.

In the above four cases, the net entropy flows into a white-tailed deer, a plant leaf, the lake,
the atmosphere, and the earth’s surface are all negative. That is, they absorb "negative entropy"
(Schrodinger 1944) from the surroundings. This fact is the physical basis for organized structures and
functions of organisms, ecosystems, or the earth to be maintained, as Schrodinger (1944) asserted.

Also, the entropy productions in the above cases are all positive. This shows that the Second
Law of Thermodynamics holds in the above four cases, as is evident from Eq. (2). This is contrary
to the erroneous arguments made earlier that the Second Law can not be applied to living systems.

ENTROPY LAWS IN ECOLOGICAL NETWORKS AT STEADY STATE

In considering a large and complex system like an ecosystem, the system-theoretical approach
has been frequently adopted as a useful tool for investigating such a system. The system-theoretical
approach treats a large and complex system as being composed of numbers of subsystems or
compartments; each compartment is dealt with as a whole and details of structures and processes
within compartments are not scrutinized, that is, each compartment is regarded as a black-box. The
main concern in this approach is patterns of networks of flows into and out of each compartment.
Thus far, only flows of conservative quantities, energy and matter, have been considered. However,
the non-conservative quantity, entropy, also flows in networks associated with flows of energy and
matter, and is produced within each compartment of a system.

In this section, the thermodynamical entropy concept is applied to the input-output flow
analysis of ecological networks at steady state, and entropy laws in ecological systems are presented
(Aoki 1988b).
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Figure 3. Entropy flow and entropy production for the northern basin of Lake Biwa.
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Figure 4. Entropy flow and entropy production for the earth’s surface and the atmosphere.
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DEFINITION OF TERMS (FIG. 5)

Let a system H be composed of n compartments H,, k=1,2,..,n. The compartment H, has
a state variable x, associated with it, which is in the present case the entropy content of the
compartment H,. The compartment H, may receive entropy inflow z, from the environment (the
outside of the system H), and donate entropy outflow y, to the environment. Within the system H,
entropy flows f;; pass from H; to H;. Entropy is produced within H,; the entropy production s,
(notation is different from Eq. 2) is non-negative according to the Second Law of Thermodynamics
for open systems (Eq.2). (It is assumed that entropy is kept constant in flowing between
compartments; if entropy is increased at some place between compartments, that place should be
included as part of the compartment.)

ORNL DWG 93-13733

Figure 5. Illustration of definition of terms in the input-output flow analysis from an entropy
viewpoint.

The derivative of x, with respect to time is equal to the incoming entropy into H, plus the
entropy production within H, minus the outgoing entropy from H,:

ft=zfu+zt+sk‘z;fu')’k- 3)

i
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Now we only consider entropy under steady state conditions, in which x, is kept constant with time:
x, = 0, hence

n n
Efv*zk"sk"zfu*yks
i=1

Jj=1

from Eq. (3). Each side of the above equation defines entropy throughflow (7,) at the compartment
H,:

T, = Efkj MR ‘Xl:fik * Ve 4

Jj=1

The first equation of Eq. (4) is the sum of all entropy inflows into H, plus the entropy production
within H,. The second equation of Eq. (4) is the sum of all entropy outflows from H,. Either
expression of entropy throughflow T, represents the rate at which entropy is moving through H,.
Total system throughflow in the entropy version (7ST) is defined as

TST = f: T, . ®)

ksl

Entropy structure matrix
Starting from Eq. (4) and following the ordinary procedures in the input-output flow analysis
(e.g., Hannon 1973; Finn 1976; Patten et al. 1976), we obtain the following expressions for T, :

T, =) yj"}; = Enﬁ':"(zj +5) = T2 + 1, (6)

j=1 jn

where n,” is an element of the matrix

N** = 1-Q1" = [ngl, Q° = [gal. qu = fT;

n," is an element of the matrix

N* = [1-Q"1" = [0, Q" = [gg). 4y = £, IT;
2Z) _ e S _ .
Ti - Ej"ﬁzj’ T'(‘ - Ejnh'sl'
All n,’ and n,;” are non-negative.
Also, TST is expressed as
TST = TST® + TST®, Q)
where
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The matrix N* = [n;"] or N™ = [n,;""] is the entropy version of the structure matrix (Hannon
1973), or the fundamental matrix (Kemeny and Snell 1976), or the transitive closure matrix (Patten
et al. 1976).

ENTROPY THROUGHFLOW

As already shown, the Second Law of Thermodynamics claims that entropy production is non-
negative; it is positive when processes are irreversible and is zero when processes are reversible
(Eq. 2). If processes occurring in all the compartments are reversible, then s; = 0 for all j and T,

becomes T, (rev) = 'n;; 2, which is smaller than T, when processes are irreversible (s; » 0) :
kK < P j

T, (irrev) = 3 ng'(y+s).

That is,
T, (irrev) > T, (rev) . 3)

Thus, when processes occurring in compartments are irreversible, the entropy throughflow is always
larger than if all the compartments are in reversible processes.
Also for TST, we obtain

TST(irrev) > TST(rev) , &)
where
TST (irrev) = Y. T, (irrev) = TST® + TST® ,
k
TIST (rev) = Y T, (rev) = TST®,
k
ENTROPY PATH LENGTH

Entropy path length (PL) is defined as the average number of compartments through which
will pass an average entropy outflow to the environment, or the average number of compartments
through which will pass an average entropy inflow from the environment plus an average entropy
production within the system. It is shown similarly to the case of energy and matter (Patten et al.
1976) that
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TST _ _IST _ IST® + TST®

PL = =
Y Z+S Z+S$

, (10)

where Y = ):ty, is the total entropy outflow from the system H;, Z = Zz,, is the total entropy

inflow into H; S = Y5, is the total entropy production in H;and Y = Z + S at steady state as

is easily shown. When processes in all the compartments are reversible, S = 0 and TST® = 0 and
the entropy path length becomes PL (rev) = TST?/Z. On the other hand, when processes are
irreversible, the entropy path length PL (irrev) is expressed by Eq. (10).

Let us introduce two more path lengths: those due to entropy production within the system
and those due to entropy inflow from the environment. Path length due to entropy production in the
system is defined as

5)
Lo = 65, [T 0 = B, an
k J

which represents the average number of compartments through which will pass an average entropy
production in the system. Path length due to entropy inflow from the environment is defined as

Z)
PLO = Y @ (X )Yy = TS; , (12)
k J

which represents the average number of compartments through which will pass an average entropy
inflow from the environment.

It is shown that relations

>
PL (irrev) = PL (rev) (13a)
<
hold paralleling relations
>
PL® = pPL®, (13b)
<

That is, PL(irrev) is equal to (or larger or smaller than) PL(rev) when PL® is equal to (or larger or
smaller than) PL.
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ENTROPY CYCLING INDEX
Entropy cycling efficiency at the compartment H, is defined as the fraction of entropy
throughflow T, that returns to H, and given by (as the case of energy and matter; Finn 1978)

RE, =1 - -1 (14)
ng
The cycled portion of 7ST is expressed as
TST, = Y RE, - T, = TST® + TSTE), (15)
k

where TSTS = Y RE, - T;” and TSTS = Y RE, - T{. The entropy cycling index (CI) is the
fraction of TST that is cycled and given by (Finn 1978)

TST. TST? + 1879
cr-—%.2¢*7c (16)
IST  1ST® + TST®

When processes in all the compartments are reversible, TST, © = 0, TST® = 0 and the entropy
cycling index becomes Cl(rev) = TST. ® /TST®. On the other hand, when processes are
irreversible, the entropy cycling index CI(irrev) is expressed by Eq. (16).

Let us introduce two more cycling indices: those due to entropy production within the system
and those due to entropy inflow from the environment. The cycling index due to entropy production
within the system is defined as

ST

CcI® = s
TST®

(17)

which represents the entropy cycling index if there is no entropy inflow from the environment. The
cycling index due to entropy inflow from the environment is defined as

TSTY
cro - —< (18)
ST
which represents the entropy cycling index if there is no entropy production within the system.
It can be shown that relations
>
CI (irrev) = CI (rev) (19a)
<

hold paralieling relations
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cI® = CI®, (19b)

Anr V

That is, Cl(irrev) is equal to (or larger or smaller than) CI(rev) when CI® is equai to (or larger or
smaller than) CI'?.

SUMMARY AND REMARKS
Up until now only two entropy lews were known, Eq. (1), for an isolated system:

AS (irrev) > AS (rev) = 0,
and Eq. (2) for an open system:
AS (irrev) > AS (rev) = 0.
I have presented here four more entropy laws applied to networks at steady state, that is,

Eq. (8):
T, (irrev) > T, (rev),

Eq. (9):
TST(irrev) > TST(rev),
Eq. (13) :
> >
PL(irrev) = PL(rev) = PL® = PL®,
< <
Eq. (19) :
> >
CKirrev) = Cl(rev) ~ CI® = CI®,
< <

These four entropy laws are expressed in the terms of network theory: throughflow, total
system throughflow, path length, and the cycling index. They are derived from Eq. (2) by use of the
procedures in the input-output flow analysis of ecological networks at steady state. They are exact
laws without any approximation. They can be applied to any networks (not only ecological) at steady
state, if entropy flow and entropy production can be estimated.

ENTROPY PRINCIPLE FOR ECOLOGICAL SUCCESSION
As pointed out by Hutchinson (1964), the study of large and complex ecosystems, such as
lakes, consists of two different approaches: holological (holos = whole) and merological (meros =
part). In the holological approach, an ecosystem is treated as a black-box without scrutinizing internal
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structures and processes of a system, and the attention is focussed on input and output to and from
an ecosystem. On the other hand, in the merological approach, components or parts of a system are
studied in detail.

Let us focus our attention on holological approaches to lakes. Holological studies of lakes
were first made by Birge (1915) and later by Hutchinson (1957) and many others from an energy
viewpcint. Jgrgensen and Mejer (1979, 1981) applied the thermodynamical energy concept to the
analysis of lake ecosystems; the energy is a measure of the distance of a system from thermodynamic
equilibrium and is closely related to the entropy concept. Aoki (1987d) estimated annual values of
entropy flow and entropy production in Lake Biwa and thus characterized it from holological and
entropic standpoints.

In the present section, monthly values of entropy flow and entropy production in Lake
Mendota (eutrophic) and in Lake Biwa (cligo-mesotrophic) are investigated, and a comparison is
made between the two lakes. Then, an entropy principle for ecological succession is presented (Aoki
1989).

LAKE MENDOTA

Lake Mendota in Wisconsin is the most thoroughly studied lake in the world (Brock 1985).
Dutton and Bryson (1962) estimated monthly variation of each term of the heat balance equation for
Lake Mendota. Termis in the heat balance equation consist of: energy flows due to direct, diffuse and
reflected solar radiation; energy flows due to infrared radiation incident upon the lake, and due to
infrared radiation emitted by the lake; energy flows due to evaporation, and due to sensible heat; and
changes of heat storage in the lake. They are expressed per unit area of the lake surface. From
monthly values of the terms of energy flow, we can calculate corresponding entropy fluxes into and
out of the lake using some physical methods described in Aoki (1987d, 1989). Then, the net entropy
flow into the lake (A,S) cann be estimated. The change of entropy content of the lake (AS) is
computed from the change of heat strange in the lake and form the mean temperature of the lake
water (Stewart 1973). Thus, the entropy production (A;S) per unit area of the lake surface is obtained
as AS = AS - AS. Dividing by the mean depth of the lake, we obtain the entropy production
(Spma) Per unit volume of lake water.

The net entropy flows into the lake (A,S) become negative in all months. That is, the lake
absorbs "negative entropy” (Schrdinger 1944) from its surroundings. Schrdinger (1944) asserted
that biological organisms absorb "negative entropy” from their surroundings and that this is the
physical basis for ordered structures and functions of organisms to be maintained. Thus, in this
respect (absorption of "negative entropy"), the lake as a whole can be regarded as something like a
"superorganism" (Clements and Shelford 1939) which has ordered structures and functions in it similar
to a biological organism.

The entropy production in each month is shown in Fig. 6. It is larger in summer and smaller
in winter. The monthly entropy production in the lake (S,,,) becomes a linear function of the
monthly solar radiation energy absorbed by the lake (E,,,); thatis, S, , = a + bE,,,, a = 0.006 [MJ
m>month™ k'] and b = 229 10 [m™ K'] . The values (a,b) are holological indices which
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characterize the lake from an entropy viewpoint: a is the entropy production independent of absorbed
solar radiation, and b is a sensitivity of entropy production to absorbed solar radiation energy. Or
as another index similar to b, we may introduce the entropy production per unit volume of lake water
per year divided by the absorbed solar radiation energy per unit area of lake surface per year. This
quantity (say, b') may be called "normalized entropy production” in the sense that it represents entropy
production divided (normalized) by an environmental factor of the lake: the solar radiation. The
value b’ for Lake Mendota is 2.44 x 10™ [m™' K*').

LAKE BIWA AND A COMPARATIVE STUDY

Similar calculations are carried out for the northern basin of Lake Biwa, the most studied lake
in Japan, and the corresponding values of holological indices (a,b,b’) are obtained (Aoki, in
preparation). Comparison of these indices in Lake Mendota and in Lake Biwa is made and shown
in Table 1. As shown, these values (4,b,b’) in Lake Mendota (eutrophic) are larger than those in the
northern basin of Lake Biwa (oligo-mesotrophic). Thus, the eutrophication process is accompanied
by an increase in magnitude of these entropy production indices. This is a trend in processes of
eutrophication in lakes specified from an entropy point of view. Ecological succession in lakes
proceeds from oligotrophic to eutrophic. Hence, the increase of entropy production will be an
entropy principle of ecological succession in lakes, and also in other ecological systems.

TABLE 1

Comparison of indices a,b,b’ in Lake Mendota and the northern basin of Lake Biwa. a is in units of
[MJ m” month? K] and b,b’ in units of 10 [m™ K. Total-P in units of [mg }.

Lake Total-P Type a b b’
L _______ ]

Biwa (northern) ~0.01 oligo-mesotrophic  0.002 0.6 0.6

Mendota ~0.14 eutrophic 0.006 23 24

The above statement, which may be called "the increasing entropy production principle” can
be compared with Lotka and Odum’s maxmum power principle (Odum 1971), which asserts that
power (= flow x force) is maximized in processes of succession. Entropy production is also expressed
as flow x force (the same expression as power), although definitions of foire are of course different
between power and entropy production. Thus, since power and entropy production are expsessed in
similar forms, "the increasing entropy production principle” can be considered to be similar to Lotka
and Odum’s maximum power principle. However, "the increasing entropy production principle” is
opposite to Prigogine’s minimum entropy production principie (Nicolis and Prigogine 1977), which
states that entropy production decreases with time and reaches a minimum. Prigogine’s principle
holds only near the thermal equilibrium; on the other hand, ecosystems will be far from equilibrium.
Hence, it is not surprising nor strange that Prigogine’s principle does not hold in ecological systems.
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THE OVERALL TREND IN ECOLOGICAL SUCCESSION

In the above, we proposed that entropy production increases with time in some stage of
succession. Does this trend continue over the whole period of ecological succession? The description
of how living systems develop with time is one of the most important problems in biological sciences.
In this connection, I present here one probable hypothesis: entropy production increases with time
in a developmental stage (early stage) of succession, and is kept constant in a stationary stage
(intermediate stage) and decreases with time in a senescent stage (later stage) of succession, as shown
in Fig. 7. Thus, processes of succession will not be uni-directional, but consist of three different
phases (increasing, constant, and decreasing). I think that this trend will be applied to the time-course
of Lotka and Odum’s power, and also Hirata and Ulanowicz’s ascendancy that is an information
theoretical index describing growth and development of organisms and ecosystems (Hirata and
Ulanowicz 1984; Ulanowicz 1986). This trend will be of universal nature in biological or ecological
processes which have two opposing phases: growth and senescence.

The non-unidirectionality of processes discussed above means that maximum-minimum
principles, which assert that actual processes in nature procced so as 1o maximize or minimize some
fundamental quantities, do not necessarily hold in some aspects of biological and environmental
sciences. Maximum-minimum principles may be used in a restricted period of time (e.g., only in a
developmental stage), but they can not be used for the whole span of processes. The origins of
maximum-minimum principles are in physics; hence the above discussions present the case in which
physical principles can not necessarily be applied to biological and ecological objects.

Discussion

Hirata and Ulanowicz (1986) made the following comment on ecological succession: "Even
though ecological succession is clearly in the domain of non-equilibrium thermodynamics, there is still
no consensus on a formal method for treating these phenomena." The present section has presented
one methodology to treat ecological succession from a thermodynamical, or more specifically, from
an entropic point of view. Also, we have proposed an entropy principle for ecological succession.
Of course, in order to get a solid conclusion on succession from an entropy standpoint, it is necessary
to obtain more data on entropy production in many ecological systems at different stages.

The methods for calculating entropy production in lakes described in Aoki (1987d, 1989 ) can
be applied to any ecosystems if their energy budgets are completely known. Ulanowicz and Hannon
(1987) proposed a hypothesis that living systems create more entropy than their non-living
complements and suggested that one compare entropy productions in forests with those in deserts
in order to substantiate this hypothesis. Computation of entropy production in forests will be made
soon by use of the methods described in Aoki (1987d, 1989). Thus, this line of research on entropy
production in ecosystems will make it possible to answer quantitatively the key question posed by
Ulanowicz and Hannon (1987): "Do living systems serve to increase the entropy production rate over
what it would be in the absence of life?"
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INFORMATION IN ECOLOGICAL COMMUNITIES

Hironori Hirata, Department of Electrical Engineering, Chiba University, 1-33 Yayoi-cho, Chiba-shi
260, Japan

ABSTRACT
Here we define a new index of information contained in the structure of ecological

communities. We call it the "H*information index." Using H’-information, we lend theoretical
support to several ecological insights, especially those concerned with stability; e.g., those concerned
with the relation between the structure of a foodweb and its environment, or the relation between
stability and average turnover rate. We also show on the basis of H*-information that mineral systems
are generally more highly organized than carbon and energy systems.

INTRODUCTION

An ecological community may be defined as an information based system which has the ability
to store the information necessary for its own persistence or adaptation to the environment through
succession (or evolution).

An ecological community may be regarded as a system transmitting various media such as
energy, carbon, or nitrogen from input to output. Each medium has its inherent routes between the
entrance and exit. The structure of the ecological community may be characterized by coding the
routes using sequences of the names of elements.

Gatlin (1972) discussed the genetic code using information theory. Although the actual
meanings of information indices for the genetic code and those for the ecological community are not
completely congruent, we use the same symbols as Gatlin used, so that researchers who are familiar
with his work wil! understand it easily.

From the view point of information theory, we newly define the H*-information index R of
the ecological community, which is a measure of how much the entropy has been lowered from its
maximum value and also a measure of all the ordering, constraints, rules, etc., that have been imposed
upon the ecological system. R is a direct measure of the structure of the ecological community; i.e.,
the size of the elements and the direct or indirect relations among elements, such as predation,
competition, or symbiosis.

The H*-information index R consists of two parts, RD1 and RD2. RD1 represents the
divergence: from equiprobability with respect to the distribution of elements; i.e., in some sense the
distribution of storage. RD?2 represents the divergence from independence with respect to the relation
between elements; i.e., the distribution of flows. RD1 depends on the distribution of storage (or the
population). Thus if we use a species as an element of the system, RD1 relates to species diversity.
On the other hand, RD2 depends on the distribution of both storage and flow; i.e., community
structure. If the system is at steady state, RD2 relates to mutual information of network structure
which we have already defined (Hirata and Ulanowicz 1984, 1985; Hirata 1990). Therefore, the H*-
information index represents the information contained in both the entity (or storage) distribution
and the flow structure.
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In Sect. 2, we explain how we can represent the structure of ecological communities as a
coding problem.

In Sect. 3, we develop theoretical definitions of the divergence from equiprobability and the
divergence from independence. Finally we define H*-information of ecological communities. We also
define several related indices.

In Sect. 4, we try to find the role of H*-information for stability. We find out the relation
between H-information and the stability of ecological communities using Shannon’s second theorem
(e.g., Shannon and Weaver 1949): ecological communities should keep H*-information high in order
to adapt to severe environments; i.e., 10 be stable. This coincides with Johnson’s statement (1989)
that in harsh environments increased redundancy is necessary for a species to withstand the greater
natural fluctuation and the greater prevailing variability, and Ulanowicz's (1980) statement that
perturbations probably act to increase the amount of redundancy. This result also gives theoretical
support to the following two experimental results,

L The structure of a foodweb under fluctuation is simpler than it would otherwise be under a
constant environment (Briand 1983).

2. Arctic aquatic ecosystems are relatively simple in their structure (Johnson 1989).

These results coincide with Briand (1983)’s insight that environmental constraints will impose a far
greater rigidity of web shapes and a much smaller choice of trophic patterns than previously assumed.
The proposed information index has some relation to May’s stability condition (1972). We also study
the relation between average turnover rate and stability through information theoretical discussion:
ecological communities should keep average turnover rate small in order to adapt to severe
environments; i.., t0 be stable. This result lends theoretical support to the following insights.

L The Production/Biomass ratio in lakes tends to decrease with increasing latitude (Mann and
Brylinsky 1975).

2. Tropical forest systems have a much more rapid turnover rate than temperate forest systems
(Whittaker 1966; Golly 1972; Burger 1981).

3. Arctic lakes support a high biomass relative to the very low primary productivity (Johnson
1989).

It also coincides with Leigh's theoretical result (1968) on Volterra’s equations: the higher the
turnover rate, the less stable the community.

In Sect. 5, we discuss some properties of H*-information. Eutrophic versus oligotrophic
conditions are discussed using H*-information. By computationally comparing H*-information of a
eutrophic ecological community with that of an oligotrophic one, we get the result that H>-
information of the oligotrophic lake is larger than that of the eutrophic lake. We use data from four
lakes (Richey et al. 1978). Marion Lake (British Columbia), Findlay Lake (New Hampshire) and
Mirror lake (New Hampshire) are oligotrophic, and Lake Wingra (Wisconsin) is eutrophic. These
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lakes are similar in size, climate, and altitude, except Findlay Lake, which is at a higher elevation.
If we suppose that ecological systems succeed in reaching a more stable state, this result coincides with
the following insights since larger H*-information means higher stability.

L Oligotrophy should succeed eutrophy, not precede it. A decisive experiment 1o test this would
be to reduce the input of nutrients to a eutrophic lake and follow its evolution. We are
positive it would change in the direction of oligotrophy (Margalef 1968).

2. Eutrophication of a lake results when nutrients are imported to the lake from the outside.
This is equivalent to adding nutrients to a laboratory microecosystem or fertilizing a field:
the system is pushed back, in successional terms, to a younger state (Odum 1971).

3. Lakes can and do progress to a more oligotrophic condition when the nutrient input from
the watershed slows or ceases (Mackereth 1965; Cowgill and Hutchinson 1964; Harrison
1962).

Furthermore, we show that each kind of medium (carbon, energy, nitrogen, etc.) has its special
characteristic relation between RD1 and RD2.

CODING OF ECOLOGICAL PATHS
As in Fig. 1, an ecological community may be regarded as a system transmitting various media
such as energy, carbon, or nitrogen, from input to output. Each medium has its inherent routes
between the entrance and exit. The structure of ecological communities may be defined by coding the
routes using sequences of the symbolic names of elements.
Let us define the sample description space X, which is referred to below as the community
alphabet, of the random phenomenon of choosing an element along a route:

X, = Axbiag, pne (1)

where x;, which is referred to below as a community letter, gives the symbolic name of the i* element
({ = 1,..,n) and x,,, implies the outside of the community. P(x,) is defined as the probability of x;’s
occurrence.

Let us define the space of doublets of community letters, X5, which is necessary for discussing
a sequence of community letters:

Xo = %} jugmer % € X) @)

Here the conditional probability P(x;| x;) is defined.

Let us define the set of paths, PATH, from input to output:

PATH = {l},., 3)

where
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b = yxk)’zk"'yn’:, 4)
yj‘t € X,, m, = |I,| (the length of 1). 5)

Here y:‘ is x, ,,, which works as the stopping code. Although g may be theoretically infinite if there

exists a cycling loop, P(/,) of such a long sequence tends to zero. This sequence of symbols is ordered
along a set of constraints which constitutes an ecological community.

H-INFORMATION
Let us discuss the properties of a set of paths, PATH, which represents characteristics of an
ecological community. We can define information of the set PATH to evaluate two kinds of entropy
with different meanings. Evaluating the entropy of X, gives the divergence from equiprobability and
that of X, yields the divergence from independence. Let P; be P(x;) and P; be P(x;| x;) below.

THE DIVERGENCE FROM EQUIPROBABILITY: D,
The entropy of X| is

H, = —E PlogP, (6)
i=1
H, has the maximum value
H™ = log(n+1) = =n(n) ™M
when P; has a uniform distribution; i.e.,
P, = 1/(n+1) (i = 1,., n+l) 8

which is the equiprobable state. We will substitute w(n) for H,"* = log(n+1) below.
The divergence from the equiprobable state is the difference between the entropy of the
equiprobable state, H,™, and that of the actual state, H,:

D, = H™ - B, ©)

= log(n+1) - H, = n(n) - H, (10)
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D, can be defined on the storage (or population) distribution. If we use species as elements, H, means
species diversity in some sense. Thus, D, is the difference between the capacity of an ecological

system and its diversity.

THE DIVERGENCE FROM INDEPENDENCE: D,
The entropy of X, is

n+l n+l

HY = -3 ) P(xx)log P(x;x)

i=1 j=1

n+lonel

=3y P(x|x)P(x)logP(x;|x) P(x)

i=1 j=1

n+l nel

= -EZP{PU]ogP,PII,

i=1 j=i
H, has the maximum value

nel nel

HM < - Y PP, log PP,

i=] j=1

when x; and x; are independent.

(1)

(12)

(13)

(14)

The divergence from the independent state is the difference between the entropy of the

independent state, H,™, and that of the dependent state, H,*:

ind d
D2=H2 "Hz.

D, is defined on the distribution of flow and storage, and is especially based on flow structure.

We can easily show the following relations.
ind
H2 = 2H1
d
Hy =H, + H,

where

n+l nel
Hy = - 33 PPlogP,.

izl j=1
From (15)-(17), D, is finally expressed as

D, - H, - H,

(15)

(16)

amn

(18)

(19)
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The sum of D, and D, measures exactly how much the entropy has been lowered from the
maximum entropy state. Since the maximum entropy state means the random state (or unorganized
state), the sum of D, and D, evaluates to what degree the ecological community is self-organized by
storing information. Let us define stored information as follows.

H*-Stored Information: Ig
Let us define H*-stored information as the sum of the total divergence from the maximum
entropy state:

Iy =D, + D, (20)

The reason why we call it the H*-information index is because two meanings of entropy are evaluated
in this index.
Substitution of (10) and (19) into (20) yields:

I, = log(n+1) - H,, = n(n) - H,, @1)

H*:-Information: R

Normalization of I by the maximum value r(n) can define normalized stored information,
which is simply referred to below as H*-information.

Let us define H*-information, R:

) I ) D, + D2‘ @)
n(n) log(n+1)
Here,
0sRx<1 (23)

and R is dimensionless because it is a fraction. H*-information is the same quantity as Shannon’s
redundancy in information theory.

H*-information, R, measures how much the entropy has been lowered from its maximum value
and is a measure of all the ordering, constraints, and rules that have been imposed upon the system.
R is a direct measure of the structure of an ecological community; i.e., the size of the elements and
the direct or indirect relations among elements, such as predation, competition, or symbiosis.

STRUCTURE INDICES OF H-INFORMATION: RD1 AND RD2
Separation of R into two parts is useful in studying the structure of H*-information, R,

R =R, +R, (24)
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where
R, = D,/x(n). (i =12) (25)

Let us define an index to characterize two parts:

R D
RD] = =} = 1 (26)
R D,+D,
D
rp2-% . B (27
R D,+D,
Here,
RD] + RD2 =1 (28)
and
O<RDi<l (=12 (29)

RD1 and RD2 are dimensionless because they are fractions, RD1 is the contribution of D, to R; i.e.,
it shows the effect of storage distribution. RD2 is the contribution of D, to R; i.e., it is the effect of
structure. These indices are referred to below as structure indices of H>-information. If we are given
two identical values of H*-information R, each with significantly different structure indices RD1 and
RD2, we would have an ecological community with the same amount of H*-information but of
different kinds. The H*-stored information /s or the H*-information R tells us how much divergence
there has been from the maximum entropy state. And the structure indices RD1 and RD2 tell us what
kind of divergence it is; i.e., whether it is composed mostly of D, or D,.

The three fundamental quantities which one calculates are H,, H,, and x(n). From these one
can calculate all the useful values like Dy, D,, Iy or R, RD1 and RD2. H, can be defined only on the
distribution of storage in some sense; i.e., it depends on the individuals of the ecological system, and
it shows the population (storage) diversity (variety). On the other hand, Hy, is defined mainly on the
transition rate corresponding to the distribution of flows; i.e., it depends on the structure of the
ecological community, and it shows flow diversity.

Whenever we calculate the entropy of a sequence of symbols, it represents the capacity to
transmit. When we evaluate the entropy of a divergence from the maximum value, n(n), this is a
measure of the capacity to store information. Stored information is also a capacity to combat error
(or to adapt to the environment). It is possible for the entropy to be so high that transmission error
makes communication impossible. Reducing the entropy to the point where the stored information
becomes maximal, we can make transmission highly reliable (or stable as concerns ecological
communities); but the message variety is so low that we cannot hold successful variety in the message
(or the ecological community).

Generally we need an optimum blend of variety and stored information for successful or
meaningful communication (or successful succession of ecological communities).
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The capacity to combat error (or the capacity to adapt to the environment) depends not on
an entropy maximum or minimum but rather on a delicate optimization of the two opposing elements
of variety and reliability. In an ecological community a delicate optimization of two opposing factors,
variety and stability, is necessary to adapt to the environment.

STABILITY OF ECCLOGICAL COMMUNITIES
FUNDAMENTAL CONDITION OF STABILITY

Let us discus: stability against perturbation nf ecological communities.

When a sequence of community symbols is o'dered according to a set of constraints which
constitutes an ecological community, the sequence of community symbols shows a route for moving
media. It may be called the ecological message. We may regard an ecological community as an
information source. The encoding of the ecological message occurs at the source. A channel is simply
any riedium over which the message is transmitted. In the discussion of ecological communities, a
time tunnel with environmental perturbation such as climate change may be regarded as a channel.
That is, there exists noise, which interferes with the transmission in the channel. Environmental
perturbation like climate change may be regarded as noise for ecological communities.

Let us describe Shannon’s second theorem.

Shannon’s Second Theorem: If
U<C 30)

where U is the rate of emission from the information source and C is channel
capacity, there is a code such that transmission over the channel is possible with an
arbitrarily small number of errors.

The channel has a certain capacity; i.e., an upper limit to the rate at which it can transmit a
sequence of symbols without incurring gross error due to overloading the channel. The essential
concept of Shannon’s second theorem is this: we cannot eliminate noise in the channel, but we can
under certain conditions (U<C) transmit a message without error in spite of this noise if the message
has been properly encoded at the source. The code is the crux of the matter. The more efficient the
code becomes, the closer it approaches this error-free limit. A fundamental condition under which
Shannon’s theorem is valid is that U < C; i.e., the rate of emission from the source, which is measured
by the source entropy, must not exceed the channel capacity.

In studying ecological communities, U may be expressed as

U = kH,, (1)

where k is the average turnover rate in all transitions between elements. Therefore, an interpretation
of Shannon’s second theorem for ecological communities is represented as follows.

Proposition 1: Ecological communities can be stable against perturbation under the condition

kH, < C; (32)
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i.e., ecological communities can be stable with respect 1o disturbance of the environment, if it has
been properly organized or structured. Here, C is a decreasing function of the strength of the
perturbation and

C = =n(n) (no perturbation) (33-a)

C < n(n). (perturbation) (33-b)
Proposition 1 shows that ecological communities should keep U, or Hy, and k, small in order
to adapt to severe perturbation; i.e., to keep itself stable.

THE RELATION BETWEEN STABILITY AND H%-INFORMATION
Because there is a relation between H,, and H*-information R as

H,==nm (1-R) (34)
we can rephrase Proposition 1 as follows:

Proposition 2: Ecological communities should keep H*-information R large in order to adapt to severe
environments; i.e., 10 be stable.

It may be said that H*-information R of ecological communities in cold and severe regions
should be larger to defend against perturbation than the R of those in warm and mild regions.
Proposition 2 also means that smaller H>-information is enough for tropical ecological communities
but not for arctic communities. H*-information, R, is a measure of all the constraints on an ecological
community which make the ecological community stable. Proposition 2 coincides with Johnson’s
statement (1989) that in harsh environments increased redundancy is necessary for a species to
withstand the greater natural fluctuations and the greater prevailing variability and Ulanowicz’s
statement (1980) that perturbations probably act to increase the amount of redundancy.

Because larger R’s generally mean relatively simple structures of food webs, Proposition 2
gives theoretical support to the following two experimental results.

1. The structure of foodwebs undergoing fluctuation is simpler than those under constant
environments (Briand . 983).

2. Arctic aquatic ecosystems are relatively simple in their structure (Johnson 1989).

Proposition 2 or the results derived from it coincide with Briand’s (1983) insight that
environmental constraints will impose a far greater rigidity of web shapes and a much smalier choice
of trophic patterns than previously assumed.

Proposition 2 also lends some support to the results of the relation between the complexity
and stability of ecological communities (May 1972; Pimm 1982, 1984 and 1987; and others). Actually,
although the details have been omitted in this paper due to space limitation, we see both theoretically
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and experimentally that H,, has a strong correlation with May’s stability index (n g)'* (n is the number
of species, and g is connectance).

THE RELATION BETWEEN STABILITY AND AVERAGE TURNOVER RATE
As a relation between stability and the average turnover rate over all transitions, k, the
following proposition can be derived from Proposition 1.

Proposition 3: Ecological communities should keep average turnover rate k& small in order to adapt
to severe environments; i.e., to be stable.

It may be said that the average turnover rate k of ecological communities in cold and severe
regions should be smaller than the & of those in warm and mild regions in order to defend against
severe environments. Proposition 3 also means that tropical ecological communities can support
larger turnover rates than arctic ecological communities.

When we can assume that the average turnover rate is approximated by the
Production/Biomass ratio, Proposition 3 gives some theoretical support to the following insights.

1. The Production/Biomass ratio in lakes tends to decrease with increasing latitude (Mann and
Brylinsky 1975).

2. Tropical forest systems have a much more rapid turnover rate than temperate forests
(Whittaker 1966, and Golly 1972).

3. Arctic lakes support a high biomass relative to the very low primary productivity (Johnson
1989).

Proposition 3 also coincides with Leigh’s (1968) theoretical result on Volterra’s equations:
the higher the turnover rate, the less stable the community.

SOME PROPERTIES OF H-INFORMATION

EUTROPHIC VERSUS OLIGOTROPHIC

Let us compare H’-information R’s between eutrophic and oligotrophic ecological
communities. We use data from four lakes (Richey et al. 1978). Marion Lake (British Columbia),
Findlay Lake (New Hampshire) and Mirror Lake (New Hampshire) are oligotrophic, and Lake
Wingra (Wisconsin) is eutrophic. These lakes are similar in size, climate, and altitude, except Findlay
Lake, which is at a higher elevation. Because the data include only flow values, we calculated H*-
information using the approximation of probabilities {P(x;)} shown by flows (e.g., Hirata 1990).

The results are:



212

Lake R

Marion 0.943
Findley 0.776
Mirror 0.560
Wingra 0.521

H-information R of oligotrophic lakes is larger than that of the eutrophic lake. If we suppose
that ecological systems succeed in reaching a more stable state, this result coincides with the following
insights since larger H*-information means higher stability.

L Oligotrophy should succeed eutrophy, not precede it. A decisive experiment to test this
would be to reduce the input of nutrients to a eutrophic lake and follow its evolution. We
are positive it would change in the direction of oligotrophy (Margalef 1968).

2. Eutrophication of a lake results when nutrients are imported to the lake from the outside.
This is equivalent to adding nutrients to a laboratory microecosystem or fertilizing a field:
the system is pushed back, in successional terms, to a younger state (Odum 1971).

3. Lakes can and do progress to a more oligotrophic condition when the nutrient input from
the watershed slows or ceases (Mackereth 1965; Cowgill and Hutchinson 1964; Harrison
1962).

RD1 VERSUS RD2

H*-information, R, is a measure of all the constraints on an ecological community which make
the ecological community stable, or persistent.

In terms of entropy, the highly organized system does not necessarily have the lowest values
of Hy, but rather the lowest values of H), relative to H;; i.e, it has the highest values of D, The
larger RD2 becomes, the more highly organized the structure.

Figure 2 shows there are some differences among media in the distribution of the ratio
between RD1 and RD2. Carbon (C) distributes in the whole part on the line; Energy (E), more in
the upper part than in the middle; Minerals (Potassium (K) and Nitrogen (N)), in the upper quarter
part on the line; with Nitrogen (N) in the part near the axis. Energy is an exception in the figure.
Ferhaps this is because its data is not real but estimated. Fig. 2 characterizes mineral systems (similar
to the Nitrogen system) as more highly organized than energy and Carbon systems on the basis of an
information theoretic measure.

CONCLUSION
We defined a new index of the information contained in the structure of ecological
communities, namely H-information. We discussed several properties of the stability of ecological
communities from the viewpoint of information. The proposed H*-information index will come to
play an important role in discussions of ecological succession.
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Other Papers

The paper by GILPIN ("Community Collapse: Perspectives on Prediction") expanded to
communities in the broad sense, comprising all of the species in a given place. Gilpin pointed to the
four evils that will increasingly impact ecological systems: habitat loss, pollution, introduction of alien
species, and the secondary effects of the first three. The first three of these may directly cause the
extinction of species. The fourth, secondary effects, produces additional extinctions that will occur
before the system reaches its final steady state.

Gilpin inquired into the degree to which community ecologists will be able to predict the
extinctions produced by these disturbances. Scientists in other fields are often able to predict the
consequences of disturbances, shocks, and perturbations to their systems. In fact, this ability is often
the strength of their science.

The first problem faced by community ecologists is to identify what they intend by a
"community" and to come up with a language by which scientific discourse is possible. It must
nonetheless be understood that community ecologists do speak different languages, that these
languages resolve different parts of the system, and that the character of the predictions made will be
a function of the language spoken.

At levels below and above the "community," the abstractions "population™ and "ecosystem,"
while entailing problems of their own, have been easier to utilize in scientific discourse. The
population is the fundamental unit of evolution, while the ecosystem is governed by physical
constraints. These connections can allow the use of terminology from other disciplines, for example,
population genetics and thermodynamics.

Gilpin acknowledged that there is probably no such thing as the "real community;" at least
it is nothing humans can know. By this term is meant the least abstracted, most exhaustively detailed
description of the system that we can obtain. Such a description would include detail on single
individuals and their inner workings. Clearly, this is not an appropriate level at which to do
community theory.

The three levels of state identification listed above represent successively greater degrees of
abstraction. Closest to "reality” is the species interaction model, in which all kinds of species
interactions, including interference and mutualism, are incorporated. The resource competition model
ignores species interactions other than direct consumption, while the feeding web model only
considers the presence or absence of a consumption link between two species.

The simplification from the first two levels of abstraction to the third is, from a practical
standpoint, quite large. There are no instances where long-term data exist giving the densities of, and
interaction strengths between, any set of species. Yet there are many complete descriptions of feeding
webs. This means that, at the level of food webs, one has the possibility of empirical patterns that
are beyond dispute. For the two higher levels, however, different community ecologists have
generalized from the systems with which they are familiar, producing alternative "theories," actually
hypotheses, concerning the nature of species interactions: which interactions exist, how strong they
are, whether they are constant or vary with time, whether they have coevolved, and so forth. Thus,
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at levels 1 and 2 there are competing aliernative theories. 1t is possible that ecosystem and
community construction and collapse may help to select the most realistic of these theories.

HASTINGS ("Stability of Food Webs") questioned the basic usefulness of the concept of
stability as applied to natural systems. Stability has been extremely difficult to define for such cases.
Local stability, or the tendency for a system to return towards a well-defincd equilibrium point, seems
particularly unsuitable for most real ecological systems. There are many examples of coexisting
species in v/hici: population numbers do not settle down to stable levels. The less restrictive concept
of persistence secms more appropriate in such cases.

One important problem with respect to defining stability is the question of scale. What level
of spatial scale does one mean? Systems may be unstable at the level of a patch but can be somewhat
stabilized via dispersal that couples together many patches over large spatial areas.

Many models used to describe such food web characteristics as siability do not take into
account factors such as age and spatial structure, which can often be crucial. Hastings argued that
the important common features of food webs (features that can be usefully compared) may not be the
general descriptors such as stability, but instead the lower level mechanisms (interactions between
subpopulations on small patches, age-, or size-specific behavior, etc.). The search for sets of
commonalities at their lower levels and their incorporation into models is an important goal of
theoretical ecologists.

Food web assembly is another key topic in food web theory and YODZIS ("The Interface
Among Dynamics. Energy, and Assembly") presented a unified perspective that encompassed the rival
ideas that (1) either energy constraints or (2) dynamic stability considerations govern structure or that
(3) structure is generally "loose" and not strongly controlled by any factor. Yodzis noted that the
build-up of communities through a process of assembly by a more or less random sequence of
colonizing species has been studied from several viewpoints; energetic constraints (Yodzis 1981,
1984), mild specialists (Sugihara 1982, 1984), and dynamics (Post and Pimm 1983, Drake 1983). His
talk explicated the relationship between the energetic and dynamic viewpoints, and proposed, very
tentatively, a unified perspective on the structuring of assembled communities.

The dynamic assembly models are based on Lotka-Volterra dynamics for a community of s
species. In order for a potential invading species to succeed in joining such a community, three
criteria must be met (if we assume only equilibrium dynamics): (1) the invader must be capable of
increase when rare, (2) the new community must have a feasible equilibrium, and (3) this equilibrium
must be stable. As communities are built up in this way, one finds that two things happen (Post and
Pimm 1983, Drake 1983): the return time of the system equilibrium decreases, and it becomes more
difficult to fulfill the "increase when rare” criterion. Eventually, the assembly process terminates with
all further attempted invasions failing already at step 1: "invasion resistant" endstates are reached,
with no potential invaders able to increase when rare.

Yodzis showed that the condition (2) for increase when rare is an energetic consideration:
it expresses that the invading species must have a positive population energy balance when rare in




221

order to invade. The invasion resistant endstates of the dynamic assembly process are constrained by
energy flow.

This view of the assembly process suggests that communities might fall into at least three
different classes:

(¢))] If the assembly process terminates, structure will be energetically constrained. This might be
the case in relatively undisturbed habitats.

2) If smali-scale disturbances are sufficient to destabilize the equilibrium before the energetically
constrained endstate can be attained, structure will be constrained by dynamical stability
(Pimm 1982).

3) If assembly is disrupted by larger-scale disturbances, we will get something else - perhaps the
"loosely structured" communities discussed in this symposium by Prof. Kawanabe.

The search for universal principles was exemplified by COHEN’s study, based on
phenomenological rules of predator-prey allometry in food chains. He used an observed allometric
relation between the weight of terrestrial vertebrate predators and the weight of their prey to predict
an upper limit to the weight of a terrestrial vertebrate predator that is very close to the observed
largest weight.

If W,,., denotes the weight (in kg) of a terrestrial vertebrate predator and W, the weight (in
kg) of its prey, then the two weights are related approximately by a power function

Worea = AW:” = fW,)., 1
where B = 0.58 and 4 = 8.6 approximately. According to (1), a terrestrial vertebrate predator that
takes prey weighing 1 kg is predicted to weigh approximately 8.6 kg. A terrestrial vertebrate predator
of prey weighing 1 mg is predicted to weigh approximately 3 g.

Applying (1) to a food chain, Cohen determined that for sufficiently long food chains (i.e., the
number of links approaches infinity), the weight of a terrestrial vertebrate top predator is predicted
to be independent of both the number n of links up to that predator and of the weight W, of the
basal prey in the food chain.

For example, the heaviest terrestrial vertebrate predator considered is the East African lion
(Panthera leo) at 160 kg. With 4 = 8.6 and B = 0.58, (1) predicts a maximum predator weight of
168 kg. However, the number of trophic links in real food chains is not infinite. In 113 community
food webs (Cohen et al. 1986), the longest reported chain (from a tropical Pacific plankton
community) has 10 links. Using n = 10 gives a predicted top predator weight of 155 kg for basal prey
weight of 1 g. For chains of length 10, the predicted weight of the top terrestrial vertebrate predator
increases by less than 3 percent when the weight of the basal prey increases by a factor of 1000.

That predator-prey allometry can be used to predict approximately the absolute individual size of
the largest predator (at least among contemporary terrestrial veriebrate predators) appears not to
have been noticed previously. This finding leaves open the problem of explaining the origin of
predator-prey allometry.
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DecAngelis ("Some Stability Relations in Nutrient-Limited Systems") explored some
relationships between system resilience and nutrient availability (through nutrient input and recycling)
in nutrient-limited ecological food chains. The results point to the existence of a broad generalization
on the level of the total system, but also to great complexities when the internal structure of the food
chain has to be taken into account.

At the level of the whole system, when nutrient input is limiting in the system, the ratio of
the steady state flux of nutrient to standing stock of nutrient in the system appears to be an accurate
measure of resilience, as had been previously noted in computer simulations by Jordan et al. (1972),
Dudzik et al. (1975), DeAngelis (1980), and Harwell et al. (1981). The present work adds analytic
corroboration to this generalization.

The relationships involving resilience of the system become more complex and interesting
when perturbations act on only part of the system and/or the post-perturbation behavior of only part
of the system is of interest. Several examples involving perturbations to either the autotroph alone
or to the whole system were considered. It was shown that it made a great deal of difference to
resilience whether, in steady state, the autotroph exerted control over the level of available nutrient
in the system or whether the autotroph was itself controlled by the herbivore trophic level. In the
latter case, the ratio of nutrient flux through the ecosystem to its standing stock of nutrients was
generally higher, so that resilience was greater than in the former case. Since the autotroph is
generally controlled from above when the number of trophic levels above it is odd, autotroph-
herbivore and autotroph-herbivore-carnivore-supercarnivore food chains are likely to be more resilient
than are autotroph and autotroph-herbivore-carnivore chains.

It was shown that the relative sizes of components of the ecological system also make a
difference to resilience when only part of the system is perturbed. A detritus compartment, for
example, can act as a buffer to perturbations affecting other parts of the system, if the detritus
compartment is large in comparison. The large standing stock of nutrients in the detritus is ready to
go back into the pool of available nutrients faster than this pool can be filled by external inputs of
nutrient.

The study by DeAngelis was meant only to suggest the variety of behaviors that can occur in
nutrient-limited food chains with nutrient cycling. The models examined special functional forms and
special sets of parameters. A more thorough study would doubtless reveal more complex patterns of
behavior that were beyond the scope of the present work.
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CONCLUSIONS: IS THERE A UNIFIED APPROACH
IN THEORETICAL ECOLOGY?

Rather than attempting to synthesize all ideas into one summary, it may be better to present
verbatim the thoughts of a few different participants, and then make some concluding remarks.

Thomas Burns:

"Unified perspective" clearly means "one view," but this immediately raises the questions
"What is being viewed?" and "At what scale or resolution is it being viewed?". At a gross scale or low
resolution, the majority of participants at the US-Japan Seminar in the Environmental Sciences shared
an underlying interest in ecological theory as it pertains to ecosystems and how they are organized.
So from this level a unified perspective has already been achieved. This does not deny that there are
ecologists who are primarily concerned with the dynamics of populations, even if they recognize that
the "environment" or ecosystem partially determines those dynamics. At a finer scale or resolution,
at the level of particular approaches to the problem of how ecosystems are organized, there is no
single view. Some are concerned with whether a single population will go to extinction or not under
a perturbation to ecosystem organization, some with the "horizontal" organization of guilds, some with
the "vertical" organization of feeding webs, and others with the interactive (causal) structure and
phenomenology of ecosystems. This diversity is entirely acceptable, perhaps desirable, especially if
the different "schools" recognize the existence and validity of alternatives.

At least three pairs of alternative approaches to the problem of ecosystem organization were
manifested at the meetings: Applied vs. Basic, Empirical vs. Theoretical, and Population Dynamical
(Food Web) vs. Ecosystem Phenomenological (Energy-flow Network). Gilpin, in the morning session
of Day 1, made an almost impassioned plea for applied ecological theory, especially towards the
protection of species from extinction. Tamaki, in the morning of Day 1, and Kawano and Hara, in
the afternoon, were the first of several Japanese researchers to present their empirical field studies.
Although not explicitly addressing the problem of ecosystem organization, they demonstrated the need
for ecosystem theory to help focus and interpret empirical studies of populations and guilds, and they
reminded the theoreticians that it is real ecosystems we are attempting to understand. These
presentations also strongly suggested that non-reductionistic approaches were necessary (0 understand
real systems. Ecology cannot be reduced to physiology and demography, because interactions of all
types are significant. The first two pairs of alternatives will not be discussed further because it is
evident to most ecologists that both are necessary for science to progress.

More than any other, the "unified perspective” sought was that between "food web" and
"ecosystem" approaches to ecological theory. While these two will and probably should continue as
distinct approaches to distinct problems, common ground was uncovered: a concern with whole
ecosystems and not merely the local relationships between populations or guilds, a focus on trophic
interactions, and an awareness that their indirect effects influence ecosysiem organization, including
the species-abundance relations within guilds. This was exemplified by Shigesada et al.’s paper, on
the morning of Day 1, where they considered the effect of a predator on a set of competing species
and by the work on food web assembly presented on Day 2, as well as the "ecosystem" papers on Days
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3 and 5. Teramoto’s presentation on the first afternoon also tied in nicely with this theme. He
discussed how, from its very beginning with Motomura in 1932, ecology’s concern with empirically
observed species-abundance relations has been modeled by assuming interspecific competition within
guilds. However, he then presented work of Nakajima demonstrating that the geometric series
distribution can be generated by null models (with respect to competitive interactions); i.e., a
probabilistic invasion process. Assuming that the world is not truly random, these results suggest that
the usual level of explanation (interspecific competition within guilds) is perhaps inappropriate or
insufficient for understanding (modeling) what determines species-abundance relations. Many at the
meeting would agree that trophic interactions at least must be included in such models.

Whereas explicitly considering how both predators and resources determine the dynamics of
populations may be a "revolutionary" advance for ecological theory (Fretwell 1987), approaches that
account for energy and nutrient flows from all resources to all consumers, no matter how small the
direct interactions, are equally important to understanding the trophic structure and hence the
organization of ecosystems. The trophic structure of ecosystems cannot be reduced, however, to a
simple chain of feeding interactions (e.g., Lindeman 1942) without significant loss of information
(Burns ms.). It is hubris to make claims that any approach is more important or "central" to
ecological theory, and doing so only further divides ecology. A unified perspective may simply be an
open-minded recognition that many approaches are needed to understand organisms and their
environments; that is, ecosystems.

Peter Abrams:

There are probably few areas of science today that are more lacking in a unified perspective
than ecology. Scientists who call themselves ecologists may read totally nonoverlapping subsets of the
scientific literature, use totally different approaches, and fervently believe that many of the other
approaches are not only less productive areas of inquiry, but do not even qualify as science. Given
this state of affairs, the title of the Joint U.S-Japan Seminar was perhaps overly optimistic.
Nevertheless, the fact that most of the participants were theorists, and the fact that they represented
a selected subset of theorists, might have been expected to produce a more unified view than exists
for the field as a whole. To determine whether this expectation was met, one must first address the
problem of how to define a "unified perspective,” and related issues.

By definition, if an area of science is active, there will be differences of opinion on some
significant problems, and the perspectives of different workers will not be identical. Thus, if a truly
unified perspective existed in ecology, it would imply that we should seek employment in other fields.
The question is really whether the field has a sufficiently narrow range of perspectives with gaps that
are sufficiently few and narrow, that problem solving is not inhibited by differences in approaches.
The papers and discussions at the U.S.-Japan Seminar suggested both that existing differences may
have inhibited problem solving, but also that such differences need not do so. The major dichotomy
in approaches among the U.S. participants wis that between the population/community ecologists and
the ecosystem ecologists. O’Neill et al. (1986) have recently discussed the dichotomy in a book on
hierarchy theory, and I can add little to that discussion here. The major difference between these two
factions is the set of variables that each group usually examines. Ecosystem ecologists typically follow
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a variety of aggregated variables such as carbon flow or biomass per trophic level, and
population/community ecologists focus on the population densities of species. Many ecologists
(especially ecosystem ecologists in the United States) have, I think, wrongly equated this with the
distinction between holism and reductionism. There has been considerable antagonism between the
two camps as a result. There is an equally large difference between the variables of interest to
population geneticists/evolutionary ecologists and population ecologists, but there has never been the
illusion of a holist/reductionist dichotomy. Because of this lack of philosophical baggage, the
differences have been seen as an intellectual gap to be bridged rather than as a barrier separating
more and less worthy approaches. Several of the papers presented by the Japanese participants and
that of DeAngelis were attempts to span the gap between population and ecosystem approaches.
These provide some rays of hope for filling in holes that exist in ecology’s theoretical framework,
which I see as the closest we can come 1o a unified perspective on theoretical approaches to ecology.

Filling the holes in "theory space” has the potential benefit that patterns observed in one set
of variables can be related to mechanisms operating on another set of variables, with a resultant
increase both in explanatory and predictive power. As Michael Gilpin pointed out, an increase in
predictive power is necessary if ecological theory is to make significant contributions to solving
ecological problems. The major gaps that I see in present ecological theory are (i) the lack of
attempts to provide population dynamical mechanisms to explain phenomena observed in the
aggregated variables typically monitored in ecosystem studies, and (ii) the lack of behavioral
mechanisms in models of interactions within and between populations. The fact that there were
several papers presented that addressed each of these areas suggests that the lacunae are being
eliminated. The work of DeAngelis and Sugihara seems to be related to the first gap, and that of
Matsuda, Yamamura and colleagues, as well as my own is related to the second. Needless to say, it
would not be desirable for all ecologists to have the filling of these gaps as their first priority. If this
were to happen, the resultant decline in diversity would more than offset any advantage in
connectedness. The diversity of views presented at the meeting suggests that we do not have to worry
about this yet.

Michael Gilpin:

A variety of views at population, community, and ecosystem levels have been expressed in this
joint meeting with Japanese and United States ecological scientists. A "unified approach” is sought.
As a paradigm of unification, DeAngelis offered the great thermodynamic reduction. What was that?
Two sciences working at very different levels of resolution - 10 raised to the 23rd power apart -
spcaking very different languages. One language spoke of temperature and heat capacity. The second
spoke of kinetic energy and statistical distributions. The problem was really one of aggregation. The
likes of Gibbs, Maxwell, and Helmoltz produced a g( ) function that mapped variables at the lower
level and totally explained all the experimental phenomena at the higher level with molecular
processes at the lower level. Molar thermodynamics was reduced (yet it continues to be used!).

Is the situation we face as grim in its separation or as potentially promising with the prospect
of reduction? One encouraging sign is that we basically speak the same language. The basic problem
is with aggregation. The population dynamicist lumps all species beyond those he wants 1o study into
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the environment. The community ecologist keeps 3 to 30 species as his state variables. The
ecosystem person works with about the same range of variables, but many of these variables are
aggregations of species.

Are we trying to reduce ecosystems and community ecology to population dynamics? Yesand
no. I have, for example, explained the molar properties of island biogeography with statistical
distributions of species extinction and colonization rates -- successfully, I believe. The food web
people have done a number of similar things.

But this seems to strike terror into holists. Yet I think we have seen, and quite profitably
80, that there is not this great chasm between the holists and reductionists. All ecologists are holists.
And it is exactly this that draws us from mathematics, physics, and other basic sciences. Patten
believes that | have extracted my Drosophila system away from reality, from context, from, I think he
would say, the Aristotelian purposes of the ecosystem.

It seemed that so-called indirect effects were one expression of this. Whole ecosystems had
them; abstractions did not. Yet this quickly proved to be false. Contrary to Patten, people at the
meeting had demonstrated the consequences of indirect effects in many ways. And everyone seemed
to agree, at least for certain phenomena, that they were of predominate importance. Indeed, indirect
effects are found at all levels of population biology. Even in population genetics they are seen in
epistasis, and in correlated responses. So, perhaps this is a red herring. What then is the axis over
which we need to establish a unification.

Information is one such axis. Population genetics is awash and floundering in too much
information. Population dynamics has almost enough, though it is not as long-term as one would like.
Community ecology has very little beyond two and three species interactions (e.g., agriculture, pest
control). With ecosystems the situation is even worse, for there are almost no long term studies, and
questions of aggregation boundaries are still vexing problems. | feel that a unification can only occur
when the availability of system information is more uniform.

There is another problem that is probably producing just as much discord. We rarely make
clear what it is that we expect from our modeling exercises. Let me consider three works:

1 Shigesada, Kawasaki, and Teramoto on theory;

2. Gilpin’s Drosophila work on laboratory species assembly;

3. Food web links and dynamic stability by DeAngelis, Yodzis, Pimm, Cohen, and others in the
real world.

We shall consider them with regard to the role of interference competition.

Shigesada assumed interference competition and proved theorems about it; except for my own
laboratory Drosophila model these theories have no connection to reality. I worked with a possible
world, as Haldane put it -- not the real world. The purpose of my experiments was to find alternative
domains of attraction, as Case and I have predicted in 1974 and which were the basis for Diamond’s
assembly rules. The generalized interference we found was not expected and was somewhat
discouraging for our goal of alternative domains. Yet the domains existed for other reasons.
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The food web people start solidly in reality. They work with data from real systems. Their
goal is one of reduction. They want to explain a pattern they see based on a process they believe they
understand - the persistence of systems based on resilience as indexed by eigenvalues. They fail
altogether to recognize or to mention interference. Yet, given their goal, this might be justifiable -
for generalized interference is neither universal nor dominating, and it is not obvious that it biases
their results. Nonetheless, they have not fully justified this.

What we need to do to integrate our ecological science more fully is to focus on mechanisms
and to explicitly consider them as they run the gamut of aggregation. Interference is a place to start.

George Sugihara:

I agree with the comments made earlier by several participants (in order: N. Shigesada,
P. Abrams, Y. Iwasa, and J. Cohen) that a diversity of approaches is healthy. I also agree with the
somewhat paradoxical view that effort toward some kind of unification is also healthy.

From a naive system dynamical point of view, maintaining diversity in a system appears
opposite to forces tending towards unification. Indeed, the positive effect of a meeting such as this
one, whose purpose is to find bridges or conduits for interactions among a diverse community of
interests, is precisely to generate instability within the community. The dynamical analogy may not
be entirely facetious. Such instability is caused by stronger interaction among players (unification).
It may represent progress even though the outcome may involve the loss or absorption of one set of
interests by another. This is a desirable dynamic as long as new ideas are continuously created, so that
the process will not run out of steam. That is, the striving toward unification (especially cross
checking for consistency) combined with the steady creation of new viewpoints seems to be a very
desirable condition for progress. Therefore, insofar as this complexity-stability metaphor seems
reasonable, progress viewed in terms of the dynamism of the field can best be fostered by encouraging
efforts toward unification and encouraging the generation of new ideas.

Mathematics can be described as the axiomatic study of objects and relations. Science, on the
other hand, is at best only semi-axiomatic. The art in science comes in choosing these objects and
relations in meaningful and insightful ways so that nature becomes more comprehensible (i.e., so that
we can create order out of complexity).

This difficult question of the art in science is, I believe, a fundamental one that deserves more
prominence in our thinking. In this regard, one of the dangers that we as theorists have to avoid is
illustrated by the story of the man in a lighted room who is looking for something he knows was lost
in the darkened room next door. When asked why he is not looking next door he replies, "the light
is better here." There is a temptation in ecology 1o restrict our search to lighted rooms, using models,
formalisms, and techniques that are familiar and tractable rather than necessarily informative about
nature.

Ecological systems are complex; consequently it may be difficult to succeed solely with a
classical bottom-up approach involving theoretical investigations that begin with assumed microscale
mechanisms and are extrapolated to predict large-scale behavior and patterns. Itis possible that more
rapid progress would be made if the flow of information from theory to field test were reversed. That
is, it may be useful, at least as a complementary strategy, for the flow of information to proceed from
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nature to theory. The idea is to enploit existing data and measurements to find large-scale or whole-
system regularities (symmetries and invariances) that can be used to characterize real ecosystems.
Modern physics has developed largely through the systematic use of such symmetry principles. This
idea of creating a more empirically informed community-ecosystem theory based on the
phenomenology of actual data has been made by May, Ulanowicz, Pimm, and Cohen, among others.

Within the context of this meeting, and to complete this thought with an example, I was
particularly intrigued by Hirata’s empirical result that when an estuarine system is viewed in terms of
nitrogen and phosphorus cycling, it appears to be more well-organized than when the classical
quantities, energy or carbon, are used. This is interesting because it demonstrates how data for a real
system can potentially inform us as to how o construct ecosystem flow models. In terms of Hirata’s
mutual information criterion, characterizing systems by their nitrogen or phosphorus cycles may yield
a more coherent picture (i.e., a system having greater predictability, and implicitly giving rise to a
more successful model) than when the classical quantities carbon or energy are used.

Joel Cohen:

A concrete opportunity to unify different areas of ecological theory arose at the meeting. For
example, Ulanowicz spoke at length about the increase in his measure of ascendancy over time,
without giving any empirical or theoretical foundation for his claim. Ascendancy is a product of two
factors, one a measure of system size, the other an entropy-like measure of system complexity. During
the meeting, Iwasa distributed a paper that demonstrates that entropy increases in time under the
operation of a variety of linear systems, such as discrete-time or continuous-time Markov chains on
discrete or continuous state species. Iwasa’s paper provides a theoretical justification for a temporal
increase in the entropy factor of Ulanowicz’s ascendancy, provided one accepts a linear approximation
to the dynamics of a system. As another example, the models of Aoki on entropy flow in ecological
systems are closely related, it seems, to those of Patten. My image of a unified perspective in
ecological theory is captured by the biological term "anastomosis." The way to encourage this
anastomosis is by bringing together people with different perspectives at precisely the sorts of
meetings as the present one.

GENERAL CONCLUSIONS:

It is reasonable to conclude that most participants felt that a "unified perspective” is still somewhat
ambitious for theoretical ecology. Major differences in approach still divide some aspects of theory -
- particularly theory at the ecosystem level versus that at other levels. To attempt to get beyond the
enormous complexity of ecosystems, theorists working at this level are looking for holistic concepts
from thermodynamics and information theory. Still, the community/food web theorists, while often
working in a reductionist manner, are also oriented towards a holistic perspective. Thus, while the
gap between the ecosystem level and other levels seems wide and a diversity of approaches appears
to be inevitable and probably desirable for some time, connections between the two views are being
made.
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At the lower levels -- food webs, communities, populations, and individual adaptations -- a
unified perspective may be emerging, as the scientific programs in each of these areas seem to be
converging rapidly.



Takuya Abe

Peter A. Abrams

Ichiro Aoki

Thomas P. Burns

Joel E. Cohen

Donald L. DeAngelis

James A. Drake

Michael E. Gilpin

Toshohiko Hara

Alan M. Hastings

Masahiko Higashi

Hironori Hirata

Yoh Iwasa

Hiroya Kawanabe

Shoichi Kawano

231

APPENDIX A

Participants of the U. S.- Japan Seminar in the
Environmental Sciences

Associate Professor, Department of Zoology, Kyoto University, Sakyu-Ku,
Kyoto 606, Japan

Associate Professor, Department of Ecology, University of Minnesota, 318
Church Street, Minneapolis, Minnesota 55455 USA

Associate Professor, Department of Physics, Osaka Medical School, 2-41
Sawaragi-cho, Takatsuki 569, Japan

Institute of Ecology, The University of Georgia, Athens, Georgia 30602 USA

Professor, The Rockefeller University, 1230 York Avenue, New York,
New York 10021 USA

Senior Scientist, Environmental Sciences Division, Oak Ridge National
Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 USA

Assistant Professor, Department of Zoology, The University of Tennessee,
Knoxville, Tennessee 37996 USA (absent due to illness)

Professor, Department of Biology, University of California at San Diego,
La Jolla, California 92093 USA

JSPS Fellow, Institute of Plant Ecology, Kyoto University, Sakyo-ku, Kyoto
606, Japan

Professor, Department of Mathematics, University of California at Davis,
Davis, California 95616 USA

JSPS Fellow, Department of Biophysics, Kyoto University, Kyoto University,
Kyoto 606, Japan

Associate Professor, Department of Electronics, Chiba University, 1-33 Yagi-
cho, Chiba 260, Japan

Instructor, Department of Biology, Kyushu University, Higashi-ku, Fukuoka
812, Japan

Professor, Department of Zoology, Kyoto University, Sakyo-ku, Kyoto 606,
Japan

Professor, Department of Botany, Kyoto University, Sakyo-ku, Kyoto 606,
Japan



Kohkichi Kawasaki

Hiroyuki Matsudo

Hisao Nakajima

Bernard C. Patten

Stuart L. Pimm

Nanako Shigesada

George Sugihara

Akio Tamaki

Ei Teramoto

Robert E. Ulanowicz

Norio Yamamura

Peter A. Yodzis
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Associate Professor, Science and Engineering Research Institute, Dohshisha
University, Kamigyo-ku, Kyoto 606, Japan

Information Processing Center of Medical Sciences, Nippon Medical School,
Sendagi 1-1-5, Bunkyo-ku, Tokyo 113, Japan

Associate Professor, Department of Mathematics and Physics, Ritsumeikan
University, Kita-ku, Kyoto 603, Japan

Professor, Institute of Ecology, The University of Georgia, Athens, Georgia
30602 USA

Associate Professor, Department of Zoology, The University of Tennessee,
Knoxville, Tennessee 37996 USA

Instructor, Department of Biophysics, Kyoto University, Kyoto University,
Kyoto 606, Japan

Assistant Professor, Scripps Institution of Oceanography, La Jolla, California
92037 USA

Instructor, Department of Fishery, Nagasaki University, 1-14 Bunkyo-cho,
Nagasaki 852, Japan

Professor, Department of Biophysics, Kyoto University, Sakyo-ku, Kyoto 606,
Japan

Professor, The University of Maryland, Chesapeake Biological Laboratory,
Solomons, Maryland 20688 USA

Associate Professor, Department of Natural Sciences, Saga Medical School,
Nabeshima-cho, Saga 840-01, Japan

Department of Zoology, University of Guelph, Guelph, Ontario, Canada
N1G 2W1
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APPENDIX B

Topics of Participants of U.S.-Japan Seminar
in the Environmental Sciences

Abe, Takuya - "Ecology of Termites: Do Mutualistic Relationships Decide the Community
Structure?”

Abrams, Peter A. - "Representing Biological Communities Containing Optimally Foraging Herbivores:
Implications of Adaptive Behavior for Community Structure”

Aoki, Ichiro - "Entropy Laws in Ecological Networks at Steady State"
Cohen, Joel E. - "Why the Lion is not Larger: Predator-Prey Allometry and Food Chains”
DeAngelis, Donald L. - "Some Stability Relations in Nutrient-Limited Systems”

Drake, James A. - "Towards a General Theory of Community Organization Using Assembly Rules"
(presented by Pimm)

Gilpin, Michael E. - "Community Collapse: Perspectives on Prediction”

Hastings, Alan M. - "Stability of Food Webs"

Hirata, Hironori - "Information in Ecological Communities"

Iwasa, Yoh, and Simon A. Levin - "Perfect and Approximate Aggregation in Model Ecosystems"
Kawanabe, Hiroya - "Facultative Mutualism in Fish Communities"

Kawano, Shoichi, and Toshihiko Hara - "Spatio-Temporal Changes in Growth, Structure, and
Fecundity of a Plant Population over the Environmental Gradients”

Matsudo, Hiroyuki - "Coevolutionary Stable Community Structures in a Patchy Environment”
Nakajima, Hisao - "Sensitivity and Stability of Flow Networks"

Patten, Bernard C., Masahiko Higashi, and Thomas P. Burns - "Trophic Dynamics in Ecosystem
Networks: Significance of Cycles and Storage (Network Theory)"

Pimm, Stuart L. - "Food Web Structure and Temporal Variation"

Shigesada, Nanako, Kohkichi Kawasaki, and Ei Teramoto - "Effects of Invasions in a Patchy
Environment”

Sugihara, George - "Some Theoretical Approaches to Community Assembly”

Tamaki, Akio - "Characteristics of Species Interactions Organizing the Benthic Community on an
Intertidal Flat"
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Teramoto, Ei - "A Note on the Population Size Distributions of Competing Species"

Ulanowicz, Robert E. - "Further Research to Quantify the Effects of Non-Newtonian Causalities in
Ecosystem Development"

Yamamu |, Norio, Hisao Nakajima, and Masahiko Higashi - "Flow-Matching and Flow Compensation
in Simple Model Ecosystems: A Network Coevolutionary Approach to Ecosystem Organization”

Yodzis, Peter P. - "Alternative Explanations for Food Web Structure”
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INTERNAL DISTRIBUTION
ORNL/TM-12392

S. I. Auerbach, 1505, MS-6036 34. A. V. Palumbo, 1505, MS-6036
L. W. Barnthouse, 1505 M 5-56036 35. T. -H Peng, 1000, MS-6335
L. D. Bates, K-1009, MS-7169 36. W. M. Post, 1000, MS-6335
J. H. Cushman, 1503, MS-6352 37. F. R. Reeves, 1505, MS-6038
R. M. Cushman, 1000, MS-6335 38. D. E. Reichle, 4500N, MS-6253
V. H. Dale, 1505, MS-6038 39. F. E. Sharples, 1505, MS-6036
D. L. DeAngelis, 1505, MS-6058 40. D. S. Shriner, 1505, MS-6038
D. E. Fowler, 1505, MS-6035 41, S. H. Stow, 1505, MS-6038
R. H. Gardner, 1505, MS-6036 42, M. G. Turner, 1505, MS-6038
C. W. Gehrs, 1505, MS-6036 43. CDIARP Files
S. G. Hildebrand, 1505, MS-6035 44, Central Research Library
M. A. Huston, 1505, MS-6038 45.-60. ESD Library
P. Kanciruk, 0907, MS-6490 61.-62. Laboratory Records Department
E. R. Marzolf, 1505, MS-6036 63. Laboratory Records, RC
P. J. Mulholland, 1505, MS-6036 64. ORNL Patent Office
R. V. O'Neill, 1505, MS-6036 65. ORNL Y-12 Technical Library

EXTERNAL DISTRIBUTION

Prof. Takuya Abe, Department of Zoology, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Prof. Peter A. Abrams, Department of Evolution and Ecology, University of Minnesota,
Minneapolis, MN 55455

Dr. Ichiro Aoki, Department of Physics, Osaka Medical School, 2-41 Sawaragi-cho,
Takatsuki-shi, Osaka 569, Japan

Dr. Thomas P. Burns, Science Applications International Corporation, 301 Laboratory Road,
Oak Ridge, TN 37831

Prof. Joel E. Cohen, Rockefeller University, 1230 York Avenue, New York, NY 10021-6399

R. N. Farvolden, Professor, Department of Earth Sciences, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Prof. Michael E. Gilpin, Department of Biology, University of California at San Diego,
La Jolla, CA 92093

Dr. Toshohiko Hara, Institute of Plant Ecology, Kyoto University, Sakyo-ku, Kyoto 606,
Japan

R. C. Harriss, Institute for the Study of Earth, Oceans, and Space, Science, and Engineering
Research Building, University of New Hampshire, Durham, NH 03824

Prof. Alan Hastings, Department of Mathematics, University of California, Davis, CA 95616
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Dr. Masahiko Higashi, Faculty of Science and Technology, Ryukoku University, Seta, Otsu
520-21, Japan

Dr. Hironori Hirata, Department of Electrical and Electronics Engineering, Chiba
University, 1-33 Yayoi-cho, Chiba-shi 260, Japan

Dr. Yoh Iwasa, Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812,
Japan

G. Y. Jordy, Director, Office of Program Analysis, Office of Energy Research, ER-30, G-226,
U.S. Department of Energy, Washington, DC 20545

Prof. Hiroya Kawanabe, Department of Zoology, Kyoto University, Kyoto 606, Japan
Prof. Shoichi Kawano, Department of Botany, Kyoto University, Kyoto 606, Japan

Dr. Kohkichi Kawasaki, Science and Engineering Research Institute, Doshisha University,
Kyoto 602, Japan

Dr. Hiroyuki Matsuda, Information Processing Center of Medical Sciences, Nippon Medical
School, Sendagi 1-1-5, Bunkyo-ku, Tokyo 113, Japan

Dr. Hisao Nakajima, Department of Physics, Ritsumeikan University, Kita-ku, Kyoto 603,
Japan

Prof. Masami Nakanishi, Center for Ecological Research, Kyoto University, Shimosakamoto,
Otsu, Shiga 520-01, Japan

Dr. Toshiyuki Namba, School of Commerce, Senshu University, Higashi-Mita 2-1-1, Tama-
ku, Kawasaki, Japan

Office of Assistant Manager for Energy Research and Development, U.S. Department of
Energy, Oak Ridge Operations, P.O. Box 2001, Oak Ridge, TN 37831-8600

Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831

A. Patrinos, Director, Environmental Sciences Division, Office of Health and Environmental
Research, ER-74, U.S. Department of Energy, Washington, DC 20585

Prof. Bernard C. Patten, Institute of Ecology, The University of Georgia, Athens, Georgia
30602

Prof. Stuart L. Pimm, Department of Zoology, The University of Tennessee, Knoxville, TN
37919

Prof. Nanako Shigesada, Department of Information and Computer Sciences, Nara Woman’s
University, Kita-Doya, Nishimachi, Nara 630, Japan

Dr. Akio Tamaki, Faculty of Fisheries, Nagasaki University, Bunkyo-cho, 1-14, Nagasaki 852,
Japan
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Prof. Ei Teramoto, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga
520-21, Japan

Dr. Osamu Tsumura, Department of Biophysics, Kyoto University, Kyoto 606, Japan

Prof. Robert E. Ulanowicz, University of Maryland, Chesapeake Biological Laboratory,
Solomons, MD 20688

F. J. Wobber, Environmental Sciences Division, Office of Health and Environmental
Research, ER-74, U.S. Department of Energy, Washington, DC 20585

Dr. Norio Yamamura, Saga Medical School, Nabeshima, Saga 840-01, Japan

Prof. Peter P. Yodzis, Department of Zoology, University of Guelph, Guelph, Ontario N1G
2W1, Canada









