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Abstract

Modern nuclear safety themes depend on excluding unwanted energy from the components
required for nuclear detonation. The exclusion region barrier is designed to provide protection
from extraneous energy. The barrier must remain unbreached for both normal operations and
accident events. Recent advances in computational capabilities permits more accurate
modeling of barrier tearing during the extreme mechanical loadings associated with accidents.
This report describes a methodology which employs design of experiments strategies coupled
with finite element analyses and testing to produce results suitable for inclusion in a guide to
design exclusion region barriers.

The general approach was to employ finite element analyses to define the effect of materials
property and geometric feature parameters on a generic barrier geometry. These parametric
studies were based on design of experiments strategies. Four materials properties and six
geometric features were included in the parameters. Selected geometries were tested to
provide verification of the analyses. Statistical analysis of the results from the finite element
analyses identified the important parameters (primarily the material property, true strain-to-
failure, along with certain geometric characteristics) which were used to synthesize simplified
equations and graphics suitable for inclusion into a guide for designers and safety analysts.
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1 Introduction

Modern nuclear safety themes depend on excluding unwanted energy or information from
Region III (Region 111 components are required for nuclear detonation). These components
provide both isolation and transmission of critical energies to the physics package. The
exclusion region barrier encloses Region III and is designed to prevent unwanted energy from
entering. To ensure nuclear safety, the barrier must remain continuous (i.e., no tearing) for both
normal operations (stockpile-to-target) and during abnormal or accident events. Abnormal
events include (among others), the application of high voltage, directional fires, crush loadings,
penetration loadings, and combinations of these. The large scale deformation associated with
crush and penetration are the least well characterized events and are the subject of this research
program.

Historically, the exclusion barrier was combined with the fireset housing. Barrier materials
were selected, among other criteria, on their ability to divert or insulate electrical energy, their
producibility (castability, machinability, and weldability), and their strength. High strength
was employed in order to gain a margin of safety for elastic design to withstand the mechanical
loading associated with normal operations. The selection of barrier geometry was based on the
Region I1I components to be surrounded and on the space available within the weapon.
Abnormal event loading was typically addressed by testing.

The objective of the Advanced Barrier Mechanical Modeling Project is to develop and verify
improved numerical modeling of the mechanical behavior of exclusion region barriers. This
capability will allow quantification of the response of barriers to abnormal mechanical
loadings. This project has the further objective of translating the improved modeling
capabilities into easily applied guidance for designers and nuclear safety analysts. The ultimate
goal is to develop a design guide that will aid engineers in making a more knowledgeable trade-
off among the competing aspects of barrier design such as tearing resistance, case of
fabrication, and resistance to normal environmental effects of shock and vibration.

In the initial phase of this project, the analytical tools were qualified against experimental
results[1]. This report describes the initial work done in Phase 2 of the project, the
development of quantitative guidelines for barrier design. The general approach taken was to
perform parametric studies of the effects of materials property and geometric feature
variations on a generic barrier geometry using design of experiments strategies. The generic
barrier was represented by a shell structure formed into a truncated cone. The load was
applied through downward motion of a punch located at the top of the cone. Four material
property and six geometric parameters were varied in this initial evaluation. Finite element
analyses of barriers defined by combinations of these ten parameters were carried out. The
number of finite element analyses required and the combination of the parameters for each
analysis was determined by using a central composite design of resolution IV [2]. This design
consisted of a 2'94 fractional factorial (64 runs), plus axial points for the four material
parameters (8 runs), plus a center point (1 run) for a total of 73 finite element analyses in the
matrix. This experimental design minimized the variance estimates of the parameter effects
among experimental designs with the same number of runs. Based on these results [3], the
original matrix was enhanced by an additional 24 analyses for a total of 97. These additional
24 analyses were chosen to further define the influence of the parameters determined to be the



most important from the initial portion of this study.

Only quasistatic mechanical loadings, associated with puncture and crush events, are
considered in this study. Dynamic loadings, such as projectile penetration and high speed
impact, are studied elsewhere[4]. The explicit, quasistatic finite element code JAC2D [5], was
used to perform the analyses reported here.

Section 2 of this report describes the fundamental geometry and modeling assumptions of the
generic barrier. It includes a description of how the fundamental geometry changes as the
geometric parameters vary. The constitutive relation is explained and the effects of the
materials parameters are discussed. Finally, the criterion used to determine the initiation of
ductile tearing is described. Section 3 is devoted to presenting selected results from the finite
element analyses. The statistical analysis of the finite element results is presented in Section 4.
In Section 5, confirmatory experiments are compared to analyses.
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2  Exclusion Region Barrier Model

The basic structure chosen for this study is a simple truncated cone, shown in Figure 1. This
basic shape allows the identification of parameters that will result in a wide variety of
fundamentally different geometric behavior. The parameters and resulting geometries will be
discussed in detail in the next section. The truncated cone also permits the use of two-
dimensional, axisymmetric analyses rather than three-dimensional analyses.

Punch - Imposed Vertical Displacement
’//_— No Horizontal Displacement
r\ Contact Surface - Punch to Top

Fixed End - No Displacements

7

Figure 1. Fundamental Geometry of the Truncated Cone

The punch is located at the narrow, top of the cone. The punch is constrained from horizontal
displacement and a vertical downward displacement boundary condition is applied. The
bottom, large end of the cone is constrained to prevent both vertical and horizontal
displacement. The use of a displacement controlled loading scheme provides a more stable
solution, particularly when buckling or other phenomena resulting in unloading are
encountered. Displacement control also implies an accident event in which infinite load is
available to ensure the imposed displacement. No internal components are included in this
model. In fact, displacement of the top or walls of the cone below the fixed bottom is allowed.
The analysis was terminated on two conditions. By default, the solution was stopped when the
punch had traveled 4.5 inches downward, the initial cone height. The punch displacement was
also terminated when strain localization in the cone wall resulted in such severe element
deformation that a numerical fault (element inversion, overflow, etc.) occurred in the finite
element code.
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2.1 Geometric Parameters

The following six geometric parameters were evaluated: the top thickness (t,), the side
thickness (t,), the top diameter (b), the punch diameter (D), the radius between the side wall
and the bottom (rg,), and the radius between the side wall and the top (rg,). These parameters

are shown in Figure 2.

Figure 2. Geometric Parameters Selected to Generate a Conical Geometry

By changing the top diameter and the side-to-top radius, geometries approximating a
hemisphere or a cylinder can be generated. A hemisphere is approximated with a small top
diameter and a large side-to-top radius. A cylinder is obtained with a large top diameter and a
small side-to-top radius. These geometries are shown in Figure 3 and Figure 4.
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t, = 0.125

Figure 3. Geometric Parameters Selected to Generate a Hemispherical Geometry
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Figure 4. Geometric Parameters Selected to Generate a Cylindrical Geometry
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For this study, two values were chosen for each geometric parameter with an intermediate point
included to determine the linearity of the effect of that parameter. The side thickness varied
from 0.05 to 0.125 inch with an intermediate value of 0.088 inch. The top thickness was not
permitted to be less than the side thickness because it was felt that this combination of
parameters would lead to uninteresting very early localization and failure around the punch.
For convenience, the top thickness was considered a dependent variable of the side thickness
and the parameter top thickness minus side thickness (t, - t;) was introduced. This parameter
varied from 0. to 0.2 inch with an intermediate value of 0.125 inch. These three values for top
thickness minus side thickness resulted in four values of top thickness, 0.05, 0.125, 0.169, and
0.25 inch. The top diameter took a minimum value of 1.0 inch, a maximum value of 10.0
inches, and an intermediate value of 6.0 inches. The punch diameter took the same extreme
values, 1.0 and 10.0 inches with an intermediate value of 5.0 inches. The side-to-bottom radius
varied from 0.063 inch to 0.5 inch with an intermediate value of 0.25 inch. The side to top
radius took on values of, 0.063, 0.25, and 0.5 inches. In addition, a 4.0 inch side-to-top radius
was used with the 1 inch top diameter to approximate the geometry of a hemisphere.

2.2 Material Parameters

The materials are modeled using a constitutive relationship which has an initial linear elastic
region followed by a strain hardening region characterized by a power law[6]:

G =0, +AE ¢ ) (h

where:

oys is the initial yield stress,

A is the hardening constant,

n is the hardening exponent,

g, is the equivalent plastic strain,

G is the current value of the effective stress, and

g, is the Liiders strain or strain in the yield plateau.

A Liiders strain of zero was used throughout this study. Typically material< with zero Liiders
strain have no obvious yield point. For these materials, the proportional limit is more
appropriate to use for the initial yield stress, o, than the more commonly tabulated 0.2%
offset value. A and n are constants typically derived from a least squares fit to the stress-strain
curve. In this study, o, A, and n were three of the constitutive parameters investigated. The
fourth, €., will be discussed in detail later. 6 was varied from 20 to 120 ksi, A from 40 to
300 ksi, dnd n from 0.15 to 0.8. The values of “the constants were not chosen to represent any
particular material, but the range in values encompasses most engineering alloys of practical
interest in exclusion barrier fabrication. Values of these constitutive parameters for 304L
annealed stainless steel, and two heat treatments (T6 and TO) of 6061 aluminum alloy are
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given inTable 3, Section 5. While 6061 aluminum alloy is not typically used for structural
purposes in the annealed, TO heat treat condition, the other two materials (6061-T6 aluminum
alloy and 304L stainless steel) are candidate materials for exclusion region barriers.

The stress-strain curves resulting from all combinations of parameters used in this study are
shown in Figure 5, Figure 6, and Figure 7. The curves are labeled with the constitutive
parameters that generated them in the order, G, A, and n. For example, the curve labeled 37-
83-69 had a yield strength (0, = 37 ksi), a hardening constant (A = 83 ksi), and a hardening
exponent (n = 0.69). In general, the hardening constant controls the magnitude of the strain
hardening, while the hardening exponent controls the curvature of the stress-strain curve. A
characteristic of the power law constitutive model is that the stress at a strain of 1.0 is equal to
the yield strength plus the hardening constant. A low value of the hardening exponent
indicates the material strain hardens rapidly at low strains and then increases more gradually.
A high value of hardening exponent indicates a more gradual strain hardening (n=1.0 results
in linear hardening).
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True-Stress Verses True-Strain Curves for the Material Parameters
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2.3 Tearing Criterion

In earlier work, several failure (initiation of a ductile tear) criteria were investigated [1]. These
ranged from simple static values of stress and strain to very complicated, multiple parameter
evolution equations. The most successful of these criteria, based on accurate prediction of
failure initiation in the earlier study, was chosen for use here. This criterion was developed by
researchers in the metal working industry[7]. It is a relatively simple evolution equation in
which the plastic strain increment, scaled by a stress ratio, is accumulated until a critical value
is reached at which point the initiation of ductile tearing is predicted.

€

P 20
TP = !mdep (2)

where:
€ 0 is the plastic strain,
O is the maximum principal stress, and
o, is the mean (hydrostatic) stress.

As implemented here[8], the integral accumulates value with plastic strain only when the
maximum principal stress is positive as indicated by the pointed brackets, { ), which represent
the Heaviside function. Thus, plastic strain with a negative maximum principal stress causes
no change in the value of TP. Also, a high mean stress causes the value of TP to increase more
rapidly with plastic strain, representing the well known effect of decreased ductility in metal
alloys in the presence of hydrostatic tension. The critical value of TP is established by
performing an analysis of a tensile test. TP is then evaluated using the computed stress state
and substituting the strain-to-failure, €, as the upper integration limit. This provides a critical
value of TP which can then be used to predict failure in other analyses. The strain-to-failure
can be computed from the reduction-in-area, a ductility measure available from a standard
tension test. The results from a typical tension test analysis are shown in Figure 8. These
analytical results show the determination of the critical tearing parameter for the material with
a yield strength of 103 ksi, a hardening constant of 83 ksi, a hardening exponent of 0.26, and a
strain-to-failure of 1.27. In Figure 8, the maximum value of plastic strain is 1.27 (defined as
failure for a tension test specimen), which corresponds to a maximum value of the tearing
parameter of 1.693. The difference between these two values indicates the effect of the stress
state caused by the necking in the specimen. In this case, the stress state deviated significantly
from uniaxial tension because of specimen necking. Five levels of strain-to-failure were run.
The majority of the analyses were conducted with a value of either 0.33 or 1.27. An
intermediate value of 0.8 along with extremes of 0.1 and 1.5 were also employed. Because of
the nature of the tearing parameter used (plastic strain scaled by a stress ratio), the strain-to-
failure parameter by itself does not completely define failure of a material. The other
constitutive parameters also contribute to the critical value of the tearing parameter,
necessitating the analysis of a tensile test specimen described above. The critical value of the
tearing parameter for all combinations of material parameters is shown in Table 1
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Plastic Tearing
Strain Parameter
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1-929 1,250

Figure 8. Contours of Plastic Strain and Tearing Parameter at Failure for a Tensile
Test with a Yield Strength ot 103 ksi, a Hardening Constant of 83 ksi, a
Hardening Exponent of 0.26, and a Strain-to-Failure of 1.27

The parameter list for the matrix of experiments (97 finite element analyses) depicting the
entire range of geometric and materials parameters investigated is included in Appendix A.
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Table 1: Critical Value of the Tearing Parameter

Oys A n ef TP

20 170 0.48 0.8 0.8531
37 83 0.26 0.33 0.3466
37 83 0.26 1.27 1.600
37 83 0.69 0.33 0.3325
37 83 0.69 1.27 1.419
37 257 0.26 0.33 0.3397
37 257 0.26 1.27 1.549
37 257 0.69 0.33 0.3308
37 257 0.69 1.27 1.358
70 40 0.48 0.8 0.8409
70 170 0.15 0.8 0.9715
70 170 0.48 0.1 0.1003
70 170 0.48 0.8 0.8733
70 170 0.48 1.5 1.809
70 170 0.8 0.8 0.8299
70 300 0.48 0.8 0.8531
103 83 0.26 0.33 0.3616
103 83 0.26 1.27 1.693
103 83 0.69 0.33 0.3506
103 83 0.69 1.27 1.565
103 257 0.26 0.33 0.3455
103 257 0.26 1.27 1.599
103 257 0.69 0.33 0.3309
103 257 0.69 1.27 1.412
120 170 0.48 0.8 0.8998
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3 Finite Element Analysis Results

It is convenient to separate the discussion of the results of the finite element analyses
described in the prior section and in Appendix A into six different sections. A specific
geometry and loading environment is discussed in each section. Three different geometries
were analyzed: a truncated cone (Figure 2), a hemisphere (Figure 3), and a cylinder (Figure 4).
Two different loading environments were generated by varying the punch diameter. The small
diameter (1 inch) punch results in a loading environment referred to as puncture. The large
diameter (10 inch) punch yields a crush loading environment. Each of the three geometries
responds differently to the different loading environments.

3.1 Truncated Cone Geometry - Puncture Loading Environment

The truncated cone geometry is characterized by a 1 inch top diameter along with a relatively
small (0.5 inch or less) side-to-top radius. The 1 inch diameter punch defines the puncture
loading environment. The other geometric parameters do not alter the basic truncated cone
shape. The basic structural response of the truncated cones to the puncture load was similar
regardless of the values of the other geometric parameters or the material parameters. The
cone inverted via a rolling hinge mechanism where the location of the hinge increased in
diameter with punch displacement as shown in Figure 9.

Rolling Hinge

Figure 9. Deformed Shape of the Truncated Cone Loaded by the Small Diameter
Punch Demonstrating a Rolling Hinge Mechanism

The rolling hinge deformation mechanism is relatively benign with only a modest increase in
load required to propagate the hinge to larger diameters as the punch depth increases. The
required loads did not reach levels which would cause localization (necking) of the region
deforming around the punch. Therefore, failure was predicted only for the very low strain-to-
failure materials. For all the intermediate and high strain-to-failure materials, the maximum
punch displacement (i.e., the height of the cone) was reached without failure.
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3.2 Truncated Cone Geometry - Crush Loading Environment

The basic geometry described in Section 3.1 is used here. A ten inch diameter punch rather
than a one inch diameter punch is used to provide a crush environment. The structural
response is also the same as described in Section 3.1, a rolling hinge. The only failures occur
with a small strain-to-failure value. These failures occur either at the bottom, fixed end of the
cone or at the stress and strain concentration associated with a radical change in cross section
where a thick top meets a thin side wall and the thickness change occurs over a short distance.

3.3 Cylinder Geometry - Puncture Loading Environment

The cylindrical geometry is produced by a combination of the large (10 inch) top geometry
and a relatively small (0.5 inch or less) side-to-top radius. The 4 inch side-to-top radius never
occurs along with the 10 inch top diameter. In the puncture environment, failure occurs at a
moderate value of punch displacement due to localization around the punch as shown in
Figure 10. The stiff vertical cylinder walls provide both axial and radial constraint to the

Necking

v \J

Figure 10. Deformed Shape of the Cylinder Loaded by the Small Diameter Punch
Showing Localization Around the Punch

cylinder top. This constraint imposes a radial tensile stress on the cylinder top material which
first necks and then fails. Only when the top of the cylinder has a much greater thickness than
the side wall (t, —t, = 0.2 inch) are large punch displacements seen without failure. Large
differences between top and side thickness implies a thin side wall. For those cases with large
punch displacements to failure, the side wall either buckles or forms a rolling hinge near the
fixed bottom end which relieves the axial load on the punch.
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Cylinder testing with the puncture loading environment (described in Section S) indicates that
circumferential buckling of the cylinder top can occur. After moderate punch displacement,
significant hoop compression develops in the flat top of the cylinder. This deformation mode,
which is not reproducible with two-dimensional, axisymmetric analysis techniques, reduces
the structural stiffness and suppresses localization of the cylinder material around the punch.
This buckling mechanism is not important for small punch displacements. However, it
becomes more important for increasing punch displacement and can even lead to the complete
suppression of localization and failure around the punch. Low values of computed punch
displacements to failure in Appendix B can be regarded as accurate. Moderate to large values
of computed punch displacement to failure are conservative.That is, experimentally measured
results should be at least as large as those computed using two dimensional analysis
techniques.

3.4 Cylinder Geometry - Crush Loading Environment

The same basic geometry described in Section 3.3 is used here. Only the punch diameter was
changed to 10 inches to be consistent with the crush loading environment. There were more
difficulties with the cylinder crush analyses than with any of the other geometries or
environments. The cylinder crush is a relatively benign environment so that few early failures
were encountered. Those that did occur were associated with the fixed, bottom end of the
cylinder. For moderate to large punch displacements, the cylinder walls buckle into multiple
tight folds, seen in Figure 11. A robust contact tracking algorithm capable of dealing with the

)

@/*‘ l —5_\‘@

Figure 11. Deformed Shape of the Cylinder Loaded by the Large Diameter Punch
Demonstrating Buckling of the Side Walls

multiple folds was not available in the quasistatic code. Therefore, there were cases of illegal
contacts, mesh overlaps, or otherwise questionable analysis results. Research is currently
underway to enhance the contact algorithms to better analyze this type of deformation[9].

3.5 Hemisphere Geometry - Puncture Loading Environment

The hemispherical geometry is attained with a small (1 inch) top diameter and a large (4 inch)
top-to-side radius. The structure responds by forming a rolling hinge, similar to the truncated
cone, early in the loading. As the puncture event proceeds, the rolling hinge progresses
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outwards on the side walls and the behavior begins to resemble that of the cylinder. As with
the cylinder, the structural stiffness of the hemisphere plays a dominant roll in the type of
failure. When the top and side walls have the same thickness, there is sufficient structural
stiffness to force localization followed by failure around the punch. When the top is thicker
than the side wall, localization around the punch does not occur and the only failures are
associated with low values of strain-to-failure which do not require necking prior to failure.
While qualitative similarities exist between the cylinder and the hemisphere, the hemisphere
is a more tolerant geometry. Failures preceded by necking never occur at low punch
displacements (the earliest is a punch displacement of 1.55 inches with all the rest at punch
displacements greater than 2.3 inches).

As discussed for the cylinder punch environment, the post analysis testing described in
Section 5 shows that buckling due to hoop compression occurs for large punch displacements.
This effect occurs at much larger punch displacements for the hemispheres than for the
cylinders. However, localization and failure also occur at higher values of punch
displacement. Again, the two-dimensional, axisymmetric analyses should be considered a
lower bound (conservative result) on punch displacement to failure.

3.6 Hemisphere Geometry - Crush Loading Environment

The same hemisphere geometry described in Section 3.5 was used with a large (10 inch)
diameter punch for the crush environment. This is a very benign environment. The only
failures with this combination of geometry and loading occurred with low values of strain-to-
failure. These failures only occurred at the bottom, fixed boundary condition or with a mesh
overlap similar to those experienced with the cylinder discussed in Section 3.4.
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4 Statistical Analysis
4.1 Experimental Design

A fractional factorial design was used to specify the levels for the ten parameters to be varied
in this study[2]. A factorial experimental design is an efficient means for estimating the
individual and joint effects of a number of parameters on one or more responses. The
individual effects are called main effects, and the two-way joint effects are called two-way
interaction effects, or simply interaction effects. Two levels, high and low, are chosen to cover
a range of interest for each quantitative parameter. In a full factorial experiment, the response
is measured or evaluated for all combinations of levels of all parameters. Thus if there are n
parameters, 2" evaluations are required. When the number of parameters exceeds five, and
resources do not zllow evaluating all parameter combinations, a fraction of a full factorial
design is often used. The fractional factorial design is selected so that the parameter effects of
interest, usually all main effects and some or all two-way interactions, are separately
estimable. The higher level interaction effects will then be confounded with the main effects
and two-way interaction effects. Often, however, the higher level interaction effects are small
relative to the lower order effects and can safely be ignored.

For the initial phase of this study, a subset, 210-4 = 64 parameter combinations, of the total

number of 0possible combinations, 2]0, was selected. This subset represents a 1/(2)4 fraction of
the full 2!0 factorial design. This particular subset was chosen so that the main effects of the
factors could be estimated, and so that the 2-way interactions were not confounded with the
main effects. The 2-way effects may, however, be confounded with each other. This type of
design is said to be of resolution I'V. In addition, eight ‘axial’ runs for the four material
parameters, plus one intermediate run were made, for a total of 73 runs. Axial runs are runs
where one parameter is set to an extreme, and all other parameters are set to their center
values. For each of the four material properties, two axial runs were made, at low and high
extremes. In a center run, all parameters are set at their center values. The purpose of
including axial and center runs is to determine the extent of nonlinearity in the response for
the selected parameter settings.

In this design, none of the main effects are confounded with each other or with any two-way
interaction. However, the two-way interactions can be confounded with each other and with
higher order interactions. Thus if the analysis showed that an interaction term was significant,
it is not possible to determine which of the confounded interaction terms were actually
influential. Thus, as in the current work, follow-on studies are usually performed with the
parameters having the most important main effects. After the follow-on study is completed, a
more detailed model can be constructed of the parameter effects on the response(s).

When the first 73 runs were completed, the important parameters affecting the displacement at
failure were determined from an analysis of variance (ANOVA). Although there is no source
of random variation in these computer runs, ANOVA is still a useful technique because it can
identify important sources of variation in the presence of unimportant sources, and/or random
variation. A linear model with cross-product terms was fit to the data to determine which of
the ten factors most strongly influenced the results[3]. This model was not sufficiently
detailed to permit predictions of punch displacement to failure but did allow selection of the
five most important parameters for further study. In order of importance, these parameters
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were determined to be: €, b, rg, Dp, Oy

In the follow-on experiment, 24 additional runs were made, holding the less important
parameters tg, t-tg, o, A, and n constant. Levels for the other five more influential parameters
were selected to provide additional intermediate and bounding values. Table A1l is a list of the
parameter settings for all 97 runs. Table B1 contains the response computed from the finite
element analysis, the punch displacement at failure, for all runs.

Using the data from all 97 runs, we sought to develop insights about combinations of
geometric and material properties that lead to high displacements at failure, and conversely,
about combinations that lead to low displacements at failure[ 10]. Because the two punch sizes
(1 and 10) exert very different stresses on the barrier, the form of the insights differ between
these two cases. A methodology for this analysis is given in the next section.

4.2 Regression Trees

A statistical methodology called CART (Classification and Regression Trees)[11] was used to
construct ‘optimal’ binary regression trees to divide, or split, the data into groups, based on
the values of a selected subset of the parameters. The group center is given by the median
response, and the degree of group clustering is given by the mean absolute deviation of the
response. The subset of parameters and levels defining the regression tree are chosen so that
the resuiting groups have minimum average absolute deviation about the response median of
the group. As a result, responses within a single group are more closely clustered than
responses from different groups.

The order of the parameters in the tree is an indicator of their importance since, at each step,
the parameter and level are selected to produce the greatest clustering in the response. The
level chosen for the split is an average of the two nearest values of the parameter that produces
the greatest reduction in mean absolute deviation. There are different rules by which the user
may tell the algorithm when to stop splitting. For this analysis, the stopping rule was that a
node with fewer than ten cases could not be split. The longer the regression tree, the more
(apparently) accurate is the prediction. However, the results are less useful to summarize the
significant features of the data, because the tree is more complex.

Figure 12 and Figure 13 contain the regression trees for D=1 (puncture) and D,=10 (crush).
For a specified set of values for the ten parameters, one can use the tree to get a (rough)
prediction of the displacement at failure. As an example of the use of a regression tree for
Dy=1. consider the set of parameter values indicated by run 17 in Table Al. We enter the
regression tree of Figure 12 at the top. The value for €, is 0.33, so we proceed down the left
branch. Since the value for b is 1, we proceed down the left branch again. Since ry=4.0, we
now take the right branch, and determine that this set of parameters belongs to the terminal
group with a median displacement of 1.2. If we had not already made this run, we would
estimate the displacement to be 1.2 for this parameter set. From Figure 12 we can see that the
second, third, fourth, and sixth groups, with median displacements of 1.2,0.9, 1.0, and 1.8, are
‘middling’ groups. The first group, with a median displacement of 0.20, is a low group. The
fifth and seventh groups, with median displacements of 4.5, are high groups.
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Figure 12. Regression Tree Diagram for the Puncture Environment (D=1 inch)
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Figure 13. Regression Tree Diagram for the Crush Environment (D=10 inch)

One can refer to Figure 12 and Figure 13 to determine how to achieve the best results (highest
displacement to failure) in either a puncture or crush environment, and how to avoid the worst
results (lowest displacement to failure). For high displacement in a puncture environment, €,
should be greater than 0.415, and b (top diameter) should be less than 3.5, leading to the fifth
group. If b is large (>3.5), then t,-t, the top thickness minus the side thickness, should be
greater than 0.16, leading to the seventh group. The value 0.415 for g, is the average of 0.33
and 0.5, at which runs were actually made. The value of 3.5 for b is the average of 1 and 6.
The value of 0.16 for t-t, is the average of 0.125 and 0.20. For high displacement in a crush
environment (Figure 13), either & should be greater than 0.415, leading to the fifth group, or
if € is less than 0.415, then b should be less than 3.5, and 1, should be greater than 0.28, the
average of 0.063 and 0.5, leading to the second group.

One can compare the two regression trees to determine what parameter settings might be
helpful in either environment. In general, high values of €, (>0.415) are beneficial in either a
puncture or crush environment. In a puncture environment, if b is large (>3.5), then t-t, must
be greater than 0.16. That is, in a puncture environment, if the top diameter is large, the top
should be thicker, even if the true strain to failure is high. From the figures we can see that the
puncture environment is more demanding than the crush environment.

For lower values of g; (<0.415) in a crush environment, very high displacements (>4.4) can
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still be achieved if b, the top diameter, is low (<3.5) and rg, the side-to-top radius, is 0.5 or 2.
Somewhat lower values are obtained if ry equals 4. Thus, in a crush environment, the right
combination of geometric properties can compensate for an important material property, low
strain to failure. However, this compensation is not nearly so effective in :« puncture
environment. It is generally preferable to have lower values of b, the top diameter.

In summary, the most important parameter for either a puncture or crush environment is €,
the true strain to failure. Increasing the value of € is the most effective and direct means of
improving the resistance to failure by tearing. After the strain-to-failure has been considered,
the geometry can play a part. Certain geometric adjustments can create conditions in which
strain localization and subsequent early failure is suppressed.

4.3 Predictive Model

Using the insights gained from construction of the regression trees, a predictive model based
on 88 of the 97 calculations was developed[12]. These 88 calculations had the punch diameter
set to 1 or 10 inches. The remaining 9 calculations, with punch diameter set to 5 inches, were
used partly as a check of the prediction.

Because of the nonlinear nature of the displacement response, it was not possible to fit a single
model to the data. Thus, the model consists of four different equations, to be used depending
on whether the punch diameter Dp is 1 (puncture environment) or 10 (crush environment), and
whether the true strain to failure 1s less than 0.5, or greater than or equal to 0.5. Different
models are required for these situations because if the material property €, is sufficiently high,
this alone is often sufficient, especially in a crush enviionment, to produce high displacements
at failure. However, when €, is lower, the top diameter b and the thickness difference t-t; and
the power law coefficient A can be traded off for the lower strain to failure.

4.4 Predictive Model Development

The predictive models were developed as follows. Since the response is restricted to be
between 0 and 4.6, a transform was used on this interval. The transformed response was the
base 10 logarithm of (& _/(4.6-8 )) where & _ is the displacement at failure. The explanatory
variables were also transformed again using the base 10 logarithm. For each of the four cases,
a model was fitted to the transformed independent and dependent variables, using linear and
cross-product terms. Since the four cases are defined by the values of D, and €, the
transforms of these variables do not appear in the models; the effect of these Vdrrables is
implicit in the coefficients calculated for the other terms. The predicted value (&_) for the
transformed response must be converted back to the interval (0,4.6). The appropriate
conversion is the inverse of the transform: 8p=4.6 x (10%) / (1+10%).

4.5 Equations

The four-part predictive model involves the following calculations. The function log (x)
represents the base 10 logarithm of x.

IfDp=1land e.< 0.5 (i.e., a low strain-to-failure material in a puncture environment),
perform the followmg calculation for the predicted displacement, 8
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X = 3.4934 + 12.7306 x log (t,) +0.30146 x log (b) — 1.09237 x log (r,,)
+1.07796 x log (A) — 0.35349 x log (r,,) X log (b)
+0.72325 x log (r,,) x log (A) +5.93828 x log (t,) x log (t,)

10*

0 =46x
P 1+10"

If Dp = | and € 2 0.5 (i.e., a high strain-to-failure material in a puncture environment),
perform the following calculation for the predicted displacement Sp:
X = 6.35222 + 13.9583 x log (max (t, - t, 0.01)) +2.20527 x log (b)
—6.78425 x log (r,) —0.25939 x log (A)
+3.64758 x log (max (t, - t, 0.01)) xlog (max (t,—t,0.01))
+0.42754 x log (rg,) X log (r ) —2.06189 X log (max (t,~t, 0.01)) X log (A)
+2.24174 x log (max (t, - t, 0.01)) X log (b)
+3.37037 x log (rg,) X log (A) +0.42057 x log (rg,,) xlog (ry,)

10*
1+ 10"

p = 4.6 x

IfD,=10and &,> 0.5 (i.e., a crush environment with a low strain-to-failure material),
perform the following calculation for the predicted displacement Gp:
X = —5.98937 - 3.02057 x log (max (t, -1, 0.01)) - 6.9967 x log (b)
~13.77734 X log (r,,) + 0.68447 X log (A)
+4.67820 x log (max (t, - t,, 0.01)) X log (b)
+0.60930 x log (max (t,—t,0.01)) xlog (ry,)
+6.12833 x log (b) X log (A) + 6.94738 x log (r ) xlog (A)

10"
1+ 10"

Bp = 4.6 X

IfDy=10and .2 0.5 (i.., a crush environment with a high strain-to-failure material),
perform the following calculation for the predicted displacement & o
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x = 99.3986 + 8.35578 x log (max (t,—t,, 0.01)) — 1.21805 x log (b)
- 1.63941 x log (r ) —86.04519 x log (A)
+2.99239 X log (max (t, - t,0.01)) x log (max (t,—t,0.01)) (9)
- 1.46110 X log (r,) X log (r,) +19.87641 x log (A) x log (A)
—0.95735 x log (r,,) X log (ry)

10"
1+ 10"

8p = 4.6X% (10)

4.6 Comparison of Predictions

Tables C1 and C2, in Appendix C, give results of the predictions of the four-part model. The
column labeled & contains the displacement to failure computed from the finite element
analysis, and the column labeled &  contains the displacement to failure predicted using
Equations 3 to 10. No model was cfeveloped for the intermediate punch diameter, D,=5.
However, the results of predictions using all four equations of the model were evaluated for
the 9 calculations with Dp=5. In this case it appears that none of the predictions are very good,
since they were developed for either a puncture (Dp=1) or a crush (Dp=10) environment.
However, the fourth equation, for D,=10 and €, >0.5, is marginally better than the others. The
predicted displacement at failure is plotted against the finite element computed value in
Figure 14 and Figure 15 for the puncture and crush environments respectively.
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Figure 14. Comparison Between the Predicted and Computed Displacement to Failure for
the Puncture Environment
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Figure 15. Comparison Between the Predicted and Computed Displacement to Failure
for the Crush Environment

From these plots one can see that the prediction is best for displacements that are either very
low or very high. These plots show that the prediction is reasonably good for these
calculations. One must keep in mind that the models were developed from these calculations,
and thus in general their predictive ability for other parameter combinations may not be as
good as the plots indicate. The user of these models should also keep in mind that they were
developed for particular, simplified geometries that may not adequately incorporate critical
aspects of other geometries such as those found in real firesets. In these calculations, the force
was applied in a downward direction, in the middle of the top. There were no interior
structures to resist the force. The model will predict a displacement no greater than 4.6 inches,
because it was developed for such a geometry. Work is ongoing to extend this study to
internal components and other geometries.

4.7 Summary

A four part model, based on the results of 88 calculations, was developed to provide guidance
for designers and nuclear safety analysts on the effects of material and structural properties on
the ability of a generic barrier to resist tearing under the downward motion of a punch located
at the top. The generic barrier was represented by a truncated cone whose top diameter, side
and top thicknesses, and side-to-top and bottom-to-top radii were varied. The material
properties were modeled by a power law constitutive relationship, whose parameters are yield
stress, hardening constant, hardening exponent, and true strain to failure.
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Based on the regression trees developed for the puncture and crush environments, a four part
predictive model was developed using linear regression. Four parts were necessary because of
the decidedly nonlinear relationship between the punch displacement to failure and the
structural and material properties. The appropriate equation is chosen based on whether a
puncture or crush environment is present, and whether the true strain to failure is less than 0.5,
or greater than or equal to 0.5. The predictive ability of the model is demonstrated with tables
and plots using the calculations made for the study. These predictions may be used to provide
insights into design, but should not be considered a substitute for a detailed finite element
analysis of an actual barrier.
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5 Confirmatory Tests

Nine tests were run to assess the accuracy of the finite element modeling. These tests
consisted of specimens with three geometries of three materials each. The geometries were
similar to those described in Section 2, a cylinder, a hemisphere, and a truncated cone. The
specimens w :re a nominal 5 inches high with a nominal base diameter of 10 inches. Specimen
thicknesses ranged from 0.053 inch to 0.092 inch. The three materials selected were 304
stainless steel, 6061-T6 aluminum, and 6061-TO aluminum. All specimens were heat treated
after fabrication to minimize the effects of deformation history or residual stresses on the
materials response. The individual test specimen dimensions are shown in Table 2 along with
the materials properties in Table 3.

Table 2: Specimen Geometry for the Confirmatory Tests

Shape Height (in) | Bottom Dia (in) | Thickness (in) | Material
Cone 5.065 9.969 0.076 304
Cone 5.037 10.313 0.080 6061-T6
Cone 5.084 10.313 0.081 6061-TO
Cylinder 5.043 10.070 0.053 304
Cylinder 4.970 10.045 0.071 6061-T6
Cylinder 4.988 10.044 0.073 6061-T0
Hemisphere | 4.950 10.040 0.092 304
Hemisphere | 4.968 10.063 0.071 6061-T6
Hemisphere | 5.023 10.016 0.073 6061-TO

Table 3: Materials Properties for the Confirmatory Tests

Material E (psi) \Y O'y S (psi) | A (psi) n
304 Stainless 28,000,000 | 0.27 28,000 | 192,746 | 0.7482
6061-T6 Aluminum | 9,900,000 | 0.33 42,000 | 29,964 | 0.3406
6061-TO Aluminum | 9,900,000 | 0.33 4,250 32,702 | 0.3257
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All specimens were tested in a closed loop servo-hydraulic testing machine, run under stroke
control, with the bottom end resting on a flat platen and the load applied through a 1-1/4 inch
diameter steel rod with a 1/8 inch chamfer. An in-line load cell provided the specimen load.
The testing machine is stiff compared to the test specimens so that the actuator displacement
was used to measure the specimen displacement. The tests were terminated at the stroke limit
of the machine or when the initiation of tearing was suspected (typically an audible ping from
the specimen). After the test, the specimens were sectioned and photographed.

All nire specimens were analyzed using two-dimensional, axisymmetric assumptions similar
to the analyses explained in detail in Section 3. The computed load versus displacement
curves are compared to the measured curves in Figure 16 through Figure 24. The computed
deformed shapes are also compared to the post-test photographs in these figures. The
predicted values at the initiation of tearing based on the minimum and maximum ductility
measured in standard tensile tests are marked on the computed load versus displacement
curves. For those specimens which demonstrated tearing prior to the stroke control limit, the
end of the measured load versus displacement curve is marked by a diamond. The curves for
specimens which tolerated the maximum machine stroke without tearing are unmarked.
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Figure 18. Load versus Displacement and Deformed Shapes for the 6061-T6 Cone
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Figure 22. Load versus Displacement and Deformed Shapes for the 304 Hemisphere
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The computed load versus displacement curve lies above the measured curve for all three
truncated cone geometries. The best match in qualitative shape of the load versus
displacement curve is seen for the 304 stainless steel (Figure 16). There is some question
about the accuracy of the experimental curve for the 6061-T0 aluminum truncated cone test
(Figure 17). This test result shows a slow steady load drop (an apparently anomalous
behavior). A load increase should result from the rolling hinge extending to a greater diameter
on the cone as seen in Figure 16. The load drop should be associated with some other
mechanism such as tearing or buckling. However, no such mechanism was identified during
this test. The load drop must be considered anomalous until further testing can be
accomplished. In the test of the 6061-T6 cone, a ping was heard very early in the test
approximately corresponding to the maximum load shown in Figure 18. The post maximum
load drop was most likely accompanied by stable tearing around the punch. When the test was
arrested, the top of the cone had almost completely torn through.

The circumferential buckling developed in the testing of the cylindrical geometry resulted in a
poor match between the analyses and the test results. This buckling phenomenon makes the
analysis inherently three-dimensional. A two-dimensional approximation such as that used
here will be too stiff. The worst match was for the 6061-TO aluminum (Figure 20). The best
match was for the 6061-T6 aluminum (Figure 21) which tore prior to the develooment of large
amounts of circumferential buckling.

The match between measured and computed load versus displacement curves for the
hemispheres for all three materials was quite good. This is despite the development of a three-
lobed circumferential buckling pattern. However, unlike the behavior of the cylinders, the
buckling did not appear to contribute to any significant softening until near the end of the
machine stroke. It may be that near the end of the stroke, the buckling has moved down the
walls of the hemisphere toward where the walls are approaching the gcometry of the vertical
walls of the cylinder. Therefore, the softening behavior due to circumferential buckling seen
in the cylinders is not seen in the hemispheres until quite large deformations are encountered.
The experimental deformed shapes shown in Figure 22 through Figure 24 indicate the extent
of the buckling. Cutting the hemispheres in hall after testing shows the three-lobed buckling
mode, an open bend on the left hand side (between the circumferential buckles) along with a
tight fold on the right hand side (directly through a buckle).

Only three of the tests exhibited failures, the 6061-T6 aluminum cone, and the 6061-T0 and
T6 aluminum cylinders. Failure of the 6061-T6 cone was predicted to occur between 0.27 and
0.34 inches of punch displacement. In the test, tearing probably initiated at about 0.08 inches
of punch displacement and the top was almost completely torn through by 0.43 inches of
punch displacement. For this initially stiff geometry and relatively low ductility material,
minor misalignment along the load train particularly between the punch and top of the cone
could be responsible for the discrepancy between the experiment and the analysis.

The 6061-TO cylinder was predicted to tear at a displacement between 1.95 and 2.0 inches. In
the experiment, tearing started at 4.09 inches. The discrepancy here can be explained by the
inability of the two-dimensional analysis 1o model the circumferential buckling. However. the
analysis made a much better prediction of the load at which tearing occurred (predicted
between 2200 and 2800 pounds, measured at 2600 pounds). Because tearing in the cylinder
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test is driven by necking of the cylinder material around the punch (a load controlled event
which can be accurately captured by the two-dimensional analysis) the prediction of load at
failure should be more accurate than displacement at failure.

The 6061-T6 cylinder was predicted to tear between 0.94 and 1.08 inches of punch
displacement. Tearing was observed at 0.8 inches of punch displacement. The small
displacements in this test did not permit the formation of any significant circumferential
buckling. Therefore, the prediction of tearing was better than for the 6061-TO material. The
load to failure was predicted to be between 4700 and 5400 pounds. Tearing was observed at
3500 pounds. This load discrepancy is unexplained. However, for both the tests of 6061-T6 in
which failure occurred, tearing occurred prior to the predicted value. There is a possibility that
the material used to fabricate the test specimens had a lower ductility than the tensile test
specimens run earlier[ 1] which were used to establish the prediction of tearing initiation.

In summary, the two-dimensional model of the hemisphere and the cylinder geometries was
too stiff. The structures are exhib:t circumferential buckling which cannot be captured by two-
dimensional analyses. Three-dimensional analyses of these structures were investigated and
found to be prohibitively expensive to carry out using continuum (hex) elements.
Implementation of shells in the three dimensional, quasistatic code, JAC3D, is underway. Use
of shell elements for this type of analysis will be investigated when they become available.
The circumferential buckling observed in the testing of the cylindrical and hemispnerical
structures implies that the results of Sections 2 through 4, are conservative for these
geometries. The greater the ductility and subsequent displacement to failure, the greater the
conservatism. For those cases with a small displacement to failure (the results of most
interest), the results of Sections 2 through 4 are only mildly conservative.
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6

Conclusions

The methodology of combining design of experiments strategies with finite element analysis
and testing to develop simplified, predictive capabilities suitable for inclusion in a design
guide has been demonstrated. This methodology has been utilized to determine the effects of
geometric and materials properties parameters on the resistance of exclusion region barriers to
tearing during quasistatic crush and puncture environments. The following conclusions
resulted from this study.

The most important parameters in order of importance were:

1. ¢ - the true strain-to-failure

2. b, the top diameter (top diameter affects the geometry i.e., a small top diameter
yields a cone or hemisphere while a large top diameter yields a cylinder)

3. rg, the side-to-top radius
4. Dp, the punch diameter (defines the environment i.e., crush versus puncture)
5. Gy the initial yield strength.

Increasing the strain-to-failure is the single most effective means of improving the
resistance to tearing failure for the modeled structures. For the puncture environment a
large displacement cannot be obtained without a large strain-to-failure. For the crush
environment, geometric adjustments can be used to some degree to prevent strain
localization and subsequent early failure for materials with low to moderate values of
strain-to-failure.

Regression tree diagrams and predictive equations have been developed for the
determination of tearing of exclusion region barriers. These equations and diagrams
are suitable for inclusion in a design guide.

Confirmatory tests have shown that the finite element analyses predict tearing with
reasonable accuracy except for the specific case of large punch displacements in the
cylindrical geometry. For this case, the specimen exhibits circumferential buckling
which significantly reduces its stiffness. The two-dimensional analyses cannot capture
this buckling mode. Improved analytical accuracy requires three-dimensional analyses
which will be performed when improved code features currently under development
are implemented.
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Appendix A

Table A1: Matrix of the 97 Sets of Parameter Combinations

Run# | Side | Top- | Top | Punch | Side-to- | Side- Yield Hardening | Hardening | Strain-
Thick | Side | Dia. | Dia. Bottom | to-Top | Strength | Constant | Exponent to-
(in) | Thick | (in) (in) Radius | Radius (ksi) (ksi) Failure
(in) (in) (in)
11 0.050 | 0.000 1. 1. ] 0.063 0.063 103 83 | 0.26 0.33
2 1 0.050 | 0.000 l. 1. | 0.063 0.063 103 257 § 0.69 1.27
31 0.050 1 0.000 l. 1. | 0.500 4.000 103 83 | 0.26 1.27
4 | 0.050 { 0.000 1. 1. | 0.500 4.000 103 257 | 0.69 (.33
S 1 0.050 | 0.000 1. 10. | 0.063 4.000 37 83 | 0.69 0.33
6 | 0.050 | 0.000 1. 10. | 0.063 4.000 37 257 | 0.26 1.27
7 1 0.050 | 0.000 l. 10. 1 0.500 0.063 37 83 | 0.69 1.27
8 | 0.050 | 0.000 1. 10. | 0.500 0.063 37 257 | 0.26 0.33
9 1 0.050 | 0.000 10. 1. ] 0.063 0.500 103 83 1 0.26 0.33
10 [ 0.050 { 0.000 10. 1. [ 0.063 0.500 103 257 | 0.69 1.27
11 ] 0.050 | 0.000 10. 1. ] 0.500 0.063 103 83 | 0.26 1.27
12 | 0.050 | 0.000 10. 1. 1 0.500 0.063 103 257 | 0.69 0.33
13 ] 0.050 | 0.000 10. 10. | 0.063 0.063 37 83 | 0.69 0.33
14 | 0.050 | 0.000 10. 10. | 0.063 0.063 37 257 { 0.26 1.27
15 1 0.050 | 0.000 10. 10. | 0.500 0.500 37 83 | 0.69 1.27
16 1 0.050 | 0.000 10. 10. | 0.500 0.500 37 257 | 0.26 0.33
17 { 0.050 | 0.200 1. 1. | 0.063 4.000 37 83 | 0.26 0.33
18 | 0.050 | 0.200 l. 1. { 0.063 4.000 37 257 | 0.69 1.27
19 | 0.050 | 0.200 1. 1. 1 0.500 0.063 37 83 | 0.26 1.27
20 | 0.050 | 0.200 1. 1. 1 0.500 0.063 37 257 | 0.69 0.33
21 | 0.050 | 0.200 1. 10. | 0.063 0.063 103 83 | 0.69 0.33
22 | 0.050 | 0.200 l. 10. | 0.063 0.063 103 257 | 0.26 1.27
23 {1 0.050 | 0.200 1. 10. | 0.500 4.000 103 83 | 0.69 1.27
24 1 0.050 | 0.200 [ 10. | 0.500 4.000 103 257 | 0.26 0.33
25 | 0.050 | 0.200 10. 1. | 0.063 0.063 37 83 1 0.26 033
26 | 0.050 | 0.200 10. 1. | 0.063 0.063 37 257 | 0.69 127
27 1 0.050 | 0.200 10. 1. { 0.500 0.500 37 83 | 0.26 1.27
28 | 0.n50 | 0.200 10. 1. | 0.500 0.500 37 257 | 0.69 0.33
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Table A1: Matrix of the 97 Sets of Parameter Combinations

Run# | Side | Top- | Top | Punch | Side-to- | Side- Yield Hardening | Hardening | Strain-
Thick | Side | Dia. Dia. Bottom | to-Top | Strength | Constant | Exponent to-
(in) | Thick | (in) (in) Radius | Radius (ksi) (ksi) Failure
(in) (in) (in)
29 | 0.050 | 0.200 10. 10. | 0.063 0.500 103 83 | 0.69 0.33
30 | 0.050 | 0.200 10. 10. | 0.063 0.500 103 257 | 0.26 1.27
31 | 0.050 | 0.200 10. 10. | 0.500 0.063 103 83 | 0.69 1.27
32 1 0.050 } 0.200 10. 10. | 0.500 0.063 103 257 | 0.26 0.33
33 | 0.125 | 0.000 1. 1. | 0.063 4.000 103 83 | 0.69 1.27
34 1 0.125 | 0.000 1. 1. | 0.063 4.000 103 257 | 0.26 0.33
351 0.125 | 0.000 l. 1. | 0.500 0.063 103 83 | 0.69 0.33
36 | 0.125 | 0.000 l. 1. | 0.500 0.063 103 257 | 0.26 1.27
37 1 0125 | 0.000 1. 10. | 0.063 0.063 37 83 | 0.26 1.27
8 0125 | 0.000 l. 10. | 0.063 0.063 37 257 | 0.69 0.33
391 0.125 | 0.000 l. 10. | 0.500 4.000 37 83 | 0.26 0.33
40 1 0,125 | 0.000 1. 10. | 0.500 4.000 37 257 | 0.69 1.27
41 | 0.125 ] 0.000 10. 1. | 0.063 0.063 103 83 | 0.69 1.27
42 1 0125 | 0.000 10). 1. | 0.063 0.063 103 257 | 0.26 0.33
43 1 0.125 | 0.000 10. 1. ] 0.500 0.500) 103 83 | 0.69 0.33
44 1 0.125 | 0.000 10. 1. ] 0.500 0.500 103 257 | 0.26 1.27
45 [ 0.125 | 0.000 10. 10. | 0.063 0.500 37 83 | 0.26 1.27
46 | 0.125 ] 0.000 10. 10. | 0.063 0.500 37 257 | 0.69 0.33
47 |1 0.125 | 0.000 10. 10. ] 0.500 0.063 37 83 | 0.26 0.33
48 1 0125 1 0.000 10. 10. | 0.500 0.063 37 257 | 0.69 1.27
49 1 0125 | 0.125 I I 0.063 0.063 37 83 | 0.69 1.27
50 1 0125 | 0.125 l. 1.} 0.063 0.063 37 257 | 0.26 0.33
St} 0125 | 0.125 l. 1. ] 0.500 4.000 37 83 | 0.69 0.33
S2 10125 | 0.125 l. 1. | 0.500 4.000 37 257 | 0.26 1.27
S3 10125 | 0.125 l. 10, | 0.063 4.000 103 83 | 0.26 1.27
54 1 0.125 | 0.125 I 10. | 0.063 4.000 103 257 | 0.69 0.33
55 1 0.125 | 0.125 1. 10. | 0.500 0.063 103 83 | 0.26 0.33
56 1 0.125 | 0.125 l. 10. | 0.500 0.063 103 257 | 0.69 1.27
57 1 0.125 | 0.125 10. 1. [ 0.063 0.500 37 83 | 0.69 1.27
58 1 0.125 | 0.125 10. 1. | 0.063 0.500 37 257 | 0.26 0.33
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Table A1: Matrix of the 97 Sets of Parameter Combinations

Run # TSti‘qe Top - T9p Pupch Side-to- | Side- Yield | Hardening | Hardening | Strain-
nick Tstl?cek Dllna) E()‘Inal) gc;t;qm ;0-T9p Strength | Constant | Exponent to-
(in) i ( (in|)us ?i?\l)us (ksi) (ksi) Failure
59 | 0.125 | 0.125 | 10. 1. | 0500 0.063 37 83 | 069 033
60 | 0.125 | 0.125 | 10. 1. | 0.500 0.063 17 257 | 026 | 27
61 | 0125 | 0125 | 10. 10. | 0.063 0.063 103 83 | 026 127
62 | 0.125 | 0.125 | 10. 10. | 0.063 0.063 103 257 | 0.69 0.33
63 | 0125 | 0.125 | 10. 10. | 0.500 0.500 103 83 | 0.26 0.33
64 | 0.125 | 0.125 | 10. 10. | 0.500 0.500 103 257 | 0.69 1.27
65 | 0.081 | 0.081 6. 5.1 0.250 0.250 70 170 | 0.48 0.80
66 | 0.081 | 0.081 6. 5.1 0.250 0.250 20 170 | 0.48 0.80
67 | 0.081 | 0.081 6. 5.1 0.250 0.250 120 170 | 0.48 0.80
68 | 0.081 | 0.08! 6. 5. | 0.250 0.250 70 40 | 0.48 0.80
69 | 0.081 | 0.081 6. 5. 0.250 0.250 70 300 | 048 0.80
70 | 0.081 | 0.081 6. 5.1 0.250 0.250 70 170 | 0.15 0.80
71 | 0.081 | 0.081 6. 5.1 0.250 0.250 70 170 | 0.80 0.80
72 | 0.081 | 0.081 6. 5.1 0250 0.250 70 170 | 0.48 0.10
73 | 0.081 | 0.081 6. 5.1 0.250 0.250 70 170 | 0.48 1.50
74 | 0.060 | 0.000 1. 1. | 0.063 0.500 37 170 | 0.48 0.33
75 | 0.060 | 0.000 1. . | 0.063 0.500 37 170 | 0.48 0.80
76 | 0.060 | 0.000 1. 1. | 0.063 0.500 80 170 | 0.48 0.33
77 | 0.060 | 0.000 1. 1. | 0.063 0.500 80 170 | 0.48 0.80
78 | 0.060 | 0.000 6. 1. | 0.063 0.500 60 170 | 0.48 0.20
79 | 0.060 | 0.000 6. 1. | 0.063 0.500 60 170 | 0.48 0.50
80 | 0.060 | 0.000 6. 1. | 0.063 2.000 60 170 | 0.48 0.20
81 | 0.060 | 0.000 6. 1. | 0.063 2.000 60 170 | 0.48 0.50
82 | 0.060 | 0.000 1. 1. | 0.063 0.500 60 170 | 0.48 0.50
83 { 0.060 | 0.000 l. 1. | 0.063 2.000 60 170 | 0.48 0.50
84 | 0.060 | 0.000 1. 1. | 0.063 0.500 60 170 1 048 0.20
85 | 0.060 | 0.000 l. 1. | 0.063 2,000 60 170 | 0.48 0.20
86 | 0.060 | 0.000 I. 10. | 0.063 0.500 37 170 | 0.48 0.33
87 | 0.060 | 0.000 1. 10. | 0.063 0.500 Ry 170 | 048 0.80
88 | 0.060 | 0.000 . 10. | 0063 | 0.500 80 170 1 048 0.33

47




Table A1: Matrix of the 97 Sets of Parameter Combinations

Run# | Side | Top- | Top | Punch | Side-to- Side- Yield Hardening | Hardening | Strain-
Thick | Side | Dia. | Dia. | Bottom | to-Top | Strength | Constant | Exponent to-
(iny | Thick | (in) (in) Radius | Radius (ksi) (ksi) Fallure
(in) (in) (in)

89 1 0.060 | 0.000 1. 10. | 0.063 0.500 80 170 | 0.48 0.80
90 | 0.060 | 0.000 6. 10. | 0.063 0.500 60 170 | 0.48 0.20
91 1 0.060 | 0.000 6. 10. | 0.063 0.500 60 170 | 0.48 0.50
92 | 0.060 | 0.000 6. 10. | 0.063 2.000 60 170 | 0.48 0.20
93 1 0.060 | 0.000 6. 10. | 0.063 2.000 60 170 | 0.48 0.50
94 | 0.060 | 0.000 i 10. | 0.063 0.500 60 170 | 0.48 0.50
95 | 0.060 | 0.000 I 10. 1 0.063 2.000 60 170 | 048 0.50
96 | 0.060 | 0.000 1. 10. | 0.063 0.500 60 170 | 0.48 0.20
97 | 0.060 | 0.000 1. 10. | 0.063 2.000 60) 170 | 048 0.20
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Appendix B

Table B1: Punch Displacement at Failure

Run# | & _(in) ;\Jlloa:(;ral;;n Run# | §_(in) tloa:(;ralé?]
1 0.20 5600 26 >4.50 32400
2 >4.50 9700 27 >4.50 25900
3 3.35 11400 28 2.50 24400
4 2.35 10000 29 0.55 63100
5 3.75 38700 30 >4.50 93400
6 >4.50 107700 31 >4.50 28000
7 >4.50 5000 32 0.80 34200
8 2.15 48900 33 2.60 28000
9 0.90 7800 34 1.55 40200

10 2.70 18600 35 0.15 32400
11 1.15 9200 36 >4.50 61200
12 0.95 8700 37 >4.50 100800
13 0.35 25900 38 0.50 33500
14 1.15 64800 39 2.60 99400
15 >4.50 16000 40 >4.50 75100
16 1.25 38000 41 1.15 23700
17 0.60 18300 42 0.95 35100
18 >4.50 23400 43 0.75 17000
19 >4.50 9000 44 1.50 48700
20 0.20 8400 45 | >4.50 135800
21 0.20 11400 46 0.90 97600
22 >4.50 137100 47 0.20 81100
23 >4.50 43200 48 >4.50 103600
24 0.65 75800 49 >4.50 16200




Table B1: Punch Displacement at Failure

Run# | & (in) t’loaa);ir(nll‘;;n Run# | & (in) r:d)gr(r:gr)n
25 0.95 23500 50 0.30 47400
51 0.50 12200 76 0.40 6100
52 >4.50 86400 77 >4.50 10800
53 >4.50 234000 78 0.70 5500
54 2.30 260600 79 1.45 10200
55 0.40 54000 80 1.00 5600
56 >4.50 111100 81 2.20 10200
57 2.15 30100 82 >4.50 9200
58 1.05 53300 83 >4.50 10800
S9 0.80 15300 84 0.20 3800
60 1.80 82700 85 1.20 6500
61! 1.15 312900 86 4.50 20800
62 0.45 262800 87 >4.50 20800
63 0.30 132900 88 4.50 31700
64 >4.50 171400 89 >4.50 31700
65 >4.50 46100 90 1.25 59600
66 >4.50 26700 91 3.80 69900
67 >4.50 65400 92 1.45 33000
68 >4.50 33700 93 240 73800
69 >4.50 58200 94 4.50 52200
70 >4.50 72700 95 4.50 50600
71 >4.50 36800 96 4.45 28000
72 0.25 30400 97 4.40 37500
73 >4.50 46100
74 1.15 5300
75 >4.50 7200




Appendix C

Table C1: Predicted Displacement to Failure for the Puncture Environment

Run#| e, | D,(in) b (in) | rg (in) | ti-tg (in) | A (psi) 8, (in) Sp(in)
84 | 0.2 1 105 0. 170 | 0.20 0.47
8502 1 12 0 170 {120 |o087
78 1 0.2 1 605 0 170 | 0.70 | 0.87
80 | 0.2 1 6|2 0 170 | 1.00 1.14
11033 1 110063 |0 83 | 0.20 0.22
35 | 0.33 1 110063 |0 83| 0.15 0.16
50 | 0.33 1 110063 |0.13 257 | 0.30 0.20
20 | 0.33 1 1]0.063 |02 257 | 0.20 0.27
74 | 0.33 1 1105 0 170 | 1.15 0.47
76 | 0.33 1 1105 0 170 | 0.40 0.47
4033 1 14 0 257 | 2.35 2.22
34| 0.33 1 14 0 257 | 1.55 1.85
51 | 0.33 1 114 0.13 83 | 0.50 0.50
17 | 0.33 1 1|4 0.2 83 | 0.60 0.67
12 | 0.33 1 10 | 0063 |0 257 | 0.95 1.15
42 | 0.33 1 10 | 0.063 |0 257 | 0.95 0.89
59 | 0.33 1 10 | 0.063 | 0.13 83 | 0.80 0.74
25 | 0.33 1 10 | 0.063 |02 83 | 0.95 0.96
9|0.33 1 10 [ 0.5 0 83 | 0.90 0.87
43 | 0.33 1 10 | 0.5 0 83 | 0.75 0.66
58 | 0.33 1 10| 0.5 0.13 257 | 1.05 1.42
28 | 0.33 1 10 | 05 0.2 257 | 2.50 1.76
82105 1 1105 0 170 | 4.50 4.49
83| 0.5 1 112 0 170 | 4.50 452
79 | 0.5 1 6|05 0 170 | 1.45 1.89
81105 ] 612 0 170 | 2.20 225
75| 0.8 1 1105 0 170 | 450 | 449
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Table C1: Predicted Displacement to Failure for the Puncture Environment

Run#| €, | Dp(in) | b(in) rst (in) | t-tg (in) | A (psi) | 8, (in) Sp (in)
77| 0.8 1 1]05 0 170 | 450 | 4.49
2127 1 1]0063 |0 257 | 4.50 4.55
36 | 1.27 1 110063 |0 257 | 4.50 4.46
49 | 1.27 1 110063 |0.13 83 | 4.50 4.42
19 | 1.27 1 110063 |02 83 | 4.50 453
3127 1 114 0 83 | 3.35 3.13
33| 1.27 1 1|4 0 83 | 2.60 2.57
52 | 1.27 1 114 0.13 257 | 4.50 4.45
18 | 1.27 1 1]4 0.2 257 | 4.50 4.54
11| 1.27 1 10 [ 0.063 |0 83 | 1.15 0.78
41 | 1.27 1 100063 |0 83 | 1.15 1.70
60 | 1.27 1 10 | 0.063 | 0.13 257 | 1.80 2.11
26 | 1.27 1 10 | 0.063 | 0.2 257 | 4.50 4.45
10 | 1.27 1 10|05 0 257 | 2.70 1.90
44 | 1.27 1 10| 05 0 257 | 1.50 1.62
57 | 1.27 1 10|05 0.13 83 | 2.15 2.98
27 | 1.27 1 10|05 0.2 83 | 4.50 4.44
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Table C2: Predicted Displacement to Failure for the Crush Environment

Run#| & | Dy(in) | b(in) | rg (in) | 4-ts (in) | A (psi) | 8 (in) 5p (in)
96 | 0.2 10 1({05 0 170 | 4.45 4.43
97 | 0.2 10 1]2 0 170 | 4.40 4.52
90 | 0.2 10 6|05 0 170 | 1.25 0.82
92 1 0.2 10 62 0 170 | 1.45 1.40

8 | 0.33 10 110063 |0 257 | 2.15 1.32
38 | 0.33 10 10063 |0 257 | 0.50 1.32
55 | 0.33 10 110.063 | 0.13 83 | 0.40 0.69
21 { 0.33 10 110063 |02 83 | 0.20 0.14
86 | 0.33 10 1105 0 170 | 4.50 4.43
88 | 0.33 10 1105 0 170 | 4.50 4.43

51 0.33 10 114 0 83 | 3.75 3.21
39 | 0.33 10 114 0 83 | 2.60 3.21
54 | 0.33 10 114 0.13 257 | 2.30 1.89
24 | 0.33 10 114 0.2 257 | 0.65 0.77
13 | 0.33 10 101 0.063 | O 83 | 0.35 0.26
47 | 0.33 10 10 | 0063 | O 83 { 0.20 0.26
62 | 0.33 10 10 | 0.063 | 0.13 257 | 0.45 0.45
32 ] 033 10 10 |1 0.063 | 0.2 257 | 0.80 0.66
16 | 0.33 10 10 1 0.5 0 257 | 1.25 1.29
46 | 0.33 10 101 0.5 0 257 | 0.90 1.29
63 | 0.33 10 10| 0.5 0.13 83 | 0.30 0.33
29 | 0.33 10 10| 05 0.2 83 | 0.55 0.62
94 | 0.5 10 1105 0 170 | 4.50 4.50
95105 10 112 0 170 | 4.50 4.40
91 [ 05 10 61§05 0 170 | 3.80 3.82
93| 0.5 10 6]2 0 170 | 2.40 3.27
87|08 10 1105 0 170 | 4.50 4.50
89 |08 10 1105 0 170 | 4.50 4,50

71127 10 110063 |0 83 | 4.50 457

B 37 1 1.27 10 1 { 0.063 0 83 | 4.50 4.33
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Table C2: Predicted Displacement to Failure for the Crush Environment

Run#| ¢, Dy, (in) | b (in) | rg (in) | ti-tg (in) | A (psi) 8, (in) Sp (in)
56 | 1.27 10 1]0.063 | 0.13 257 | 4.50 4.54
22 | 1.27 10 110063 |0.2 257 | 4.50 4.48

61127 10 114 0 257 | 4.50 4.54
40 | 1.27 10 114 0 257 | 450 4.42
53 | 1.27 10 114 0.13 83 | 4.50 4.47
231127 10 114 0.2 83 | 4.50 4.52
14 { 1.27 10 10 | 0.063 0 257 1 115 2.29
48 | 1.27 10 10 | 0.063 0 257 | 4.50 4.21
61 | 1.27 10 10 | 0.063 0.13 83 | 1.15 1.38
31 1 1.27 10 10 | 0.063 0.2 83 | 450 4.42
15 1 1.27 10 10| 0.5 0 83 | 4.50 4.53
45 | 1.27 10 101 0.5 0 83 | 4.50 4.47
64 | 1.27 10 10 { 0.5 0.13 257 | 4.50 4.43
30 | 1.27 10 10 { 0.5 0.2 257 | 4.50 4.54
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